1
|
Sa R, Sun Y, Cao Y, Yan W, Zong Z, An W, Song M. Medium Optimization and Fermentation Kinetics for Antifungal Compounds Production by an Endophytic Paenibacillus polymyxa DS-R5 Isolated from Salvia miltiorrhiza. Curr Microbiol 2024; 81:54. [PMID: 38189839 DOI: 10.1007/s00284-023-03558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024]
Abstract
An endophytic bacterium Paenibacillus polymyxa DS-R5 which can effectively inhibit the growth of pathogenic fungi was isolated from Salvia miltiorrhiza in our previous study. By using hydrochloric acid precipitation, methanol extraction, silica gel column isolation, dextran gel chromatography column, and HPLC, 3 compounds with antifungal activity were isolated. To further improve the production of antifungal compounds produced by this strain, fermentation medium was optimized using one-factor-at-a-time, Plackett-Burman design, and Box-Behnken design experiments. Through statistical optimization, the optimal medium composition was determined to be as follows: 14.7 g/l sucrose, 20.0 g/l soluble starch, 7.0 g/l corn steep liquor, 10.0 g/l (NH4)2SO4, and 0.7 g/l KH2PO4. In this optimized medium, the highest titer of antifungal compounds reached 3452 U/ml, which was 123% higher than that in the initial medium. In addition, in order to guide scale-up for production, logistic and Luedeking-Piret equations were proposed to predict the cell growth and antifungal compounds production. The fermentation kinetics and empirical equations of the coefficients (X0, Xm, μm, α, and β) for the two models were reported, which will aid the design and optimization of industrial processes. The degrees of fit between calculated values of the model and the experimental data were 0.989 and 0.973, respectively. The results show that the cell growth and product synthesis models established in this study may better reflect the dynamic process of antifungal compounds production and provide a theoretical basis for further optimization and on-line monitoring of the fermentation process.
Collapse
Affiliation(s)
- Rongbo Sa
- Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Yue Sun
- Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Ying Cao
- Taian Center for Disease Control and Prevention, Taian, China
| | - Wenhui Yan
- Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Zhaohui Zong
- Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Wen An
- Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| | - Meimei Song
- Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| |
Collapse
|
2
|
Jiang K, Luo P, Wang X, Lu L. Insight into advances for the biosynthetic progress of fermented echinocandins of antifungals. Microb Biotechnol 2024; 17:e14359. [PMID: 37885073 PMCID: PMC10832530 DOI: 10.1111/1751-7915.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Invasive fungal infections have increased remarkably, which have become unprecedented concern to human health. However, the effectiveness of current antifungal drugs is limited due to drug resistance and toxic side-effects. It is urgently required to establish the effective biosynthetic strategy for developing novel and safe antifungal molecules economically. Echinocandins become a promising option as a mainstay family of antifungals, due to specifically targeting the fungal specific cell wall. To date, three kinds of echinocandins for caspofungin, anidulafungin, and micafungin, which derived from pneumocandin B0 , echinocandin B, and FR901379, are commercially available in clinic and have shown potential in managing invasive fungal infections in a cost-effective manner. However, current echinocandins-derived precursors all are produced by environmental fungal isolates with long fermentation cycle and low yields, which challenge the production efficacy of these precursors in industry. Therefore, understanding their biosynthetic machinery is of great importance for improving antifungal titres and creating new echinocandins-derived products. With the development of genome-wide sequencing and establishment of gene-editing technology, there are a growing number of reports on echinocandins-derived products and their biosynthetic gene clusters. This review briefly summarizes the discovery and development history of echinocandins, compares their structural characteristics and biosynthetic processes, and sums up existed strategies for improving their production. Moreover, the genomic analysis of related biosynthetic gene clusters of echinocandins is discussed, highlighting the similarities and differences among the clusters. Last, the biosynthetic processes of echinocandins are compared, focusing on the activation and attachment of side-chains and the formation of the hexapeptide core. This review aims to provide insights into the development and production of new echinocandin drugs by modifying the structure of echinocandin-derived precursors and/or optimizing the fermentation processes; and achieve a new microbial chassis for efficient production of echinocandins in heterologous hosts.
Collapse
Affiliation(s)
- Kaili Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu, Engineering and Technology Research Center for Microbiology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Pan Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu, Engineering and Technology Research Center for Microbiology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Xinxin Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu, Engineering and Technology Research Center for Microbiology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu, Engineering and Technology Research Center for Microbiology, College of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
3
|
Bo L, Kang X, Chen Z, Zhao Y, Wu S, Li J, Bao S. Isolation and identification of high-yielding alkaline phosphatase strain: a novel mutagenesis technique and optimization of fermentation conditions. Prep Biochem Biotechnol 2023; 53:1276-1287. [PMID: 36939156 DOI: 10.1080/10826068.2023.2188412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Isolating and screening enzyme-producing strains from microorganisms and the commercial production of ALPs from microorganisms are of increasing interest. In this work, isolation and identification of high-yielding alkaline phosphatase strain were carried out using atmospheric and room temperature plasma mutagenesis (ARTP) for optimization of fermentation conditions. A strain of alkaline phosphatase-producing bacteria was screened from soil and identified by 16S rRNA gene sequencing as Bacillus amyloliquefaciens and named S-1. This strain had an alkaline phosphatase activity of 2594.73 U/L. Later, mutagenesis breeding of the alkaline phosphatase-producing S-1 strain was conducted using (ARTP), from which a higher alkaline phosphatase-producing positive mutant strain S-52 was screened. A central combination of five factors, including corn starch, yeast extract, metal ions, fermentation temperature and inoculum ratio, was then used to influence the activity of alkaline phosphatase. Results from the response surface methodology showed that the maximum enzyme activity of alkaline phosphatase was 12,110.6 U/L at corn starch, yeast extract and magnesium ions concentrations of 17.48 g/L, 18.052 g/L and 0.744 g/L, respectively; fermentation temperature of 37.192 °C; and inoculation ratio of 5.59%. This study is important for further exploring ARTP mutagenesis in B. amyloliquefaciens and the commercialization of ALPs.
Collapse
Affiliation(s)
- Le Bo
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Xin Kang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zuohui Chen
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Si Wu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jie Li
- College of Life Science, Northeast Agricultural University, Harbin, China
| | | |
Collapse
|
4
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
5
|
Niu K, Qi YX, Cai HW, Ye YX, Zhou HY, Liu XT, Liu ZQ, Zheng YG. Investigation of the enhancement for Echinocandin B fermentation with methyl oleate from transcription level. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02883-4. [PMID: 37253987 DOI: 10.1007/s00449-023-02883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
Echinocandin B (ECB) is the key precursor compound of the antifungal drug Anidulafungin. The effects of the five precursor amino acids on ECB biosynthesis were firstly investigated. It showed that although L-threonine was a main compound of the hexapeptide scaffold of ECB, exogenous addition of L-threonine had no significant effect on the increase of ECB fermentation titer. Meanwhile, the ECB fermentation titer with methyl oleate showed two times higher than that of the other carbon sources. Transcription level analysis of the key genes for ECB biosynthesis indicated that the gene an655543 related to L-threonine biosynthesis showed higher value during the fermentation process, therefore, the exogenous addition of L-threonine had no obvious affection. Furthermore, it indicated that the transcription level of gene ecdA might be the main restriction factor for the ECB biosynthesis. The study provided the research foundation for the modification of the ECB producing strains in the following work.
Collapse
Affiliation(s)
- Kun Niu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yu-Xin Qi
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hong-Wei Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yi-Xin Ye
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hai-Yan Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Tian Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 200235, People's Republic of China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
6
|
Cen YK, Li MH, Wang Q, Zhang JM, Yuan JC, Wang YS, Liu ZQ, Zheng Y. Evolutionary engineering of Fusarium fujikuroi for enhanced production of gibberellic acid. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Nonthermal Plasma Effects on Fungi: Applications, Fungal Responses, and Future Perspectives. Int J Mol Sci 2022; 23:ijms231911592. [PMID: 36232892 PMCID: PMC9569944 DOI: 10.3390/ijms231911592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The kingdom of Fungi is rich in species that live in various environments and exhibit different lifestyles. Many are beneficial and indispensable for the environment and industries, but some can threaten plants, animals, and humans as pathogens. Various strategies have been applied to eliminate fungal pathogens by relying on chemical and nonchemical antifungal agents and tools. Nonthermal plasma (NTP) is a potential tool to inactivate pathogenic and food-contaminating fungi and genetically improve fungal strains used in industry as enzyme and metabolite producers. The NTP mode of action is due to many highly reactive species and their interactions with biological molecules. The interaction of the NTP with living cells is believed to be synergistic yet not well understood. This review aims to summarize the current NTP designs, applications, and challenges that involve fungi, as well as provide brief descriptions of underlying mechanisms employed by fungi in interactions with the NTP components.
Collapse
|
8
|
Szymański M, Chmielewska S, Czyżewska U, Malinowska M, Tylicki A. Echinocandins - structure, mechanism of action and use in antifungal therapy. J Enzyme Inhib Med Chem 2022; 37:876-894. [PMID: 35296203 PMCID: PMC8933026 DOI: 10.1080/14756366.2022.2050224] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
With increasing number of immunocompromised patients as well as drug resistance in fungi, the risk of fatal fungal infections in humans increases as well. The action of echinocandins is based on the inhibition of β-(1,3)-d-glucan synthesis that builds the fungal cell wall. Caspofungin, micafungin, anidulafungin and rezafungin are semi-synthetic cyclic lipopeptides. Their specific chemical structure possess a potential to obtain novel derivatives with better pharmacological properties resulting in more effective treatment, especially in infections caused by Candida and Aspergillus species. In this review we summarise information about echinocandins with closer look on their chemical structure, mechanism of action, drug resistance and usage in clinical practice. We also introduce actual trends in modification of this antifungals as well as new methods of their administration, and additional use in viral and bacterial infections.
Collapse
Affiliation(s)
- Mateusz Szymański
- Department of Microbiology and Biotechnology, Laboratory of Cytobiochemistry, University of Bialystok, Bialystok, Poland
| | - Sandra Chmielewska
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Bialystok, Poland
| | - Urszula Czyżewska
- Department of Microbiology and Biotechnology, Laboratory of Cytobiochemistry, University of Bialystok, Bialystok, Poland
| | - Marta Malinowska
- Department of Organic Chemistry, Laboratory of Natural Product Chemistry, University of Bialystok, Bialystok, Poland
| | - Adam Tylicki
- Department of Microbiology and Biotechnology, Laboratory of Cytobiochemistry, University of Bialystok, Bialystok, Poland
| |
Collapse
|
9
|
Veerana M, Yu N, Ketya W, Park G. Application of Non-Thermal Plasma to Fungal Resources. J Fungi (Basel) 2022; 8:jof8020102. [PMID: 35205857 PMCID: PMC8879654 DOI: 10.3390/jof8020102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
In addition to being key pathogens in plants, animals, and humans, fungi are also valuable resources in agriculture, food, medicine, industry, and the environment. The elimination of pathogenic fungi and the functional enhancement of beneficial fungi have been the major topics investigated by researchers. Non-thermal plasma (NTP) is a potential tool to inactivate pathogenic and food-spoiling fungi and functionally enhance beneficial fungi. In this review, we summarize and discuss research performed over the last decade on the use of NTP to treat both harmful and beneficial yeast- and filamentous-type fungi. NTP can efficiently inactivate fungal spores and eliminate fungal contaminants from seeds, fresh agricultural produce, food, and human skin. Studies have also demonstrated that NTP can improve the production of valuable enzymes and metabolites in fungi. Further studies are still needed to establish NTP as a method that can be used as an alternative to the conventional methods of fungal inactivation and activation.
Collapse
Affiliation(s)
- Mayura Veerana
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Nannan Yu
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Wirinthip Ketya
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
- Correspondence: ; Tel.: +82-2-940-8324
| |
Collapse
|
10
|
Curto MÁ, Butassi E, Ribas JC, Svetaz LA, Cortés JCG. Natural products targeting the synthesis of β(1,3)-D-glucan and chitin of the fungal cell wall. Existing drugs and recent findings. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153556. [PMID: 33958276 DOI: 10.1016/j.phymed.2021.153556] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/12/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND During the last three decades systemic fungal infections associated to immunosuppressive therapies have become a serious healthcare problem. Clinical development of new antifungals is an urgent requirement. Since fungal but not mammalian cells are encased in a carbohydrate-containing cell wall, which is required for the growth and viability of fungi, the inhibition of cell wall synthesizing machinery, such as β(1,3)-D-glucan synthases (GS) and chitin synthases (CS) that catalyze the synthesis of β(1-3)-D-glucan and chitin, respectively, represent an ideal mode of action of antifungal agents. Although the echinocandins anidulafungin, caspofungin and micafungin are clinically well-established GS inhibitors for the treatment of invasive fungal infections, much effort must still be made to identify inhibitors of other enzymes and processes involved in the synthesis of the fungal cell wall. PURPOSE Since natural products (NPs) have been the source of several antifungals in clinical use and also have provided important scaffolds for the development of semisynthetic analogues, this review was devoted to investigate the advances made to date in the discovery of NPs from plants that showed capacity of inhibiting cell wall synthesis targets. The chemical characterization, specific target, discovery process, along with the stage of development are provided here. METHODS An extensive systematic search for NPs against the cell wall was performed considering all the articles published until the end of 2020 through the following scientific databases: NCBI PubMed, Scopus and Google Scholar and using the combination of the terms "natural antifungals" and "plant extracts" with "fungal cell wall". RESULTS The first part of this review introduces the state of the art of the structure and biosynthesis of the fungal cell wall and considers exclusively those naturally produced GS antifungals that have given rise to both existing semisynthetic approved drugs and those derivatives currently in clinical trials. According to their chemical structure, natural GS inhibitors can be classified as 1) cyclic lipopeptides, 2) glycolipids and 3) acidic terpenoids. We also included nikkomycins and polyoxins, NPs that inhibit the CS, which have traditionally been considered good candidates for antifungal drug development but have finally been discarded after enduring unsuccessful clinical trials. Finally, the review focuses in the most recent findings about the growing field of plant-derived molecules and extracts that exhibit activity against the fungal cell wall. Thus, this search yielded sixteen articles, nine of which deal with pure compounds and seven with plant extracts or fractions with proven activity against the fungal cell wall. Regarding the mechanism of action, seven (44%) produced GS inhibition while five (31%) inhibited CS. Some of them (56%) interfered with other components of the cell wall. Most of the analyzed articles refer to tests carried out in vitro and therefore are in early stages of development. CONCLUSION This report delivers an overview about both existing natural antifungals targeting GS and CS activities and their mechanisms of action. It also presents recent discoveries on natural products that may be used as starting points for the development of potential selective and non-toxic antifungal drugs.
Collapse
Affiliation(s)
- M Ángeles Curto
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
| | - Estefanía Butassi
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Juan C Ribas
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
| | - Laura A Svetaz
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| | - Juan C G Cortés
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
11
|
Niu K, Wu XP, Fu Q, Lang KP, Zou SP, Hu ZC, Liu ZQ, Zheng YG. Effects of lipids and surfactants on the fermentation production of echinocandin B by Aspergillus nidulans. J Appl Microbiol 2021; 131:2849-2860. [PMID: 33987908 DOI: 10.1111/jam.15136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/03/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022]
Abstract
AIMS Echinocandin B (ECB) is a kind of lipopeptide antifungal antibiotic, as well as the key precursor of antifungal drug Anidulafungin. Its efficient bioproduction plays an important role in promoting the industrial production of Anidulafungin. METHODS AND RESULTS In this study, methyl oleate and Tween 80 were firstly used to enhance the ECB fermentation by Aspergillus nidulans, the results showed that the ECB titre was significantly enhanced with the addition of methyl oleate and Tween 80. Among the lipids, methyl oleate was found to play a pivotal role in increasing the ECB titre to 2123 mg l-1 , which was more than five times higher than that of the control. The addition of Tween 80 in the medium resulted in ECB titre increased to 2584 mg l-1 . The scanning electron microscope (SEM) and N-phenyl-1-naphthylamine (NPN) assay indicated that Tween 80 could influence the cell membrane permeability of A. nidulans, and enhance the intracellular and extracellular substance exchange, therefore lead to the increasing of ECB titre. CONCLUSIONS Methyl oleate and Tween 80 are optimal carbon sources and surfactants for efficient ECB biosynthesis respectively. SIGNIFICANCE AND IMPACT OF THE STUDY Surfactant was used in ECB fermentation for the first time, which provided feasible ideas for optimizing the fermentation process of other fungi.
Collapse
Affiliation(s)
- K Niu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - X P Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Q Fu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - K P Lang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - S P Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Z C Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Z Q Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Y G Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
12
|
Echinocandins: structural diversity, biosynthesis, and development of antimycotics. Appl Microbiol Biotechnol 2020; 105:55-66. [PMID: 33270153 PMCID: PMC7778625 DOI: 10.1007/s00253-020-11022-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 02/04/2023]
Abstract
Abstract Echinocandins are a clinically important class of non-ribosomal antifungal lipopeptides produced by filamentous fungi. Due to their complex structure, which is characterized by numerous hydroxylated non-proteinogenic amino acids, echinocandin antifungal agents are manufactured semisynthetically. The development of optimized echinocandin structures is therefore closely connected to their biosynthesis. Enormous efforts in industrial research and development including fermentation, classical mutagenesis, isotope labeling, and chemical synthesis eventually led to the development of the active ingredients caspofungin, micafungin, and anidulafungin, which are now used as first-line treatments against invasive mycosis. In the last years, echinocandin biosynthetic gene clusters have been identified, which allowed for the elucidation but also engineering of echinocandin biosynthesis on the molecular level. After a short description of the history of echinocandin research, this review provides an overview of the current knowledge of echinocandin biosynthesis with a special focus of the diverse structural elements, their biosynthetic background, and structure−activity relationships. Key points • Complex and highly oxidized lipopeptides produced by fungi. • Crucial in the design of drugs: side chain, solubility, and hydrolytic stability. • Genetic methods for engineering biosynthesis have recently become available. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-020-11022-y.
Collapse
|