1
|
Rafi’i MR, Ja’afar MH, Abd Wahil MS, Md Hanif SA. Urine manganese, cadmium, lead, arsenic, and selenium among autism spectrum disorder children in Kuala Lumpur. PeerJ 2024; 12:e17660. [PMID: 38974411 PMCID: PMC11227810 DOI: 10.7717/peerj.17660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/08/2024] [Indexed: 07/09/2024] Open
Abstract
Background The development of autism spectrum disorder (ASD) may stem from exposure to environmental pollutants such as heavy metals. The primary objective of this study is to determine the role of heavy metals of concern such as manganese (Mn), cadmium (Cd), lead (Pb), arsenic (As), and essential trace element selenium (Se) among ASD children in Kuala Lumpur, Malaysia. Method A total of 155 preschoolers in Kuala Lumpur between the ages 3 to 6 participated in an unmatched case-control study, comprising ASD children (n = 81) recruited from an early intervention program for autism, and 74 children without autism who were recruited from public preschools. Urine samples were collected at home, delivered to the study site, and transported to the environmental lab within 24 hours. Inductively coupled plasma mass spectrometry (ICP-MS) was applied to measure the concentration of heavy metals in the samples. Data were analysed using bivariate statistical tests (Chi-square and T-test) and logistic regression models. Result This study demonstrated that Cd, Pb, and As urine levels were significantly greater in children without autism relative to those affected with ASD (p < 0.05). No significant difference was in the levels of Se (p = 0.659) and Mn (p = 0.875) between children with ASD and the control group. The majority of children in both groups have urine As, Pb, and Cd values lower than 15.1 µg/dL, 1.0 µg/dL, and 1.0 µg/dL, respectively which are the minimal risk values for noncarcinogenic detrimental human health effect due to the heavy metal's exposure . Factors associated with having an ASD child included being a firstborn, male, and higher parental education levels (adjusted odds ratios (aOR) > 1, p < 0.05). Conclusion Preschoolers in this study demonstrated low levels of heavy metals in their urine samples, which was relatively lower in ASD children compared to the healthy matched controls. These findings may arise from the diminished capacity to excrete heavy metals, especially among ASD children, thereby causing further accumulation of heavy metals in the body. These findings, including the factors associated with having an ASD child, may be considered by healthcare professionals involved in child development care, for early ASD detection. Further assessment of heavy metals among ASD children in the country and interventional studies to develop effective methods of addressing exposure to heavy metals will be beneficial for future reference.
Collapse
Affiliation(s)
- Muhammad Ridzwan Rafi’i
- Department of Public Health Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Hasni Ja’afar
- Department of Public Health Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Shahrol Abd Wahil
- Disease Control Division, Ministry of Health Malaysia, Putrajaya, Wilayah Persekutuan Putrajaya, Malaysia
| | - Shahrul Azhar Md Hanif
- Department of Public Health Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
D’Adamo CR, Nelson JL, Miller SN, Rickert Hong M, Lambert E, Tallman Ruhm H. Reversal of Autism Symptoms among Dizygotic Twins through a Personalized Lifestyle and Environmental Modification Approach: A Case Report and Review of the Literature. J Pers Med 2024; 14:641. [PMID: 38929862 PMCID: PMC11205016 DOI: 10.3390/jpm14060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of autism has been increasing at an alarming rate. Even accounting for the expansion of autism spectrum disorder diagnostic (ASD) criteria throughout the 1990's, there has been an over 300% increase in ASD prevalence since the year 2000. The often debilitating personal, familial, and societal sequelae of autism are generally believed to be lifelong. However, there have been several encouraging case reports demonstrating the reversal of autism diagnoses, with a therapeutic focus on addressing the environmental and modifiable lifestyle factors believed to be largely underlying the condition. This case report describes the reversal of autism symptoms among dizygotic, female twin toddlers and provides a review of related literature describing associations between modifiable lifestyle factors, environmental exposures, and various clinical approaches to treating autism. The twins were diagnosed with Level 3 severity ASD "requiring very substantial support" at approximately 20 months of age following concerns of limited verbal and non-verbal communication, repetitive behaviors, rigidity around transitions, and extensive gastrointestinal symptoms, among other common symptoms. A parent-driven, multidisciplinary, therapeutic intervention involving a variety of licensed clinicians focusing primarily on addressing environmental and modifiable lifestyle factors was personalized to each of the twin's symptoms, labs, and other outcome measures. Dramatic improvements were noted within several months in most domains of the twins' symptoms, which manifested in reductions of Autism Treatment Evaluation Checklist (ATEC) scores from 76 to 32 in one of the twins and from 43 to 4 in the other twin. The improvement in symptoms and ATEC scores has remained relatively stable for six months at last assessment. While prospective studies are required, this case offers further encouraging evidence of ASD reversal through a personalized, multidisciplinary approach focusing predominantly on addressing modifiable environmental and lifestyle risk factors.
Collapse
Affiliation(s)
- Christopher R. D’Adamo
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Josephine L. Nelson
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Sara N. Miller
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Maria Rickert Hong
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Elizabeth Lambert
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | | |
Collapse
|
3
|
Ramazani Z, Nakhaee S, Sharafi K, Rezaei Z, Mansouri B. Autism spectrum disorder: Cadmium and mercury concentrations in different biological samples, a systematic literature review and meta-analysis of human studies. Heliyon 2024; 10:e27789. [PMID: 38496888 PMCID: PMC10944282 DOI: 10.1016/j.heliyon.2024.e27789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
The present study was conducted to investigate the differences in cadmium (Cd) and mercury (Hg) concentrations between children with autism spectrum disorder (ASD) and controls. In this systematic review and meta-analysis study, three thousand one hundred forty-five studies were collected from scientific databases including Web of Science, Scopus, PubMed, and Google Scholar from January 2000 to October 2022 and were investigated for eligibility. As a result, 37 studies published in the period from 2003 to 2022 met our inclusion criteria and were considered in the meta-analysis. The heterogeneity assumption was evaluated using the Chi-squared-based Q-test and I-squared (I2) statistics. The pooled estimates were shown in the forest plots with Hedges' g (95% confidence interval) values. The random effects model demonstrated that there is no significant difference in the blood (Hedges' g: 0.14, 95% CI: 0.45, 0.72, p > 0.05), hair (Hedges' g: 0.12, 95% CI: 0.26, 0.50, p > 0.05), and urinary (Hedges' g: 0.05, 95% CI: 0.86, 0.76, p > 0.05) Cd levels of the case group versus control subjects. Moreover, the pooled findings of studies showed no significant difference in the blood (Hedges' g: 1.69, 95% CI: 0.09, 3.48, p > 0.05), hair (Hedges' g: 3.42, 95% CI: 1.96, 8.80, p > 0.05), and urinary (Hedges' g: 0.49, 95% CI: 1.29 - 0.30, p > 0.05) Hg concentrations. The results demonstrated no significant differences in Hg and Cd concentrations in different biological samples of children with ASD compared to control subjects.
Collapse
Affiliation(s)
- Zana Ramazani
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Kiomars Sharafi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zaynab Rezaei
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Stojsavljević A, Lakićević N, Pavlović S. Mercury and Autism Spectrum Disorder: Exploring the Link through Comprehensive Review and Meta-Analysis. Biomedicines 2023; 11:3344. [PMID: 38137565 PMCID: PMC10741416 DOI: 10.3390/biomedicines11123344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Mercury (Hg) is a non-essential trace metal with unique neurochemical properties and harmful effects on the central nervous system. In this study, we present a comprehensive review and meta-analysis of peer-reviewed research encompassing five crucial clinical matrices: hair, whole blood, plasma, red blood cells (RBCs), and urine. We assess the disparities in Hg levels between gender- and age-matched neurotypical children (controls) and children diagnosed with autism spectrum disorder (ASD) (cases). After applying rigorous selection criteria, we incorporated a total of 60 case-control studies into our meta-analysis. These studies comprised 25 investigations of Hg levels in hair (controls/cases: 1134/1361), 15 in whole blood (controls/cases: 1019/1345), 6 in plasma (controls/cases: 224/263), 5 in RBCs (controls/cases: 215/293), and 9 in urine (controls/cases: 399/623). This meta-analysis did not include the data of ASD children who received chelation therapy. Our meta-analysis revealed no statistically significant differences in Hg levels in hair and urine between ASD cases and controls. In whole blood, plasma, and RBCs, Hg levels were significantly higher in ASD cases compared to their neurotypical counterparts. This indicates that ASD children could exhibit reduced detoxification capacity for Hg and impaired mechanisms for Hg excretion from their bodies. This underscores the detrimental role of Hg in ASD and underscores the critical importance of monitoring Hg levels in ASD children, particularly in early childhood. These findings emphasize the pressing need for global initiatives aimed at minimizing Hg exposure, thus highlighting the critical intersection of human-environment interaction and neurodevelopment health.
Collapse
Affiliation(s)
- Aleksandar Stojsavljević
- Innovative Centre, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia
| | - Novak Lakićević
- Clinical Centre of Montenegro, Clinic for Neurosurgery, Ljubljanska bb, 81000 Podgorica, Montenegro;
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| |
Collapse
|
5
|
Wegmann B, Tatemoto P, Miemczyk S, Ludvigsson J, Guerrero-Bosagna C. Identification of potentially relevant metals for the etiology of autism by using a Bayesian multivariate approach for partially censored values. Sci Rep 2023; 13:12622. [PMID: 37537167 PMCID: PMC10400650 DOI: 10.1038/s41598-023-38780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/14/2023] [Indexed: 08/05/2023] Open
Abstract
Heavy metals are known to be able to cross the placental and blood brain barriers to affect critical neurodevelopmental processes in the fetus. We measured metal levels (Al, Cd, Hg, Li, Pb and Zn) in the cord blood of newborns and in the serum of the same children at 5 years of age, and compared between individuals with or without (controls) autism spectrum disorder (ASD) diagnosis. The samples were from a biobank associated with the All Babies in Southeast Sweden (ABIS) registry. We proposed a Bayesian multivariate log-normal model for partially censored values to identify potentially relevant metals for the etiology of ASD. Our results in cord blood suggest prenatal Al levels could be indicative of later ASD incidence, which could also be related to an increased possibility of a high, potentially toxic, exposure to Al and Li during pregnancy. In addition, a larger possibility of a high, potentially beneficial, exposure to Zn could occur during pregnancy in controls. Finally, we found decisive evidence for an average increase of Hg in 5-year-old ASD children compared to only weak evidence for controls. This is concordant with previous research showing an impaired ability for eliminating Hg in the ASD group.
Collapse
Affiliation(s)
- Bertil Wegmann
- Division of Statistics and Machine Learning, Department of Computer and Information Science, Linköping University, 581 83, Linköping, Sweden.
| | - Patricia Tatemoto
- Center for Comparative Studies in Sustainability, Health and Welfare, Department of Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, FMVZ, University of São Paulo, Pirassununga, São Paulo, 13635-900, Brazil
| | - Stefan Miemczyk
- Avian Behavioral Genomics and Physiology Group, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Carlos Guerrero-Bosagna
- Physiology and Environmental Toxicology Program, Department of Organismal Biology, Uppsala University, 75236, Uppsala, Sweden.
| |
Collapse
|
6
|
Ding M, Shi S, Qie S, Li J, Xi X. Association between heavy metals exposure (cadmium, lead, arsenic, mercury) and child autistic disorder: a systematic review and meta-analysis. Front Pediatr 2023; 11:1169733. [PMID: 37469682 PMCID: PMC10353844 DOI: 10.3389/fped.2023.1169733] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023] Open
Abstract
Background Studies have found that toxic heavy metals exposure could induce the generation of reactive oxygen species (ROS), and is of epigenetic effect, which might be associated with the occurrence of Autistic Disorder (ASD). This systematic review and meta-analysis aims to elucidate the association between exposure to 4 heavy metals, cadmium (Cd), lead (Pb), arsenic(As), and mercury (Hg), and the occurrence of ASD in children. Methods We searched PubMed, Web of Science, Embase, and Cochrane Library, from their inception to October 2022, for epidemiological investigations that explore the association between exposure to Cd, Pb, As, or Hg and the occurrence of child ASD. Results A total of 53 studies were included, involving 5,054 individuals aged less than 18 (2,533 ASD patients and 2,521 healthy controls). Compared with the healthy controls, in hair and blood tests, concentrations of the 4 heavy metals were significantly higher in the ASD group than in the healthy control group, and the differences in Pb, arsenic and Hg were statistically significant (P < 0.05). In the urine test, concentrations of arsenic and Hg were significantly higher in the ASD group than in the healthy control group (P < 0.05), while the results of Cd and Pb were opposite to those of arsenic and Hg (P > 0.05). Subgroup analysis for geographic regions showed that ASD patients in Asia and Europe had higher concentrations of the 4 heavy metals, compared with the healthy controls, in which the differences in Pb, arsenic, and Hg were statistically significant (P < 0.05), while in North America, the healthy controls had higher Cd, arsenic, and Hg concentrations (P > 0.05). Conclusion Compared with the healthy control group, the ASD group had higher concentrations of Cd, Pb, arsenic, and Hg. These 4 heavy metals play different roles in the occurrence and progression of ASD. Moreover, there is significant heterogeneity among the included studies due to controversies about the study results among different countries and regions and different sources of detection materials. The results of this study firmly support the policies to limit heavy metals exposure, especially among pregnant women and young children, so as to help reduce the incidence of ASD.
Collapse
Affiliation(s)
- Mengmeng Ding
- Correspondence: Mengmeng Ding Shanshan Shi Shuyan Qie
| | - Shanshan Shi
- Correspondence: Mengmeng Ding Shanshan Shi Shuyan Qie
| | - Shuyan Qie
- Correspondence: Mengmeng Ding Shanshan Shi Shuyan Qie
| | | | | |
Collapse
|
7
|
Ling W, Zhao G, Wang W, Wang C, Zhang L, Zhang H, Lu D, Ruan S, Zhang A, Liu Q, Jiang J, Jiang G. Metallomic profiling and natural copper isotopic signatures of childhood autism in serum and red blood cells. CHEMOSPHERE 2023; 330:138700. [PMID: 37076087 DOI: 10.1016/j.chemosphere.2023.138700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/29/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Excessive exposure to metals directly threatens human health, including neurodeve lopment. Autism spectrum disorder (ASD) is a neurodevelopmental disorder, leaving great harms to children themselves, their families, and even society. In view of this, it is critical to develop reliable biomarkers for ASD in early childhood. Here we used inductively coupled plasma mass spectrometry (ICP-MS) to identify the abnormalities in ASD-associated metal elements in children blood. Multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) was applied to detect isotopic differences in copper (Cu) for further assessment on account of its core role in the brain. We also developed a machine learning classification method for unknown samples based on a support vector machine (SVM) algorithm. The results indicated significant differences in the blood metallome (chromium (Cr), manganese (Mn), cobalt (Co), magnesium (Mg), and arsenic (As)) between cases and controls, and a significantly lower Zn/Cu ratio was observed in the ASD cases. Interestingly, we found a strong association of serum copper isotopic composition (δ65Cu) with autistic serum. SVM was successfully applied to discriminate cases and controls based on the two-dimensional Cu signatures (Cu concentration and δ65Cu) with a high accuracy (94.4%). Overall, our findings revealed a new biomarker for potential early diagnosis and screening of ASD, and the significant alterations in the blood metallome also helped to understand the potential pathogenesis of ASD in terms of metallomics.
Collapse
Affiliation(s)
- Weibo Ling
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gang Zhao
- Department of Child Health Care, Maternity and Child Healthcare Hospital of Nanshan District, 1 Wanxia Road, Nanshan District, Shenzhen, 518067, China
| | - Weichao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518000, China
| | - Luyao Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huazhou Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shasha Ruan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518000, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Taishan Institute for Ecology and Environment (TIEE), Jinan, 250100, China.
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Shiani A, Sharafi K, Omer AK, Kiani A, Karamimatin B, Massahi T, Ebrahimzadeh G. A systematic literature review on the association between exposures to toxic elements and an autism spectrum disorder. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159246. [PMID: 36220469 DOI: 10.1016/j.scitotenv.2022.159246] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIM Autism spectrum disorder (ASD) is a neurodevelopmental illness characterized by difficulties in social communication and repetitive behaviors. There have been many previous studies of toxic metals in ASD. Therefore, the priority of this study is to review the relationships between exposure to toxic metals and ASD. MATERIALS & METHODS This study was based on a comprehensive search of international databases, such as Web of Science, Science Direct, Scopus, PubMed, and Google Scholar, for all works related to the subject under discussion from 1982 to 2022. We further summarize published data linked to this topic and discuss with clarifying evidence that agrees and conflicts with the association between exposure to toxic metals, including mercury (Hg), lead (Pb), cadmium (Cd), arsenic (As), and aluminum (Al) and ASD. RESULTS 40 out of 63 papers met the requirements for meta-analysis. Blood Pb levels (standardized mean difference (SMD) = 0.81; 95 % confidence interval (CI): 0.36-1.25), blood Hg (SMD = 0.90; CI: 0.30-1.49), hair Pb (SMD = 1.47; CI: 0.03-2.92), urine As (SMD = 0.65; CI: 0.22-1.09), and urine Al levels (SMD = 0.85; CI: 0.40-1.29) in autistic individuals were significantly higher than those of healthy control (HC). Whereas, blood As levels (SMD = 1.33; CI: -1.32-3.97), hair As (SMD = 0.55; CI: -0.14-1.24), hair Cd (SMD = 0.60; CI: -0.31-1.51), hair Hg (SMD = 0.41; CI: -0.30-1.12), hair Al (SMD = 0.87; CI: -0.02-1.77), urine Pb (SMD = -0.68; CI: -2.55-1.20), urine Cd (SMD = -0.26; CI: -0.94-0.41), and urine Hg levels (SMD = 0.47; CI: -0.09-1.04) in autistic individuals were significantly lower than those of HC. CONCLUSION Toxic metal content significantly differed between individuals with ASD and HC in the current meta-analysis. The results assist in clarifying the significance of toxic metals as environmental factors in the development of ASD.
Collapse
Affiliation(s)
- Amir Shiani
- Department of Speech Therapy, School of Rehabilitation Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran; Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kiomars Sharafi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Abdullah Khalid Omer
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran; Razga Company, Kurdistan Region, Iraq.
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Karamimatin
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tooraj Massahi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Ebrahimzadeh
- Department of Environmental Health Engineering, School of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
9
|
Zhang J, Lin J, Zhao X, Yao F, Feng C, He Z, Cao X, Gao Y, Khan NU, Chen M, Luo P, Shen L. Trace Element Changes in the Plasma of Autism Spectrum Disorder Children and the Positive Correlation Between Chromium and Vanadium. Biol Trace Elem Res 2022; 200:4924-4935. [PMID: 35006555 DOI: 10.1007/s12011-021-03082-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022]
Abstract
Existing data demonstrate a significant correlation between autism spectrum disorder (ASD) and the status of biologically essential and toxic trace elements. However, there is still a lack of data on the steady state of trace elements in ASD. We performed a case-control study to explore the association between the risk of ASD and 23 trace elements in plasma. The results showed that children with ASD had considerably decreased lithium (Li), manganese (Mn), selenium (Se), barium (Ba), mercury (Hg), and tin (Sn) levels when compared to their age- and sex-matched controls. Meanwhile, children with ASD had considerably increased plasma chromium (Cr) and vanadium (V) concentrations. We also divided each group into subgroups based on age and gender and created element-related networks for each subgroup. We detected significant element correlations within or between subgroups, as well as changes in correlations that included all elements examined. Finally, more element correlations were observed among males, which may open a new avenue for understanding the complicated process behind the sex ratio of children with ASD. Overall, our data revealed a novel relationship between elements and ASD, which may extend current understanding about ASD.
Collapse
Affiliation(s)
- Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China
| | - Xiying Zhao
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, 518055, People's Republic of China
| | - Fang Yao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Zhijun He
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, 518071, People's Republic of China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Yan Gao
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Margy Chen
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA
| | - Peng Luo
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| |
Collapse
|
10
|
Abd Wahil MS, Ja’afar MH, Md Isa Z. Assessment of Urinary Lead (Pb) and Essential Trace Elements in Autism Spectrum Disorder: a Case-Control Study Among Preschool Children in Malaysia. Biol Trace Elem Res 2022; 200:97-121. [PMID: 33661472 PMCID: PMC7930527 DOI: 10.1007/s12011-021-02654-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022]
Abstract
Lead (Pb) is a heavy metal which is abundant in the environment and known to cause neurotoxicity in children even at minute concentration. However, the trace elements calcium (Ca), magnesium (Mg), zinc (Zn) and iron (Fe) are essential to children due to its protective effect on neurodevelopment. The primary objective of this study was to assess the role of Pb and trace elements in the development of autism spectrum disorder (ASD) among preschool children. A total of 81 ASD children and 74 typically developed (TD) children aged between 3 and 6 years participated in the study. Self-administered online questionnaires were completed by the parents. A first-morning urine sample was collected in a sterile polyethene urine container and assayed for Pb, Ca, Mg, Zn and Fe using an inductively coupled plasma mass spectrometry (ICP-MS). Comparisons between groups revealed that the urinary Pb, Mg, Zn and Fe levels in ASD children were significantly lower than TD children. The odds of ASD reduced significantly by 5.0% and 23.0% with an increment of every 1.0 μg/dL urinary Zn and Fe, respectively. Post interaction analysis showed that the odds of ASD reduced significantly by 11.0% and 0.1% with an increment of every 1.0 μg/dL urinary Zn and Pb, respectively. A significantly lower urinary Pb level in ASD children than TD children may be due to their poor detoxifying mechanism. Also, the significantly lower urinary Zn and Fe levels in ASD children may augment the neurotoxic effect of Pb.
Collapse
Affiliation(s)
- Mohd Shahrol Abd Wahil
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Hasni Ja’afar
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Zaleha Md Isa
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Amadi CN, Orish CN, Frazzoli C, Orisakwe OE. Association of autism with toxic metals: A systematic review of case-control studies. Pharmacol Biochem Behav 2021; 212:173313. [PMID: 34896416 DOI: 10.1016/j.pbb.2021.173313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Environmental factors have been associated with the etiology of autism spectrum disorder ASD in recent times. The involvement of toxic metals in the generation of reactive oxygen species and their epigenetics effects have been implicated in ASD. This systemic review examines the association of toxic metals with autism in children. A systematic literature search was performed in scientific databases such as PubMed, Google scholar, and Scopus. Case-control studies evaluating toxic metal levels in different tissues of ASD children and comparing them to healthy children (control group) were identified. The Newcastle-Ottawa Scale was used to evaluate the risk of bias of the included studies. Six case-control studies with 425 study subjects met our inclusion criteria. A total of four studies indicated higher levels of As, Pb, Hg, Cd, Al, Sn, Sb, Ba, TI, W, and Zr in whole blood, RBC, in whole blood, RBC, and hair samples of children with autism compared with control suggestive of a greater toxic metal exposure (immediate and long-term). Three studies identified significantly higher concentrations of Cd, Pb and Hg in urine and hair samples of autistic children compared to control suggesting decreased excretion and possible high body burden of these metals. The findings from this review demonstrate that high levels of toxic metals are associated with ASD, therefore, critical care is necessary to reduce body burden of these metals in children with ASD as a major therapeutic strategy.
Collapse
Affiliation(s)
- Cecilia N Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Chiara Frazzoli
- Department for Cardiovascular, Dysmetabolic and Aging Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Orish E Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria; African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria.
| |
Collapse
|
12
|
Baj J, Flieger W, Flieger M, Forma A, Sitarz E, Skórzyńska-Dziduszko K, Grochowski C, Maciejewski R, Karakuła-Juchnowicz H. Autism spectrum disorder: Trace elements imbalances and the pathogenesis and severity of autistic symptoms. Neurosci Biobehav Rev 2021; 129:117-132. [PMID: 34339708 DOI: 10.1016/j.neubiorev.2021.07.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
The identification of biomarkers as diagnostic tools and predictors of response to treatment of neurological developmental disorders (NDD) such as schizophrenia (SZ), attention deficit hyperactivity disorder (ADHD), or autism spectrum disorder (ASD), still remains an important challenge for clinical medicine. Metallomic profiles of ASD patients cover, besides essential elements such as cobalt, chromium, copper, iron, manganese, molybdenum, zinc, selenium, also toxic metals burden of: aluminum, arsenic, mercury, lead, beryllium, nickel, cadmium. Performed studies indicate that children with ASD present a reduced ability of eliminating toxic metals, which leads to these metals' accumulation and aggravation of autistic symptoms. Extensive metallomic studies allow a better understanding of the importance of trace elements as environmental factors in the pathogenesis of ASD. Even though a mineral imbalance is a fact in ASD, we are still expecting relevant tests and the elaboration of reference levels of trace elements as potential biomarkers useful in diagnosis, prevention, and treatment of ASD.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, Jaczewskiego Street 8b, 20-400, Lublin, Poland.
| | - Wojciech Flieger
- Faculty of Medicine, Medical University of Lublin, Aleje Racławickie 1, 20-059, Lublin, Poland
| | - Michał Flieger
- Faculty of Medicine, Medical University of Lublin, Aleje Racławickie 1, 20-059, Lublin, Poland
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego Street 8b, 20-090, Lublin, Poland
| | - Elżbieta Sitarz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439, Lublin, Poland
| | - Katarzyna Skórzyńska-Dziduszko
- Chair and Department of Human Physiology, Medical University of Lublin, Radziwillowska Street 11, Lublin, 20-080, Poland
| | - Cezary Grochowski
- Laboratory of Virtual Man, Chair of Anatomy, Medical University of Lublin, Jaczewskiego Street 8b, 20-400, Lublin, Poland
| | - Ryszard Maciejewski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego Street 8b, 20-400, Lublin, Poland
| | - Hanna Karakuła-Juchnowicz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439, Lublin, Poland; Department of Clinical Neuropsychiatry, Medical University of Lublin, Gluska Street 1, 20-439, Lublin, Poland
| |
Collapse
|
13
|
Zhou Q, Huang D, Xu C, Wang J, Jin Y. Hair levels of heavy metals and essential elements in Chinese children with autism spectrum disorder. J Trace Elem Med Biol 2021; 66:126748. [PMID: 33756185 DOI: 10.1016/j.jtemb.2021.126748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/11/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Disproportional heavy metals and essential elements were reported in children with autism spectrum disorder (ASD) that is obscure in etiology. Inevitably, the association is biased by diet and environmental factors. METHODS Fifty pairs, one with ASD and the other living together from the same special school with cerebral palsy (CP), were recruited in Hangzhou (China), aged from 2 to 11 years old (74.0 % male). All samples were divided into two subgroups: preschool-aged (2-5 years old) and school-aged (6-10 years old). Heavy metals (As, Hg, Pb) and essential elements (Al, Ca, Cu, Mg, Mn, Zn) in hair were quantified by inductively coupled plasma mass spectrometry analysis and flame atomic absorption spectroscopy. RESULTS The children with ASD generally had lower hair levels of Mn (ASD 0.124 μg/g, CP 0.332 μg/g, P = 0.001) compared to the children with CP. After stratification for age, there were no significant differences detected in preschool-aged group. In school-aged group, the results exhibited the children with ASD had higher hair Pb (1.485 μg/g, 0.690 μg/g, P = 0.007) and Cu/Zn ratio (0.092, 0.060, P = 0.003), while hair Hg (0.254 μg/g, 0.353 μg/g, P = 0.016)、Mn (0.089 μg/g, 0.385 μg/g, P = 0.002)、Mg (17.81 μg/g, 24.53 μg/g, P = 0.014) and Zn (100.15 μg/g, 135.83 μg/g, P = 0.007) showed an opposite pattern. CONCLUSIONS These results suggest an imbalance of Mn in Chinese children with ASD.
Collapse
Affiliation(s)
- Qinfeng Zhou
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danni Huang
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chenlu Xu
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Juling Wang
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongtang Jin
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China; Department of General Practice, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Associations of Metabolic Genes ( GSTT1, GSTP1, GSTM1) and Blood Mercury Concentrations Differ in Jamaican Children with and without Autism Spectrum Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041377. [PMID: 33546147 PMCID: PMC7913200 DOI: 10.3390/ijerph18041377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022]
Abstract
We investigated interactive roles of three metabolic glutathione S-transferase (GST) genes (GSTP1, GSTT1, and GSTM1) and autism spectrum disorder (ASD) status in relation to blood Hg concentrations (BHC) of Jamaican children. We used data from 266 children (2-8 years) with ASD and their 1:1 age- and sex-matched typically developing (TD) controls. After adjusting General Linear Models for child’s age, socioeconomic status, consumption of leafy vegetables, fried plantain, canned fish, and the interaction between GSTP1 and GSTT1, we found significant interactions between GSTP1 and ASD status in relation to BHC either in a co-dominant or dominant genetic model for GSTP1(P < 0.001, P = 0.007, respectively). In the co-dominant model for the Ile105Val GSTP1 polymorphism, geometric mean (GM) BHC in ASD cases with genotype Ile/Ile were significantly higher than in cases with the Ile/Val genotype (0.73 vs. 0.48 µg/L, P = 0.01). In contrast, in TD controls with the Ile/Val genotype GM BHC were significantly higher than in those with the Ile/Ile genotype (0.72 vs. 0.49 µg/L, P = 0.03) or the Val/Val genotype (0.72 vs. 0.51 µg/L, P = 0.04). Although our findings are consistent with the role of GSTP1 in detoxification of Hg, replication in other populations is warranted.
Collapse
|
15
|
Yalçın SS, Çak T, Yalçın S. Lower strontium in two different body matrices in neurodevelopmental disorders: A preliminary report. J Trace Elem Med Biol 2020; 62:126553. [PMID: 32575001 DOI: 10.1016/j.jtemb.2020.126553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Environmental factors, including elemental homeostasis, have not been studied sufficiently in neurodevelopmental disorders (NDD). This study aims to compare the status of 13 elements in blood and deciduous teeth dentine of children having an autism spectrum disorder or attention deficit hyperactivity disorder with typically developing controls. METHODS Elements including calcium, phosphorus, magnesium, iron, zinc, copper, chromium, manganese, mercury, lead, cadmium, molybdenum, and strontium in both deciduous teeth and blood were analyzed by inductively coupled plasma mass spectrometry. RESULTS Strontium levels in both blood and teeth samples were found to be significantly lower in the NDD group. Additionally, blood cadmium and mercury levels, and copper/zinc ratio were higher in the NDD group. CONCLUSIONS Our results warrant further investigation in a large series of NDD examining symptom levels and genetic variations associated with elemental homeostasis.
Collapse
Affiliation(s)
- Sıddika Songül Yalçın
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - Tuna Çak
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Suzan Yalçın
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| |
Collapse
|
16
|
Jafari Mohammadabadi H, Rahmatian A, Sayehmiri F, Rafiei M. The Relationship Between the Level of Copper, Lead, Mercury and Autism Disorders: A Meta-Analysis. Pediatric Health Med Ther 2020; 11:369-378. [PMID: 33061742 PMCID: PMC7519826 DOI: 10.2147/phmt.s210042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/17/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVES There is a likelihood of a possible relationship between the concentrations of copper, lead, and mercury and autism. The present review was carried out to determine the relationship between the concentrations of these elements and autism by meta-analysis. METHODS In this study, searching Scopus, PubMed, and Science Direct databases, 18 articles conducted in different countries from 1982 to 2019 were collected. Studies' heterogeneity was investigated using the I2 index. The data were analyzed using R and STATA software. RESULTS In these 18 studies, 1797 patients (981 cases and 816 controls) aged 2 to 16 years were examined. Concentration of the samples (blood, hair, and nails) for both case and control groups was evaluated. There was no significant relationship between copper concentration and autism (SMD (95% CI): 0.02 (-1.16,1.20); I2=97.7%; P=0.972); there was a significant relationship between mercury concentration and autism (SMD (95% CI): 1.96 (0.56,3.35); I2=98.6%; P=0.006); there was also a significant relationship between lead concentration and autism (SMD (95% CI): 2.81 (1.64,3.98); I2=97.8%; P=0.000). CONCLUSION There is, nevertheless, a significant relationship between mercury concentration and autism. Thus, the concentration of mercury can be listed as a pathogenic cause (disease-causing) for autism.
Collapse
Affiliation(s)
| | | | - Fatemeh Sayehmiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rafiei
- Department of Biostatistics and Epidemiology, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
17
|
Development of a liquid chromatography-inductively coupled plasma mass spectrometry method for the simultaneous determination of methylmercury and inorganic mercury in human blood. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1136:121855. [DOI: 10.1016/j.jchromb.2019.121855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022]
|
18
|
Geier DA, Kern JK, Geier MR. Down syndrome as a genetic model to evaluate the role of oxidative stress and transsulfuration abnormalities in autism spectrum disorder: A 10-year longitudinal cohort study. Dev Neurobiol 2019; 79:857-867. [PMID: 31742925 DOI: 10.1002/dneu.22726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/09/2019] [Accepted: 11/15/2019] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder in which evidence reveals oxidative stress and transsulfuration pathway abnormalities. Down syndrome (DS) is a genetic disorder characterized by similar oxidative stress and transsulfuration pathway abnormalities. This hypothesis-testing longitudinal cohort study determined whether transsulfuration abnormalities and oxidative stress are important susceptibility factors in ASD etiology by evaluating the rate of ASD diagnoses in DS as compared to the general population. The Independent Healthcare Research Database was analyzed for healthcare records prospectively generated in Florida Medicaid. A cohort of 101,736 persons (born: 1990-1999) with ≥10 outpatient office visits and continuously followed for 120 months after birth was examined. There were 942 children in the DS cohort (ICD-9 code: 758.0) and 100,749 children in the undiagnosed cohort (no DS diagnosis). ASD diagnoses were defined as autistic disorder (ICD-9 code: 299.00) or Asperger's disorder/pervasive developmental disorder-not otherwise specified (ICD-9 code: 299.80). ASDs were diagnosed in 5.31% of the DS cohort and 1.34% of the undiagnosed cohort. The risk ratio of being diagnosed with an ASD in the DS cohort as compared to the undiagnosed cohort was 3.97-fold significantly increased with a risk difference of 3.97%. Among children diagnosed with DS, less than 6% were also diagnosed with an ASD. Among children diagnosed with an ASD, less than 5% were also diagnosed with DS. Children diagnosed with DS are apparently more susceptible to ASD diagnosis relative to the general population suggesting oxidative stress and transsulfuration pathway abnormalities are important susceptibility factors in ASD.
Collapse
Affiliation(s)
- David A Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA.,CoMeD, Inc., Silver Spring, MD, USA
| | - Janet K Kern
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA.,CoMeD, Inc., Silver Spring, MD, USA.,CONEM US Autism Research Group, Allen, TX, USA
| | - Mark R Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA.,CoMeD, Inc., Silver Spring, MD, USA
| |
Collapse
|
19
|
Raciti M, Salma J, Spulber S, Gaudenzi G, Khalajzeyqami Z, Conti M, Anderlid BM, Falk A, Hermanson O, Ceccatelli S. NRXN1 Deletion and Exposure to Methylmercury Increase Astrocyte Differentiation by Different Notch-Dependent Transcriptional Mechanisms. Front Genet 2019; 10:593. [PMID: 31316548 PMCID: PMC6610538 DOI: 10.3389/fgene.2019.00593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/05/2019] [Indexed: 01/11/2023] Open
Abstract
Controversial evidence points to a possible involvement of methylmercury (MeHg) in the etiopathogenesis of autism spectrum disorders (ASD). In the present study, we used human neuroepithelial stem cells from healthy donors and from an autistic patient bearing a bi-allelic deletion in the gene encoding for NRXN1 to evaluate whether MeHg would induce cellular changes comparable to those seen in cells derived from the ASD patient. In healthy cells, a subcytotoxic concentration of MeHg enhanced astroglial differentiation similarly to what observed in the diseased cells (N1), as shown by the number of GFAP positive cells and immunofluorescence signal intensity. In both healthy MeHg-treated and N1 untreated cells, aberrations in Notch pathway activity seemed to play a critical role in promoting the differentiation toward glia. Accordingly, treatment with the established Notch inhibitor DAPT reversed the altered differentiation. Although our data are not conclusive since only one of the genes involved in ASD is considered, the results provide novel evidence suggesting that developmental exposure to MeHg, even at subcytotoxic concentrations, induces alterations in astroglial differentiation similar to those observed in ASD.
Collapse
Affiliation(s)
- Marilena Raciti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jahan Salma
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Giulia Gaudenzi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Mirko Conti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Centre for Molecular Medicine, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Association between catatonia and levels of hair and serum trace elements and minerals in autism spectrum disorder. Biomed Pharmacother 2019; 109:174-180. [DOI: 10.1016/j.biopha.2018.10.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022] Open
|
21
|
Bjørklund G, Skalny AV, Rahman MM, Dadar M, Yassa HA, Aaseth J, Chirumbolo S, Skalnaya MG, Tinkov AA. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. ENVIRONMENTAL RESEARCH 2018; 166:234-250. [PMID: 29902778 DOI: 10.1016/j.envres.2018.05.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects' genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh; Graduate School of Environmental Science, Hokkaido University, Japan
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Heba A Yassa
- Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Jan Aaseth
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway; Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
22
|
Skalny AV, Simashkova NV, Skalnaya MG, Klyushnik TP, Chernova LN, Tinkov AA. Mercury and autism spectrum disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:75-79. [DOI: 10.17116/jnevro20181185275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Ryu J, Ha EH, Kim BN, Ha M, Kim Y, Park H, Hong YC, Kim KN. Associations of prenatal and early childhood mercury exposure with autistic behaviors at 5years of age: The Mothers and Children's Environmental Health (MOCEH) study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:251-257. [PMID: 28667852 DOI: 10.1016/j.scitotenv.2017.06.227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Although mercury is an established neurotoxin, only few longitudinal studies have investigated the association between prenatal and early childhood mercury exposure and autistic behaviors. METHODS We conducted a longitudinal cohort study using an ongoing prospective birth cohort initiated in 2006, wherein blood mercury levels were measured at early and late pregnancy; in cord blood; and at 2 and 3years of age. We analyzed 458 mother-child pairs. Autistic behaviors were assessed using the Social Responsiveness Scale (SRS) at 5years of age. Both continuous SRS T-scores and T-scores dichotomized by a score of ≥60 or <60 were used as outcomes. RESULTS The geometric mean of mercury concentrations in cord blood was 5.52μg/L. In adjusted models, a doubling of blood mercury levels at late pregnancy (β=1.84, 95% confidence interval [CI]: 0.39, 3.29), in cord blood (β=2.24, 95% CI: 0.22, 4.27), and at 2years (β=2.12, 95% CI: 0.54, 3.70) and 3years (β=2.80, 95% CI: 0.89, 4.72) of age was positively associated with the SRS T-scores. When the SRS T-scores were dichotomized, we observed positive associations with mercury levels at late pregnancy (relative risk [RR]=1.31, 95% CI: 1.08, 1.60) and in cord blood (RR=1.28, 95% CI: 1.01, 1.63). CONCLUSION We found that blood mercury levels at late pregnancy and early childhood were associated with more autistic behaviors in children at 5years of age. Further study on the long-term effects of mercury exposure is recommended.
Collapse
Affiliation(s)
- Jia Ryu
- Department of Occupational and Environmental Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun-Hee Ha
- Department of Occupational and Environmental Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Boong-Nyun Kim
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Institute of Human Behavioral Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Mina Ha
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Yangho Kim
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Hyesook Park
- Department of Preventive Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Nam Kim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Public Health and Medical Service, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Kern JK, Geier DA, Deth RC, Sykes LK, Hooker BS, Love JM, Bjørklund G, Chaigneau CG, Haley BE, Geier MR. RETRACTED ARTICLE: Systematic Assessment of Research on Autism Spectrum Disorder and Mercury Reveals Conflicts of Interest and the Need for Transparency in Autism Research. SCIENCE AND ENGINEERING ETHICS 2017; 23:1689-1690. [PMID: 26507205 PMCID: PMC5705728 DOI: 10.1007/s11948-015-9713-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Janet K. Kern
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD 20905 USA
| | - David A. Geier
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD 20905 USA
| | | | | | | | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | | | | | - Mark R. Geier
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD 20905 USA
| |
Collapse
|
25
|
Kern JK, Geier DA, Deth RC, Sykes LK, Hooker BS, Love JM, Bjørklund G, Chaigneau CG, Haley BE, Geier MR. Systematic Assessment of Research on Autism Spectrum Disorder (ASD) and Mercury Reveals Conflicts of Interest and the Need for Transparency in Autism Research. SCIENCE AND ENGINEERING ETHICS 2017; 23:1691-1718. [PMID: 29119411 PMCID: PMC5705731 DOI: 10.1007/s11948-017-9983-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Historically, entities with a vested interest in a product that critics have suggested is harmful have consistently used research to back their claims that the product is safe. Prominent examples are: tobacco, lead, bisphenol A, and atrazine. Research literature indicates that about 80-90% of studies with industry affiliation found no harm from the product, while only about 10-20% of studies without industry affiliation found no harm. In parallel to other historical debates, recent studies examining a possible relationship between mercury (Hg) exposure and autism spectrum disorder (ASD) show a similar dichotomy. Studies sponsored and supported by industry or entities with an apparent conflict of interest have most often shown no evidence of harm or no "consistent" evidence of harm, while studies without such affiliations report positive evidence of a Hg/autism association. The potentially causal relationship between Hg exposure and ASD differs from other toxic products since there is a broad coalition of entities for whom a conflict of interest arises. These include influential governmental public health entities, the pharmaceutical industry, and even the coal burning industry. This review includes a systematic literature search of original studies on the potential relationship between Hg and ASD from 1999 to August 2015, finding that of the studies with public health and/or industry affiliation, 86% reported no relationship between Hg and ASD. However, among studies without public health and/or industry affiliation, only 21% find no relationship between Hg and ASD. The discrepancy in these results suggests a bias indicative of a conflict of interest.
Collapse
Affiliation(s)
- Janet K. Kern
- Institute of Chronic Illnesses, Inc, 14 Redgate Court, Silver Spring, MD 20905 USA
| | - David A. Geier
- Institute of Chronic Illnesses, Inc, 14 Redgate Court, Silver Spring, MD 20905 USA
| | | | | | | | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | | | | | - Mark R. Geier
- Institute of Chronic Illnesses, Inc, 14 Redgate Court, Silver Spring, MD 20905 USA
| |
Collapse
|
26
|
Jafari T, Rostampour N, Fallah AA, Hesami A. The association between mercury levels and autism spectrum disorders: A systematic review and meta-analysis. J Trace Elem Med Biol 2017; 44:289-297. [PMID: 28965590 DOI: 10.1016/j.jtemb.2017.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS The relationship between mercury and autism spectrum disorders (ASD) has always been a topic of controversy among researchers. This study aimed to assess the relationship between ASD and mercury levels in hair, urine, blood, red blood cells (RBC), and brain through a meta-analysis. METHODS A systematic search was performed in several databases including PubMed, ISI Web of Science, Cochrane register of controlled trials, Google Scholar, Scopus, and MagIran until June 2017. Case-control studies evaluating concentration of total mercury in different tissues of ASD patients and comparing them to the healthy subjects (control group) were identified. Necessary data were extracted and random effects model was used to calculate overall effect and its 95% corresponding confidence interval (CI) from the effect sizes. RESULTS A total of 44 studies were identified that met the necessary criteria for meta-analysis. The mercury level in whole blood (Hedges=0.43, 95% CI: 0.12, 0.74, P=0.007), RBC (Hedges=1.61, 95% CI: 0.83, 2.38, P<0.001), and brain (0.61ng/g, 95% CI, 0.02, 1.19, P=0.043) was significantly higher in ASD patients than healthy subjects, whereas mercury level in hair (-0.14mg/g, 95% CI: -0.28, -0.01, P=0.039) was significantly lower in ASD patients than healthy subjects. The mercury level in urine was not significantly different between ASD patients and healthy subjects (0.51mg/g creatinine, 95% CI: -0.14, 1.16, P=0.121). CONCLUSIONS Results of the current meta-analysis revealed that mercury is an important causal factor in the etiology of ASD. It seems that the detoxification and excretory mechanisms are impaired in ASD patients which lead to accumulation of mercury in the body. Future additional studies on mercury levels in different tissues of ASD patients should be undertaken.
Collapse
Affiliation(s)
- Tina Jafari
- Clinical Biochemistry Research Center, Shahrekord University of Medical Sciences, Sharhekord, Iran; Department of Biochemistry and Nutrition, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Noushin Rostampour
- Department of Pediatrics, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Aziz A Fallah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran
| | - Afshin Hesami
- Clinical Biochemistry Research Center, Shahrekord University of Medical Sciences, Sharhekord, Iran
| |
Collapse
|
27
|
Saghazadeh A, Rezaei N. Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status: Higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:340-368. [PMID: 28716727 DOI: 10.1016/j.pnpbp.2017.07.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder that affects cognitive and higher cognitive functions. Increasing prevalence of ASD and high rates of related comorbidities has caused serious health loss and placed an onerous burden on the supporting families, caregivers, and health care services. Heavy metals are among environmental factors that may contribute to ASD. However, due to inconsistencies across studies, it is still hard to explain the association between ASD and toxic metals. Therefore the objective of this study was to investigate the difference in heavy metal measures between patients with ASD and control subjects. METHODS We included observational studies that measured levels of toxic metals (antimony, arsenic, cadmium, lead, manganese, mercury, nickel, silver, and thallium) in different specimens (whole blood, plasma, serum, red cells, hair and urine) for patients with ASD and for controls. The main electronic medical database (PubMed and Scopus) were searched from inception through October 2016. RESULTS 52 studies were eligible to be included in the present systematic review, of which 48 studies were included in the meta-analyses. The hair concentrations of antimony (standardized mean difference (SMD)=0.24; 95% confidence interval (CI): 0.03 to 0.45) and lead (SMD=0.60; 95% confidence interval (CI): 0.17 to 1.03) in ASD patients were significantly higher than those of control subjects. ASD patients had higher erythrocyte levels of lead (SMD=1.55, CI: 0.2 to 2.89) and mercury (SMD=1.56, CI: 0.42 to 2.70). There were significantly higher blood lead levels in ASD patients (SMD=0.43, CI: 0.02 to 0.85). Sensitivity analyses showed that ASD patients in developed but not in developing countries have lower hair concentrations of cadmium (SMD=-0.29, CI: -0.46 to -0.12). Also, such analyses indicated that ASD patients in developing but not in developed lands have higher hair concentrations of lead (SMD=1.58, CI: 0.80 to 2.36) and mercury (SMD=0.77, CI: 0.31 to 1.23). These findings were confirmed by meta-regression analyses indicating that development status of countries significantly influences the overall effect size of mean difference for hair arsenic, cadmium, lead, and mercury between patients with ASD and controls. CONCLUSION The findings help highlighting the role of toxic metals as environmental factors in the etiology of ASD, especially in developing lands. While there are environmental factors other than toxic metals that greatly contribute to the etiology of ASD in developed lands. It would be, thus, expected that classification of ASD includes etiological entities of ASD on the basis of implication of industrial pollutants (developed vs. developing ASD).
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Boston, MA, USA.
| |
Collapse
|
28
|
Skalny AV, Simashkova NV, Klyushnik TP, Grabeklis AR, Radysh IV, Skalnaya MG, Nikonorov AA, Tinkov AA. Assessment of serum trace elements and electrolytes in children with childhood and atypical autism. J Trace Elem Med Biol 2017; 43:9-14. [PMID: 27707611 DOI: 10.1016/j.jtemb.2016.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/02/2016] [Accepted: 09/28/2016] [Indexed: 11/24/2022]
Abstract
The existing data demonstrate a significant interrelation between ASD and essential and toxic trace elements status of the organism. However, data on trace element homeostasis in particular ASD forms are insufficient. Therefore, the objective of the present study was to assess the level of trace elements and electrolytes in serum of children with childhood and atypical autism. A total of 48 children with ASD (24 with childhood and 24 with atypical autism) and age- and sex-adjusted controls were examined. Serum trace elements and electrolytes were assessed using inductively-coupled plasma mass spectrometry. The obtained data demonstrate that children with ASD unspecified are characterized by significantly lower Ni, Cr, and Se levels as compared to the age- and sex-matched controls. At the same time, significantly decreased serum Ni and Se concentrations were detected in patients with childhood autism. In turn, children with atypical autism were characterized by more variable serum trace element spectrum. In particular, atypical autism is associated with lower serum Al, As, Ni, Cr, Mn, and Se levels in comparison to the control values. Moreover, Al and Mn concentration in this group was also lower than that in childhood autism patients. Generally, the obtained data demonstrate lower levels of both essential and toxic trace elements in atypical autism group, being indicative of profound alteration of trace elements metabolism. However, further detailed metabolic studies are required to reveal critical differences in metabolic pathways being responsible for difference in trace element status and clinical course of the disease.
Collapse
Affiliation(s)
- Anatoly V Skalny
- All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia; Orenburg State University, Orenburg, Russia; Yaroslavl State University, Yaroslavl, Russia; RUDN University, Moscow, Russia.
| | - Natalia V Simashkova
- Scientific Center for Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
| | - Tatiana P Klyushnik
- Scientific Center for Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | - Alexandr A Nikonorov
- Orenburg State University, Orenburg, Russia; Orenburg State Medical University, Orenburg, Russia
| | - Alexey A Tinkov
- Orenburg State University, Orenburg, Russia; Yaroslavl State University, Yaroslavl, Russia; RUDN University, Moscow, Russia; Orenburg State Medical University, Orenburg, Russia
| |
Collapse
|
29
|
El-Ansary A, Bjørklund G, Tinkov AA, Skalny AV, Al Dera H. Relationship between selenium, lead, and mercury in red blood cells of Saudi autistic children. Metab Brain Dis 2017; 32:1073-1080. [PMID: 28326463 DOI: 10.1007/s11011-017-9996-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/15/2017] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can cause significant social, communication and behavioral challenges. Environmental contribution to ASD is due in large part to the sensitivity of the developing brain to external exposures such as lead (Pb), and mercury (Hg) as toxic heavy metals or due to a poor detoxification ability as the phenotype of this disorder. Selenium (Se) as an antioxidant element that counteracts the neurotoxicity of Hg, and Pb, presumably through the formation of nontoxic complexes. In the present study, Pb, Hg, and Se were measured in red blood cells (RBCs) of 35 children with ASD and 30 age- and gender-matched healthy control children using atomic absorption spectrometry. Receiver Operating Characteristics (ROC) analysis of the obtained data was performed to measure the predictive value of their absolute and relative concentrations. The obtained data demonstrates a significant elevation of Hg and Pb together with a significant decrease in the Se levels in RBCs of patients with ASD when compared to the healthy controls. The ratios of Se to both Pb and Hg were remarkably altered, being indicative of heavy metal neurotoxicity in patients with ASD. In conclusion, the present study indicates the importance of Se for prevention and/or therapy of heavy metal neurotoxicity.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Center for Female Scientific and Medical Colleges, King Saud University, Riyadh, Saudi Arabia
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Medicinal Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Alexey A Tinkov
- Orenburg State University, Orenburg, Russia
- Orenburg State Medical University, Orenburg, Russia
- Yaroslavl State University, Yaroslavl, Russia
| | - Anatoly V Skalny
- Orenburg State Medical University, Orenburg, Russia
- Yaroslavl State University, Yaroslavl, Russia
- RUDN University, Moscow, Russia
- All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Hussain Al Dera
- Basic Medical Science Department, College of Medicine, King Saud bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Skalny AV, Simashkova NV, Klyushnik TP, Grabeklis AR, Radysh IV, Skalnaya MG, Tinkov AA. Analysis of Hair Trace Elements in Children with Autism Spectrum Disorders and Communication Disorders. Biol Trace Elem Res 2017; 177:215-223. [PMID: 27785740 DOI: 10.1007/s12011-016-0878-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/14/2016] [Indexed: 12/24/2022]
Abstract
The primary objective of the present study is analysis of hair trace elements content in children with communication disorder (CD) and autism spectrum disorder (ASD). A total of 99 children from control, CD, and ASD groups (n = 33) were examined. All children were additionally divided into two subgroups according to age. Hair levels of trace elements were assessed using inductively coupled plasma mass spectrometry. The difference was considered significant at p < 0.01. The obtained data demonstrate that children with CD are characterized by significantly increased hair lithium (Li) (96 %; p = 0.008), selenium (Se) (66 %; p < 0.001), arsenic (As) (96 %; p = 0.005), beryllium (Be) (150 %; p < 0.001), and cadmium (Cd) (72 %; p = 0.007) content, being higher than the respective control values. In the ASD group, hair copper (Cu), iodine (I), and Be levels tended to be lower than the control values. In turn, the scalp hair content of Se significantly exceeded the control values (33 %; p = 0.004), whereas the level of iron (Fe) and aluminum (Al) tended to increase. After gradation for age, the most prominent differences in children with CD were detected in the elder group (5-8 years), whereas in the case of ASD-in the younger group (3-4 years old). Taking into account the role of hair as excretory mechanism for certain elements including the toxic ones, it can be proposed that children suffering from ASD are characterized by more profound alteration of metal handling and excretion in comparison to CD.
Collapse
Affiliation(s)
- Anatoly V Skalny
- All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia.
- Orenburg State University, Orenburg, Russia.
- Yaroslavl State University, Yaroslavl, Russia.
- RUDN University, Moscow, Russia.
| | - Natalia V Simashkova
- Scientific Center for Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
| | - Tatiana P Klyushnik
- Scientific Center for Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | - Alexey A Tinkov
- Orenburg State University, Orenburg, Russia
- Yaroslavl State University, Yaroslavl, Russia
- RUDN University, Moscow, Russia
- Orenburg State Medical University, Orenburg, Russia
| |
Collapse
|
31
|
Skalny AV, Simashkova NV, Klyushnik TP, Grabeklis AR, Bjørklund G, Skalnaya MG, Nikonorov AA, Tinkov AA. Hair toxic and essential trace elements in children with autism spectrum disorder. Metab Brain Dis 2017; 32:195-202. [PMID: 27581303 DOI: 10.1007/s11011-016-9899-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
Abstract
The objective of the study was to investigate hair trace elements content in children suffering from autism spectrum disorder (ASD). A total of 74 ASD children and 74 sex- and age-matched controls divided into two age groups (2-4 and 5-9 years) were investigated. Hair trace elements content was assessed using inductively coupled plasma mass spectrometry. A general cohort of ASD children was characterized by 29 %, 41 %, and 24 % lower hair levels of chromium (Cr), iodine (I), and vanadium (V), respectively, whereas the level of selenium (Se) exceeded the respective control values by 31 %. In ASD children aged 2-4 years hair Cr, I and V content was 68 %, 36 % and 41 % lower than in the controls. Older ASD children were characterized by 45 % increase in hair Se levels. In a general cohort of ASD children hair beryllium (Be) and tin (Sn) levels were 50 % and 34 % lower than the control values. In the first age group (2-4 years) of ASD children 34 %, 42 %, and 73 % lower levels of arsenic (As), boron (B), and Be were detected. In the second age group of ASD children only a nearly significant 25 % decrease in hair lead (Pb) was detected. Surprisingly, no significant group difference in hair mercury (Hg), zinc (Zn), and copper (Cu) content was detected. Generally, the results of the present study demonstrate that children with ASD are characterized by lower values in hair of not only essential but also toxic trace elements.
Collapse
Affiliation(s)
- Anatoly V Skalny
- All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia.
- Orenburg State University, Orenburg, Russia.
- Yaroslavl State University, Yaroslavl, Russia.
- RUDN University, Moscow, Russia.
| | - Natalia V Simashkova
- Scientific Center for Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
| | - Tatiana P Klyushnik
- Scientific Center for Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Margarita G Skalnaya
- RUDN University, Moscow, Russia
- Russian Society of Trace Elements in Medicine, Moscow, Russia
| | - Alexandr A Nikonorov
- Orenburg State University, Orenburg, Russia
- Department of Biochemistry, Orenburg State Medical University, Orenburg, Russia
| | - Alexey A Tinkov
- Orenburg State University, Orenburg, Russia
- Yaroslavl State University, Yaroslavl, Russia
- RUDN University, Moscow, Russia
- Department of Biochemistry, Orenburg State Medical University, Orenburg, Russia
| |
Collapse
|
32
|
Adams J, Howsmon DP, Kruger U, Geis E, Gehn E, Fimbres V, Pollard E, Mitchell J, Ingram J, Hellmers R, Quig D, Hahn J. Significant Association of Urinary Toxic Metals and Autism-Related Symptoms-A Nonlinear Statistical Analysis with Cross Validation. PLoS One 2017; 12:e0169526. [PMID: 28068407 PMCID: PMC5222512 DOI: 10.1371/journal.pone.0169526] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 11/16/2016] [Indexed: 01/25/2023] Open
Abstract
Introduction A number of previous studies examined a possible association of toxic metals and autism, and over half of those studies suggest that toxic metal levels are different in individuals with Autism Spectrum Disorders (ASD). Additionally, several studies found that those levels correlate with the severity of ASD. Methods In order to further investigate these points, this paper performs the most detailed statistical analysis to date of a data set in this field. First morning urine samples were collected from 67 children and adults with ASD and 50 neurotypical controls of similar age and gender. The samples were analyzed to determine the levels of 10 urinary toxic metals (UTM). Autism-related symptoms were assessed with eleven behavioral measures. Statistical analysis was used to distinguish participants on the ASD spectrum and neurotypical participants based upon the UTM data alone. The analysis also included examining the association of autism severity with toxic metal excretion data using linear and nonlinear analysis. “Leave-one-out” cross-validation was used to ensure statistical independence of results. Results and Discussion Average excretion levels of several toxic metals (lead, tin, thallium, antimony) were significantly higher in the ASD group. However, ASD classification using univariate statistics proved difficult due to large variability, but nonlinear multivariate statistical analysis significantly improved ASD classification with Type I/II errors of 15% and 18%, respectively. These results clearly indicate that the urinary toxic metal excretion profiles of participants in the ASD group were significantly different from those of the neurotypical participants. Similarly, nonlinear methods determined a significantly stronger association between the behavioral measures and toxic metal excretion. The association was strongest for the Aberrant Behavior Checklist (including subscales on Irritability, Stereotypy, Hyperactivity, and Inappropriate Speech), but significant associations were found for UTM with all eleven autism-related assessments with cross-validation R2 values ranging from 0.12–0.48.
Collapse
Affiliation(s)
- James Adams
- Arizona State University, Tempe, AZ, United States of America
- * E-mail:
| | - Daniel P. Howsmon
- Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Uwe Kruger
- Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Elizabeth Geis
- Arizona State University, Tempe, AZ, United States of America
| | - Eva Gehn
- Arizona State University, Tempe, AZ, United States of America
| | - Valeria Fimbres
- Arizona State University, Tempe, AZ, United States of America
| | - Elena Pollard
- Arizona State University, Tempe, AZ, United States of America
| | - Jessica Mitchell
- Southwest College of Naturopathic Medicine, Tempe, AZ, United States of America
| | - Julie Ingram
- Arizona State University, Tempe, AZ, United States of America
| | - Robert Hellmers
- Arizona Allergy Associates, Phoenix, AZ, United States of America
| | - David Quig
- Doctor’s Data, St. Charles, IL, United States of America
| | - Juergen Hahn
- Rensselaer Polytechnic Institute, Troy, NY, United States of America
| |
Collapse
|
33
|
Grether J, Croen L, Theis C, Blaxill M, Haley B, Holmes A. Baby Hair, Mercury Toxicity and Autism. Int J Toxicol 2016; 23:275-6. [PMID: 15371172 DOI: 10.1080/10915810490502087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Geier D, Geier MR. Neurodevelopmental Disorders Following Thimerosal-Containing Childhood Immunizations: A Follow-Up Analysis. Int J Toxicol 2016; 23:369-76. [PMID: 15764492 DOI: 10.1080/10915810490902038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The authors previously published the first epidemiological study from the United States associating thimerosal from childhood vaccines with neurodevelopmental disorders (NDs) based upon assessment of the Vaccine Adverse Event Reporting System (VAERS). A number of years have gone by since their previous analysis of the VAERS. The present study was undertaken to determine whether the previously observed effect between thimerosal-containing childhood vaccines and NDs are still apparent in the VAERS as children have had a chance to further mature and potentially be diagnosed with additional NDs. In the present study, a cohort of children receiving thimerosal-containing diphtheria-tetanus-acellular pertussis (DTaP) vaccines in comparison to a cohort of children receiving thimerosal-free DTaP vaccines administered from 1997 through 2000 based upon an assessment of adverse events reported to the VAERS were evaluated. It was determined that there were significantly increased odds ratios (ORs) for autism (OR = 1.8, p < .05), mental retardation (OR = 2.6, p < .002), speech disorder (OR = 2.1, p <.02), personality disorders (OR=2.6, p <.01), and thinking abnormality (OR=8.2, p <.01) adverse events reported to the VAERS following thimerosal-containing DTaP vaccines in comparison to thimerosal-free DTaP vaccines. Potential confounders and reporting biases were found to be minimal in this assessment of the VAERS. It was observed, even though the media has reported a potential association between autism and thimerosal exposure, that the other NDs analyzed in this assessment of the VAERS had significantly higher ORs than autism following thimerosal-containing DTaP vaccines in comparison to thimerosal-free DTaP vaccines. The present study provides additional epidemiological evidence supporting previous epidemiological, clinical and experimental evidence that administration of thimerosal-containing vaccines in the United States resulted in a significant number of children developing NDs.
Collapse
|
35
|
Kern JK, Geier DA, Sykes LK, Haley BE, Geier MR. The relationship between mercury and autism: A comprehensive review and discussion. J Trace Elem Med Biol 2016; 37:8-24. [PMID: 27473827 DOI: 10.1016/j.jtemb.2016.06.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/17/2016] [Accepted: 06/01/2016] [Indexed: 12/28/2022]
Abstract
The brain pathology in autism spectrum disorders (ASD) indicates marked and ongoing inflammatory reactivity with concomitant neuronal damage. These findings are suggestive of neuronal insult as a result of external factors, rather than some type of developmental mishap. Various xenobiotics have been suggested as possible causes of this pathology. In a recent review, the top ten environmental compounds suspected of causing autism and learning disabilities were listed and they included: lead, methyl-mercury, polychorinated biphenyls, organophosphate pesticides, organochlorine pesticides, endocrine disruptors, automotive exhaust, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, and perfluorinated compounds. This current review, however, will focus specifically on mercury exposure and ASD by conducting a comprehensive literature search of original studies in humans that examine the potential relationship between mercury and ASD, categorizing, summarizing, and discussing the published research that addresses this topic. This review found 91 studies that examine the potential relationship between mercury and ASD from 1999 to February 2016. Of these studies, the vast majority (74%) suggest that mercury is a risk factor for ASD, revealing both direct and indirect effects. The preponderance of the evidence indicates that mercury exposure is causal and/or contributory in ASD.
Collapse
Affiliation(s)
- Janet K Kern
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA; Council for Nutritional and Environmental Medicine, Mo i Rana, Norway; CoMeD, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA.
| | - David A Geier
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA; CoMeD, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA
| | - Lisa K Sykes
- CoMeD, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA
| | - Boyd E Haley
- University of Kentucky, 410 Administration Drive, Lexington, KY, 40506 USA
| | - Mark R Geier
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA; CoMeD, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA
| |
Collapse
|
36
|
Dickerson AS, Rahbar MH, Bakian AV, Bilder DA, Harrington RA, Pettygrove S, Kirby RS, Durkin MS, Han I, Moyé LA, Pearson DA, Wingate MS, Zahorodny WM. Autism spectrum disorder prevalence and associations with air concentrations of lead, mercury, and arsenic. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:407. [PMID: 27301968 DOI: 10.1007/s10661-016-5405-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Lead, mercury, and arsenic are neurotoxicants with known effects on neurodevelopment. Autism spectrum disorder (ASD) is a neurodevelopmental disorder apparent by early childhood. Using data on 4486 children with ASD residing in 2489 census tracts in five sites of the Centers for Disease Control and Prevention's Autism and Developmental Disabilities Monitoring (ADDM) Network, we used multi-level negative binomial models to investigate if ambient lead, mercury, and arsenic concentrations, as measured by the US Environmental Protection Agency National-Scale Air Toxics Assessment (EPA-NATA), were associated with ASD prevalence. In unadjusted analyses, ambient metal concentrations were negatively associated with ASD prevalence. After adjusting for confounding factors, tracts with air concentrations of lead in the highest quartile had significantly higher ASD prevalence than tracts with lead concentrations in the lowest quartile (prevalence ratio (PR) = 1.36; 95 '% CI: 1.18, 1.57). In addition, tracts with mercury concentrations above the 75th percentile (>1.7 ng/m(3)) and arsenic concentrations below the 75th percentile (≤0.13 ng/m(3)) had a significantly higher ASD prevalence (adjusted RR = 1.20; 95 % CI: 1.03, 1.40) compared to tracts with arsenic, lead, and mercury concentrations below the 75th percentile. Our results suggest a possible association between ambient lead concentrations and ASD prevalence and demonstrate that exposure to multiple metals may have synergistic effects on ASD prevalence.
Collapse
Affiliation(s)
- Aisha S Dickerson
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), University of Texas Health Science Center at Houston, 6410 Fannin Street, UT Professional Building Suite 1100.05, Houston, TX, 77030, USA.
| | - Mohammad H Rahbar
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), University of Texas Health Science Center at Houston, 6410 Fannin Street, UT Professional Building Suite 1100.05, Houston, TX, 77030, USA
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Division of Epidemiology, Human Genetics, and Environmental Sciences (EHGES), University of Texas School of Public Health at Houston, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Amanda V Bakian
- Division of Child Psychiatry, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Deborah A Bilder
- Division of Child Psychiatry, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Rebecca A Harrington
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Sydney Pettygrove
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, 85721, USA
| | - Russell S Kirby
- Department of Community and Family Health, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Maureen S Durkin
- Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53726, USA
| | - Inkyu Han
- Division of Epidemiology, Human Genetics, and Environmental Sciences (EHGES), University of Texas School of Public Health at Houston, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lemuel A Moyé
- Division of Biostatistics, University of Texas School of Public Health at Houston, Houston, TX, 77030, USA
| | - Deborah A Pearson
- Department of Psychiatry and Behavioral Sciences, University of Texas Medical School, Houston, TX, 77054, USA
| | - Martha Slay Wingate
- Department of Health Care Organization and Policy, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Walter M Zahorodny
- Department of Pediatrics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| |
Collapse
|
37
|
Hubbs-Tait L, Nation JR, Krebs NF, Bellinger DC. Neurotoxicants, Micronutrients, and Social Environments. Psychol Sci Public Interest 2016; 6:57-121. [DOI: 10.1111/j.1529-1006.2005.00024.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
SUMMARY—Systematic research evaluating the separate and interacting impacts of neurotoxicants, micronutrients, and social environments on children's cognition and behavior has only recently been initiated. Years of extensive human epidemiologic and animal experimental research document the deleterious impact of lead and other metals on the nervous system. However, discrepancies among human studies and between animal and human studies underscore the importance of variations in child nutrition as well as social and behavioral aspects of children's environments that mitigate or exacerbate the effects of neurotoxicants. In this monograph, we review existing research on the impact of neurotoxic metals, nutrients, and social environments and interactions across the three domains. We examine the literature on lead, mercury, manganese, and cadmium in terms of dispersal, epidemiology, experimental animal studies, effects of social environments, and effects of nutrition. Research documenting the negative impact of lead on cognition and behavior influenced reductions by the Center for Disease Control in child lead-screening guidelines from 30 micrograms per deciliter (μg/dL) in 1975 to 25 μg/dL in 1985 and to 10 μg/dL in 1991. A further reduction is currently being considered. Experimental animal research documents lead's alteration of glutamate-neurotransmitter (particularly N-methyl-D-aspartate) activity vital to learning and memory. In addition, lead induces changes in cholinergic and dopaminergic activity. Elevated lead concentrations in the blood are more common among children living in poverty and there is some evidence that socioeconomic status influences associations between lead and child outcomes. Micronutrients that influence the effects of lead include iron and zinc. Research documenting the negative impact of mercury on children (as well as adults) has resulted in a reference dose (RfD) of 0.1 microgram per kilogram of body weight per day (μg/kg/day). In animal studies, mercury interferes with glutamatergic, cholinergic, and dopaminergic activity. Although evidence for interactions of mercury with children's social contexts is minimal, researchers are examining interactions of mercury with several nutrients. Research on the effects of cadmium and manganese on child cognition and behavior is just beginning. Experimental animal research links cadmium to learning deficits, manganese to behaviors characteristic of Parkinson's disease, and both to altered dopaminergic functioning. We close our review with a discussion of policy implications, and we recommend interdisciplinary research that will enable us to bridge gaps within and across domains.
Collapse
Affiliation(s)
- Laura Hubbs-Tait
- Department of Human Development and Family Science, Oklahoma State University
| | | | - Nancy F. Krebs
- Department of Pediatrics, University of Colorado School of Medicine
| | - David C. Bellinger
- Department of Neurology, Harvard Medical School; Department of Environmental Health, Harvard School of Public Health; and Children's Hospital Boston
| |
Collapse
|
38
|
Kim KN, Kwon HJ, Hong YC. Low-level lead exposure and autistic behaviors in school-age children. Neurotoxicology 2016; 53:193-200. [PMID: 26877220 DOI: 10.1016/j.neuro.2016.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/07/2016] [Accepted: 02/08/2016] [Indexed: 01/30/2023]
Abstract
INTRODUCTION The association between lead exposure and autism spectrum disorder is inconclusive. We hypothesized an association between higher blood lead concentrations and more autistic behaviors, including impaired social interactions and communication, stereotypical behaviors, and restricted interests, among school-age children. METHODS Data from 2473 Korean children aged 7-8years who had no prior history of developmental disorders were analyzed. Two follow-up surveys were conducted biennially until the children reached 11-12years of age. Blood lead concentrations were measured at every survey, and autistic behaviors were evaluated at 11-12years of age using the Autism Spectrum Screening Questionnaire (ASSQ) and Social Responsiveness Scale (SRS). The associations of blood lead concentration with ASSQ and SRS scores were analyzed using negative binomial, logistic, and linear regression models. RESULTS Blood lead concentrations at 7-8years of age (geometric mean: 1.64μg/dL), but not at 9-10 and 11-12years of age, were associated with more autistic behaviors at 11-12years of age, according to the ASSQ (β=0.151; 95% confidence interval [CI]: 0.061, 0.242) and SRS (β=2.489; 95% CI: 1.378, 3.600). SRS subscale analysis also revealed associations between blood lead concentrations and social awareness, cognition, communication, motivation, and mannerisms. CONCLUSION Even low blood lead concentrations at 7-8years of age are associated with more autistic behaviors at 11-12years of age, underscoring the need for continued efforts to reduce lead exposure.
Collapse
Affiliation(s)
- Kyoung-Nam Kim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho-Jang Kwon
- Department of Preventive Medicine and Public Health, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Environmental Medicine, Medical Research Center, Seoul, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Mohamed FEB, Zaky EA, El-Sayed AB, Elhossieny RM, Zahra SS, Salah Eldin W, Youssef WY, Khaled RA, Youssef AM. Assessment of Hair Aluminum, Lead, and Mercury in a Sample of Autistic Egyptian Children: Environmental Risk Factors of Heavy Metals in Autism. Behav Neurol 2015; 2015:545674. [PMID: 26508811 PMCID: PMC4609793 DOI: 10.1155/2015/545674] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/24/2015] [Accepted: 09/02/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND AIMS The etiological factors involved in the etiology of autism remain elusive and controversial, but both genetic and environmental factors have been implicated. The aim of this study was to assess the levels and possible environmental risk factors and sources of exposure to mercury, lead, and aluminum in children with autism spectrum disorder (ASD) as compared to their matched controls. METHODS One hundred ASD children were studied in comparison to 100 controls. All participants were subjected to clinical evaluation and measurement of mercury, lead, and aluminum through hair analysis which reflects past exposure. RESULTS The mean Levels of mercury, lead, and aluminum in hair of the autistic patients were significantly higher than controls. Mercury, lead, and aluminum levels were positively correlated with maternal fish consumptions, living nearby gasoline stations, and the usage of aluminum pans, respectively. CONCLUSION Levels of mercury, lead, and aluminum in the hair of autistic children are higher than controls. Environmental exposure to these toxic heavy metals, at key times in development, may play a causal role in autism.
Collapse
Affiliation(s)
| | - Eman Ahmed Zaky
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Sally Soliman Zahra
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | | | | |
Collapse
|
40
|
Kern JK, Geier DA, Sykes LK, Geier MR, Deth RC. Are ASD and ADHD a Continuum? A Comparison of Pathophysiological Similarities Between the Disorders. J Atten Disord 2015; 19:805-27. [PMID: 23074304 DOI: 10.1177/1087054712459886] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The objective of this study was to review and compare the similarities between autism spectrum disorder (ASD) and ADHD with regard to symptomatology, neurological deficits, metabolic and endocrine-related conditions, and brain pathology. METHOD A comprehensive review of the relevant research literature was carried out. RESULTS A number of important similarities between ASD and ADHD were identified, including recent increases in prevalence, male-biased incidence, shared involvement of sensory processing, motor and impulse control, abnormal patterns of neural connectivity, and sleep disturbances. Studies suggest involvement of androgen metabolism, impaired methylation, and heavy metal toxicity as possible contributing factors for both disorders. CONCLUSION ASD and ADHD share a number of features and pathophysiological conditions, which suggests that the two disorders may be a continuum and have a common origin.
Collapse
Affiliation(s)
- Janet K Kern
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - David A Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA
| | | | | | | |
Collapse
|
41
|
Abstract
BACKGROUND It has been suggested that the severity of autism spectrum disorder (ASD) symptoms is positively correlated with the level of circulating or stored toxic metals, and that excretion of these heavy metals, brought about by the use of pharmaceutical chelating agents, results in improved symptoms. OBJECTIVES To assess the potential benefits and adverse effects of pharmaceutical chelating agents (referred to as chelation therapy throughout this review) for autism spectrum disorder (ASD) symptoms. SEARCH METHODS We searched the following databases on 6 November 2014: CENTRAL, Ovid MEDLINE, Ovid MEDLINE In-Process, Embase,PsycINFO, Cumulative Index to Nursing and Allied Health Literature (CINAHL) and 15 other databases, including three trials registers. In addition we checked references lists and contacted experts. SELECTION CRITERIA All randomised controlled trials of pharmaceutical chelating agents compared with placebo in individuals with ASD. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies, assessed them for risk of bias and extracted relevant data. We did not conduct a meta-analysis, as only one study was included. MAIN RESULTS We excluded nine studies because they were non-randomised trials or were withdrawn before enrolment.We included one study, which was conducted in two phases. During the first phase of the study, 77 children with ASD were randomly assigned to receive seven days of glutathione lotion or placebo lotion, followed by three days of oral dimercaptosuccinic acid (DMSA). Forty-nine children who were found to be high excreters of heavy metals during phase one continued on to phase two to receive three days of oral DMSA or placebo followed by 11 days off, with the cycle repeated up to six times. The second phase thus assessed the effectiveness of multiple doses of oral DMSA compared with placebo in children who were high excreters of heavy metals and who received a three-day course of oral DMSA. Overall, no evidence suggests that multiple rounds of oral DMSA had an effect on ASD symptoms. AUTHORS' CONCLUSIONS This review included data from only one study, which had methodological limitations. As such, no clinical trial evidence was found to suggest that pharmaceutical chelation is an effective intervention for ASD. Given prior reports of serious adverse events, such as hypocalcaemia, renal impairment and reported death, the risks of using chelation for ASD currently outweigh proven benefits. Before further trials are conducted, evidence that supports a causal link between heavy metals and autism and methods that ensure the safety of participants are needed.
Collapse
Affiliation(s)
- Stephen James
- Department of Research, Southwest AutismResearch and Resource Center, Phoenix, AZ,USA
| | | | | | | |
Collapse
|
42
|
Abstract
BACKGROUND It has been suggested that the severity of autism spectrum disorder (ASD) symptoms is positively correlated with the level of circulating or stored toxic metals, and that excretion of these heavy metals, brought about by the use of pharmaceutical chelating agents, results in improved symptoms. OBJECTIVES To assess the potential benefits and adverse effects of pharmaceutical chelating agents (referred to as chelation therapy throughout this review) for autism spectrum disorder (ASD) symptoms. SEARCH METHODS We searched the following databases on 6 November 2014: CENTRAL, Ovid MEDLINE, Ovid MEDLINE In-Process, Embase, PsycINFO, Cumulative Index to Nursing and Allied Health Literature (CINAHL) and 15 other databases, including three trials registers. In addition we checked references lists and contacted experts. SELECTION CRITERIA All randomised controlled trials of pharmaceutical chelating agents compared with placebo in individuals with ASD. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies, assessed them for risk of bias and extracted relevant data. We did not conduct a meta-analysis, as only one study was included. MAIN RESULTS We excluded nine studies because they were non-randomised trials or were withdrawn before enrolment. We included one study, which was conducted in two phases. During the first phase of the study, 77 children with ASD were randomly assigned to receive seven days of glutathione lotion or placebo lotion, followed by three days of oral dimercaptosuccinic acid (DMSA). Forty-nine children who were found to be high excreters of heavy metals during phase one continued on to phase two to receive three days of oral DMSA or placebo followed by 11 days off, with the cycle repeated up to six times. The second phase thus assessed the effectiveness of multiple doses of oral DMSA compared with placebo in children who were high excreters of heavy metals and who received a three-day course of oral DMSA. Overall, no evidence suggests that multiple rounds of oral DMSA had an effect on ASD symptoms. AUTHORS' CONCLUSIONS This review included data from only one study, which had methodological limitations. As such, no clinical trial evidence was found to suggest that pharmaceutical chelation is an effective intervention for ASD. Given prior reports of serious adverse events, such as hypocalcaemia, renal impairment and reported death, the risks of using chelation for ASD currently outweigh proven benefits. Before further trials are conducted, evidence that supports a causal link between heavy metals and autism and methods that ensure the safety of participants are needed.
Collapse
Affiliation(s)
- Stephen James
- Southwest Autism Research and Resource CenterDepartment of Research2225 N. 16th StreetPhoenixAZUSA
| | - Shawn W Stevenson
- University of MelbourneDepartment of Paediatrics50 Flemington RoadMelbourneVictoriaAustralia3052
| | - Natalie Silove
- The Children's Hospital at WestmeadChild Development UnitLocked Bag 4001SydneyNew South WalesAustralia2145
| | - Katrina Williams
- The University of MelbourneDepartment of PaediatricsFlemington RdParkvilleMelbourneVictoriaAustralia
- The Royal Children's Hospital MelbourneDepartment of Developmental MedicineFlemington RdMelbourneVictoriaAustralia
- Murdoch Childrens Research InstituteFlemington RdParkvilleMelbourneVictoriaAustralia3052
| | | |
Collapse
|
43
|
Geier DA, King PG, Hooker BS, Dórea JG, Kern JK, Sykes LK, Geier MR. Thimerosal: Clinical, epidemiologic and biochemical studies. Clin Chim Acta 2015; 444:212-20. [DOI: 10.1016/j.cca.2015.02.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/06/2015] [Accepted: 02/14/2015] [Indexed: 10/24/2022]
|
44
|
Mortazavi G, Mortazavi SMJ. Increased mercury release from dental amalgam restorations after exposure to electromagnetic fields as a potential hazard for hypersensitive people and pregnant women. REVIEWS ON ENVIRONMENTAL HEALTH 2015; 30:287-292. [PMID: 26544100 DOI: 10.1515/reveh-2015-0017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
Over the past decades, the use of common sources of electromagnetic fields such as Wi-Fi routers and mobile phones has been increased enormously all over the world. There is ongoing concern that exposure to electromagnetic fields can lead to adverse health effects. It has recently been shown that even low doses of mercury are capable of causing toxicity. Therefore, efforts are initiated to phase down or eliminate the use of mercury amalgam in dental restorations. Increased release of mercury from dental amalgam restorations after exposure to electromagnetic fields such as those generated by MRI and mobile phones has been reported by our team and other researchers. We have recently shown that some of the papers which reported no increased release of mercury after MRI, may have some methodological errors. Although it was previously believed that the amount of mercury released from dental amalgam cannot be hazardous, new findings indicate that mercury, even at low doses, may cause toxicity. Based on recent epidemiological findings, it can be claimed that the safety of mercury released from dental amalgam fillings is questionable. Therefore, as some individuals tend to be hypersensitive to the toxic effects of mercury, regulatory authorities should re-assess the safety of exposure to electromagnetic fields in individuals with amalgam restorations. On the other hand, we have reported that increased mercury release after exposure to electromagnetic fields may be risky for the pregnant women. It is worth mentioning that as a strong positive correlation between maternal and cord blood mercury levels has been found in some studies, our findings regarding the effect of exposure to electromagnetic fields on the release of mercury from dental amalgam fillings lead us to this conclusion that pregnant women with dental amalgam fillings should limit their exposure to electromagnetic fields to prevent toxic effects of mercury in their fetuses. Based on these findings, as infants and children are more vulnerable to mercury exposures, and as some individuals are routinely exposed to different sources of electromagnetic fields, we possibly need a paradigm shift in evaluating the health effects of amalgam fillings.
Collapse
|
45
|
Abstract
ABSTRACT:Because of a temporal correlation between the first notable signs and symptoms of autism and the routine childhood vaccination schedule, many parents have become increasingly concerned regarding the possible etiologic role vaccines may play in the development of autism. In particular, some have suggested an association between the Measles-Mumps-Rubella vaccine and autism. Our literature review found very few studies supporting this theory, with the overwhelming majority showing no causal association between the Measles-Mumps-Rubella vaccine and autism. The vaccine preservative thimerosal has alternatively been hypothesized to have a possible causal role in autism. Again, no convincing evidence was found to support this claim, nor for the use of chelation therapy in autism. With decreasing uptake of immunizations in children and the inevitable occurrence of measles outbreaks, it is important that clinicians be aware of the literature concerning vaccinations and autism so that they may have informed discussions with parents and caregivers.
Collapse
Affiliation(s)
- Asif Doja
- Division of Neurology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | | |
Collapse
|
46
|
|
47
|
Abstract
The present study examined genetic and shared environment contributions to quantitatively-measured autism symptoms and categorically-defined autism spectrum disorders (ASD). Participants included 568 twins from the Interactive Autism Network. Autism symptoms were obtained using the Social Communication Questionnaire and Social Responsiveness Scale. Categorically-defined ASD was based on clinical diagnoses. DeFries-Fulker and liability threshold models examined etiologic influences. Very high heritability was observed for extreme autism symptom levels ([Formula: see text]). Extreme levels of social and repetitive behavior symptoms were strongly influenced by common genetic factors. Heritability of categorically-defined ASD diagnosis was comparatively low (.21, 95 % CI 0.15-0.28). High heritability of extreme autism symptom levels confirms previous observations of strong genetic influences on autism. Future studies will require large, carefully ascertained family pedigrees and quantitative symptom measurements.
Collapse
|
48
|
The Role of Heavy Metal Pollution in Neurobehavioral Disorders: a Focus on Autism. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2014. [DOI: 10.1007/s40489-014-0028-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Hodgson NW, Waly MI, Al-Farsi YM, Al-Sharbati MM, Al-Farsi O, Ali A, Ouhtit A, Zang T, Zhou ZS, Deth RC. Decreased glutathione and elevated hair mercury levels are associated with nutritional deficiency-based autism in Oman. Exp Biol Med (Maywood) 2014; 239:697-706. [DOI: 10.1177/1535370214527900] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genetic, nutrition, and environmental factors have each been implicated as sources of risk for autism. Oxidative stress, including low plasma levels of the antioxidant glutathione, has been reported by numerous autism studies, which can disrupt methylation-dependent epigenetic regulation of gene expression with neurodevelopmental consequences. We investigated the status of redox and methylation metabolites, as well as the level of protein homocysteinylation and hair mercury levels, in autistic and neurotypical control Omani children, who were previously shown to exhibit significant nutritional deficiencies in serum folate and vitamin B12. The serum level of glutathione in autistic subjects was significantly below control levels, while levels of homocysteine and S-adenosylhomocysteine were elevated, indicative of oxidative stress and decreased methionine synthase activity. Autistic males had lower glutathione and higher homocysteine levels than females, while homocysteinylation of serum proteins was increased in autistic males but not females. Mercury levels were markedly elevated in the hair of autistic subjects vs. control subjects, consistent with the importance of glutathione for its elimination. Thus, autism in Oman is associated with decreased antioxidant resources and decreased methylation capacity, in conjunction with elevated hair levels of mercury.
Collapse
Affiliation(s)
- Nathaniel W Hodgson
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Mostafa I Waly
- Department of Food Science and Nutrition, Sultan Qaboos University, P.O.Box 34, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
- Nutrition Department, High Institute of Public Health, Alexandria University, P.C. 165, El-Hadra, Alexandria, Egypt
| | - Yahya M Al-Farsi
- Department of Family Medicine and Public Health, College of Medicine and Health Sciences, Sultan Qaboos University, P.O.Box 35, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Marwan M Al-Sharbati
- Department of Behavioral Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Sultanate of Oman
| | - Omar Al-Farsi
- Department of Family Medicine and Public Health, College of Medicine and Health Sciences, Sultan Qaboos University, P.O.Box 35, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
| | - Amanat Ali
- Department of Food Science and Nutrition, Sultan Qaboos University, P.O.Box 34, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
| | - Allal Ouhtit
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Sultanate of Oman
| | - Tianzhu Zang
- Barnett Institute of Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA 02115, USA
| | - Zhaohui Sunny Zhou
- Barnett Institute of Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA 02115, USA
| | - Richard C Deth
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
50
|
Raymond LJ, Deth RC, Ralston NVC. Potential Role of Selenoenzymes and Antioxidant Metabolism in relation to Autism Etiology and Pathology. AUTISM RESEARCH AND TREATMENT 2014; 2014:164938. [PMID: 24734177 PMCID: PMC3966422 DOI: 10.1155/2014/164938] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/07/2014] [Accepted: 01/27/2014] [Indexed: 11/17/2022]
Abstract
Autism and autism spectrum disorders (ASDs) are behaviorally defined, but the biochemical pathogenesis of the underlying disease process remains uncharacterized. Studies indicate that antioxidant status is diminished in autistic subjects, suggesting its pathology is associated with augmented production of oxidative species and/or compromised antioxidant metabolism. This suggests ASD may result from defects in the metabolism of cellular antioxidants which maintain intracellular redox status by quenching reactive oxygen species (ROS). Selenium-dependent enzymes (selenoenzymes) are important in maintaining intercellular reducing conditions, particularly in the brain. Selenoenzymes are a family of ~25 genetically unique proteins, several of which have roles in preventing and reversing oxidative damage in brain and endocrine tissues. Since the brain's high rate of oxygen consumption is accompanied by high ROS production, selenoenzyme activities are particularly important in this tissue. Because selenoenzymes can be irreversibly inhibited by many electrophiles, exposure to these organic and inorganic agents can diminish selenoenzyme-dependent antioxidant functions. This can impair brain development, particularly via the adverse influence of oxidative stress on epigenetic regulation. Here we review the physiological roles of selenoproteins in relation to potential biochemical mechanisms of ASD etiology and pathology.
Collapse
Affiliation(s)
- Laura J. Raymond
- Energy & Environmental Research Center, University of North Dakota, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202, USA
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Nicholas V. C. Ralston
- Energy & Environmental Research Center, University of North Dakota, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202, USA
| |
Collapse
|