1
|
Dos Santos AC, França TCS, Venzon L, Polli V, Polleti G, Trembulak E, Pilati SFM, da Silva LM. Are silymarin and N-acetylcysteine able to prevent liver damage mediated by multiple factors? Findings against ethanol plus LPS-induced liver injury in mice. J Biochem Mol Toxicol 2024; 38:e23560. [PMID: 37860953 DOI: 10.1002/jbt.23560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/11/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
This study investigated the effect of N-acetylcysteine (NAC) and silymarin (SIL) in the liver of mice exposed to ethanol and lipopolysaccharides (LPS). Mice were divided into four groups (n = 6): naive, vehicle, NAC (200 mg/kg), and SIL (200 mg/kg). Treatments were given orally (po) once daily for 10 days. Liver injury was induced by administration of ethanol (30%, po) for 10 days, once daily, followed by a single administration of LPS (2 mg/kg, ip) 24 h before euthanasia. After the treatment period, animals were euthanized, and liver and blood samples were collected. NAC, but not SIL, prevented the increase in oxalacetic glutamic transaminase (OGT) and pyruvic glutamic transaminase (PGT) serum levels. NAC and SIL did not restore levels of reduced glutathione or hepatic malonaldehyde. The treatments with NAC or SIL showed no difference in the activity of glutathione S-transferase, superoxide dismutase, and catalase compared to vehicle group. Myeloperoxidase and N-acetylglucosaminidase activities are increased, as well as the IL-6 and IL-10 levels in the liver. The treatment with NAC, but not SIL, reduced the N-acetylglucosamines activity and the IL-6 and IL-10 amount in the liver. Histological findings revealed microsteatosis in the vehicle group, which was not prevented by SIL but was partially reduced in animals receiving NAC. Unlike other liver injury models, NAC (200 mg/kg) or SIL (200 mg/kg) did not positively affect antioxidant patterns in liver tissue of animals exposed to ethanol plus LPS, but NAC treatment displays anti-inflammatory properties in this model.
Collapse
Affiliation(s)
- Ana Caroline Dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | | | - Larissa Venzon
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Vitor Polli
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Gustavo Polleti
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Erica Trembulak
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | | | - Luísa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
- LaFaTI-Laboratório de Farmacologia do Trato Gastrointestinal e suas Interações, Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
2
|
Genetically encoded probiotic EcN 1917 alleviates alcohol-induced acute liver injury and restore gut microbiota homeostasis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
3
|
Saikosaponin D Inhibits the Proliferation and Promotes the Apoptosis of Rat Hepatic Stellate Cells by Inducing Autophagosome Formation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5451758. [PMID: 34457023 PMCID: PMC8390134 DOI: 10.1155/2021/5451758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/18/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Objective This study aimed to investigate the effects of saikosaponin D (SSd) on the proliferation and apoptosis of the HSC-T6 hepatic stellate cell line and determine the key pathway that mediates SSd's function. Methods Cell viability was detected using the CCK-8 kit. The EdU kit and flow cytometry were used to examine cell proliferation. The Annexin V-FITC/PI double staining kit and flow cytometry were used to examine cell apoptosis. Western blot analysis was performed to analyze the expression levels of LC3, Ki67, cleaved caspase 3, Bax, and Bcl2. Autophagosome formation was detected by LC3-GFP adenovirus transfection. Results SSd inhibits the proliferation and promotes the apoptosis of acetaldehyde-activated HSC-T6 cells. SSd treatment increased the expression of cleaved caspase 3 and Bax but reduced that of Ki67 and Bcl2. The same concentration of SSd barely influenced the growth of normal rat liver BRL-3A cells. SSd upregulated LC3-II expression and induced autophagosome formation. Autophagy agonist rapamycin had the same effect as SSd and autophagy inhibitor 3-methyladenine could neutralize the effect of SSd in acetaldehyde-activated HSC-T6 cells. Conclusions SSd could inhibit the proliferation and promote the apoptosis of HSC-T6 cells by inducing autophagosome formation.
Collapse
|
4
|
Yang C, Liao AM, Cui Y, Yu G, Hou Y, Pan L, Chen W, Zheng S, Li X, Ma J, He J, Huang J. Wheat embryo globulin protects against acute alcohol-induced liver injury in mice. Food Chem Toxicol 2021; 153:112240. [PMID: 33932521 DOI: 10.1016/j.fct.2021.112240] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 01/06/2023]
Abstract
Wheat Embryo Globulin (WEG) is a high-quality plant-derived protein with anti-inflammatory, antioxidant, and immunity enhancement effects. WEG was prepared and characterized using free amino acid analysis, circular dichroism (CD), and scanning electron microscope (SEM). The liver protection effect of WEG on mice after acute alcohol stimulation was also investigated. Male KM mice were randomly divided into four groups (n = 10). Animals were orally administrated with WEG (60 mg/kg), silymarin (50 mg/kg), and the same volume of saline solution daily for 30 days, before administering an alcohol-intragastric injection. Results displayed that the liver index, the levels of serum total cholesterol (TC), serum triglyceride (TG), liver malondialdehyde (MDA) and the mRNA expression of CYP2E1were significantly decreased in WEG-treated mice compared with the model group. Meanwhile, the levels of serum high-density lipoprotein-cholesterol (HDL-C), hepatic reduced glutathione (GSH), superoxide dismutase (SOD) and the mRNA expression of ADH2 and ALDH2 were remarkably increased. Effect of WEG on histopathology of liver tissue confirmed its protective function. Meanwhile, GSH level of ileal was significantly increased, MDA was remarkably decreased in WEG-treated mice, which also indicated that WEG possessed a positive effect on intestinal micro ecological environment health to some extent. In conclusion, WEG is a promising agent for the prevention of acute alcoholic liver injury.
Collapse
Affiliation(s)
- Canrui Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Ai-Mei Liao
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, PR China.
| | - Yixiang Cui
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Guanghai Yu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, PR China
| | - Yinchen Hou
- National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, PR China; College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450044, PR China
| | - Long Pan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, PR China
| | - Wenjing Chen
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Shuainan Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Xiaoxiao Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jiarui Ma
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jiangying He
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jihong Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, PR China; Henan Cooperativity Medical Science and Technology Research Institute Co., LTD, Luoyang, 471000, PR China.
| |
Collapse
|
5
|
Kim YS, Kim SG. Endoplasmic reticulum stress and autophagy dysregulation in alcoholic and non-alcoholic liver diseases. Clin Mol Hepatol 2020; 26:715-727. [PMID: 32951410 PMCID: PMC7641579 DOI: 10.3350/cmh.2020.0173] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Alcoholic and non-alcoholic liver diseases begin from an imbalance in lipid metabolism in hepatocytes as the earliest response. Both liver diseases share common disease features and stages (i.e., steatosis, hepatitis, cirrhosis, and hepatocellular carcinoma). However, the two diseases have differential pathogenesis and clinical symptoms. Studies have elucidated the molecular basis underlying similarities and differences in the pathogenesis of the diseases; the factors contributing to the progression of liver diseases include depletion of sulfhydryl pools, enhanced levels of reactive oxygen and nitrogen intermediates, increased sensitivity of hepatocytes to toxic cytokines, mitochondrial dysfunction, and insulin resistance. Endoplasmic reticulum (ER) stress, which is caused by the accumulation of misfolded proteins and calcium depletion, contributes to the pathogenesis, often causing catastrophic cell death. Several studies have demonstrated a mechanism by which ER stress triggers liver disease progression. Autophagy is an evolutionarily conserved process that regulates organelle turnover and cellular energy balance through decomposing damaged organelles including mitochondria, misfolded proteins, and lipid droplets. Autophagy dysregulation also exacerbates liver diseases. Thus, autophagy-related molecules can be potential therapeutic targets for liver diseases. Since ER stress and autophagy are closely linked to each other, an understanding of the molecules, gene clusters, and networks engaged in these processes would be of help to find new remedies for alcoholic and non-alcoholic liver diseases. In this review, we summarize the recent findings and perspectives in the context of the molecular pathogenesis of the liver diseases.
Collapse
Affiliation(s)
- Yun Seok Kim
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy, Seoul National University, Seoul, Korea.,College of Pharmacy, Dongguk University, Goyang, Korea
| |
Collapse
|
6
|
Li YY, Zhong YJ, Cheng Q, Wang YZ, Fan YY, Yang CF, Ma Z, Li YW, Li L. miR-378b Regulates Insulin Sensitivity by Targeting Insulin Receptor and p110α in Alcohol-Induced Hepatic Steatosis. Front Pharmacol 2020; 11:717. [PMID: 32508647 PMCID: PMC7251170 DOI: 10.3389/fphar.2020.00717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Insulin resistance has been implicated in alcoholic liver disease. A previous study has shown that microRNAs (miRNAs) play a major role in the production, secretion, and function of insulin. MiRNAs are capable of repressing multiple target genes that in turn negatively regulate various physiological and pathological activities. However, current information on the biological function of miRNAs in insulin resistance is limited. The goal of the present study was to elucidate the role of miR-378b in alcohol-induced hepatic insulin resistance and its underlying mechanism. This study has observed that miR-378b is up-regulated in National Institute on Alcohol Abuse and Alcoholism (NIAAA) alcoholic mouse models as well as in ethanol-induced L-02 cells in vitro. Furthermore, miR-378b overexpression impaired the insulin signaling pathway, and inhibition of miR-378b improved insulin sensitivity in vivo and in vitro. A mechanistic study revealed that IR and p110α are direct targets of miR-378b. Together, these results suggest that miR-378b controls insulin sensitivity by targeting the insulin receptor (IR) as well as p110α and possibly play an inhibitory role in the development of insulin resistance, thereby providing insights into the development of novel diagnostic and treatment methods.
Collapse
Affiliation(s)
- Yuan-yuan Li
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yu-juan Zhong
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Qi Cheng
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Ying-zhao Wang
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yuan-yuan Fan
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Cheng-fang Yang
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Zuheng Ma
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Yong-wen Li
- College of Pharmacy, Guilin Medical University, Guilin, China
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin, China
| | - Li Li
- College of Pharmacy, Guilin Medical University, Guilin, China
| |
Collapse
|
7
|
Proteoglycan isolated from Corbicula fluminea exerts hepato-protective effects against alcohol-induced liver injury in mice. Int J Biol Macromol 2020; 142:1-10. [DOI: 10.1016/j.ijbiomac.2019.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/18/2019] [Accepted: 12/01/2019] [Indexed: 12/27/2022]
|
8
|
Attenuation of neutrophil-mediated liver injury in mice by drug-free E-selectin binding polymer. J Control Release 2019; 319:475-486. [PMID: 31838202 DOI: 10.1016/j.jconrel.2019.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
Inflammation with neutrophils infiltration is a prominent feature of alcohol-related liver disease (ARLD) and contributes to the severity of liver injury. Although an array of potential treatments has been studied, the standard treatment regimen is controversial and can induce severe side effects and infection-related complications. E-selectin, a cytokine inducible cell adhesion molecule, mediates the initial interaction of leucocytes with endothelial cells, and facilitates their further adhesion and extravasation into inflamed tissues. Given the important role of E-selectin in leukocytes trafficking, we hypothesized that a synthetic polymer presenting multiple copies of E-selectin binding peptide in a polyvalent manner (P-Esbp) may block the "roads" that facilitate neutrophil infiltration, inhibit the recruitment of neutrophils to the inflamed sites and reduce the extent of liver injury. We now demonstrate in vitro that P-Esbp reduced the recruitment of neutrophils (collected from blood of donors) on activated human umbilical vein endothelial cells (HUVEC) under flow conditions. Pre-treatment of mice with P-Esbp prior to alcohol binge attenuated alcohol-induced serum transaminase (ALT, AST) elevation, reduced pro-inflammatory cytokines (TNFα and IL-1ẞ) and chemokines (MIP-2/CXCL2 and MCP-1/CCL2) in National Institute on Alcohol Abuse and Alcoholism (NIAAA) model. Also, the up-regulation of neutrophil marker Ly6G and the number of MPO positive cells in the injured tissue was significantly reduced by the treatment, indicating diminished neutrophil infiltration. Moreover, as a result of P-Esbp treatment, E-selectin expression in the liver (mRNA and protein level) was downregulated, suggesting a potential to decrease ongoing local inflammatory response. Overall, our findings highlight the anti-inflammatory properties of the "drug-free" P-Esbp and its therapeutic potential to attenuate an excessive inflammation where infiltrating neutrophils can damage tissues and organs.
Collapse
|
9
|
Wang Y, Yang P, Zhang B, Ding Y, Lei S, Hou Y, Guan X, Li Q. Hepatic NPC1L1 overexpression attenuates alcoholic autophagy in mice. Mol Med Rep 2019; 20:3224-3232. [PMID: 31432115 PMCID: PMC6755247 DOI: 10.3892/mmr.2019.10549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/27/2019] [Indexed: 01/25/2023] Open
Abstract
Alcohol consumption causes liver steatosis in humans. Metabolic disorders of lipids are one of the factors that cause liver steatosis in hepatocytes. Hepatic Niemann‑Pick C1‑like 1 (NPC1L1) regulates lipid homeostasis in mammals. The relationship between NPC1L1 and autophagy in those with a history of alcohol abuse is unclear. The present study aimed to investigate the function of NPC1L1 in the activation of hepatic autophagy in a mouse model with a human (h)NPC1L1 transgene under alcohol feeding conditions. The mice expressing hNPC1L1 (Ad‑L1) or controls (Ad‑null) were created by retro‑orbital adenovirus injection. The Ad‑L1 and Ad‑null mice were fed with alcohol or a non‑alcoholic diet to mimic chronic alcohol consumption in humans. Hepatic autophagy was demonstrated in isolated primary hepatocytes by monitoring autophagic vacuoles under fluorescence microscopy, and by western blotting for autophagic makers. Isolated hepatocytes from the livers of Ad‑L1 mice were treated with different doses of ezetimibe to study the restoration of autophagy. Chronic alcohol feeding caused liver injury and steatosis, shown by significantly higher levels of plasma alanine transaminase and aspartate transaminase activity, and by hematoxylin and eosin staining in Ad‑L1 and Ad‑null mice. Compared to Ad‑null control mice, the microtubule‑associated proteins 1A/1B light chain 3 (LC3) particles in the isolated hepatocytes of Ad‑L1 mice were decreased, both under alcohol and non‑alcoholic feeding. The ratio of LC3II/LC3I was significantly decreased, and the level of p62/sequestosome‑1 protein was significantly increased in Ad‑L1 mice compared with Ad‑null mice after alcohol feeding. Levels of LC3II protein were statistically increased in hepatocytes isolated from Ad‑L1 mice with ezetimibe treatment. The increase in LC3II expression was dose dependent. Within the tested range, it reached its highest level at 40 µM. The livers of Ad‑L1 mice represent a more human‑like state for the study of hepatic autophagy. Hepatic expression of human NPC1L1 resulted in an inhibition of autophagy; it may contribute to alcoholic fatty liver disease in humans.
Collapse
Affiliation(s)
- Youlin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Pan Yang
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA
| | - Bo Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yao Ding
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Shun Lei
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Yuning Hou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA
| | - Xiaoqing Guan
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
10
|
Cheng XY, Liu JD, Lu XY, Yan X, Huang C, Meng XM, Li J. miR-203 Inhibits Alcohol-Induced Hepatic Steatosis by Targeting Lipin1. Front Pharmacol 2018; 9:275. [PMID: 29670525 PMCID: PMC5893905 DOI: 10.3389/fphar.2018.00275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/12/2018] [Indexed: 12/16/2022] Open
Abstract
Alcoholic liver disease (ALD) is a global liver disease which characterized by liver inflammation, fatty liver, alcoholic hepatitis, or liver cirrhosis. Alcohol abuse is one of the main reasons for liver disease. Alcoholic fatty liver (AFL) disease is the early stage of ALD and associated with the excessive lipids accumulation in hepatocytes as well as oxidative stress. MicroRNA-203 (miR-203) is known to suppress the proliferation and metastasis of hepatocellular carcinoma, but the role in the progression of alcoholic liver disease is not clear and is warranted for further investigation. In the present study, we have found the expression of miR-203 is down-regulated in Gao-Binge alcoholic mice model and ethanol-induced AML-12 cell lines in vitro. Furthermore, over-expression of miR-203 decrease the lipids accumulation in liver and ethanol-induced AML-12 cells. Mechanistically, we identified that Lipin1 is a key regulator of hepatic lipid metabolism, and acts as a downstream target for miR-203. In summary, our results suggested that over-expression of miR-203 inhibited the liver lipids accumulation and the progression of AFL by targeting Lipin1.
Collapse
Affiliation(s)
- Xiao-Yu Cheng
- The Key Laboratory of Major Autoimmune Diseases, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, Institute for Liver Diseases, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun-Da Liu
- The Key Laboratory of Major Autoimmune Diseases, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, Institute for Liver Diseases, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xin-Yi Lu
- The Key Laboratory of Major Autoimmune Diseases, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, Institute for Liver Diseases, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xing Yan
- The Key Laboratory of Major Autoimmune Diseases, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, Institute for Liver Diseases, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, Institute for Liver Diseases, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, Institute for Liver Diseases, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, Institute for Liver Diseases, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Ibusuki R, Uto H, Oda K, Ohshige A, Tabu K, Mawatari S, Kumagai K, Kanmura S, Tamai T, Moriuchi A, Tsubouchi H, Ido A. Human neutrophil peptide-1 promotes alcohol-induced hepatic fibrosis and hepatocyte apoptosis. PLoS One 2017; 12:e0174913. [PMID: 28403148 PMCID: PMC5389644 DOI: 10.1371/journal.pone.0174913] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Neutrophil infiltration of the liver is a typical feature of alcoholic liver injury. Human neutrophil peptide (HNP)-1 is an antimicrobial peptide secreted by neutrophils. The aim of this study was to determine if HNP-1 affects ethanol-induced liver injury and to examine the mechanism of liver injury induced by HNP-1. METHODS Transgenic (TG) mice expressing HNP-1 under the control of a β-actin-based promoter were established. Ethanol was orally administered to HNP-1 TG or wild-type C57BL/6N (WT) mice. SK-Hep1 hepatocellular carcinoma cells were used to investigate the effect of HNP-1 on hepatocytes in vitro. RESULTS After 24 weeks of ethanol intake, hepatic fibrosis and hepatocyte apoptosis were significantly more severe in TG mice than in WT mice. Levels of CD14, TLR4, and IL-6 in liver tissues were higher in TG mice than in WT mice. Apoptosis was accompanied by higher protein levels of caspase-3, caspase-8, and cleaved PARP in liver tissue. In addition, phosphorylated ASK1, ASK1, phosphorylated JNK, JNK1, JNK2, Bax, Bak and Bim were all more abundant in TG mice than in WT mice. In contrast, the level of anti-apoptotic Bcl2 in the liver was significantly lower in TG mice than in WT mice. Analysis of microRNAs in liver tissue showed that miR-34a-5p expression was significantly higher in TG mice than in WT mice. Furthermore, in the presence of ethanol, HNP-1 increased the apoptosis with the decreased level of Bcl2 in a concentration-dependent manner in vitro. CONCLUSIONS HNP-1 secreted by neutrophils may exacerbate alcohol-induced hepatic fibrosis and hepatocyte apoptosis with a decrease in Bcl2 expression and an increase in miR-34a-5p expression.
Collapse
Affiliation(s)
- Rie Ibusuki
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Hirofumi Uto
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Center for Digestive and Liver Diseases, Miyazaki Medical Center Hospital, Miyazaki, Japan
- * E-mail:
| | - Kohei Oda
- Department of HGF Tissue Repair and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiko Ohshige
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuaki Tabu
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Seiichi Mawatari
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kotaro Kumagai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shuji Kanmura
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tsutomu Tamai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Moriuchi
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirohito Tsubouchi
- Department of HGF Tissue Repair and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Kagoshima City Hospital, Kagoshima, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of HGF Tissue Repair and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
12
|
Zhang Z, Guo Y, Qiu C, Deng G, Guo M. Protective Action of Se-Supplement Against Acute Alcoholism Is Regulated by Selenoprotein P (SelP) in the Liver. Biol Trace Elem Res 2017; 175:375-387. [PMID: 27334433 DOI: 10.1007/s12011-016-0780-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/12/2016] [Indexed: 01/06/2023]
Abstract
Acute alcoholism is a major cause of cirrhosis and liver failure around the world. Selenium (Se) is an essential micronutrient promoting liver health in humans and animals. Selenoprotein P (SelP) is a glycoprotein secreted within the liver, which interacts with cytokines and the growth factor pathway to provide protection for hepatic cells. The present study was conducted to confirm the effect and mechanism of Se and SelP action in livers affected by acute alcoholism. In this study, a mouse model of acute alcoholism, as well as a hepatocyte model, was successfully established. The Se content of the liver was detected by atomic fluorescence spectrophotometry. The expression of messenger RNA (mRNA) was analyzed by quantitative polymerase chain reaction (qPCR). The protein expression of inflammatory factors was detected by ELISA. The other proteins were analyzed by western blotting. The results showed that pathological damage to the liver was gradually weakened by Se-supplementation, which was evaluated by hematoxylin and eosin (H&E) and TUNEL staining. Se-supplementation inhibited expression of pro-inflammatory factors TNF-α and IL-1β and promoted production of anti-inflammatory cytokine IL-10 in the liver with acute alcoholism. Se-supplementation also prevented the apoptosis of hepatocytes by suppressing the cleavage of caspases-9, 3, 6, 7, and poly(ADP-ribose) polymerase (PARP). Through correlational analysis, it was determined that the effects of Se-supplement were closely related to SelP expression, inflammatory cytokines, and apoptosis molecule production. The sienna of SelP further confirmed the protective action of Se-supplementation on the liver and that the mechanism of SelP involves the regulation of inflammatory cytokines and apoptosis molecules in acute alcoholism. These findings provide information regarding a new potential target for the treatment of acute alcoholism.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yingfang Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mengyao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
13
|
An L, Lang Q, Shen W, Shi Q, Feng F. Dynamic metabolic profiling of urine biomarkers in rats with alcohol-induced liver damage following treatment with Zhi-Zi-Da-Huang decoction. Mol Med Rep 2016; 14:2093-100. [DOI: 10.3892/mmr.2016.5494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 05/26/2016] [Indexed: 11/05/2022] Open
|
14
|
Bingül İ, Başaran-Küçükgergin C, Aydın AF, Çoban J, Doğan-Ekici I, Doğru-Abbasoğlu S, Uysal M. Betaine treatment decreased oxidative stress, inflammation, and stellate cell activation in rats with alcoholic liver fibrosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 45:170-178. [PMID: 27314760 DOI: 10.1016/j.etap.2016.05.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to investigate the effect of betaine (BET) on alcoholic liver fibrosis in rats. Fibrosis was experimentally generated with ethanol plus carbon tetrachloride (ETH+CCl4) treatment. Rats were treated with ETH (5% v/v in drinking water) for 14 weeks. CCl4 was administered intraperitoneally (i.p.) 0.2mL/kg twice a week to rats in the last 6 weeks with/without commercial food containing BET (2% w/w). Serum hepatic damage markers, tumor necrosis factor-α, hepatic triglyceride (TG) and hydroxyproline (HYP) levels, and oxidative stress parameters were measured together with histopathologic observations. In addition, α-smooth muscle-actin (α-SMA), transforming growth factor-β1 (TGF-β1) and type I collagen (COL1A1) protein expressions were assayed immunohistochemically to evaluate stellate cell (HSC) activation. mRNA expressions of matrix metalloproteinase-2 (MMP-2) and its inhibitors (TIMP-1 and TIMP-2) were also determined. BET treatment diminished TG and HYP levels; prooxidant status and fibrotic changes; α-SMA, COL1A1 and TGF-β protein expressions; MMP-2, TIMP-1 and TIMP-2 mRNA expressions in the liver of fibrotic rats. In conclusion, these results indicate that the antifibrotic effect of BET may be related to its suppressive effects on oxidant and inflammatory processes together with HSC activation in alcoholic liver fibrosis.
Collapse
Affiliation(s)
- İlknur Bingül
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey
| | | | - A Fatih Aydın
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey
| | - Jale Çoban
- Department of Biochemistry, Yeditepe University Medical Faculty, Kayışdağı, Istanbul, Turkey
| | - Işın Doğan-Ekici
- Department of Pathology, Yeditepe University Medical Faculty, Kayışdağı, Istanbul, Turkey
| | - Semra Doğru-Abbasoğlu
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey.
| | - Müjdat Uysal
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey
| |
Collapse
|
15
|
Kim H, Park M, Shin JH, Kwon O. Ethanolic Extract of Acanthopanax koreanum Nakai Alleviates Alcoholic Liver Damage Combined with a High-Fat Diet in C57BL/6J Mice. Molecules 2016; 21:molecules21060681. [PMID: 27231887 PMCID: PMC6274326 DOI: 10.3390/molecules21060681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 01/06/2023] Open
Abstract
Alcoholic and nonalcoholic liver steatosis have an indistinguishable spectrum of histological features and liver enzyme elevations. In this study, we investigated the potential of the ethanolic extract of Acanthopanax koreanum Nakai (AK) to protect against experimental alcoholic liver disease in a mouse model that couples diet and daily ethanol bolus gavage. Fifty-six C57BL/6J mice were randomly divided into seven groups: normal control (NC), alcohol control (AC), alcohol/HFD control (AH), low-dose (1%) AK in alcohol group (ACL), high-dose (3%) AK in alcohol group (ACH), low-dose AK in alcohol/HFD group (AHL), and high-dose AK in alcohol/HFD group (AHH). The AH group showed more severe damage than the AC group in terms of biochemical and molecular data that were observed in this study. The administration of AK exerted remarkable effects in: plasma ALT (p < 0.0001), total lipid (p = 0.014), TG (p = 0.0037) levels; CPT-1α (p = 0.0197), TLR4 (p < 0.0001), CD14 (p = 0.0002), IL-6 (p = 0.0264) and MCP-1 (p = 0.0045) gene expressions; and ALDH (p < 0.0001) and CAT (p = 0.0076) activities. The data suggested that at least the high dose AK might confer protection against alcoholic liver damage combined with an HFD by accelerating lipid oxidation and alcohol metabolism and by suppressing the inflammatory response, including the TLR pathway.
Collapse
Affiliation(s)
- Haein Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Minyoung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Jae-Ho Shin
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Gyeonggi-do 13135, Korea.
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
16
|
Kalaz EB, Aydın AF, Doğan-Ekici I, Çoban J, Doğru-Abbasoğlu S, Uysal M. Protective effects of carnosine alone and together with alpha-tocopherol on lipopolysaccharide (LPS) plus ethanol-induced liver injury. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 42:23-29. [PMID: 26773358 DOI: 10.1016/j.etap.2015.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/22/2015] [Accepted: 12/26/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to investigate the effect of carnosine (CAR) alone and together with vitamin E (Vit E) on alcoholic steatohepatitis (ASH) in rats. ASH was induced by ethanol (3 times; 5 g/kg; 12 h intervals, via gavage), followed by a single dose of lipopolysaccharide (LPS; 10 mg/kg; i.p.). CAR (250 mg/kg; i.p.) and Vit E (200 mg D-α-tocopherol/kg; via gavage) were administered 30 min before and 90 min after the LPS injection. CAR treatment lowered high serum transaminase activities together with hepatic histopathologic improvements in rats with ASH. Reactive oxygen species formation, malondialdehyde levels, myeloperoxidase activities and transforming growth factor β1 (TGF-β1) and collagen 1α1 (COL1A1) expressions were observed to decrease. These improvements were more remarkable in CAR plus Vit E-treated rats. Our results indicate that CAR may be effective in suppressing proinflammatory, prooxidant, and profibrotic factors in the liver of rats with ASH.
Collapse
Affiliation(s)
- Esra Betül Kalaz
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey
| | - A Fatih Aydın
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey
| | - Işın Doğan-Ekici
- Department of Pathology, Yeditepe University Medical Faculty, Kayışdağı, Istanbul, Turkey
| | - Jale Çoban
- Department of Biochemistry, Yeditepe University Medical Faculty, Kayışdağı, Istanbul, Turkey
| | - Semra Doğru-Abbasoğlu
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey.
| | - Müjdat Uysal
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey
| |
Collapse
|
17
|
Yang Y, Yang F, Wu X, Lv X, Li J. EPAC activation inhibits acetaldehyde-induced activation and proliferation of hepatic stellate cell via Rap1. Can J Physiol Pharmacol 2015; 94:498-507. [PMID: 26854595 DOI: 10.1139/cjpp-2015-0437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic stellate cells (HSCs) activation represents an essential event during alcoholic liver fibrosis (ALF). Previous studies have demonstrated that the rat HSCs could be significantly activated after exposure to 200 μmol/L acetaldehyde for 48 h, and the cAMP/PKA signaling pathways were also dramatically upregulated in activated HSCs isolated from alcoholic fibrotic rat liver. Exchange protein activated by cAMP (EPAC) is a family of guanine nucleotide exchange factors (GEFs) for the small Ras-like GTPases Rap, and is being considered as a vital mediator of cAMP signaling in parallel with the principal cAMP target protein kinase A (PKA). Our data showed that both cAMP/PKA and cAMP/EPAC signaling pathways were involved in acetaldehyde-induced HSCs. Acetaldehyde could reduce the expression of EPAC1 while enhancing the expression of EPAC2. The cAMP analog Me-cAMP, which stimulates the EPAC/Rap1 pathway, could significantly decrease the proliferation and collagen synthesis of acetaldehyde-induced HSCs. Furthermore, depletion of EPAC2, but not EPAC1, prevented the activation of HSC measured as the production of α-SMA and collagen type I and III, indicating that EPAC1 appears to have protective effects on acetaldehyde-induced HSCs. Curiously, activation of PKA or EPAC perhaps has opposite effects on the synthesis of collagen and α-SMA: EPAC activation by Me-cAMP increased the levels of GTP-bound (activated) Rap1 while PKA activation by Phe-cAMP had no significant effects on such binding. These results suggested that EPAC activation could inhibit the activation and proliferation of acetaldehyde-induced HSCs via Rap1.
Collapse
Affiliation(s)
- Yan Yang
- a School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China.,b Institute for Liver Disease of Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China
| | - Feng Yang
- a School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China.,b Institute for Liver Disease of Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China
| | - Xiaojuan Wu
- a School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China.,b Institute for Liver Disease of Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China
| | - Xiongwen Lv
- a School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China.,b Institute for Liver Disease of Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China
| | - Jun Li
- a School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China.,b Institute for Liver Disease of Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China
| |
Collapse
|
18
|
Kim DH, Lee EM, Do SH, Jeong DH, Jeong KS. Changes of the Cytoplasmic Proteome in Response to Alcoholic Hepatotoxicity in Rats. Int J Mol Sci 2015; 16:18664-82. [PMID: 26266409 PMCID: PMC4581265 DOI: 10.3390/ijms160818664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
Abstract
Proteomic analyses have already been used in a number of hepatological studies and provide important information. However, few reports have focused on changes in the cytoplasmic proteome. The present study therefore aimed to evaluate changes in cytoplasmic proteome of rats in response to alcoholic hepatotoxicity. Rats were fed a Liber-DeCarli liquid diet containing ethanol for four weeks. Cytoplasmic proteins except mitochondrial proteins from the livers of these animals were investigated using two-dimensional gel electrophoresis and mass spectrometry. Alcohol induced a decrease in body weight gain and an increase in alanine transaminase (ALT), cholesterol, and phospholipid levels. Histopathological observations revealed hepatic damage characterized by necrosis and fatty change in alcohol-treated group at week 2, which continues until week 4. Our proteomic analysis revealed that 25 proteins were differentially expressed in the ethanol-fed group. Of these, 12 cytoplasmic proteins are being reported for the first time. Taken together, our results provide further insights into the disease mechanism and therapeutic information of alcoholic liver disease.
Collapse
Affiliation(s)
- Dong Hwan Kim
- College of Interdisciplinary & Creative Studies, Konyang University, Nonsan 320-711, Korea.
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Korea.
| | - Eun-Mi Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Korea.
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu 702-701, Korea.
| | - Sun-Hee Do
- College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea.
| | - Da-Hee Jeong
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Korea.
| | - Kyu-Shik Jeong
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Korea.
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu 702-701, Korea.
| |
Collapse
|
19
|
Protective Effects of Korean Red Ginseng against Alcohol-Induced Fatty Liver in Rats. Molecules 2015; 20:11604-16. [PMID: 26111184 PMCID: PMC6272318 DOI: 10.3390/molecules200611604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 01/06/2023] Open
Abstract
The present study tested the hypothesis that Korean red ginseng (KRG) provides a protective effect against alcoholic fatty liver. Male Sprague-Dawley rats were divided into four groups and fed a modified Lieber-DeCarli diet containing 5% (w/v) alcohol or an isocaloric amount of dextrin-maltose for the controls for 6 weeks: normal control (CON), alcohol control (ET), and ET treated with 125 or 250 mg/kg body weight/day of KRG (RGL or RGH, respectively). Compared with the CON group, the ET group exhibited a significant increase in triglycerides, total cholesterol and the presence of lipid droplets in the liver, and a decrease in fat mass, which were all attenuated by KRG supplementation in adose-dependent manner. The mitigation was accompanied by AMP-activated protein kinase (AMPK) signaling pathways in the liver and adipose tissue. In addition, suppression in the alcohol-induced changes of adipose adipokine mRNA expression was also observed in KRG supplementation group. These findings suggest that KRG may have the potential to ameliorate alcoholic fatty liver by suppressing inappropriate lysis of adipose tissue and preventing unnecessary de novo lipogenesis in the liver, which are mediated by AMPK signaling pathways. A mechanism for an interplay between the two organs is still needed to be examined with further assays.
Collapse
|
20
|
Byun HG, Lee JK. Chlorella ethanol extract induced phase II enzyme through NFE2L2 (nuclear factor [erythroid-derived] 2-like 2, NRF2) activation and protected ethanol-induced hepatoxicity. J Med Food 2015; 18:182-9. [PMID: 25602788 DOI: 10.1089/jmf.2014.3159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we investigated the hepatoprotective effects of ethanol extracts from Chlorella vulgaris (CH) on animals. We measured its effect on the quinone reductase (QR) activity in Hepa1c1c7 cells, finding that CH induced a significantly higher QR activity in these cells. We isolated the active fraction (CH F4-2) from CH using chromatography methods. CH F4-2 may activate cellular antioxidant enzymes through upregulation of the Nrf2 pathway in hepatocarcinoma cells with CH F4-2 (25.0-200 μg/mL) for 48 h. Furthermore, CH F4-2 increased the expression of NQO1 [ NAD(P)H quinone oxidoreductase, also known as QR], heme oxygenase-1, and glutathione-S-transferase P. Moreover, we found that ethanol-induced hepatic pathological changes-elevations in glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, γ-glutamyltransferase, and lactate dehydrogenase-were significantly decreased. The inhibitory effect of CH on alcohol-induced liver injury was associated with the suppression of alcohol-induced increases in intestinal permeability. The ethanol extract from CH was found to induce QR activation, making it a potentially good candidate for a hepatoprotection agent.
Collapse
Affiliation(s)
- Hee-Guk Byun
- Department of Marine Biotechnology, Gangneung-Wonju National University , Gangneung, Korea
| | | |
Collapse
|
21
|
Cui Y, Ye Q, Wang H, Li Y, Yao W, Qian H. Hepatoprotective potential of Aloe vera polysaccharides against chronic alcohol-induced hepatotoxicity in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:1764-1771. [PMID: 24272968 DOI: 10.1002/jsfa.6489] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/31/2013] [Accepted: 11/23/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Aloe vera polysaccharides are reported to exhibit multiple biological effects, including anti-oxidation, anti-inflammation and immune enhancement. However, their influence on alcoholic liver disease (ALD) remains unclear. This study was designed to determine the protective effect of extracted A. vera polysaccharides (AVGP) against ALD in a chronic alcohol-feeding mouse model and investigate the possible underlying mechanisms. RESULTS Supplementation of AVGP significantly attenuated the levels of serum aminotransferases, lipids and hepatic TG and ameliorated histopathological alterations in the model of ALD. Interestingly, AVGP markedly up-regulated hepatic expression of lipolytic genes (AMPK-α2 and PPAR-α) but had no effect on lipogenic gene expression. AVGP diminished alcohol-dependent oxidative stress partly through a decrease in MDA and increase in GSH and SOD. Alcohol-induced inflammation was also mitigated by AVGP treatment via significant reduction in LPS and TNF-α, down-regulation of TLR-4 and MyD88 and up-regulation of IκB-α. CONCLUSION This study clearly showed that AVGP exerts a potent protective effect against chronic alcohol-induced liver injury. Its hepatoprotective effect appears to be associated with its antioxidant capacity and its ability to accelerate lipolysis and inhibit inflammatory response. The results indicate that AVGP could be considered as a potent food supplement in the prevention of ALD.
Collapse
Affiliation(s)
- Yan Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
22
|
Zeng T, Zhang CL, Song FY, Zhao XL, Xie KQ. CMZ reversed chronic ethanol-induced disturbance of PPAR-α possibly by suppressing oxidative stress and PGC-1α acetylation, and activating the MAPK and GSK3β pathway. PLoS One 2014; 9:e98658. [PMID: 24892905 PMCID: PMC4043914 DOI: 10.1371/journal.pone.0098658] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023] Open
Abstract
Background Cytochrome P4502E1 (CYP2E1) has been suggested to play critical roles in the pathogenesis of alcoholic fatty liver (AFL), but the underlying mechanisms remains unclear. The current study was designed to evaluate whether CYP2E1 suppression by chlormethiazole (CMZ) could suppress AFL in mice, and to explore the underlying mechanisms. Methods Mice were treated with or without CMZ (50 mg/kg bw, i.p.) and subjected to liquid diet with or without ethanol (5%, w/v) for 4 weeks. Biochemical parameters were measured using commercial kits. The protein and mRNA levels were detected by western blot and qPCR, respectively. Histopathology and immunohistochemical assay were performed with routine methods. Results CYP2E1 inhibition by CMZ completely blocked AFL in mice, shown as the decline of the hepatic and serum triglyceride levels, and the fewer fat droplets in the liver sections. Chronic ethanol exposure led to significant decrease of the mRNA and protein levels of peroxisome proliferator-activated receptor α (PPAR-α), which was blocked by CMZ co-treatment. CMZ co-treatment suppressed ethanol-induced oxidative stress, overproduction of tumor necrosis α (TNF-α), and decrease of protein levels of the PPAR-α co-activators including p300 and deacetylated PGC1-α. Furthermore, CMZ co-treatment led to the activation of AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), and PI3K/Akt/GSK3β pathway. However, chronic ethanol-induced decline of acyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) protein levels was partially restored by CMZ, while the activation of autophagy appeared to be suppressed by CMZ. Conclusion These results suggested that CMZ suppressed chronic ethanol-induced oxidative stress, TNF-α overproduction, decline of p300 protein level and deacetylation of PGC1-α, and activated AMPK, MAPK, and PI3K/Akt/GSK3β pathway, which might contribute to the activation of PPAR-α and account for the protection of CMZ against AFL.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, Jinan City, Shandong Province, People's Republic of China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan City, Shandong Province, People's Republic of China
| | - Fu-Yong Song
- Institute of Toxicology, School of Public Health, Shandong University, Jinan City, Shandong Province, People's Republic of China
| | - Xiu-Lan Zhao
- Institute of Toxicology, School of Public Health, Shandong University, Jinan City, Shandong Province, People's Republic of China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University, Jinan City, Shandong Province, People's Republic of China
- * E-mail:
| |
Collapse
|
23
|
Wang XY, Luo JP, Chen R, Zha XQ, Wang H. The effects of daily supplementation of Dendrobium huoshanense polysaccharide on ethanol-induced subacute liver injury in mice by proteomic analysis. Food Funct 2014; 5:2020-35. [DOI: 10.1039/c3fo60629e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Wang H, Guan W, Yang W, Wang Q, Zhao H, Yang F, Lv X, Li J. Caffeine inhibits the activation of hepatic stellate cells induced by acetaldehyde via adenosine A2A receptor mediated by the cAMP/PKA/SRC/ERK1/2/P38 MAPK signal pathway. PLoS One 2014; 9:e92482. [PMID: 24682220 PMCID: PMC3969328 DOI: 10.1371/journal.pone.0092482] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/21/2014] [Indexed: 12/28/2022] Open
Abstract
Hepatic stellate cell (HSC) activation is an essential event during alcoholic liver fibrosis. Evidence suggests that adenosine aggravates liver fibrosis via the adenosine A2A receptor (A2AR). Caffeine, which is being widely consumed during daily life, inhibits the action of adenosine. In this study, we attempted to validate the hypothesis that caffeine influences acetaldehyde-induced HSC activation by acting on A2AR. Acetaldehyde at 50, 100, 200, and 400 μM significantly increased HSC-T6 cells proliferation, and cell proliferation reached a maximum at 48 h after exposure to 200 μM acetaldehyde. Caffeine and the A2AR antagonist ZM241385 decreased the cell viability and inhibited the expression of procollagen type I and type III in acetaldehyde-induced HSC-T6 cells. In addition, the inhibitory effect of caffeine on the expression of procollagen type I was regulated by A2AR-mediated signal pathway involving cAMP, PKA, SRC, and ERK1/2. Interestingly, caffeine’s inhibitory effect on the expression of procollagen type III may depend upon the A2AR-mediated P38 MAPK-dependent pathway. Conclusions: Caffeine significantly inhibited acetaldehyde-induced HSC-T6 cells activation by distinct A2AR mediated signal pathway via inhibition of cAMP-PKA-SRC-ERK1/2 for procollagen type I and via P38 MAPK for procollagen type III.
Collapse
Affiliation(s)
- He Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Disease of Anhui Medical University, Hefei, Anhui, China
| | - Wenjie Guan
- The 105th Hospital of PLA, Hefei, Anhui, China
| | - Wanzhi Yang
- The First Hospital of Anqing, Anqing, Anhui, China
| | - Qi Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Disease of Anhui Medical University, Hefei, Anhui, China
| | - Han Zhao
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Disease of Anhui Medical University, Hefei, Anhui, China
| | - Feng Yang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Disease of Anhui Medical University, Hefei, Anhui, China
| | - Xiongwen Lv
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Disease of Anhui Medical University, Hefei, Anhui, China
- * E-mail:
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Disease of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
25
|
Wang Y, Kou Y, Wang X, Cederbaum A, Wang R. Multifactorial comparative proteomic study of cytochrome P450 2E1 function in chronic alcohol administration. PLoS One 2014; 9:e92504. [PMID: 24658151 PMCID: PMC3962406 DOI: 10.1371/journal.pone.0092504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/17/2014] [Indexed: 12/16/2022] Open
Abstract
With the use of iTRAQ technique, a multifactorial comparative proteomic study can be performed. In this study, to obtain an overview of ethanol, CYP2E1 and gender effects on liver injury and gain more insight into the underlying molecular mechanism, mouse liver proteomes were quantitatively analyzed using iTRAQ under eight conditions including mice of different genders, wild type versus CYP2E1 knockout, and normal versus alcohol diet. A series of statistical and bioinformatic analyses were explored to simplify and clarify multifactorial comparative proteomic data. First, with the Principle Component analysis, six proteins, CYP2E1, FAM25, CA3, BHMT, HIBADH and ECHS1, involved in oxidation reduction, energy and lipid metabolism and amino acid metabolism, were identified as the most differentially expressed gene products across all of the experimental conditions of our chronic alcoholism model. Second, hierarchical clustering analysis showed CYP2E1 knockout played a primary role in the overall differential protein expression compared with ethanol and gender factors. Furthermore, pair-wise multiple comparisons have revealed that the only significant expression difference lied in wild-type and CYP2E1 knockout mice both treated with ethanol. Third, K-mean clustering analysis indicated that the CYP2E1 knockout had the reverse effect on ethanol induced oxidative stress and lipid oxidation. More importantly, IPA analysis of proteomic data inferred that the gene expressions of two upstream regulators, NRF2 and PPARα, regulated by chronic alcohol feeding and CYP2E1 knockout, are involved in ethanol induced oxidative stress and lipid oxidation. The present study provides an effectively comprehensive data analysis strategy to compare multiple biological factors, contributing to biochemical effects of alcohol on the liver. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with data set identifier of PXD000635.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yan Kou
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Xiaodong Wang
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Arthur Cederbaum
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Rong Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Chronic ethanol feeding modulates inflammatory mediators, activation of nuclear factor-κB, and responsiveness to endotoxin in murine Kupffer cells and circulating leukocytes. Mediators Inflamm 2014; 2014:808695. [PMID: 24623963 PMCID: PMC3928853 DOI: 10.1155/2014/808695] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/24/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022] Open
Abstract
Chronic ethanol abuse is known to increase susceptibility to infections after injury, in part, by modification of macrophage function. Several intracellular signalling mechanisms are involved in the initiation of inflammatory responses, including the nuclear factor-κB (NF-κB) pathway. In this study, we investigated the systemic and hepatic effect of chronic ethanol feeding on in vivo activation of NF-κB in NF-κBEGFP reporter gene mice. Specifically, the study focused on Kupffer cell proinflammatory cytokines IL-6 and TNF-α and activation of NF-κB after chronic ethanol feeding followed by in vitro stimulation with lipopolysaccharide (LPS). We found that chronic ethanol upregulated NF-κB activation and increased hepatic and systemic proinflammatory cytokine levels. Similarly, LPS-stimulated IL-1β release from whole blood was significantly enhanced in ethanol-fed mice. However, LPS significantly increased IL-6 and TNF-α levels. These results demonstrate that chronic ethanol feeding can improve the responsiveness of macrophage LPS-stimulated IL-6 and TNF-α production and indicate that this effect may result from ethanol-induced alterations in intracellular signalling through NF-κB. Furthermore, LPS and TNF-α stimulated the gene expression of different inflammatory mediators, in part, in a NF-κB-dependent manner.
Collapse
|
27
|
Smathers RL, Galligan JJ, Shearn CT, Fritz KS, Mercer K, Ronis M, Orlicky DJ, Davidson NO, Petersen DR. Susceptibility of L-FABP-/- mice to oxidative stress in early-stage alcoholic liver. J Lipid Res 2013; 54:1335-45. [PMID: 23359610 DOI: 10.1194/jlr.m034892] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic ethanol consumption is a prominent cause of liver disease worldwide. Dysregulation of an important lipid uptake and trafficking gene, liver-fatty acid binding protein (L-FABP), may contribute to alterations in lipid homeostasis during early-stage alcoholic liver. We have reported the detrimental effects of ethanol on the expression of L-FABP and hypothesize this may deleteriously impact metabolic networks regulating fatty acids. Male wild-type (WT) and L-FABP(-/-) mice were fed a modified Lieber-DeCarli liquid diet for six weeks. To assess the response to chronic ethanol ingestion, standard biochemical indicators for alcoholic liver disease (ALD) and oxidative stress were measured. Ethanol ingestion resulted in attenuation of hepatic triglyceride accumulation and elevation of cholesterol in L-FABP(-/-) mice. Lipidomics analysis validated multiple alterations in hepatic lipids resulting from ethanol treatment. Increased immunohistochemical staining for the reactive aldehydes 4-hydroxynonenal and malondialdehyde were observed in WT mice ingesting ethanol; however, L-FABP(-/-) mice displayed prominent protein adducts in liver sections evaluated from pair-fed and ethanol-fed mice. Likewise, alterations in glutathione, thiobarbituric acid reactive substances (TBARS), 8-isoprostanes, and protein carbonyl content all indicated L-FABP(-/-) mice exhibit high sustained oxidative stress in the liver. These data establish that L-FABP is an indirect antioxidant protein essential for sequestering FFA and that its impairment could contribute to in the pathogenesis of ALD.
Collapse
Affiliation(s)
- Rebecca L Smathers
- Skaggs School of Pharmaceutical Sciences and Pharmacy and University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Understanding changes in the expression of specific proteins and/or alterations in their posttranslational modifications is crucial to elucidating the molecular mechanisms underlying disease states such as alcoholic liver disease. Protein separation and analysis techniques such as two-dimensional electrophoresis and mass spectrometry can be used for identifying biomarker proteins that are altered during progression of alcoholic liver disease. In this chapter, we outline methods for resolving liver tissue proteins from a rodent model of alcoholic liver disease using two-dimensional electrophoresis and identifying differentially expressed proteins using mass spectrometry. In addition, since oxidative stress strongly correlates with alcoholic liver disease, we also describe methods for identifying oxidatively modified proteins from liver tissue. We specifically focus on identifying proteins that are carbonylated as protein carbonylation is a permanent modification and considered deleterious to cells. The combination of two-dimensional electrophoresis for protein resolution, mass spectrometry for protein identification, and affinity-based methods for enriching and identifying carbonylated proteins is a powerful methodology for protein biomarker identification.
Collapse
|
29
|
Brandon-Warner E, Schrum LW, Schmidt CM, McKillop IH. Rodent models of alcoholic liver disease: of mice and men. Alcohol 2012; 46:715-25. [PMID: 22960051 DOI: 10.1016/j.alcohol.2012.08.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/18/2012] [Accepted: 08/14/2012] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is a major cause of acute and chronic liver disease worldwide. The progressive nature of ALD is well described; however, the complex interactions under which these pathologies evolve remain to be fully elucidated. Clinically there are no clear biomarkers or universally accepted, effective treatment strategies for ALD. Experimental models of ALD are an important component in identifying underlying mechanisms of alcohol-induced injury to develop better diagnostic markers, predictors of disease progression, and therapeutic targets to manage, halt, or reverse disease progression. Rodents remain the most accessible model for studying ALD pathology. Effective rodent models must mimic the natural history of ALD while allowing examination of complex interactions between multiple hepatic, and non-hepatic, cell types in the setting of altered metabolic or oxidative/nitrosative stress, inflammatory responses, and sensitivity to cytotoxic stress. Additionally, mode and duration of alcohol delivery influence hepatic response and present unique challenges in understanding disease pathology. This review provides an overview of rodent models of ALD, their strengths and weaknesses relative to human disease states, and provides insight of the potential to develop novel rodent models to simulate the course of human ALD.
Collapse
|
30
|
Raghu R, Liu CT, Tsai MH, Tang X, Kalari KR, Subramanian S, Sheen LY. Transcriptome analysis of garlic-induced hepatoprotection against alcoholic fatty liver. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11104-11119. [PMID: 23066854 DOI: 10.1021/jf303800p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fatty liver induced by alcohol abuse is a major worldwide health hazard leading to morbidity and mortality. Previous studies indicate antifatty liver properties of garlic. This study investigated the molecular mechanisms of garlic oil (GO) or diallyl disulfide (DADS) imparted hepatoprotection against alcohol induced fatty liver in C57BL/6 mice using microarray-based global gene expression analysis. Alcohol liquid diet resulted in severe fatty liver with increased levels of serum aspartate aminotransferease and alanine aminotransferease as well as triglycerides and decreased levels of liver glutathione and antioxidant enzymes. The major canonical pathways implicated by alcohol treatment are the metabolisms of xenobiotics by cytochrome P450, glutathione, and arachidonic acid. Treatment with DADS or GO normalized the serum aminotransferease levels and liver antioxidant enzymes and reduced the contents of triglycerides and cholesterol. The canonical pathways involved in the amelioration of liver include arachidonic acid metabolism, altered T cell and B cell signaling, tryptophan metabolism, antigen presentation pathway for DADS, metabolism of xenobiotics, mitotic roles of Polo-like kinase, fatty acid metabolism, LPS/IL-1 mediated inhibition of RXR function, and C21-steroid hormone metabolism for GO.
Collapse
Affiliation(s)
- Rajasekaran Raghu
- Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
31
|
Oxidative Stress and the ER Stress Response in a Murine Model for Early-Stage Alcoholic Liver Disease. J Toxicol 2012; 2012:207594. [PMID: 22829816 PMCID: PMC3399426 DOI: 10.1155/2012/207594] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/12/2012] [Accepted: 04/18/2012] [Indexed: 12/30/2022] Open
Abstract
Alcoholic liver disease (ALD) is a primary cause of morbidity and mortality in the United States and constitutes a significant socioeconomic burden. Previous work has implicated oxidative stress and endoplasmic reticulum (ER) stress in the etiology of ALD; however, the complex and interrelated nature of these cellular responses presently confounds our understanding of ethanol-induced hepatopathy. In this paper, we assessed the pathological contribution of oxidative stress and ER stress in a time-course mouse model of early-stage ALD. Ethanol-treated mice exhibited significant hepatic panlobular steatosis and elevated plasma ALT values compared to isocaloric controls. Oxidative stress was observed in the ethanol-treated animals through a significant increase in hepatic TBARS and immunohistochemical staining of 4-HNE-modified proteins. Hepatic glutathione (GSH) levels were significantly decreased as a consequence of decreased CBS activity, increased GSH utilization, and increased protein glutathionylation. At the same time, immunoblot analysis of the PERK, IRE1α, ATF6, and SREBP pathways reveals no significant role for these UPR pathways in the etiology of hepatic steatosis associated with early-stage ALD. Collectively, our results indicate a primary pathogenic role for oxidative stress in the early initiating stages of ALD that precedes the involvement of the ER stress response.
Collapse
|
32
|
Smathers RL, Fritz KS, Galligan JJ, Shearn CT, Reigan P, Marks MJ, Petersen DR. Characterization of 4-HNE modified L-FABP reveals alterations in structural and functional dynamics. PLoS One 2012; 7:e38459. [PMID: 22701647 PMCID: PMC3368874 DOI: 10.1371/journal.pone.0038459] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/05/2012] [Indexed: 01/01/2023] Open
Abstract
4-Hydroxynonenal (4-HNE) is a reactive α,β-unsaturated aldehyde produced during oxidative stress and subsequent lipid peroxidation of polyunsaturated fatty acids. The reactivity of 4-HNE towards DNA and nucleophilic amino acids has been well established. In this report, using proteomic approaches, liver fatty acid-binding protein (L-FABP) is identified as a target for modification by 4-HNE. This lipid binding protein mediates the uptake and trafficking of hydrophobic ligands throughout cellular compartments. Ethanol caused a significant decrease in L-FABP protein (P<0.001) and mRNA (P<0.05), as well as increased poly-ubiquitinated L-FABP (P<0.001). Sites of 4-HNE adduction on mouse recombinant L-FABP were mapped using MALDI-TOF/TOF mass spectrometry on apo (Lys57 and Cys69) and holo (Lys6, Lys31, His43, Lys46, Lys57 and Cys69) L-FABP. The impact of 4-HNE adduction was found to occur in a concentration-dependent manner; affinity for the fluorescent ligand, anilinonaphthalene-8-sulfonic acid, was reduced from 0.347 µM to Kd(1) = 0.395 µM and Kd(2) = 34.20 µM. Saturation analyses revealed that capacity for ligand is reduced by approximately 50% when adducted by 4-HNE. Thermal stability curves of apo L-FABP was also found to be significantly affected by 4-HNE adduction (ΔTm = 5.44°C, P<0.01). Computational-based molecular modeling simulations of adducted protein revealed minor conformational changes in global protein structure of apo and holo L-FABP while more apparent differences were observed within the internal binding pocket, revealing reduced area and structural integrity. New solvent accessible portals on the periphery of the protein were observed following 4-HNE modification in both the apo and holo state, suggesting an adaptive response to carbonylation. The results from this study detail the dynamic process associated with L-FABP modification by 4-HNE and provide insight as to how alterations in structural integrity and ligand binding may a contributing factor in the pathogenesis of ALD.
Collapse
Affiliation(s)
- Rebecca L. Smathers
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kristofer S. Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - James J. Galligan
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Colin T. Shearn
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Michael J. Marks
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, United States of America
| | - Dennis R. Petersen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
Frank Burr Mallory's landmark observation in 1911 on the histopathology of alcoholic liver disease (ALD) was the first identification of a link between inflammation and ALD. In this review, we summarize recent advances regarding the origins and roles of various inflammatory components in ALD. Metabolism of ethanol generates a number of metabolites, including acetate, reactive oxygen species, acetaldehyde, and epigenetic changes, that can induce inflammatory responses. Alcohol and its metabolites can also initiate and aggravate inflammatory conditions by promoting gut leakiness of microbial products, by sensitizing immune cells to stimulation, and by activating innate immune pathways, such as complement. Chronic alcohol consumption also sensitizes nonimmune cells, e.g., hepatocytes, to inflammatory signals and impairs their ability to respond to protective signals. Based on these advances, a number of inflammatory targets have been identified with potential for therapeutic intervention in ALD, presenting new opportunities and challenges for translational research.
Collapse
Affiliation(s)
- H Joe Wang
- Division of Metabolism and Health Effects, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
34
|
Beier JI, Arteel GE. Alcoholic liver disease and the potential role of plasminogen activator inhibitor-1 and fibrin metabolism. Exp Biol Med (Maywood) 2012; 237:1-9. [PMID: 22238286 DOI: 10.1258/ebm.2011.011255] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a major player in fibrinolysis due to its classical role of inhibiting plasminogen activators. Although increased fibrinolysis is common in alcoholic cirrhosis, decreased fibrinolysis (driven mostly by elevated levels of PAI-1) is common during the development of alcoholic liver disease (ALD). However, whether or not PAI-1 plays a causal role in the development of early ALD was unclear. Recent studies in experimental models have suggested that PAI-1 may contribute to the development of early (steatosis), intermediate (steatohepatitis) and late (fibrosis) stages of ALD. For example, fatty liver owing to both acute and chronic ethanol was blunted by the genetic inhibition of PAI-1. This effect of targeting PAI-1 appears to be mediated, at least in part, by an increase in very low-density lipoprotein (VLDL) synthesis in the genetic absence of this acute phase protein. Results from a two-hit model employing ethanol and lipopolysaccharide administration suggest that PAI-1 plays a critical role in hepatic inflammation, most likely due to its ability to cause fibrin accumulation, which subsequently sensitizes the liver to ensuing damaging insults. Lastly, the role of PAI-1 in hepatic fibrosis is less clear and appears that PAI-1 may serve a dual role in this pathological change, both protective (enhancing regeneration) and damaging (blocking matrix degradation). In summary, results from these studies suggest that PAI-1 may play multiple roles in the various stages of ALD, both protective and damaging. The latter effect is mediated by its influence on steatosis (i.e. decreasing VLDL synthesis), inflammation (i.e. impairing fibrinolysis) and fibrosis (i.e. blunting matrix degradation), whereas the former is mediated by maintaining hepatocyte division after an injury.
Collapse
Affiliation(s)
- Juliane I Beier
- Department of Pharmacology and Toxicology and University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | | |
Collapse
|
35
|
Fritz KS, Galligan JJ, Hirschey MD, Verdin E, Petersen DR. Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice. J Proteome Res 2012; 11:1633-43. [PMID: 22309199 DOI: 10.1021/pr2008384] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondrial protein hyperacetylation is a known consequence of sustained ethanol consumption and has been proposed to play a role in the pathogenesis of alcoholic liver disease (ALD). The mechanisms underlying this altered acetylome, however, remain unknown. The mitochondrial deacetylase sirtuin 3 (SIRT3) is reported to be the major regulator of mitochondrial protein deacetylation and remains a central focus for studies on protein acetylation. To investigate the mechanisms underlying ethanol-induced mitochondrial acetylation, we employed a model for ALD in both wild-type (WT) and SIRT3 knockout (KO) mice using a proteomics and bioinformatics approach. Here, WT and SIRT3 KO groups were compared in a mouse model of chronic ethanol consumption, revealing pathways relevant to ALD, including lipid and fatty acid metabolism, antioxidant response, amino acid biosynthesis and the electron-transport chain, each displaying proteins with altered acetylation. Interestingly, protein hyperacetylation resulting from ethanol consumption and SIRT3 ablation suggests ethanol-induced hyperacetylation targets numerous biological processes within the mitochondria, the majority of which are known to be acetylated through SIRT3-dependent mechanisms. These findings reveal overall increases in 91 mitochondrial targets for protein acetylation, identifying numerous critical metabolic and antioxidant pathways associated with ALD, suggesting an important role for mitochondrial protein acetylation in the pathogenesis of ALD.
Collapse
Affiliation(s)
- Kristofer S Fritz
- Department of Pharmaceutical Sciences, University of Colorado Denver , Aurora, Colorado, United States
| | | | | | | | | |
Collapse
|
36
|
Zeng T, Zhang CL, Song FY, Zhao XL, Xie KQ. Garlic oil alleviated ethanol-induced fat accumulation via modulation of SREBP-1, PPAR-α, and CYP2E1. Food Chem Toxicol 2011; 50:485-91. [PMID: 22138249 DOI: 10.1016/j.fct.2011.11.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/01/2011] [Accepted: 11/18/2011] [Indexed: 12/20/2022]
Abstract
Garlic oil (GO) has been shown to partially attenuate ethanol-induced fatty liver, but the underlying mechanisms remain unclear. The current study was designed to evaluate the protective effects of GO against ethanol-induced steatosis in vitro and in vivo, and to explore potential mechanisms by investigating the sterol regulatory element binding protein-1c (SREBP-1c), peroxisome proliferators-activated receptor-α (PPAR-α), cytochrome P4502E1 (CYP2E1), and etc. In the in vitro study, human normal cell LO2 was exposed to 100 mM ethanol in the presence or absence of GO for 24 h. We found that ethanol increased the protein levels of n-SREBP-1c and CYP2E1, but decreased the protein levels of PPAR-α, which was significantly attenuated by GO co-treatment. In the in vivo study, male Kun-Ming mice were pretreated with single dose of GO (50-200 mg/kg body weight) at 2 h before ethanol (4.8 g/kg body weight) exposure. The changes of n-SREBP-1c, PPAR-α and CYP2E1 were paralleled well to those of in vitro study. Furthermore, GO significantly reduced the protein levels of fatty acid synthase (FAS), and suppressed ethanol-induced hepatic mitochondrial dysfunction. These results suggested that GO had the potential to ameliorate alcoholic steatosis which might be related to its modulation on SREBP-1c, PPAR-α, and CYP2E1.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Shandong, Jinan 250012, PR China.
| | | | | | | | | |
Collapse
|
37
|
Ferreira M, De Oliveira PR, Denardi SE, Bechara GH, Mathias MIC. Action of the chemical agent fipronil (active ingredient of acaricide Frontline®) on the liver of mice: An ultrastructural analysis. Microsc Res Tech 2011; 75:197-205. [DOI: 10.1002/jemt.21043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/09/2011] [Indexed: 12/28/2022]
|
38
|
Inokuchi S, Tsukamoto H, Park E, Liu ZX, Brenner DA, Seki E. Toll-like receptor 4 mediates alcohol-induced steatohepatitis through bone marrow-derived and endogenous liver cells in mice. Alcohol Clin Exp Res 2011; 35:1509-18. [PMID: 21463341 DOI: 10.1111/j.1530-0277.2011.01487.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Excessive alcohol intake causes an increase in intestinal permeability that induces translocation of gut-derived lipopolysaccharide (LPS) to the portal vein. Increased LPS in the portal vein stimulates Kupffer cells through Toll-like receptor (TLR) 4 in the liver. Activated TLR4 signaling in Kupffer cells induces various inflammatory mediators including TNF-α, IL-1β, and reactive oxygen species, resulting in liver injury. Hepatic stellate cells (HSCs) also express TLR4. This study investigates whether TLR4 on bone marrow (BM)-derived cells, including Kupffer cells, or non-BM-derived endogenous liver cells, including HSCs, contributes to the progression of alcohol-induced steatohepatitis and fibrogenesis in mice. METHODS TLR4 BM chimera (wild-type [WT] mice with TLR4(-/-) BM or TLR4(-/-) mice with WT BM) were generated by the combination of liposomal clodronate injection with whole body irradiation and BM transplantation, followed by treatment with intragastric alcohol feeding. RESULTS WT mice transplanted with WT BM exhibited liver injury, steatosis, inflammation, and a fibrogenic response. Conversely, TLR4(-/-) mice with TLR4(-/-) BM displayed less steatosis, liver injury, and inflammation. Notably, steatosis, macrophage infiltration, and alanine aminotransferase levels in both TLR4-chimeric mice showed intermediate levels between WT mice transplanted with WT BM and TLR4(-/-) mice transplanted with TLR4(-/-) BM. Hepatic mRNA expression of fibrogenic markers (collagen α1(I), TIMP1, TGF-β1) and inflammatory cytokines (IL-1β, IL-6) were markedly increased in WT mice with WT BM, but there was less of an increase in both TLR4-chimeric mice and in TLR4(-/-) mice transplanted with TLR4(-/-) BM. CONCLUSIONS TLR4 signaling in both BM-derived and non-BM-derived liver cells is required for liver steatosis, inflammation, and a fibrogenic response after chronic alcohol treatment.
Collapse
Affiliation(s)
- Sayaka Inokuchi
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093-0702, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Aspergillus flavus is saprophytic soil fungus that infects and contaminates preharvest and postharvest seed crops with the carcinogenic secondary metabolite aflatoxin. The fungus is also an opportunistic animal and human pathogen causing aspergillosis diseases with incidence increasing in the immunocompromised population. Whole genome sequences of A. flavus have been released and reveal 55 secondary metabolite clusters that are regulated by different environmental regimes and the global secondary metabolite regulators LaeA and VeA. Characteristics of A. flavus associated with pathogenicity and niche specialization include secondary metabolite production, enzyme elaboration, and a sophisticated oxylipin host crosstalk associated with a quorum-like development program. One of the more promising strategies in field control involves the use of atoxic strains of A. flavus in competitive exclusion studies. In this review, we discuss A. flavus as an agricultural and medical threat and summarize recent research advances in genomics, elucidation of parameters of pathogenicity, and control measures.
Collapse
Affiliation(s)
- Saori Amaike
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
40
|
Ki SH, Park O, Zheng M, Morales-Ibanez O, Kolls JK, Bataller R, Gao B. Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3. Hepatology 2010; 52:1291-300. [PMID: 20842630 PMCID: PMC2947578 DOI: 10.1002/hep.23837] [Citation(s) in RCA: 354] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Interleukin-22 (IL-22), a recently identified member of the IL-10 family of cytokines that is produced by Th17 and natural killer cells, plays an important role in controlling bacterial infection, homeostasis, and tissue repair. Here, we tested the effect of IL-22 on alcohol-induced liver injury in a murine model of chronic-binge ethanol feeding. Feeding male C57BL/6 mice with a Lieber-DeCarli diet containing 5% ethanol for 10 days, followed by a single dose of ethanol (5 g/kg body weight) by gavage, induces significant fatty liver and liver injury with peak serum levels of approximately 250 IU/L alanine aminotransferase and 420 IU/L aspartate aminotransferase 9 hours after gavage. Moreover, chronic-binge ethanol administration increases expression of hepatic and serum inflammatory cytokines and hepatic oxidative stress. Using this model, we demonstrate that treatment with IL-22 recombinant protein activates hepatic signal transducer and activator of transcription 3 (STAT3) and ameliorates alcoholic fatty liver, liver injury, and hepatic oxidative stress. Administration with IL-22 adenovirus also prevents alcohol-induced steatosis and liver injury. Deletion of STAT3 in hepatocytes abolishes the hepatoprotection provided by IL-22 in alcoholic liver injury. In addition, IL-22 treatment down-regulates the hepatic expression of fatty acid transport protein, but up-regulates several antioxidant, antiapoptotic, and antimicrobial genes. Finally, expression of IL-22 receptor 1 is up-regulated whereas IL-22 is undetectable in the livers from mice with chronic-binge ethanol feeding or patients with alcoholic hepatitis. CONCLUSION Chronic-binge ethanol feeding may be a useful model to study the early stages of alcoholic liver injury. IL-22 treatment could be a potential therapeutic option to ameliorate alcoholic liver disease, due to its antioxidant, antiapoptotic, antisteatotic, proliferative, and antimicrobial effects with the added benefit of potentially few side effects.
Collapse
Affiliation(s)
- Sung Hwan Ki
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
- College of Pharmacy, Chosun University, Gwangju 501-759, South Korea
| | - Oygi Park
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mingquan Zheng
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Oriol Morales-Ibanez
- Liver Unit, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, CIBER de Enfermedades Hepáticas y Digestivas, Barcelona, Catalonia, Spain
| | - Jay K. Kolls
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ramon Bataller
- Liver Unit, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, CIBER de Enfermedades Hepáticas y Digestivas, Barcelona, Catalonia, Spain
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Ozer JS, Reagan WJ, Schomaker S, Palandra J, Baratta M, Ramaiah S. Translational Biomarkers of Acute Drug‐Induced Liver Injury: The Current State, Gaps, and Future Opportunities. Biomarkers 2010. [DOI: 10.1002/9780470918562.ch9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
42
|
Cohen SM. Evaluation of Possible Carcinogenic Risk to Humans Based on Liver Tumors in Rodent Assays. Toxicol Pathol 2010; 38:487-501. [DOI: 10.1177/0192623310363813] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The two-year rodent bioassay remains the mainstay for carcinogenicity testing, although numerous difficulties have been identified. Fundamentally, a chemical can increase the risk of cancer (1) by damaging DNA directly (DNA reactive) or (2) indirectly by increasing the number of DNA replications (non–DNA reactive). Mechanistic research has identified numerous precursor lesions in the sequence of key events necessary for neoplasia development. Based on these concepts, the author has proposed a short-term (thirteen-week) assay for screening for carcinogenic potential based on a mode of action analysis and on readily available, identifiable preneoplastic changes. A screening assay that detects all potential rodent hepatocarcinogens has been previously identified ( Toxicol Pathol32 [2004], 393–401) including increased liver weight, hepatocellular necrosis, hypertrophy, and cytomegaly. Labeling index for DNA replication might supply additional support. These markers have high sensitivity but low specificity. However, most chemicals can be appropriately classified as to their mode(s) of action for hepatocarcinogenesis with follow-up mechanistic studies, and a rational evaluation of their relevance to humans can be made. A similar process can be envisioned for other tissues for evaluation for carcinogenic potential.
Collapse
Affiliation(s)
- Samuel M. Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
43
|
Ciuclan L, Ehnert S, Ilkavets I, Weng HL, Gaitantzi H, Tsukamoto H, Ueberham E, Meindl-Beinker NM, Singer MV, Breitkopf K, Dooley S. TGF-beta enhances alcohol dependent hepatocyte damage via down-regulation of alcohol dehydrogenase I. J Hepatol 2010; 52:407-16. [PMID: 20129692 DOI: 10.1016/j.jhep.2009.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Adverse alcohol effects in the liver involve oxidative metabolism, fat deposition and release of fibrogenic mediators, including TGF-beta. The work presents an assessment of liver damaging cross-talk between ethanol and TGF-beta in hepatocytes. METHODS To investigate TGF-beta effects on hepatocytes, microarray analyses were performed and validated by qRT-PCR, Western blot analysis and immunohistochemistry. The cellular state was determined by assessing lactate dehydrogenase, cellular glutathione, reactive oxygen species, lipid peroxidation and neutral lipid deposition. RNA interference was used for gene silencing in vitro. RESULTS TGF-beta is induced in mouse livers after chronic ethanol insult, enhances ethanol induced oxidative stress and toxicity towards cultured hepatocytes plus induces lipid-, oxidative stress metabolism- and fibrogenesis-gene expression signatures. Interestingly, TGF-beta down-regulates alcohol metabolizing enzyme Adh1 mRNA in cultured hepatocytes and liver tissue from TGF-beta transgenic mice via the ALK5/Smad2/3 signalling branch, with Smad7 as a potent negative regulator. ADH1 deficiency is a determining factor for the increased lipid accumulation and Cyp2E1 dependent toxicity in liver cells upon alcohol challenge. Further, ADH1 expression was decreased during liver damage in an intragastric ethanol infusion mouse model. CONCLUSION In the presence of ethanol, TGF-beta displays pro-steatotic action in hepatocytes via decreasing ADH1 expression. Low ADH1 levels are correlated with enhanced hepatocyte damage upon chronic alcohol consumption by favoring secondary metabolic pathways.
Collapse
Affiliation(s)
- Loredana Ciuclan
- Molecular Hepatology-Alcohol Dependent Diseases, II. Medical Clinic, Faculty of Medicine at Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Newton BW, Russell WK, Russell DH, Ramaiah SK, Jayaraman A. Liver proteome analysis in a rodent model of alcoholic steatosis. J Proteome Res 2009; 8:1663-71. [PMID: 19714808 DOI: 10.1021/pr800905w] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alcoholic steatosis (AS) is the initial pathology associated with early stage alcoholic liver disease (ALD) and is characterized by the accumulation of fat in the liver. AS is considered clinically benign because it is reversible, and the progression of AS to alcoholic steatohepatitis (ASH) is a key step in the development of ALD. A two-dimensional gel electrophoresis (2DE)-mass spectrometry (MS) proteomic approach was used to investigate the protein expression pattern underlying AS, as the first step toward determining liver tissue biomarkers for early stage ALD. Several proteins involved in fatty acid and amino acid metabolism were up-regulated in 3- and 6-week ethanol-fed rats relative to isocaloric controls, which suggest a higher energy demand upon chronic exposure to ethanol. In addition, the expression of two proteins associated with alcohol-induced oxidative stress, peroxiredoxin 6 (PRDX6) and aldehyde dehydrogenase 2 (ALDH2), was down-regulated in ethanol fed rats, and suggests an increase in reactive oxygen species and oxidative stress. To investigate if irreversible protein modification arising from oxidative stress during AS impacts protein levels, the extent of carbonylated proteins in the ethanol and isocaloric groups was identified using mass spectrometry. The detection of modified proteins involved in antioxidant functions further supports the notion that oxidative modification of these proteins leads to protein turnover during AS. In addition, the carbonylation of betaine-homocysteine S-methyltransferase, a protein implicated in fatty liver development, in 3-week and 6-week ethanol exposed samples suggests that this protein could be a marker for early stage AS.
Collapse
Affiliation(s)
- Billy W Newton
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, USA
| | | | | | | | | |
Collapse
|
45
|
Banerjee A, Russell WK, Jayaraman A, Ramaiah SK. Identification of proteins to predict the molecular basis for the observed gender susceptibility in a rat model of alcoholic steatohepatitis by 2-D gel proteomics. Proteomics 2009; 8:4327-37. [PMID: 18924223 DOI: 10.1002/pmic.200700368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Females are reported to be highly susceptible to alcoholic steatohepatitis (ASH) compared to the males. Although a variety of mechanisms have been proposed to explain this higher sensitivity of females, the precise mechanism is not well understood. The objective of this study was to identify changes in global protein expression in liver tissues of male and female rats with pathologically evident ASH by 2-DE (dimensional electrophoresis). ASH was induced in the SD (Sprague-Dawley) rats by feeding ethanol (EtOH) containing Lieber-DeCarli diet for 6 wk followed by a single injection of lipopolysaccharide (LPS, 10 mg/kg, i.p.). Higher liver injury in females in the ASH group as compared to the males was confirmed by HE stained liver sections. As identified by 2-DE, 22 protein-spots were differentially expressed in the females in the ASH group as compared to the males. Following identification of these proteins by MALDI-MS, they were mainly categorized into metabolism and oxidative stress-related proteins. The expression pattern of a few of these oxidative stress-related proteins like Ferritin Heavy chain (Ferritin-H chain), ER stress protein 60 (ER 60) and Heat-shock protein-60 (HSP 60) were verified by Western blotting. To conclude, the current study has identified a set of proteins that highlights potential novel mechanisms associated with higher liver injury noted in the female rat ASH model.
Collapse
Affiliation(s)
- Atrayee Banerjee
- Department of Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4467, USA
| | | | | | | |
Collapse
|
46
|
Ramaiah SK, Jaeschke H. Hepatic Neutrophil Infiltration in the Pathogenesis of Alcohol-Induced Liver Injury. Toxicol Mech Methods 2008; 17:431-40. [DOI: 10.1080/00952990701407702] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Lee JH, Banerjee A, Ueno Y, Ramaiah SK. Potential relationship between hepatobiliary osteopontin and peroxisome proliferator-activated receptor alpha expression following ethanol-associated hepatic injury in vivo and in vitro. Toxicol Sci 2008; 106:290-9. [PMID: 18703563 DOI: 10.1093/toxsci/kfn165] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteopontin (OPN) up-regulation is known to mediate hepatic inflammation in a rodent model of alcoholic liver disease (ALD) and alcohol ingestion is reported to inhibit hepatic peroxisome proliferator-activated receptor-alpha (PPAR-alpha) activity leading to hepatic steatosis and inflammation. Therefore, the objective of this study was to investigate the potential relationship between the anti-inflammatory PPAR-alpha and proinflammatory OPN in rats and mice livers, and cell cultures of hepatocytes and biliary epithelium. Experiments were designed to evaluate the influence of ethanol (EtOH), lipopolysaccharide (LPS), and acetaldehyde (ACA) on OPN and PPAR-alpha expression levels in vivo (rats and mice) and in vitro (hepatocytes and biliary epithelium). Adult Sprague-Dawley rats and C57BL6 mice were fed EtOH-containing Lieber-DeCarli liquid diet for 6 weeks and injected with a single dose of LPS. A combination of EtOH and LPS treated rats and mice showed significant induction of hepatic OPN expression compared with the controls. Similarly, cells exposed to physiological doses of EtOH, LPS, a combination of EtOH and LPS, and ACA resulted in increased OPN protein and mRNA expression. Rats and mice in ALD model and cells treated with EtOH and ACA showed downregulation of PPAR-alpha mRNA. Also, DNA binding activity of PPAR-alpha to PPAR response element was significantly reduced following treatment. Overexpression of PPAR-alpha rescued the reduced PPAR-alpha activity and PPAR-alpha agonist, bezafibrate, elevated PPAR-alpha activity after treatment of EtOH, LPS, and ACA when cells were exposed by bezafibrate. To further delineate the potential relationship between OPN and PPAR-alpha, OPN(-/-) mice showed no change of PPAR-alpha mRNA level although wild-type mice showed downregulation of PPAR-alpha mRNA after EtOH treatment. In conclusion, the current study suggests that OPN is induced by EtOH and its metabolite ACA and opposite relationship likely exist between PPAR-alpha and OPN expression within the liver during ALD.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4467, USA
| | | | | | | |
Collapse
|
48
|
Ramaiah SK, Jaeschke H. Role of neutrophils in the pathogenesis of acute inflammatory liver injury. Toxicol Pathol 2008; 35:757-66. [PMID: 17943649 DOI: 10.1080/01926230701584163] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polymorphonuclear leukocytes (neutrophils) are essential in the defense against invading microorganisms, tissue trauma or any inciting inflammatory signals. Hepatic infiltration of neutrophils is an acute response to recent or ongoing liver injury, hepatic stress or unknown systemic inflammatory signals. Once neutrophils reach the liver, they can cause mild-to-severe tissue damage and consequent liver failure. For neutrophils to appear in the liver, neutrophils have to undergo systemic activation (priming) by inflammatory mediators such as cytokines, chemokines, complement factors, immune complexes, opsonized particles and other biologically active molecules, e.g., platelet activating factor. Neutrophils accumulated in the hepatic microvasculature (sinusoids and postsinusoidal venules) can extravasate (transmigrate) into the hepatic parenchyma if they receive a signal from distressed cells. Transmigration can be mediated by a chemokine gradient established towards the hepatic parenchyma and generally involves orchestration by adhesion molecules on neutrophils (beta(2) integrins) and on endothelial cells (intracellular adhesion molecules, ICAM-1). After transmigration, neutrophils adhere to distressed hepatocytes through their beta(2) integrins and ICAM-1 expressed on hepatocytes. Neutrophil contact with hepatocytes mediate oxidative killing of hepatocytes by initiation of respiratory burst and neutrophil degranulation leading to hepatocellular oncotic necrosis. Neutrophil-mediated liver injury has been demonstrated in a variety of diseases and chemical/drug toxicities. Relevant examples are discussed in this review.
Collapse
Affiliation(s)
- Shashi K Ramaiah
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA.
| | | |
Collapse
|
49
|
Ramaiah SK, Rittling S. Role of osteopontin in regulating hepatic inflammatory responses and toxic liver injury. Expert Opin Drug Metab Toxicol 2007. [DOI: 10.1517/17425255.3.4.519] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
James B, Adda C, Cardwell K, Annang D, Hell K, Korie S, Edorh M, Gbeassor F, Nagatey K, Houenou G. Public information campaign on aflatoxin contamination of maize grains in market stores in Benin, Ghana and Togo. ACTA ACUST UNITED AC 2007; 24:1283-91. [PMID: 17852397 DOI: 10.1080/02652030701416558] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rotary International with the International Institute of Tropical Agriculture (IITA) conducted an information campaign from 2000 to 2004 to increase public awareness of aflatoxin in Benin, Ghana and Togo. Key informant interviews with 2416 respondents showed poor baseline knowledge of aflatoxin and its health risks. The campaign included monitoring of aflatoxin contamination in maize grains from market stores in 38 cities and towns. Aflatoxin concentration in contaminated samples ranged from 24 to 117.5 ng g(-1) in Benin, from 0.4 to 490.6 ng g(-1) in Ghana, and from 0.7 to 108.8 ng g(-1) in Togo. The campaign significantly increased public awareness that populations were exposed to high levels of aflatoxin. The number of maize traders who were informed about the toxin increased 10.3 and 3.2 times in Togo and Benin, respectively; at least 33% more traders believed the information in each of Benin and Togo; 11.4 and 28.4% more consumers sorted out and discarded bad grains in Benin and Ghana, respectively. This paper concludes that sustained public education can help reduce aflatoxin contamination.
Collapse
Affiliation(s)
- B James
- International Institute of Tropical Agriculture, Cotonou, Benin.
| | | | | | | | | | | | | | | | | | | |
Collapse
|