1
|
Ren K, Yang X, Li J, Jin H, Gu K, Chen Y, Liu M, Luo Y, Jiang Y. Alleviating the adverse effects of Cd-Pb contamination through the application of silicon fertilizer: Enhancing soil microbial diversity and mitigating heavy metal contamination. CHEMOSPHERE 2024; 352:141414. [PMID: 38336042 DOI: 10.1016/j.chemosphere.2024.141414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The use of silicon fertilizer (SF) as a means of remediating cadmium (Cd) and lead (Pb) pollution has proven to be beneficial. However, the mechanism via which SF enhances soil quality and crop productivity under Cd- and Pb-contaminated soil (S) remains unclear. This study investigated the impacts of chemical fertilizer, mineral SF (MSF), and organic SF (OSF) on microbial community structure, activity of nutrient acquisition enzymes, and growth of tobacco in the presence of S condition. SF significantly reduced the contents of Cd and Pb in soil under S condition by 6.92-42.43% and increased plant height and leaf area by 15.27-81.77%. Moreover, the use of SF was observed to increase the efficiency of soil carbon and phosphorus cycling under S condition by 6.88-23.08%. Concurrently, SF was found to play a crucial role in facilitating the establishment of a complex, efficient, and interdependent molecular ecological network among soil microorganisms. In this context, Actinobacteriota, Bacteroidota, Ascomycota, and Basidiomycota were observed to be integral components of this network. SF was found to have a substantial positive impact on the metabolic functions and organismal systems of soil microorganisms. Moreover, the combined utilization of the Mantel test and partial least squares path model provided empirical evidence supporting the assertion that the administration of SF had a positive impact on both soil nutrient acquisition enzyme activity and tobacco growth, which was attributed to the enhancement of soil microbial diversity resulting from the application of SF. Furthermore, compared with MSF, OSF has advantages in reducing soil Pb and Cd content, promoting tobacco agronomic traits, increasing the number of key microbial communities, and maintaining the structural stability of microbial networks. The aforementioned findings, therefore, suggest that the OSF played a pivotal role in alleviating the adverse impacts of S, thereby demonstrating its efficacy in this particular process.
Collapse
Affiliation(s)
- Ke Ren
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China; College of Agronomy and Biotechnology, Southwest University / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Xiongwei Yang
- College of Landscape Architecture, Southwest Forestry University, Kunming, 650224, China
| | - Jian Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Hongyan Jin
- College of Landscape Architecture, Southwest Forestry University, Kunming, 650224, China
| | - Kaiyuan Gu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China; College of Agronomy and Biotechnology, Southwest University / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Ming Liu
- College of Agronomy and Biotechnology, Southwest University / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Yigui Luo
- College of Tobacco Science, Yunnan Agricultural University, Kunming, 650031, China.
| | - Yonglei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
| |
Collapse
|
2
|
Dey G, Banerjee P, Maity JP, Sharma RK, Gnanachandrasamy G, Huang YH, Huang HB, Chen CY. Heavy metals distribution and ecological risk assessment including arsenic resistant PGPR in tidal mangrove ecosystem. MARINE POLLUTION BULLETIN 2022; 181:113905. [PMID: 35839665 DOI: 10.1016/j.marpolbul.2022.113905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HM) are the major proximate drivers of pollution in the mangrove ecosystem. Therefore, ecological risk (ER) due to HM distribution/concentration in core-sediment of Puzi mangrove region (Taiwan) was examined with tidal influence (TI) along with indigenous rhizospheric bacteria (IRB). The HM concentration was observed higher at active-tidal-sediment compared to partially-active-sediment. Geo-accumulation index (Igeo) and contamination factor (CF) indicated the tidal-sediment was highly contaminated with arsenic (As) and moderately contaminated with Lead (Pb) and Zinc (Zn). However, the pollution loading index (PLI) and degree of contamination (Cd) exhibited 'no pollution' and 'low-moderate degree of contamination', in the studied region respectively. The isolated IRB (Priestia megaterium, Bacillus safenis, Bacillus aerius, Bacillus subtilis, Bacillus velenzenesis, Bacillus lichenoformis, Kocuria palustris, Enterobacter hormaechei, Pseudomonus fulva, and Paenibacillus favisporus; accession number OM979069-OM979078) exhibited the arsenic resistant behavior with plant-growth-promoting characters (IAA, NH3, and P-solubilization), which can be used in mangrove reforestation and bioremediation of HM.
Collapse
Affiliation(s)
- Gobinda Dey
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Gopalakrishnan Gnanachandrasamy
- Department of Earth Sciences, School of Physical, Chemical, and Applied Sciences, Pondicherry University, Puducherry, 605014, India
| | - Yi-Hsun Huang
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Hsien-Bin Huang
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan.
| |
Collapse
|
3
|
Choudhury S, Moulick D, Mazumder MK, Pattnaik BK, Ghosh D, Vemireddy LR, Aldhahrani A, Soliman MM, Gaber A, Hossain A. An In Vitro and In Silico Perspective Study of Seed Priming with Zinc on the Phytotoxicity and Accumulation Pattern of Arsenic in Rice Seedlings. Antioxidants (Basel) 2022; 11:antiox11081500. [PMID: 36009219 PMCID: PMC9405154 DOI: 10.3390/antiox11081500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Arsenic (As) contamination of the rice agro-ecosystem is a major concern for rice farmers of South East Asia as it imposes a serious threat to human and animal life; thus, there is an unrelenting need to explore the ways by which arsenic stress mitigation could be achieved. In the present investigation, we explore the effect of zinc (Zn2+) supplementation using the seed priming technique for the mitigation of As-induced stress responses in developing rice seedlings. In addition to the physiological and biochemical attributes, we also studied the interactive effect of Zn2+ in regulating As-induced changes by targeting antioxidant enzymes using a computational approach. Our findings suggest that Zn2+ and As can effectively modulate redox homeostasis by limiting ROS production and thereby confer protection against oxidative stress. The results also show that As had a significant impact on seedling growth, which was restored by Zn2+ and also minimized the As uptake. A remarkable outcome of the present investigation is that the varietal difference was significant in determining the efficacy of the Zn2+ priming. Further, based on the findings of computational studies, we observed differences in the surface overlap of the antioxidant target enzymes of rice, indicating that the Zn2+ might have foiled the interaction of As with the enzymes. This is undoubtedly a fascinating approach that interprets the mode of action of the antioxidative enzymes under the metal/metalloid-tempted stress condition in rice by pointing at designated targets. The results of the current investigation are rationally significant and may be the pioneering beginning of an exciting and useful method of integrating physiological and biochemical analysis together with a computational modelling approach for evaluating the stress modulating effects of Zn2+ seed priming on As-induced responses in developing rice seedlings.
Collapse
Affiliation(s)
- Shuvasish Choudhury
- Plant Stress Biology and Metabolomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India; (D.M.); (M.K.M.)
- Correspondence: author: (S.C.); (A.H.)
| | - Debojyoti Moulick
- Plant Stress Biology and Metabolomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India; (D.M.); (M.K.M.)
| | - Muhammed Khairujjaman Mazumder
- Plant Stress Biology and Metabolomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India; (D.M.); (M.K.M.)
- Department of Zoology, Dhemaji College, Dhemaji 787057, India
| | - Binaya Kumar Pattnaik
- Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University), Pune 411016, India;
| | - Dibakar Ghosh
- Division of Agronomy, ICAR—Indian Institute of Water Management, Chandrashekarpur, Bhubaneshwar 751023, India; or
| | - Lakshminarayana R. Vemireddy
- Department of Molecular Biology and Biotechnology, Sri Venkateswara Agricultural College, Acharya NG Ranga Agricultural University, Tirupati 517502, India;
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia; (A.A.); (M.M.S.)
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia; (A.A.); (M.M.S.)
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
- Correspondence: author: (S.C.); (A.H.)
| |
Collapse
|
4
|
Arsenic Contamination in Groundwater and Potential Health Risk in Western Lampang Basin, Northern Thailand. WATER 2022. [DOI: 10.3390/w14030465] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This research aimed to investigate the spatial distribution of arsenic concentrations in shallow and deep groundwaters which were used as sources for drinking and domestic and agricultural uses. A geochemical modeling software PHREEQC was used to simulate equilibrium geochemical reactions of complex water–rock interactions to identify arsenic speciation and mineral saturation indices based on groundwater quality and hydrogeochemical conditions. In addition, the potential health risk from arsenic-contaminated groundwater consumption was assessed based on the method developed by the U.S. Environmental Protection Agency. The study area is located at the western part of the Lampang Basin, an intermontane aquifer, Northern Thailand. The area is flat and situated in a floodplain in the Cenozoic basin. Most shallow groundwater (£ 10 m depth) samples from dug wells were of Ca-Na-HCO3 and Ca-HCO3 types, whereas deep groundwater from Quaternary terrace deposits (30–150 m depth) samples were of Na-HCO3 and Ca-Na-HCO3 types. High arsenic concentrations were found in the central part of the study area (Shallow groundwater: <2.8–35 mg/L with a mean of 10.7 mg/L; Deep groundwater: <2.8–480 mg/L with a mean of 51.0 mg/L). According to geochemical modeling study, deep groundwater contained toxic As (III), as the dominant species more than shallow groundwater. Arsenic in groundwater of the Lampang Basin may have been derived from leaching of rocks and could have been the primary source of the subsurface arsenic in the study area. Secondary source of arsenic, which is more significant, could be derived from the leaching of sorbed arsenic in aquifer from co-precipitated Fe-oxyhydroxides in sediments. Quantitative risk assessment showed that the average carcinogenic risk values were as high as 2.78 × 10−3 and 7.65 × 10−3 for adult and child, respectively, which were higher than the acceptable level (1 × 10−4). The adverse health impact should be notified or warned with the use of this arsenic-contaminated groundwater without pre-treatment.
Collapse
|
5
|
Moulick D, Samanta S, Sarkar S, Mukherjee A, Pattnaik BK, Saha S, Awasthi JP, Bhowmick S, Ghosh D, Samal AC, Mahanta S, Mazumder MK, Choudhury S, Bramhachari K, Biswas JK, Santra SC. Arsenic contamination, impact and mitigation strategies in rice agro-environment: An inclusive insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149477. [PMID: 34426348 DOI: 10.1016/j.scitotenv.2021.149477] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) contamination and its adverse consequences on rice agroecosystem are well known. Rice has the credit to feed more than 50% of the world population but concurrently, rice accumulates a substantial amount of As, thereby compromising food security. The gravity of the situation lays in the fact that the population in theAs uncontaminated areas may be accidentally exposed to toxic levels of As from rice consumption. In this review, we are trying to summarize the documents on the impact of As contamination and phytotoxicity in past two decades. The unique feature of this attempt is wide spectrum coverages of topics, and that makes it truly an interdisciplinary review. Aprat from the behaviour of As in rice field soil, we have documented the cellular and molecular response of rice plant upon exposure to As. The potential of various mitigation strategies with particular emphasis on using biochar, seed priming technology, irrigation management, transgenic variety development and other agronomic methods have been critically explored. The review attempts to give a comprehensive and multidiciplinary insight into the behaviour of As in Paddy -Water - Soil - Plate prospective from molecular to post-harvest phase. From the comprehensive literature review, we may conclude that considerable emphasis on rice grain, nutritional and anti-nutritional components, and grain quality traits under arsenic stress condition is yet to be given. Besides these, some emerging mitigation options like seed priming technology, adoption of nanotechnological strategies, applications of biochar should be fortified in large scale without interfering with the proper use of biodiversity.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Plant Stress Biology and Metabolomics Laboratory Central Instrumentation Laboratory (CIL), Assam University, Silchar 788 011, India.
| | - Suman Samanta
- Division of Agricultural Physics, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India.
| | - Sukamal Sarkar
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India.
| | - Arkabanee Mukherjee
- Indian Institute of Tropical Meteorology, Dr Homi Bhabha Rd, Panchawati, Pashan, Pune, Maharashtra 411008, India.
| | - Binaya Kumar Pattnaik
- Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University), Pune, Maharashtra, India.
| | - Saikat Saha
- Nadia Krishi Vigyan Kendra, Bidhan Chandra Krishi Viswavidyalaya, Gayeshpur, Nadia 741234, West Bengal, India.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India.
| | - Dibakar Ghosh
- Division of Agronomy, ICAR-Indian Institute of Water Management, Bhubaneswar 751023, Odisha, India.
| | - Alok Chandra Samal
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India.
| | - Subrata Mahanta
- Department of Chemistry, NIT Jamshedpur, Adityapur, Jamshedpur, Jharkhand 831014, India.
| | | | - Shuvasish Choudhury
- Plant Stress Biology and Metabolomics Laboratory Central Instrumentation Laboratory (CIL), Assam University, Silchar 788 011, India.
| | - Koushik Bramhachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India.
| | - Jayanta Kumar Biswas
- Department of Ecological Studies and International Centre for Ecological Engineering, University of Kalyani, Kalyani, West Bengal, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India.
| |
Collapse
|
6
|
Dousova B, Buzek F, Cejkova B, Jackova I, Lnenickova Z. Thermal stability of arsenic complexes in soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125715. [PMID: 33838513 DOI: 10.1016/j.jhazmat.2021.125715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/06/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
The release of soil arsenic (As) in an unsaturated zone under oxidative conditions and at two temperatures simulating the seasonal effect (15 °C and 23 °C) was studied in four cultivated soils from the Elbe River catchment (Czech Republic, Central Europe). The soils with a low geogenic As background contained from 10 to 50 µg.g-1 of As, mostly originating from atmospheric deposition in the past. The temperature effect on the stability of As in soils was studied in connection with the stability of hydrated iron (Fe) oxides and dissolved organic carbon (DOC), as essential binding partners of As in soils. The temperature impact on As release was related to the actual As binding in soil determined by the sequential leaching. With predominant As binding to amorphous and poorly crystalline Fe phases the higher temperature (23 °C) increased As release up to twice compare to 15 °C. In the soils with a low total Fe and the preferential As binding to well-crystallised Fe phases the temperature effect on As release was negligible. Unlike Fe, the release of DOC is strongly temperature dependent, therefore As mobilisation was controlled by the DOC concentration. A higher experimental temperature (23 °C) supported the formation of DOC and the consequent release of As and Fe into the soil solution.
Collapse
Affiliation(s)
- Barbora Dousova
- University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
| | - Frantisek Buzek
- Czech Geological Survey, Geologicka 6, 152 00 Prague 5, Czech Republic
| | - Bohuslava Cejkova
- Czech Geological Survey, Geologicka 6, 152 00 Prague 5, Czech Republic
| | - Iva Jackova
- Czech Geological Survey, Geologicka 6, 152 00 Prague 5, Czech Republic
| | - Zdena Lnenickova
- Czech Geological Survey, Geologicka 6, 152 00 Prague 5, Czech Republic
| |
Collapse
|
7
|
Maity JP, Chen CY, Bhattacharya P, Sharma RK, Ahmad A, Patnaik S, Bundschuh J. Advanced application of nano-technological and biological processes as well as mitigation options for arsenic removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:123885. [PMID: 33183836 DOI: 10.1016/j.jhazmat.2020.123885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/19/2020] [Accepted: 08/30/2020] [Indexed: 05/04/2023]
Abstract
Arsenic (As) removal is a huge challenge, since several million people are potentially exposed (>10 μg/L World Health Organization guideline limit) through As contaminated drinking water worldwide. Review attempts to address the present situation of As removal, considering key topics on nano-technological and biological process and current progress and future perspectives of possible mitigation options have been evaluated. Different physical, chemical and biological methods are available to remove As from contaminated water/soil/wastes, where removal efficiency mainly depends on absorbent type, initial adsorbate concentration, speciation and interfering species. Oxidation is an important pretreatment step in As removal, which is generally achieved by several media such as O2/O3, HClO, KMnO4 and H2O2. The Fe-based-nanomaterials (α/β/γ-FeOOH, Fe2O3/Fe3O4-γ-Fe2O3), Fe-based-composite-compounds, activated-Al2O3, HFO, Fe-Al2O3, Fe2O3-impregnated-graphene-aerogel, iron-doped-TiO2, aerogel-based- CeTiO2, and iron-oxide-coated-manganese are effective to remove As from contaminated water. Biological processes (phytoremediation/microbiological) are effective and ecofriendly for As removal from water and/or soil environment. Microorganisms remove As from water, sediments and soil by metabolism, detoxification, oxidation-reduction, bio-adsorption, bio-precipitation, and volatilization processes. Ecofriendly As mitigation options can be achieved by utilizing an alternative As-safe-aquifer, surface-water or rainwater-harvesting. Application of hybrid (biological with chemical and physical process) and Best-Available-Technologies (BAT) can be the most effective As removal strategy to remediate As contaminated environments.
Collapse
Affiliation(s)
- Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168 University Road, Min- Hsiung, Chiayi County 62102, Taiwan; School of Applied Science, KIIT University, Bhubaneswar, 751024, India
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168 University Road, Min- Hsiung, Chiayi County 62102, Taiwan.
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm, Sweden; UNESCO Chair on Groundwater Arsenic Within the 2030 Agenda for Sustainable Development, University of Southern Queensland (USQ), West Street, Toowoomba, QLD 4350, Australia
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168 University Road, Min- Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Arslan Ahmad
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm, Sweden; KWR Water Research Institute, Groningenhaven 7 3433 PE Nieuwegein, The Netherlands; Department of Environmental Technology, Wageningen University and Research (WUR), Wageningen, The Netherlands; SIBELCO Ankerpoort NV, Op de Bos 300, 6223 EP Maastricht, The Netherlands
| | - Sneha Patnaik
- School of Public Health, KIMS Medical College, KIIT University, Bhubaneswar, 751024, India
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic Within the 2030 Agenda for Sustainable Development, University of Southern Queensland (USQ), West Street, Toowoomba, QLD 4350, Australia.
| |
Collapse
|
8
|
Deng Z, Jiang Y, Chen K, Gao F, Liu X. Petroleum Depletion Property and Microbial Community Shift After Bioremediation Using Bacillus halotolerans T-04 and Bacillus cereus 1-1. Front Microbiol 2020; 11:353. [PMID: 32194536 PMCID: PMC7066087 DOI: 10.3389/fmicb.2020.00353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/18/2020] [Indexed: 11/13/2022] Open
Abstract
Bioremediation of crude oil contaminated environments is an economical, low-maintenance, environmentally friendly technology and has attracted increasing attention in recent years. In the present study, two efficient crude oil degrading bacteria strains were isolated from soils contaminated with crude oil. Phylogenetic analysis suggested they belonged to genus Bacillus, and were designated as Bacillus cereus T-04 and Bacillus halotolerans 1-1. The crude oil depletion of each strain under different conditions was tested. The optimum conditions for both strains' oil degradation was pH 7, 15-20 g/L NaCl concentration, and 5-15 g/L original oil concentration. The crude oil depletion rate could reach to 60-80% after 20 days of treatment. The crude oil bioremediation simulation tests revealed that the bioremediation promoted the depletion of crude oil to a large extent. The inoculum group with inorganic medium showed the highest crude oil depletion (97.5%) while the crude oil depletion of control group was only 26.6% after 180 days of treatment. High-throughput sequencing was used to monitor the changes of microbial community using different treatments. In all groups, Actinobacteria, Proteobacteria, Firmicutes and Bacteroidetes were the dominant phyla. After contaminated with crude oil, the relative abundance of phylum Actinobacteria was dramatically increased and occupied 81.8%. Meanwhile although strains of Bacillus were added in the bioaugmentation groups, the relative abundance of genus Bacillus was not the most abundant genus at the end of simulation tests. The crude oil contamination dramatically decreased the soil microbial diversity and bioremediation could not recover the microbial community in the short term.
Collapse
Affiliation(s)
| | | | | | | | - Xiaodong Liu
- College of Life Sciences, Yan’an University, Yan’an, China
| |
Collapse
|
9
|
Deng Z, Jiang Y, Chen K, Li J, Zheng C, Gao F, Liu X. One Biosurfactant-Producing Bacteria Achromobacter sp. A-8 and Its Potential Use in Microbial Enhanced Oil Recovery and Bioremediation. Front Microbiol 2020; 11:247. [PMID: 32140152 PMCID: PMC7042313 DOI: 10.3389/fmicb.2020.00247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/03/2020] [Indexed: 11/13/2022] Open
Abstract
Biosurfactant plays an important role in bioremediation of crude oil contamination and microbial enhanced oil recovery (MEOR). In the present study, a salt-tolerant, biosurfactant-producing bacterium, designated A-8, was isolated from wastewater contaminated with petroleum collected from the Changqing reservoir in China. A phylogenetic analysis based on the 16S rRNA sequence suggests that strain A-8 belongs to the genus Achromobacter. The optimal growth conditions for strain A-8 in mineral salt (MS) medium were 30°C, pH 7, and 10 g/L NaCl, while the optimal conditions for biosurfactant production in a fermentation medium were 40-45°C, pH 7, and more than 70 g/L NaCl. Better biosurfactant production was obtained from strain A-8 when edible oil and liquid paraffin were used as carbon sources and when (NH4)2SO4 was used as an inorganic nitrogen source compared with other tested carbon and nitrogen sources. The biodegradation of petroleum in MS medium in different optimized conditions reached 56.23-73.87% for 20 days. The biodegradation of petroleum, together with the production of organic acid and biosurfactant, decreased the viscosity of petroleum by about 45%. The decrease in petroleum viscosity and the biodegradation of petroleum suggest the potential use of strain A-8 for MEOR and bioremediation of petroleum-contaminated environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaodong Liu
- College of Life Sciences, Yan’an University, Yan’an, China
| |
Collapse
|
10
|
Maity JP, Ho PR, Huang YH, Sun AC, Chen CC, Chen CY. The removal of arsenic from arsenic-bearing groundwater in In-situ and Ex-situ environment using novel natural magnetic rock material and synthesized magnetic material as adsorbent: A comparative assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:768-778. [PMID: 31344539 DOI: 10.1016/j.envpol.2019.07.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/14/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
The removal of arsenic from groundwater is an important issue for environmental safety and human health. Research focused on the comparative assessment of arsenic removal from arsenic-bearing groundwater and arsenic-containing-synthetic water (2 mg/L) using natural magnetic material (NMM) (rock) and synthesized magnetic material (SMM) by Bacillus pasteurii and humic acid. The arsenic-bearing groundwater (97.56 ± 0.05 μg/L) exceed the WHO limit (10 μg/L) of arsenic concentration for drinking water. The NMM contains dominantly magnetite, hematite, ferrihydrate, coesite, quartz, and stishovite. The NMM of natural rock exhibited the existence of iron (6.25-8.86% Fe3O4), which is widespread and important component in sedimentary rocks. The investigation on vibrating sample magnetometers (VSM) of NMM and SMM demonstrated the typical magnetization properties, which can be separated after arsenic removal process. The thermogravimetric analysis (TGA) of SMM displayed the existence of organic matter decomposition during particle synthesis. The TEM and SEM exhibited the nanoparticle particle formation within the range of 10-39 nm (10-20 nm particle Fe3O4 through B. pasteurii). FTIR spectrum (before and after removal of arsenic) indicated the existence and binding nature in between arsenic and iron. >90% of arsenic was removed from arsenic-bearing groundwater using Fe3O4, Fe3O4 (N2-Environment), Fe3O4 with humic acid, and Fe3O4 with B. pasteurii after 25 min, 8 min, 13 min and 120 min, respectively. In case of NMM in Site-A, the arsenic removal was observed very fast as 85-87% within 30 s, whereas 95-99%, 93-95% and 88-91% removal detected using the sample of Site-A, Site-B, and Site-C respectively, after 120 min at natural pH (8.31 ± 0.05) of arsenic-bearing groundwater. Thus, NMM, (ecofriendly green material), can be applicable for arsenic removal from arsenic-bearing groundwater.
Collapse
Affiliation(s)
- Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County, 62102, Taiwan; School of Civil Engineering and Surveying and International Centre for Applied Climate Science, University of Southern Queensland, Toowoomba, Australia
| | - Pei-Ru Ho
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County, 62102, Taiwan
| | - Yi-Hsun Huang
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County, 62102, Taiwan
| | - An-Cheng Sun
- Department of Chemical Engineering and Materials Science, Yuan-Ze University, 135 Yuan-Tung Road, Chung-Li, 32003, Taiwan
| | - Chien-Cheng Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 82444, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County, 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi, 62102, Taiwan.
| |
Collapse
|
11
|
Saleem H, Ul Ain Kokab Q, Rehman Y. Arsenic respiration and detoxification by purple non-sulphur bacteria under anaerobic conditions. C R Biol 2019; 342:101-107. [PMID: 30905576 DOI: 10.1016/j.crvi.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
Two arsenic-resistant purple non-sulphur bacteria (PNSB), Q3B and Q3C, were isolated (from industrial contaminated site and paddy fields) and identified by SSU rRNA gene sequencing as Rhodospirillum and Rhodospirillaceae species, respectively. Maximum arsenic reduction by these PNSB was observed in anaerobic conditions. Rhodospirillum sp. Q3B showed 74.92% (v/v) arsenic reduction while Rhodospirillaceae sp. Q3C reduced arsenic up to 76.67% (v/v) in anaerobic conditions. Rhodospirillaceae sp. Q3C was found to contain highest carotenoid content up to 5.6mg·g-1. Under anaerobic conditions, the isolates were able to respire arsenic in the presence of lactate, citrate, and oxalate. Rhodospirillum sp. Q3B and Rhodospirillaceae sp. Q3C were also found to produce hydrogen gas. Such diverse bacteria can be useful tools for bioremediation purposes. These bacteria can be further exploited and optimized to treat wastewater containing arsenic along with bio-hydrogen production.
Collapse
Affiliation(s)
- Hira Saleem
- Department of Microbiology & Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan
| | - Qurat Ul Ain Kokab
- Department of Microbiology & Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan
| | - Yasir Rehman
- Department of Microbiology & Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan; Department of Allied Health Sciences, The Superior College (University Campus), Main Raiwind Road, Lahore, Pakistan.
| |
Collapse
|
12
|
Jia MR, Tang N, Cao Y, Chen Y, Han YH, Ma LQ. Efficient arsenate reduction by As-resistant bacterium Bacillus sp. strain PVR-YHB1-1: Characterization and genome analysis. CHEMOSPHERE 2019; 218:1061-1070. [PMID: 30609485 DOI: 10.1016/j.chemosphere.2018.11.145] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Arsenate (AsV) reduction in bacteria is essential to alleviate their arsenic (As) toxicity. We isolated a Bacillus strain PVR-YHB1-1 from the roots of As-hyperaccumulator Pteris vittata. The strain was efficient in reducing AsV to arsenite (AsIII), but the associated mechanisms were unclear. Here, we investigated its As resistance and reduction behaviors and associated genes at genome level. Results showed that the strain tolerated up to 20 mM AsV. When grown in 1 mM AsV, 96% AsV was reduced to AsIII in 48 h, with its AsV reduction ability being positively correlated to bacterial biomass. Two ars operons arsRacr3arsCDA and arsRKacr3arsC for As metabolisms were identified based on draft genome sequencing and gene annotations. Our data suggested that both operons might have attributed to efficient As resistance and AsV reduction in PVR-YHB1-1, providing clues to better understand As transformation in bacteria and their roles in As transformation in the environment.
Collapse
Affiliation(s)
- Meng-Ru Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ni Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yue Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yong-He Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou, 362801, China; College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, United States.
| |
Collapse
|
13
|
As(V) Resistance and Reduction by Bacteria and Their Performances in As Removal from As-Contaminated Soils. Curr Microbiol 2017; 74:1108-1113. [PMID: 28676887 DOI: 10.1007/s00284-017-1293-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
Bacteria capable of arsenate [As(V)] reduction can be used for remediation of As-contaminated soils via bio-extraction. In this study, As-resistant bacteria were isolated and their abilities to resist and reduce As(V) as well as As bio-extracted from soils naturally contaminated with As were studied. The results indicated that three isolates (2-2, 4-3, and 8-5) showed greater abilities to resist As(V) than other isolates. When the isolates were exposed to 10 mg L-1 As(V), As(V) contents decreased, while arsenite [As(III)] increased over time. In comparison, isolates 2-2 and 4-3 completely reduced As(V) into As(III) within 6 h. According to phylogenetic analysis of the 16S rRNA gene, isolates 2-2, 4-3, and 8-5 were most closely related to Pseudomonas taiwanensis, P. monteilii, and Pseudomonas sp., respectively. Total As contents in soils significantly (P < 0.05) decreased after bacterial extraction. The maximum As removal of 21.6% was observed following inoculation of isolate 2-2 into soil-1. Bacterial extraction weakened the binding between As and the soil solid phase, resulting in As removal from the soil.
Collapse
|
14
|
Jebelli MA, Maleki A, Amoozegar MA, Kalantar E, Shahmoradi B, Gharibi F. Isolation and identification of indigenous prokaryotic bacteria from arsenic-contaminated water resources and their impact on arsenic transformation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 140:170-176. [PMID: 28259061 DOI: 10.1016/j.ecoenv.2017.02.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Arsenic is a known human carcinogen. Arsenite [As(III), H3AsO3] and arsenate [As(V), H2AsO4- and HAsO42-] are the two predominant compounds of As found in surface water and groundwater. The aim of this study was to explore a bioremediation strategy for biotransformation of arsenite to arsenate by microorganisms. In this study, Babagorgor Spring, located west of Iran, was selected as the arsenic-contaminated source and its physicochemical characteristics and in situ microbiological composition were analyzed. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) analysis indicated that the arsenic level was 614μg/l. Fourteen arsenic tolerant indigenous bacteria were isolated from arsenic-contaminated water using chemically defined medium (CDM), supplemented with 260-3900mg/l arsenite and 1560-21800mg/l arsenate. Among the isolates, a strain As-11 exhibited high ability of arsenic transformation. Biochemical tests were used for bacterial identification and confirmation was conducted by 16S rRNA sequence analysis. Results confirmed that As-11 was related to the genus Pseudomonas. This bacterium showed maximum tolerable concentration to arsenite up to 3250mg/l and arsenate up to 20280mg/l. Under heterotrophic conditions, the bacterium exhibited 48% of As(III) and 78% of As(V) transformation from the medium amended with 130 and 312mg/l of sodium arsenite and sodium arsenate, respectively. Moreover, under chemolithotrophic conditions, bacterium was able to transform 41% of 130mg/l of As(III) from the medium amended with nitrate as the terminal electron acceptor. Pseudomonas strain As-11 was reported as an arsenic transformer, for the first time.
Collapse
Affiliation(s)
- Mohammad Ahmadi Jebelli
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Afshin Maleki
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Iran
| | - Enayatollah Kalantar
- Dietary Supplement and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Behzad Shahmoradi
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fardin Gharibi
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
15
|
Guo H, Liu Z, Ding S, Hao C, Xiu W, Hou W. Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 203:50-59. [PMID: 25863882 DOI: 10.1016/j.envpol.2015.03.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
Intact aquifer sediments were collected to obtain As-resistant bacteria from the Hetao basin. Two strains of aerobic As-resistant bacteria (Pseudomonas sp. M17-1 and Bacillus sp. M17-15) were isolated from the aquifer sediments. Those strains exhibited high resistances to both As(III) and As(V). Results showed that both strains had arr and ars genes, and led to reduction of dissolved As(V), goethite-adsorbed As(V), scorodite As(V) and sediment As(V), in the presence of organic carbon as the carbon source. After reduction of solid As(V), As release was observed from the solids to solutions. Strain M17-15 had a higher ability than strain M17-1 in reducing As(V) and promoting the release of As. These results suggested that the strains would mediate As(V) reduction to As(III), and thereafter release As(III), due to the higher mobility of As(III) in most aquifer systems. The processes would play an important role in genesis of high As groundwater.
Collapse
Affiliation(s)
- Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Zeyun Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Shanxi Conservancy Technical Institute, Yuncheng 044004, PR China
| | - Susu Ding
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Chunbo Hao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
| |
Collapse
|
16
|
|
17
|
Maity JP, Kar S, Lin CM, Chen CY, Chang YF, Jean JS, Kulp TR. Identification and discrimination of bacteria using Fourier transform infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 116:478-484. [PMID: 23973597 DOI: 10.1016/j.saa.2013.07.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/17/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Abstract
Bacterial spectra were obtained in the wavenumber range of 4000-600 cm(-1) using FTIR spectroscopy. FTIR spectral patterns were analyzed and matched with 16S-rRNA signatures of bacterial strains OS1 and OS2, isolated from oil sludge. Specific spectral bands obtained from OS1 (FJ226761), reference strain Bacillus flexus (ATCC 49095), OS2 (FJ215874) and reference strain Stenotrophomonas maltophilia (ATCC 19861) respectively, suggested that OS1 and ATCC 49095 were closely related whereas OS2 was different. The bands probably represent groups of proteins and lipids of specific bacteria. Separate peaks found in B. flexus were similar to those of OS1. The S. maltophilia (ATCC 19861) and OS2 exhibited a similar peak at 3272 cm(-1). Amide bands (I, II and III) exhibited that OS1 and B. flexus were closely related, but were different from OS2. In the fingerprint region, peak at 1096 cm(-1) and 1360 cm(-1) exhibited the specific fingerprints of OS2 and reference strain S. maltophilia (ATCC 19861), respectively. The specific fingerprint signature was found at 1339 cm(-1) for OS1 and at 1382 cm(-1) for B. flexus ATCC 49095, allowing these two strains of B. flexus to be differentiated. This spectral signature originated from phospholipid and RNA components of the cell. Principle components analysis (PCA) of spectral regions exhibited with distinct sample clusters between Bacillus flexus (ATCC 49095), S. maltophilia (ATCC 19861), OS1 and OS2 in amide and fingerprint region.
Collapse
Affiliation(s)
- Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, Ming-Shung, Chiayi County 62102, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Islam ABMR, Maity JP, Bundschuh J, Chen CY, Bhowmik BK, Tazaki K. Arsenic mineral dissolution and possible mobilization in mineral-microbe-groundwater environment. JOURNAL OF HAZARDOUS MATERIALS 2013; 262:989-996. [PMID: 22954601 DOI: 10.1016/j.jhazmat.2012.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 07/04/2012] [Accepted: 07/04/2012] [Indexed: 06/01/2023]
Abstract
Arsenic (As) is widely distributed in the nature as ores or minerals. It has been attracted much attention for the global public health issue, especially for groundwater As contamination. The aim of this study was to elucidate the characteristics of microbes in groundwater where As-minerals were dissolved. An ex situ experiment was conducted with 7 standard As-minerals in bacteria-free groundwater and stored in experimental vessels for 1 year without supplementary nutrients. The pH (6.7-8.4) and EhS.H.E. (24-548 mV) changed between initial (0 day) and final stages (365 days) of experiment. The dissolution of As was detected higher from arsenolite (4240 ± 8.69 mg/L) and native arsenic (4538 ± 9.02 mg/L), whereas moderately dissolved from orpiment (653 ± 3.56 mg/L) and realgar (319 ± 2.56 mg/L) in compare to arsenopyrite (85 ± 1.25mg/L) and tennantite (3 ± 0.06 mg/L). Optical microscopic, scanning electron microscopic observations and flurometric enumeration revealed the abundance of As-resistant bacillus, coccus and filamentous types of microorganisms on the surface of most of As-mineral. 4'-6-Diamidino-2-phenylindole (DAPI)-stained epifluorescence micrograph confirmed the presence of DNA and carboxyfluorescein diacetate (CFDA) staining method revealed the enzymatically active bacteria on the surface of As-minerals such as in realgar (As4S4). Therefore, the microbes enable to survive and mobilize the As in groundwater by dissolution/bioweathering of As-minerals.
Collapse
Affiliation(s)
- A B M R Islam
- Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo,7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; ITO Public Nuisance Research Institute, 1-26-8, Omori Kita, Otaku, Tokyo 142-0016, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Santra SC, Samal AC, Bhattacharya P, Banerjee S, Biswas A, Majumdar J. Arsenic in Foodchain and Community Health Risk: A Study in Gangetic West Bengal. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.proenv.2013.04.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|