1
|
Wołowicz A, Munir HMS. Emerging organic micropollutants as serious environmental problem: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:177948. [PMID: 39675281 DOI: 10.1016/j.scitotenv.2024.177948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
The escalating problem of environmental pollution can be attributed to the accelerated pace of global development, which often prioritizes human needs over planetary health. Despite huge global attempts endeavours to mitigate legacy pollutants, the uninterrupted introduction of novel substances such as the emerging organic micropollutants (EOMs) represents a significant menace to the natural environment and all forms of life on the earth. The widespread occurrence of EOMs in water and wastewater is a consequence of both their growing consumption as well as the limitations of the conventional wastewater treatment methods containing such pollutants resulting in deterioration of water quality and its supplies as well as this is a significant challenge for researchers and the scientific community alike. EOMs possibility to bioaccumulate, their toxic properties, resistance to degradation, and the limitations of conventional wastewater treatment methods for quantitative removal of EOMs at low concentrations give a significant environmental risk. These compounds are not commonly monitored, which exacerbates further the problem. Therefore the wide knowledge concerning EOMs properties, their occurrence as well as awareness about their migration in the environment and harmful effects is also extremely important. Therefore the EOMs characterization of various types, their classification and sources, concentrations in the aquatic systems and wastewaters, existing regulatory guidelines and their impacts on the environment and human health are thoroughly vetted in this review. Although the full extent of EOMs' effects on aquatic ecosystems and human health is still in the process of investigations, there are evident indications of their potential acute and chronic impacts, which warrant urgent attention. In practical terms the results of the research presented in this paper will help to fill the knowledge gaps concerning EOMs as a serious problem and to raise public awareness of actions to move to sustainable pollution management practices to protect our planet for future generations are vital.
Collapse
Affiliation(s)
- Anna Wołowicz
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 2, 20-031 Lublin, Poland.
| | - Hafiz Muhammad Shahzad Munir
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan 64200, Pakistan.
| |
Collapse
|
2
|
Duranova H, Fialkova V, Valkova V, Bilcikova J, Olexikova L, Lukac N, Massanyi P, Knazicka Z. Human adrenocortical carcinoma cell line (NCI-H295R): An in vitro screening model for the assessment of endocrine disruptors' actions on steroidogenesis with an emphasis on cell ultrastructural features. Acta Histochem 2022; 124:151912. [PMID: 35661985 DOI: 10.1016/j.acthis.2022.151912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
Cell lines as an in vitro model for xenobiotic screening and toxicity studies provide a very important tool in the field of scientific research at the level of molecular pathways and gene expression. Good cell culture practice and intracellular characterization, as well as physiological properties of the cell line are of critical importance for in vitro reproductive toxicity testing of various endocrine-disrupting chemicals. The NCI-H295R, human adrenocarcinoma cell line, is the most widely used in vitro cellular system to study the human adrenal steroidogenic pathway at the level of hormone production and gene expression, as it expresses genes that encode for all the key enzymes for steroidogenesis. In this review, we aim to highlight the information considering the origin, development, physiological and ultrastructural characteristics of the NCI-H295R cell line. The review also creates a broad overview of the cell line usage in various range of studies related to the steroidogenesis issues. To our best knowledge, the paper provides the first report of quantitative data (ex novo) from stereological estimates of component (volume, surface) densities of nuclei, mitochondria, and lipid droplets of the NCI-H295R cells. Such ultrastructural measurements can be valuable in the assessment of underlying mechanisms of changes in the cell steroid hormone production induced by the action of diverse endocrine disruptors. Thus, they can significantly contribute to complexity of structure-function relationships in association with steroidogenesis.
Collapse
Affiliation(s)
- Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Veronika Fialkova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Veronika Valkova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Jana Bilcikova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Lucia Olexikova
- Institute of Farm Animal Genetics and Reproduction, NPPC - Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovak Republic.
| | - Norbert Lukac
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Peter Massanyi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Zuzana Knazicka
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| |
Collapse
|
3
|
Phillips J, Haimbaugh AS, Akemann C, Shields JN, Wu CC, Meyer DN, Baker BB, Siddiqua Z, Pitts DK, Baker TR. Developmental Phenotypic and Transcriptomic Effects of Exposure to Nanomolar Levels of 4-Nonylphenol, Triclosan, and Triclocarban in Zebrafish (Danio rerio). TOXICS 2022; 10:toxics10020053. [PMID: 35202241 PMCID: PMC8877790 DOI: 10.3390/toxics10020053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023]
Abstract
Triclosan, triclocarban and 4-nonylphenol are all chemicals of emerging concern found in a wide variety of consumer products that have exhibited a wide range of endocrine-disrupting effects and are present in increasing amounts in groundwater worldwide. Results of the present study indicate that exposure to these chemicals at critical developmental periods, whether long-term or short-term in duration, leads to significant mortality, morphologic, behavioral and transcriptomic effects in zebrafish (Danio rerio). These effects range from total mortality with either long- or short-term exposure at 100 and 1000 nM of triclosan, to abnormalities in uninflated swim bladder seen with long-term exposure to triclocarban and short-term exposure to 4-nonylphenol, and cardiac edema seen with short-term 4-nonylphenol exposure. Additionally, a significant number of genes involved in neurological and cardiovascular development were differentially expressed after the exposures, as well as lipid metabolism genes and metabolic pathways after exposure to each chemical. Such changes in behavior, gene expression, and pathway abnormalities caused by these three known endocrine disruptors have the potential to impact not only the local ecosystem, but human health as well.
Collapse
Affiliation(s)
- Jessica Phillips
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
| | - Alex S. Haimbaugh
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
| | - Camille Akemann
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
| | - Jeremiah N. Shields
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
| | - Chia-Chen Wu
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
| | - Danielle N. Meyer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
| | - Bridget B. Baker
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32610, USA
| | - Zoha Siddiqua
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA; (Z.S.); (D.K.P.)
| | - David K. Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA; (Z.S.); (D.K.P.)
| | - Tracie R. Baker
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
4
|
Liang H, Gong J, Zhou K, Deng L, Chen J, Guo L, Jiang M, Lin J, Tang H, Liu X. Removal efficiencies and risk assessment of endocrine-disrupting chemicals at two wastewater treatment plants in South China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112758. [PMID: 34507038 DOI: 10.1016/j.ecoenv.2021.112758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 05/25/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) in the effluent from wastewater treatment plants (WWTPs) are an important pollutant sources of the aquatic system. In this study, the removal efficiencies of eight typical EDCs at two domestic WWTPs in Dongguan City, China, are reported based on instrumental analysis and bioassay results. Bioactivities, including steroidogenesis-disrupting effects, estrogen receptor (ER)-binding activity, and aryl hydrocarbon receptor (AhR)-binding activity were evaluated using the H295R, MVLN, and H4IIE cell bioassays, respectively. The potential environmental risks of these residual EDCs were also evaluated. The results of instrumental analysis showed that nonylphenol was the major chemical type present among the eight tested EDCs. Meanwhile, concentrations of estrogen compounds including estrone, 17β-estradiol (E2), estriol, 17α-ethinyl estradiol, and diethylstilbestrol were relatively low. The removal rates of all eight EDCs were relatively high. Although the chemical analysis indicated high removal efficiency, the bioassay results showed that steroidogenesis-disrupting effects as well as ER-binding and AhR-binding activities remained, with E2-equivalent values of effluent samples ranging from 0.16 to 0.9 ng·L-1, and 2,3,7,8-tetrachlorodibenzo-p-dioxin-equivalent values ranging from 0.61 to 4.09 ng L-1. Principal component analysis combined with regression analysis suggests that the chemicals analyzed in this study were partly responsible for these ER and AhR activities. Ecological risk assessment of the residual EDCs showed that estrone was the most hazardous chemical among the eight EDCs tested, with a risk quotient of 1.44-5.50. Overall, this study suggests that, despite high apparent removal efficiencies of typical EDCs, their bioactivities and potential ecological risks cannot be ignored.
Collapse
Affiliation(s)
- Hairong Liang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China
| | - Jian Gong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Kairu Zhou
- School of Public Administration, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Langjing Deng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China
| | - Jiaxin Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China
| | - Lihao Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China
| | - Mengzhu Jiang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China
| | - Juntong Lin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China
| | - Xiaoshan Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| |
Collapse
|
5
|
Prichystalova R, Caron-Beaudoin E, Richardson L, Dirkx E, Amadou A, Zavodna T, Cihak R, Cogliano V, Hynes J, Pelland-St-Pierre L, Verner MA, van Tongeren M, Ho V. An approach to classifying occupational exposures to endocrine disrupting chemicals by sex hormone function using an expert judgment process. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:753-768. [PMID: 32704083 DOI: 10.1038/s41370-020-0253-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that interfere with the endocrine system and cause adverse effects. We aimed to classify the effects of 24 known EDCs, prevalent in certain occupations, according to four modes of action (estrogenic, antiestrogenic, androgenic, and/or antiandrogenic). A literature search, stratified into four types of literature was conducted (namely: national and international agency reports; review articles; primary studies; ToxCastTM). The state of the evidence of each EDC on sex hormone function was summarized and reviewed by an expert panel. For each mode of action, the experts evaluated the likelihood of endocrine disruption in five categories: "No", "Unlikely", "Possibly", "Probably", and "Yes". Seven agents were categorized as "Yes," or having strong evidence for their effects on sex hormone function (antiandrogenic: lead, arsenic, butylbenzyl phthalate, dibutyl phthalate, dicyclohexyl phthalate; estrogenic: nonylphenol, bisphenol A). Nine agents were categorized as "Probable," or having probable evidence (antiandrogenic: bis(2-ethylhexyl)phthalate, nonylphenol, toluene, bisphenol A, diisononyl phthalate; androgenic: cadmium; estrogenic: copper, cadmium and; anti-estrogenic: lead). Two agents (arsenic, polychlorinated biphenyls) had opposing conclusions supporting both "probably" estrogenic and antiestrogenic effects. This synthesis will allow researchers to evaluate the health effects of selected EDCs with an added level of precision related to the mode of action.
Collapse
Affiliation(s)
- R Prichystalova
- Faculty of Safety Engineering, Technical University of Ostrava, Ostrava, Czech Republic
| | - E Caron-Beaudoin
- Department of Occupational and Environmental Health, Université de Montréal, Montréal, QC, Canada
| | - L Richardson
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | - E Dirkx
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | - A Amadou
- Département Prévention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm UA 08 Radiations: Défense, Santé, Environement, Lyon, France
| | - T Zavodna
- Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - R Cihak
- Výzkumný ústav organických syntéz a.s., Centre for Ecology, Toxicology and Analytics, Rybitví, Czech Republic
| | - V Cogliano
- National Center for Environmental Health Hazard Assessment, US Environmental Protection Agency, Washington, DC, USA
| | - J Hynes
- JH Tox Consulting, Maastricht, Netherlands
| | - L Pelland-St-Pierre
- Department of Social and Preventive Medicine, Université de Montréal, Montréal, QC, Canada
| | - M A Verner
- Department of Occupational and Environmental Health, Université de Montréal, Montréal, QC, Canada
- Centre de recherche en santé publique (CReSP), Université de Montréal, Montréal, QC, Canada
| | - M van Tongeren
- Faculty of Science and Engineering, Division of Population Health, Health Services Research & Primary Care, University of Manchester, Manchester, UK
| | - V Ho
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada.
- Department of Social and Preventive Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
6
|
Sun Z, Cao H, Liu QS, Liang Y, Fiedler H, Zhang J, Zhou Q, Jiang G. 4-Hexylphenol influences adipogenic differentiation and hepatic lipid accumulation in vitro. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115635. [PMID: 33045592 DOI: 10.1016/j.envpol.2020.115635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Finding the potential environmental obesogens is crucial to explain the prevalence of obesity and the related pathologies. Increasing evidence has showed that many chemicals with endocrine disrupting effects can disturb lipid metabolism. Whether 4-hexylphenol (4-HP), a widely-used surfactant and a potential endocrine disrupting chemical (EDC), is associated to influence adipogenesis and hepatic lipid accumulation remained to be elucidated. In this study, both the 3T3-L1 differentiation model and oleic acid (OA)-treated HepG2 cells were used to investigate the effects of 4-HP on lipid metabolism, and the underlying estrogen receptor (ER)-involved mechanism was explored using MVLN assay, molecular docking simulation and the antagonist test. The results based on lipid droplet staining and triglyceride accumulation assay showed that 4-HP treatment promoted the adipogenic differentiation of 3T3-L1 cells and increased hepatic cellular OA accumulation in exposure concentration-dependent manners. The study on the elaborated transcription networks indicated that 4-HP activated peroxisome proliferator-activated receptor γ (PPARγ) as well as the subsequent adipogenic gene program in 3T3-L1 cells. This chemical also induced the increase of OA uptake and decreases of de novo lipogenesis and fatty acid oxidation in HepG2 cells. The agonistic activity of 4-HP in triggering ER-mediated pathway was shown to correlate with its perturbation in lipid metabolism, as evidenced by the enhanced development of mature lipid-laden adipocytes and suppression of excessive hepatic lipid accumulation upon its co-treatment with ER antagonist. Altogether, these findings provide new insights into the potential health impacts of 4-HP exposure as it may relate to obesity and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiming Cao
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Heidelore Fiedler
- Örebro University, School of Science and Technology, MTM Research Centre, SE-701 82, Örebro, Sweden
| | - Jianqing Zhang
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Khalid M, Abdollahi M. Environmental Distribution of Personal Care Products and Their Effects on Human Health. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:216-253. [PMID: 34400954 PMCID: PMC8170769 DOI: 10.22037/ijpr.2021.114891.15088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Personal care products (PCPs) are generally used for personal hygiene, cleaning, grooming, and beautification. These include hair and skin care products, baby care products, UV blocking creams, facial cleansers, insect repellents, perfumes, fragrances, soap, detergents, shampoos, conditioners, toothpaste, etc., thus exposing humans easily. Personal preferences related to PCPs usage frequency are highly variable and depend on socioeconomic status and lifestyle factors. The increasing availability and diversity of PCPs from the retailer outlets consequently result in higher loading of PCPs into wastewater systems and, therefore, the environment. These compounds persistently and continuously release biologically active and inactive ingredients in the atmosphere, biosphere, geosphere, and demonstrating adverse effects on human, wild, and marine life. Advanced techniques such as granular activated carbon filtration and algae-based system may help biotransformation and remove PCP contaminants from water with improved efficiency. Additionally, harmony among PCPs related regulations of different countries may encourage standard checks to control their manufacturing, sale, and distribution across the borders to ensure consumers' safety. Furthermore, all intended ingredients, their concentrations, and instructions for frequency of use as per age groups may be clearly labeled on packages of PCPs. In conclusion, the emerging environmental contaminants of PCPs and their association with the growing risks of negative effects on human health and globally on the environment emphasize the chemical-free simple lifestyle.
Collapse
Affiliation(s)
- Madiha Khalid
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Bilcikova J, Fialkova V, Duranova H, Kovacikova E, Forgacs Z, Gren A, Massanyi P, Lukac N, Roychoudhury S, Knazicka Z. Copper affects steroidogenesis and viability of human adrenocortical carcinoma (NCI-H295R) cell line in vitro. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1070-1077. [PMID: 32437254 DOI: 10.1080/10934529.2020.1769400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Copper is an environmental risk factor, which has various effects on reproductive endocrinology. In this study human adrenocortical carcinoma (NCI-H295R) cell line was used as an in vitro biological model to study the effect of copper sulfate (CuSO4.5H2O) on steroidogenesis and cytotoxicity. The cell cultures were exposed to different concentrations (3.90, 62.50, 250, 500, 1000 µM) of CuSO4.5H2O and compared to control group (medium without CuSO4.5H2O). Cell viability was measured by the metabolic activity assay. Quantification of sexual steroid production directly from the medium was performed by ELISA assay. Following 48 h culture of NCI-H295R cell line in the presence of CuSO4.5H2O a dose-dependent depletion of progesterone release was observed even at the lower concentrations of CuSO4.5H2O. The lowest levels of progesterone were detected in groups with the higher doses (≥ 250 µM) of CuSO4.5H2O, which elicited significant cytotoxic action. Testosterone production decreased significantly, and this decline was more prominent in comparison to that of progesterone. The lowest release of testosterone was recorded at 1000 µM of CuSO4.5H2O. The cytotoxic effect of CuSO4.5H2O was evident at all concentrations used in the study. The presented data suggest that copper has detrimental effects on sexual steroid hormones and consecutively on reproductive physiology.
Collapse
Affiliation(s)
- Jana Bilcikova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Veronika Fialkova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Eva Kovacikova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | | | - Agnieszka Gren
- Department of Animal Physiology and Toxicology, Pedagogical University of Cracow, Cracow, Poland
| | - Peter Massanyi
- Faculty of Biotechnology and Food Sciences, Department of Animal Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Norbert Lukac
- Faculty of Biotechnology and Food Sciences, Department of Animal Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | | | - Zuzana Knazicka
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| |
Collapse
|
9
|
A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: Current status and potential challenges. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|