1
|
Lu YS, Qiu J, Mu XY, Qian YZ, Chen L. Levels, Toxic Effects, and Risk Assessment of Pyrrolizidine Alkaloids in Foods: A Review. Foods 2024; 13:536. [PMID: 38397512 PMCID: PMC10888194 DOI: 10.3390/foods13040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are naturally occurring secondary metabolites of plants. To date, more than 660 types of PAs have been identified from an estimated 6000 plants, and approximately 120 of these PAs are hepatotoxic. As a result of PAs being found in spices, herbal teas, honey, and milk, PAs are considered contaminants in foods, posing a potential risk to human health. Here, we summarize the chemical structure, toxic effects, levels, and regulation of PAs in different countries to provide a better understanding of their toxicity and risk assessment. With recent research on the risk assessment of PAs, this review also discusses the challenges facing this field, aiming to provide a scientific basis for PA toxicity research and safety assessment.
Collapse
Affiliation(s)
- Yu-Shun Lu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| | - Xi-Yan Mu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| | - Yong-Zhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| | - Lu Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| |
Collapse
|
2
|
Cai L, Ke M, Wang H, Wu W, Lin R, Huang P, Lin C. Physiologically based pharmacokinetic model combined with reverse dose method to study the nephrotoxic tolerance dose of tacrolimus. Arch Toxicol 2023; 97:2659-2673. [PMID: 37572130 DOI: 10.1007/s00204-023-03576-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Nephrotoxicity is the most common side effect that severely limits the clinical application of tacrolimus (TAC), an immunosuppressive agent used in kidney transplant patients. This study aimed to explore the tolerated dose of nephrotoxicity of TAC in individuals with different CYP3A5 genotypes and liver conditions. We established a human whole-body physiological pharmacokinetic (WB-PBPK) model and validated it using data from previous clinical studies. Following the injection of 1 mg/kg TAC into the tail veins of male rats, we developed a rat PBPK model utilizing the drug concentration-time curve obtained by LC-MS/MS. Next, we converted the established rat PBPK model into the human kidney PBPK model. To establish renal concentrations, the BMCL5 of the in vitro CCK-8 toxicity response curve (drug concentration range: 2-80 mol/L) was extrapolated. To further investigate the acceptable levels of nephrotoxicity for several distinct CYP3A5 genotypes and varied hepatic function populations, oral dosing regimens were extrapolated utilizing in vitro-in vivo extrapolation (IVIVE). The PBPK model indicated the tolerated doses of nephrotoxicity were 0.14-0.185 mg/kg (CYP3A5 expressors) and 0.13-0.155 mg/kg (CYP3A5 non-expressors) in normal healthy subjects and 0.07-0.09 mg/kg (CYP3A5 expressors) and 0.06-0.08 mg/kg (CYP3A5 non-expressors) in patients with mild hepatic insufficiency. Further, patients with moderate hepatic insufficiency tolerated doses of 0.045-0.06 mg/kg (CYP3A5 expressors) and 0.04-0.05 mg/kg (CYP3A5 non-expressors), while in patients with moderate hepatic insufficiency, doses of 0.028-0.04 mg/kg (CYP3A5 expressors) and 0.022-0.03 mg/kg (CYP3A5 non-expressors) were tolerated. Overall, our study highlights the combined usage of the PBPK model and the IVIVE approach as a valuable tool for predicting toxicity tolerated doses of a drug in a specific group.
Collapse
Affiliation(s)
- Limin Cai
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Meng Ke
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Han Wang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Wanhong Wu
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Rongfang Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Pinfang Huang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Cuihong Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China.
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China.
| |
Collapse
|
3
|
Application of Minimal Physiologically-Based Pharmacokinetic Model to Simulate Lung and Trachea Exposure of Pyronaridine and Artesunate in Hamsters. Pharmaceutics 2023; 15:pharmaceutics15030838. [PMID: 36986698 PMCID: PMC10058671 DOI: 10.3390/pharmaceutics15030838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
A fixed-dose combination of pyronaridine and artesunate, one of the artemisinin-based combination therapies, has been used as a potent antimalarial treatment regimen. Recently, several studies have reported the antiviral effects of both drugs against severe acute respiratory syndrome coronavirus two (SARS-CoV-2). However, there are limited data on the pharmacokinetics (PKs), lung, and trachea exposures that could be correlated with the antiviral effects of pyronaridine and artesunate. The purpose of this study was to evaluate the pharmacokinetics, lung, and trachea distribution of pyronaridine, artesunate, and dihydroartemisinin (an active metabolite of artesunate) using a minimal physiologically-based pharmacokinetic (PBPK) model. The major target tissues for evaluating dose metrics are blood, lung, and trachea, and the nontarget tissues were lumped together into the rest of the body. The predictive performance of the minimal PBPK model was evaluated using visual inspection between observations and model predictions, (average) fold error, and sensitivity analysis. The developed PBPK models were applied for the multiple-dosing simulation of daily oral pyronaridine and artesunate. A steady state was reached about three to four days after the first dosing of pyronaridine and an accumulation ratio was calculated to be 1.8. However, the accumulation ratio of artesunate and dihydroartemisinin could not be calculated since the steady state of both compounds was not achieved by daily multiple dosing. The elimination half-life of pyronaridine and artesunate was estimated to be 19.8 and 0.4 h, respectively. Pyronaridine was extensively distributed to the lung and trachea with the lung-to-blood and trachea-to-blood concentration ratios (=Cavg,tissue/Cavg,blood) of 25.83 and 12.41 at the steady state, respectively. Also, the lung-to-blood and trachea-to-blood AUC ratios for artesunate (dihydroartemisinin) were calculated to be 3.34 (1.51) and 0.34 (0.15). The results of this study could provide a scientific basis for interpreting the dose–exposure–response relationship of pyronaridine and artesunate for COVID-19 drug repurposing.
Collapse
|
4
|
Zhou L, Xue P, Zhang Y, Wei F, Zhou J, Wang S, Hu Y, Lou X, Zou H. Occupational health risk assessment methods in China: A scoping review. Front Public Health 2022; 10:1035996. [PMID: 36466494 PMCID: PMC9714297 DOI: 10.3389/fpubh.2022.1035996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background Over the decades, many assessment methods have been developed around the world and used for occupational health risk assessment (OHRA). This scoping review integrated the literature on methodological studies of OHRA in China and aimed to identifies the research hot-spots and methodological research perspectives on OHRA in China. Methods A scoping review of literature was undertaken to explore the research progress on OHRA methods in China. Focusing on OHRA methods, the authors systematically searched Chinese and English databases and relevant guideline websites from the date of establishment to June 30, 2022. Databases included Web of Science, PubMed, Scopus, the China National Knowledge Internet, WanFang Database. Some other websites were also searched to obtain gray literature. The extracted information included the author, year, region of first author, the target industry, risk assessment model, study type, the main results and conclusions. Results Finally, 145 of 9,081 studies were included in this review. There were 108 applied studies, 30 comparative studies and 7 optimization studies on OHRA in China. The OHRA methods studied included: (1) qualitative methods such as Romanian model, Australian model, International Council on Mining and Metals model, and Control of Substances Hazardous to Health Essentials; (2) quantitative methods such as the U. S. Environmental Protection Agency inhalation risk assessment model, Physiologically Based Pharmacokinetic, and Monte Carlo simulation; (3) semi-quantitative methods such as Singapore model, Fuzzy mathematical risk assessment model, Likelihood Exposure Consequence method and Occupational Hazard Risk Index assessment method; (4) comprehensive method (Chinese OHRA standard GBZ/T 298-2017). Each of the OHRA methods had its own strengths and limitations. In order to improve the applicability of OHRA methods, some of them have been optimized by researchers. Conclusions There is a wide range of OHRA methods studied in China, including applied, comparative, and optimization studies. Their applicability needs to be further tested through further application in different industries. Furthermore, quantitative comparative studies, optimization studies, and modeling studies are also needed.
Collapse
Affiliation(s)
- Lifang Zhou
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Panqi Xue
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yixin Zhang
- School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Fang Wei
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jiena Zhou
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Shasha Wang
- Shaoxing Center for Disease Control and Prevention, Shaoxing, China
| | - Yong Hu
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xiaoming Lou
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China,Xiaoming Lou
| | - Hua Zou
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China,*Correspondence: Hua Zou
| |
Collapse
|
5
|
In vitro-in vivo correlation of the chiral pesticide prothioconazole after interaction with human CYP450 enzymes. Food Chem Toxicol 2022; 163:112947. [DOI: 10.1016/j.fct.2022.112947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
|
6
|
Diamond GL, Skoulis NP, Jeffcoat AR, Nash JF. A Physiological-Based Pharmacokinetic Model For The Broad Spectrum Antimicrobial Zinc Pyrithione: II. Dermal Absorption And Dosimetry In The Rat. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:609-631. [PMID: 33886436 DOI: 10.1080/15287394.2021.1912678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The broad spectrum antimicrobial/antifungal zinc pyrithione (ZnPT) is used in products ranging from antifouling paint to antidandruff shampoo. The hazard profile of ZnPT was established based upon comprehensive toxicological testing, and products containing this biocide have been safely used for years. The purpose of this study was to create a dermal physiologically based pharmacokinetic (PBPK) model for ZnPT in the rat for improving dose-response analysis of ZnPT-induced toxicity where reversible hindlimb weakness was the endpoint used as the basis for ZnPT risk assessments. Previously, we developed a PBPK model which simulated the kinetics of pyrithione (PT) and its major metabolites 2-(methylsulfonyl)pyridine and S-glucuronide conjugates in blood and tissues of rats following oral ZnPT administration. The dermal model was optimized utilizing in vitro dermal penetration investigations conducted with rat skin and with historical data from a dermal repeat dose study using rats. The model replicated the observed temporal patterns and elimination kinetics of [14C]PT equivalents in blood and urine during and following repeated dermal dosing and replicated the observed dose-dependencies of absorption, blood [14C]PT equivalents and plasma PT concentrations. The model provided internal dosimetry predictions for a benchmark dose analysis of hindlimb weakness in rats that combined dermal, gavage and dietary studies into a single internal dose-response model with area-under-the-curve (AUC) for plasma PT, the toxic moiety in the rat, as the internal dose metric. This PBPK model has predictive validity for calculating internal doses of PT and/or [14C]PT equivalents from different routes of exposure in the rat.
Collapse
Affiliation(s)
| | - Nicholas P Skoulis
- SFA Toxicology & Risk Management Services., Glastonbury, Connecticut, USA
| | | | - J Frank Nash
- The Procter & Gamble Company, Global Product Stewardship, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Rider CV, McHale CM, Webster TF, Lowe L, Goodson WH, La Merrill MA, Rice G, Zeise L, Zhang L, Smith MT. Using the Key Characteristics of Carcinogens to Develop Research on Chemical Mixtures and Cancer. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:35003. [PMID: 33784186 PMCID: PMC8009606 DOI: 10.1289/ehp8525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/19/2021] [Accepted: 03/10/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND People are exposed to numerous chemicals throughout their lifetimes. Many of these chemicals display one or more of the key characteristics of carcinogens or interact with processes described in the hallmarks of cancer. Therefore, evaluating the effects of chemical mixtures on cancer development is an important pursuit. Challenges involved in designing research studies to evaluate the joint action of chemicals on cancer risk include the time taken to perform the experiments because of the long latency and choosing an appropriate experimental design. OBJECTIVES The objectives of this work are to present the case for developing a research program on mixtures of environmental chemicals and cancer risk and describe recommended approaches. METHODS A working group comprising the coauthors focused attention on the design of mixtures studies to inform cancer risk assessment as part of a larger effort to refine the key characteristics of carcinogens and explore their application. Working group members reviewed the key characteristics of carcinogens, hallmarks of cancer, and mixtures research for other disease end points. The group discussed options for developing tractable projects to evaluate the joint effects of environmental chemicals on cancer development. RESULTS AND DISCUSSION Three approaches for developing a research program to evaluate the effects of mixtures on cancer development were proposed: a chemical screening approach, a transgenic model-based approach, and a disease-centered approach. Advantages and disadvantages of each are discussed. https://doi.org/10.1289/EHP8525.
Collapse
Affiliation(s)
- Cynthia V. Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, University of California Berkeley, School of Public Health, Berkeley, California, USA
| | - Thomas F. Webster
- Department of Environmental Health, School of Public Health, Boston University, Boston, Massachusetts, USA
| | - Leroy Lowe
- Getting to Know Cancer (NGO), Truro, Nova Scotia, Canada
| | - William H. Goodson
- Department of Surgery, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Michele A. La Merrill
- Department of Environmental Toxicology, University of California Davis, Davis, California, USA
| | - Glenn Rice
- Office of Research & Development, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health and Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, University of California Berkeley, School of Public Health, Berkeley, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, University of California Berkeley, School of Public Health, Berkeley, California, USA
| |
Collapse
|
8
|
Algharably EAEH, Di Consiglio E, Testai E, Kreutz R, Gundert-Remy U. Prediction of the dose range for adverse neurological effects of amiodarone in patients from an in vitro toxicity test by in vitro-in vivo extrapolation. Arch Toxicol 2021; 95:1433-1442. [PMID: 33606068 PMCID: PMC8032623 DOI: 10.1007/s00204-021-02989-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/21/2021] [Indexed: 11/29/2022]
Abstract
Amiodarone is an antiarrhythmic agent inducing adverse effects on the nervous system, among others. We applied physiologically based pharmacokinetic (PBPK) modeling combined with benchmark dose modeling to predict, based on published in vitro data, the in vivo dose of amiodarone which may lead to adverse neurological effects in patients. We performed in vitro–in vivo extrapolation (IVIVE) from concentrations measured in the cell lysate of a rat brain 3D cell model using a validated human PBPK model. Among the observed in vitro effects, inhibition of choline acetyl transferase (ChAT) was selected as a marker for neurotoxicity. By reverse dosimetry, we transformed the in vitro concentration–effect relationship into in vivo effective human doses, using the calculated in vitro area under the curve (AUC) of amiodarone as the pharmacokinetic metric. The upper benchmark dose (BMDU) was calculated and compared with clinical doses eliciting neurological adverse effects in patients. The AUCs in the in vitro brain cell culture after 14-day repeated dosing of nominal concentration equal to 1.25 and 2.5 µM amiodarone were 1.00 and 1.99 µg*h/mL, respectively. The BMDU was 385.4 mg for intravenous converted to 593 mg for oral application using the bioavailability factor of 0.65 as reported in the literature. The predicted dose compares well with neurotoxic doses in patients supporting the hypothesis that impaired ChAT activity may be related to the molecular/cellular mechanisms of amiodarone neurotoxicity. Our study shows that predicting effects from in vitro data together with IVIVE can be used at the initial stage for the evaluation of potential adverse drug reactions and safety assessment in humans.
Collapse
Affiliation(s)
- Engi Abd El-Hady Algharably
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Emma Di Consiglio
- Istituto Superiore Di Sanità, Environment and Health Department, Mechanisms, Biomarkers and Models Unit, Rome, Italy
| | - Emanuela Testai
- Istituto Superiore Di Sanità, Environment and Health Department, Mechanisms, Biomarkers and Models Unit, Rome, Italy
| | - Reinhold Kreutz
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10115, Berlin, Germany
| | - Ursula Gundert-Remy
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
9
|
Axelrad DA, Setzer RW, Bateson TF, DeVito M, Dzubow RC, Fitzpatrick JW, Frame AM, Hogan KA, Houck K, Stewart M. Methods for evaluating variability in human health dose-response characterization. HUMAN AND ECOLOGICAL RISK ASSESSMENT : HERA 2019; 25:1-24. [PMID: 31404325 PMCID: PMC6688638 DOI: 10.1080/10807039.2019.1615828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/03/2019] [Indexed: 05/21/2023]
Abstract
The Reference Dose (RfD) and Reference Concentration (RfC) are human health reference values (RfVs) representing exposure concentrations at or below which there is presumed to be little risk of adverse effects in the general human population. The 2009 National Research Council report Science and Decisions recommended redefining RfVs as "a risk-specific dose (for example, the dose associated with a 1 in 100,000 risk of a particular end point)." Distributions representing variability in human response to environmental contaminant exposures are critical for deriving risk-specific doses. Existing distributions estimating the extent of human toxicokinetic and toxicodynamic variability are based largely on controlled human exposure studies of pharmaceuticals. New data and methods have been developed that are designed to improve estimation of the quantitative variability in human response to environmental chemical exposures. Categories of research with potential to provide new database useful for developing updated human variability distributions include controlled human experiments, human epidemiology, animal models of genetic variability, in vitro estimates of toxicodynamic variability, and in vitro-based models of toxicokinetic variability. In vitro approaches, with further development including studies of different cell types and endpoints, and approaches to incorporate non-genetic sources of variability, appear to provide the greatest opportunity for substantial near-term advances.
Collapse
Affiliation(s)
- Daniel A. Axelrad
- Office of Policy, U.S. Environmental Protection Agency, Washington, DC, USA
| | - R. Woodrow Setzer
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Thomas F. Bateson
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Michael DeVito
- National Institute of Environmental Health Sciences, National Toxicology Program, Research Triangle Park, NC, USA
| | - Rebecca C. Dzubow
- Office of Children’s Health Protection, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Julie W. Fitzpatrick
- Office of the Science Advisor, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Alicia M. Frame
- Office of Land and Emergency Management, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Karen A. Hogan
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Keith Houck
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Michael Stewart
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
10
|
Tan YM, Worley RR, Leonard JA, Fisher JW. Challenges Associated With Applying Physiologically Based Pharmacokinetic Modeling for Public Health Decision-Making. Toxicol Sci 2019; 162:341-348. [PMID: 29385573 DOI: 10.1093/toxsci/kfy010] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The development and application of physiologically based pharmacokinetic (PBPK) models in chemical toxicology have grown steadily since their emergence in the 1980s. However, critical evaluation of PBPK models to support public health decision-making across federal agencies has thus far occurred for only a few environmental chemicals. In order to encourage decision-makers to embrace the critical role of PBPK modeling in risk assessment, several important challenges require immediate attention from the modeling community. The objective of this contemporary review is to highlight 3 of these challenges, including: (1) difficulties in recruiting peer reviewers with appropriate modeling expertise and experience; (2) lack of confidence in PBPK models for which no tissue/plasma concentration data exist for model evaluation; and (3) lack of transferability across modeling platforms. Several recommendations for addressing these 3 issues are provided to initiate dialog among members of the PBPK modeling community, as these issues must be overcome for the field of PBPK modeling to advance and for PBPK models to be more routinely applied in support of public health decision-making.
Collapse
Affiliation(s)
- Yu-Mei Tan
- National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Rachel R Worley
- Agency for Toxic Substances and Disease Registry, Atlanta, Georgia 30341
| | - Jeremy A Leonard
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830
| | - Jeffrey W Fisher
- National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arizona 72079
| |
Collapse
|
11
|
Ellison CA. Structural and functional pharmacokinetic analogs for physiologically based pharmacokinetic (PBPK) model evaluation. Regul Toxicol Pharmacol 2018; 99:61-77. [DOI: 10.1016/j.yrtph.2018.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
|
12
|
Kieskamp KK, Worley RR, McLanahan ED, Verner MA. Incorporation of fetal and child PFOA dosimetry in the derivation of health-based toxicity values. ENVIRONMENT INTERNATIONAL 2018; 111:260-267. [PMID: 29325971 PMCID: PMC6234970 DOI: 10.1016/j.envint.2017.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Multiple agencies have developed health-based toxicity values for exposure to perfluorooctanoic acid (PFOA). Although PFOA exposure occurs in utero and through breastfeeding, current health-based toxicity values have not been derived using fetal or child dosimetry. Therefore, current values may underestimate the potential risks to fetuses and nursing infants. OBJECTIVE Using fetal and child dosimetry, we aimed to calculate PFOA maternal human equivalent doses (HEDs), corresponding to a developmental mouse study lowest observed adverse effect level (LOAEL, 1mg/kg/day). Further, we investigated the impact of breastfeeding duration and PFOA half-life on the estimated HEDs. METHODS First, a pharmacokinetic model of pregnancy and lactation in mice was used to estimate plasma PFOA levels in pups following a maternal exposure to 1mg PFOA/kg/day for gestational days 1-17. Four plasma PFOA concentration metrics were estimated in pups: i) average prenatal; ii) average postnatal; iii) average overall (prenatal and postnatal); and iv) maximum. Then, Monte Carlo simulations were performed using a pharmacokinetic model of pregnancy and lactation in humans to generate distributions of maternal HEDs that would result in fetal/child plasma levels equivalent to those estimated in pups using the mouse model. Median (HED50) and 1st percentile (HED01) of calculated HEDs were calculated. RESULTS Estimated PFOA maternal HED50s ranged from 3.0×10-4 to 1.1×10-3mg/kg/day and HED01s ranged from 4.7×10-5 to 2.1×10-4mg/kg/day. All calculated HEDs were lower than the HED based on adult dosimetry derived by the Environmental Protection Agency (EPA) (5.3×10-3mg/kg/day). CONCLUSION Our results suggest that fetal/child dosimetry should be considered when deriving health-based toxicity values for potential developmental toxicants.
Collapse
Affiliation(s)
- Kyra Kimberly Kieskamp
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada; Université de Montréal Public Health Research Institute (IRSPUM), Montreal, Canada; Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| | | | - Eva D McLanahan
- Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA.
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada; Université de Montréal Public Health Research Institute (IRSPUM), Montreal, Canada.
| |
Collapse
|
13
|
Lin Z, Jaberi-Douraki M, He C, Jin S, Yang RSH, Fisher JW, Riviere JE. Performance Assessment and Translation of Physiologically Based Pharmacokinetic Models From acslX to Berkeley Madonna, MATLAB, and R Language: Oxytetracycline and Gold Nanoparticles As Case Examples. Toxicol Sci 2017; 158:23-35. [DOI: 10.1093/toxsci/kfx070] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the 'bottom up' and 'top down' approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol 2015; 79:48-55. [PMID: 24033787 DOI: 10.1111/bcp.12234] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/22/2013] [Indexed: 01/07/2023] Open
Abstract
Pharmacokinetic models range from being entirely exploratory and empirical, to semi-mechanistic and ultimately complex physiologically based pharmacokinetic (PBPK) models. This choice is conditional on the modelling purpose as well as the amount and quality of the available data. The main advantage of PBPK models is that they can be used to extrapolate outside the studied population and experimental conditions. The trade-off for this advantage is a complex system of differential equations with a considerable number of model parameters. When these parameters cannot be informed from in vitro or in silico experiments they are usually optimized with respect to observed clinical data. Parameter estimation in complex models is a challenging task associated with many methodological issues which are discussed here with specific recommendations. Concepts such as structural and practical identifiability are described with regards to PBPK modelling and the value of experimental design and sensitivity analyses is sketched out. Parameter estimation approaches are discussed, while we also highlight the importance of not neglecting the covariance structure between model parameters and the uncertainty and population variability that is associated with them. Finally the possibility of using model order reduction techniques and minimal semi-mechanistic models that retain the physiological-mechanistic nature only in the parts of the model which are relevant to the desired modelling purpose is emphasized. Careful attention to all the above issues allows us to integrate successfully information from in vitro or in silico experiments together with information deriving from observed clinical data and develop mechanistically sound models with clinical relevance.
Collapse
Affiliation(s)
- Nikolaos Tsamandouras
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
15
|
What happens in the skin? Integrating skin permeation kinetics into studies of developmental and reproductive toxicity following topical exposure. Reprod Toxicol 2015; 58:252-81. [DOI: 10.1016/j.reprotox.2015.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 08/31/2015] [Accepted: 10/07/2015] [Indexed: 02/07/2023]
|
16
|
Hong Y, Liu S, Lin X, Li J, Yi Z, Al-Rasheid KAS. Recognizing the importance of exposure-dose-response dynamics for ecotoxicity assessment: nitrofurazone-induced antioxidase activity and mRNA expression in model protozoan Euplotes vannus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9544-9553. [PMID: 25628113 DOI: 10.1007/s11356-015-4096-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
The equivocality of dose-response relationships has, in practice, hampered the application of biomarkers as a means to evaluate environmental risk, yet this important issue has not yet been fully recognized or explored. This paper evaluates the potential of antioxidant enzymes in the ciliated protozoan Euplotes vannus for use as biomarkers. Dose-response dynamics, together with both the enzyme activity and the gene expression of the antioxidant enzymes, superoxide dismutase, and glutathione peroxidase, were investigated when E. vannus were exposed to graded doses of nitrofurazone for several discrete durations. Mathematical models were explored to characterize the dose-response profiles and, specifically, to identify any equivocality in terms of endpoint. Significant differences were found in both enzyme activity and messenger RNA (mRNA) expression in the E. vannus treated with nitrofurazone, and the interactions between exposure dosage and duration were significant. Correlations between enzyme activity, mRNA expression, and nitrofurazone dose varied with exposure duration. Particularly, the dose-responses showed different dynamics depending on either endpoint or exposure duration. Our findings suggest that both the enzyme activity and the gene expression of the tested antioxidant enzymes can be used as biomarkers for ecotoxicological assessment on the premise of ascertaining appropriate dosage scope, exposure duration, endpoint, etc., which can be achieved by using dose-response dynamics.
Collapse
Affiliation(s)
- Yazhen Hong
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, Guangdong, China
| | | | | | | | | | | |
Collapse
|
17
|
Lehmann GM, Verner MA, Luukinen B, Henning C, Assimon SA, LaKind JS, McLanahan ED, Phillips LJ, Davis MH, Powers CM, Hines EP, Haddad S, Longnecker MP, Poulsen MT, Farrer DG, Marchitti SA, Tan YM, Swartout JC, Sagiv SK, Welsh C, Campbell JL, Foster WG, Yang RS, Fenton SE, Tornero-Velez R, Francis BM, Barnett JB, El-Masri HA, Simmons JE. Improving the risk assessment of lipophilic persistent environmental chemicals in breast milk. Crit Rev Toxicol 2014; 44:600-17. [PMID: 25068490 PMCID: PMC4115797 DOI: 10.3109/10408444.2014.926306] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lipophilic persistent environmental chemicals (LPECs) have the potential to accumulate within a woman's body lipids over the course of many years prior to pregnancy, to partition into human milk, and to transfer to infants upon breastfeeding. As a result of this accumulation and partitioning, a breastfeeding infant's intake of these LPECs may be much greater than his/her mother's average daily exposure. Because the developmental period sets the stage for lifelong health, it is important to be able to accurately assess chemical exposures in early life. In many cases, current human health risk assessment methods do not account for differences between maternal and infant exposures to LPECs or for lifestage-specific effects of exposure to these chemicals. Because of their persistence and accumulation in body lipids and partitioning into breast milk, LPECs present unique challenges for each component of the human health risk assessment process, including hazard identification, dose-response assessment, and exposure assessment. Specific biological modeling approaches are available to support both dose-response and exposure assessment for lactational exposures to LPECs. Yet, lack of data limits the application of these approaches. The goal of this review is to outline the available approaches and to identify key issues that, if addressed, could improve efforts to apply these approaches to risk assessment of lactational exposure to these chemicals.
Collapse
Affiliation(s)
- Geniece M. Lehmann
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, US
| | - Marc-André Verner
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, US
| | | | - Cara Henning
- ICF International, Research Triangle Park, NC, US
| | - Sue Anne Assimon
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, US
| | - Judy S. LaKind
- LaKind Associates, LLC, Catonsville, MD, US
- University of Maryland School of Medicine, Baltimore, MD, US
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, US
| | - Eva D. McLanahan
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, US
| | - Linda J. Phillips
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, US
| | - Matthew H. Davis
- Office of Children’s Health Protection, U.S. Environmental Protection Agency, Washington, DC, US
| | - Christina M. Powers
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, US
| | - Erin P. Hines
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, US
| | - Sami Haddad
- Department of Environmental Health and Occupational Health, IRSPUM (Université de Montréal Public Health Research Institute), Université de Montréal, Montreal, Quebec, Canada
| | - Matthew P. Longnecker
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, US
| | | | | | - Satori A. Marchitti
- Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA, US
| | - Yu-Mei Tan
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, US
| | - Jeffrey C. Swartout
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, US
| | - Sharon K. Sagiv
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, US
| | - Clement Welsh
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, GA, US
| | - Jerry L. Campbell
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC, US
| | - Warren G. Foster
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Raymond S.H. Yang
- Quantitative and Computational Toxicology Group, Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, US
| | - Suzanne E. Fenton
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, US
| | - Rogelio Tornero-Velez
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, US
| | | | - John B. Barnett
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, US
| | - Hisham A. El-Masri
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, US
| | - Jane Ellen Simmons
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, US
| |
Collapse
|
18
|
Neal-Kluever A, Aungst J, Gu Y, Hatwell K, Muldoon-Jacobs K, Liem A, Ogungbesan A, Shackelford M. Infant toxicology: State of the science and considerations in evaluation of safety. Food Chem Toxicol 2014; 70:68-83. [DOI: 10.1016/j.fct.2014.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/02/2014] [Accepted: 05/03/2014] [Indexed: 11/26/2022]
|
19
|
Li J, Zhou L, Lin X, Yi Z, Al-Rasheid KAS. Characterizing dose-responses of catalase to nitrofurazone exposure in model ciliated protozoan Euplotes vannus for ecotoxicity assessment: enzyme activity and mRNA expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 100:294-302. [PMID: 24075098 DOI: 10.1016/j.ecoenv.2013.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/21/2013] [Accepted: 08/24/2013] [Indexed: 06/02/2023]
Abstract
In environmental studies, some biological responses, known as biomarkers, have been used as a powerful bioassay tool for more than four decades. Disparity between enzyme activity and mRNA abundance leads to correlation equivocality, which makes the application of biomarkers for environmental risk assessment more complicated. This study investigates this disparity in the case of catalase when used as a biomarker for detecting ecotoxicity induced by antibiotics in aquatic ecosystems. In particular, dose-responses for catalase activity and mRNA expression abundance were investigated in Euplotes vannus which were exposed to graded doses of nitrofurazone for several discrete durations, and dose-response models were developed to characterize the dose-response dynamics. Significant differences were found in both catalase activity and mRNA expression abundance among the E. vannus treated with nitrofurazone. Catalase activity showed a hormetic-like effect in terms of dose-response, characterized by a biphasic relationship which was more clearly evident after a longer exposure period, while mRNA expression abundance increased linearly with the exposure duration. Additionally, the correlation between catalase activity and mRNA expression abundance reversed along with the duration of exposure to nitrofurazone. Taken together, our results demonstrate that catalase mRNA expression offers a more straightforward dose-response model than enzyme activity. Our findings suggest that both catalase enzyme activity and mRNA expression abundance can be used jointly as bioassay tools for detecting ecotoxicity induced by nitrofurazone in aquatic ecosystems.
Collapse
Affiliation(s)
- Jiqiu Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, Guangdong, China.
| | - Liang Zhou
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Xiaofeng Lin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Zhenzhen Yi
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | | |
Collapse
|
20
|
Dancik Y, Troutman JA, Jaworska J. A framework incorporating the impact of exposure scenarios and application conditions on risk assessment of chemicals applied to skin. In Silico Pharmacol 2013; 1:10. [PMID: 25505655 PMCID: PMC4230815 DOI: 10.1186/2193-9616-1-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/29/2013] [Indexed: 01/14/2023] Open
Abstract
PURPOSE 1. To develop a framework for exposure calculation via the dermal route to meet the needs of 21st century toxicity testing and refine current approaches; 2. To demonstrate the impact of exposure scenario and application conditions on the plasma concentration following dermal exposure. METHOD A workflow connecting a dynamic skin penetration model with a generic whole-body physiologically-based pharmacokinetic (PBPK) model was developed. The impact of modifying exposure scenarios and application conditions on the simulated steady-state plasma concentration and exposure conversion factor was investigated for 9 chemicals tested previously in dermal animal studies which did not consider kinetics in their experimental designs. RESULTS By simulating the animal study scenarios and exposure conditions, we showed that 7 studies were conducted with finite dose exposures, 1 with both finite and infinite dose exposures (in these 8 studies, an increase in the animal dose resulted in an increase in the simulated steady-state plasma concentrations (C p,ss)), while 1 study was conducted with infinite dose exposures only (an increase in the animal dose resulted in identical C p,ss). Steady-state plasma concentrations were up to 30-fold higher following an infinite dose scenario vs. a finite dose scenario, and up to 40-fold higher with occlusion vs. without. Depending on the chemical, the presence of water as a vehicle increased or decreased the steady-state plasma concentration, the largest difference being a factor of 16. CONCLUSIONS The workflow linking Kasting's model of skin penetration and whole-body PBPK enables estimation of plasma concentrations for various applied doses, exposure scenarios and application conditions. Consequently, it provides a quantitative, mechanistic tool to refine dermal exposure calculations methodology for further use in risk assessment.
Collapse
Affiliation(s)
- Yuri Dancik
- The Procter & Gamble Company, Temselaan 100, Strombeek-Bever, 1853 Belgium
| | | | - Joanna Jaworska
- The Procter & Gamble Company, Temselaan 100, Strombeek-Bever, 1853 Belgium
| |
Collapse
|
21
|
Nadal M, Fàbrega F, Schuhmacher M, Domingo JL. PCDD/Fs in plasma of individuals living near a hazardous waste incinerator. A comparison of measured levels and estimated concentrations by PBPK modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5971-5978. [PMID: 23627713 DOI: 10.1021/es400498q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The construction of the first and, until now, only hazardous waste incinerator (HWI) in Spain finished in 1998. To assess its potential impact on the population living in the vicinity, a surveillance program was established. It includes the periodical biomonitoring of PCDD/Fs body burden. On the basis of this program, in 2012 we determined the levels of PCDD/Fs in plasma of nonoccupationally exposed individuals living near the HWI. The results were compared with those of the baseline study, and with those of two previous surveys (2002 and 2007). A multicompartment, physiologically based pharmacokinetic (PBPK) model was also applied to estimate the levels of PCDD/Fs in plasma. The model was validated by comparing the results with our experimental data (baseline, 2002, 2007, and 2012). The current mean concentration was 6.18 pg I-TEQ/g lipid, with a range between 2.03 and 18.8 pg I-TEQ/g lipid. In 1998 (baseline), the mean concentration of PCDD/Fs in plasma was 27.0 pg I-TEQ/g lipid (reduction of 77%, p < 0.001). Significant reductions were also noted in our previous 2002 and 2007 surveys, with mean concentrations of 15.7 and 9.36 pg I-TEQ/g lipid, respectively. However, the comparison between simulated (using the PBPK model) and experimental results was very successful, as PCDD/F values in plasma were very similar (7.95 vs 6.18 pg I-TEQ/g lipid). The levels of PCDD/Fs in plasma of nonoccupationally exposed individuals living near the HWI here assessed are comparatively lower than most recently reported values.
Collapse
Affiliation(s)
- Martí Nadal
- Laboratory of Toxicology and Environmental Health, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | | | | | | |
Collapse
|
22
|
Proctor DM, Suh M, Aylward LL, Kirman CR, Harris MA, Thompson CM, Gürleyük H, Gerads R, Haws LC, Hays SM. Hexavalent chromium reduction kinetics in rodent stomach contents. CHEMOSPHERE 2012; 89:487-493. [PMID: 22682893 DOI: 10.1016/j.chemosphere.2012.04.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/20/2012] [Accepted: 04/26/2012] [Indexed: 06/01/2023]
Abstract
Reduction of hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) in the stomach prior to absorption is a well-recognized detoxification process thought to limit the toxicity of ingested Cr(VI). However, administration of high concentrations of Cr(VI) in drinking water cause mouse small intestinal tumors, and quantitative measures of Cr(VI) reduction rate and capacity for rodent stomach contents are needed for interspecies extrapolation using physiologically-based toxicokinetic (PBTK) models. Ex vivo studies using stomach contents of rats and mice were conducted to quantify Cr(VI) reduction rate and capacity for loading rates (1-400 mg Cr(VI)L(-1) stomach contents) in the range of recent bioassays. Cr(VI) reduction was measured with speciated isotope dilution mass spectrometry to quantify dynamic Cr(VI) and Cr(III) concentrations in stomach contents at select time points over 1 h. Cr(VI) reduction followed mixed second-order kinetics, dependent upon concentrations of both Cr(VI) and the native reducing agents. Approximately 16 mg Cr(VI)-equivalents of reducing capacity per L of fed stomach contents (containing gastric secretions, saliva, water and food) was found for both species. The second-order rate constants were 0.2 and 0.3 L mg(-1) h(-1) for mice and rats, respectively. These findings support that, at the doses that caused cancer in the mouse small intestine (≥ 20 mg Cr(VI)L(-1) in drinking water), the reducing capacity of stomach contents was likely exceeded. Thus, for extrapolation of target tissue dose in risk assessment, PBTK models are necessary to account for competing kinetic rates including second order capacity-limited reduction of Cr(VI) to Cr(III).
Collapse
Affiliation(s)
- Deborah M Proctor
- ToxStrategies, Inc., Rancho Santa Margarita, CA 92688, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cutting Edge PBPK Models and Analyses: Providing the Basis for Future Modeling Efforts and Bridges to Emerging Toxicology Paradigms. J Toxicol 2012; 2012:852384. [PMID: 22899915 PMCID: PMC3413973 DOI: 10.1155/2012/852384] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/21/2012] [Indexed: 12/16/2022] Open
Abstract
Physiologically based Pharmacokinetic (PBPK) models are used for predictions of internal or target dose from environmental and pharmacologic chemical exposures. Their use in human risk assessment is dependent on the nature of databases (animal or human) used to develop and test them, and includes extrapolations across species, experimental paradigms, and determination of variability of response within human populations. Integration of state-of-the science PBPK modeling with emerging computational toxicology models is critical for extrapolation between in vitro exposures, in vivo physiologic exposure, whole organism responses, and long-term health outcomes. This special issue contains papers that can provide the basis for future modeling efforts and provide bridges to emerging toxicology paradigms. In this overview paper, we present an overview of the field and introduction for these papers that includes discussions of model development, best practices, risk-assessment applications of PBPK models, and limitations and bridges of modeling approaches for future applications. Specifically, issues addressed include: (a) increased understanding of human variability of pharmacokinetics and pharmacodynamics in the population, (b) exploration of mode of action hypotheses (MOA), (c) application of biological modeling in the risk assessment of individual chemicals and chemical mixtures, and (d) identification and discussion of uncertainties in the modeling process.
Collapse
|
24
|
Physiologically Based Pharmacokinetic (PBPK) Modeling of Metabolic Pathways of Bromochloromethane in Rats. J Toxicol 2012; 2012:629781. [PMID: 22719758 PMCID: PMC3377357 DOI: 10.1155/2012/629781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/27/2012] [Accepted: 03/30/2012] [Indexed: 11/18/2022] Open
Abstract
Bromochloromethane (BCM) is a volatile compound and a by-product of disinfection of water by chlorination. Physiologically based pharmacokinetic (PBPK) models are used in risk assessment applications. An updated PBPK model for BCM is generated and applied to hypotheses testing calibrated using vapor uptake data. The two different metabolic hypotheses examined are (1) a two-pathway model using both CYP2E1 and glutathione transferase enzymes and (2) a two-binding site model where metabolism can occur on one enzyme, CYP2E1. Our computer simulations show that both hypotheses describe the experimental data in a similar manner. The two pathway results were comparable to previously reported values (Vmax = 3.8 mg/hour, Km = 0.35 mg/liter, and kGST = 4.7 /hour). The two binding site results were Vmax1 = 3.7 mg/hour, Km1 = 0.3 mg/hour, CL2 = 0.047 liter/hour. In addition, we explore the sensitivity of different parameters for each model using our obtained optimized values.
Collapse
|
25
|
Loizou G, Hogg A. MEGen: A Physiologically Based Pharmacokinetic Model Generator. Front Pharmacol 2011; 2:56. [PMID: 22084631 PMCID: PMC3212724 DOI: 10.3389/fphar.2011.00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 09/13/2011] [Indexed: 12/17/2022] Open
Abstract
Physiologically based pharmacokinetic models are being used in an increasing number of different areas. However, they are perceived as complex, data hungry, resource intensive, and time consuming. In addition, model validation and verification are hindered by the relative complexity of the equations. To begin to address these issues a web application called MEGen for the rapid construction and documentation of bespoke deterministic PBPK model code is under development. MEGen comprises a parameter database and a model code generator that produces code for use in several commercial software packages and one that is freely available. Here we present an overview of the current capabilities of MEGen, and discuss future developments.
Collapse
|
26
|
Ruiz P, Ray M, Fisher J, Mumtaz M. Development of a human Physiologically Based Pharmacokinetic (PBPK) Toolkit for environmental pollutants. Int J Mol Sci 2011; 12:7469-80. [PMID: 22174611 PMCID: PMC3233417 DOI: 10.3390/ijms12117469] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/13/2011] [Accepted: 10/24/2011] [Indexed: 11/17/2022] Open
Abstract
Physiologically Based Pharmacokinetic (PBPK) models can be used to determine the internal dose and strengthen exposure assessment. Many PBPK models are available, but they are not easily accessible for field use. The Agency for Toxic Substances and Disease Registry (ATSDR) has conducted translational research to develop a human PBPK model toolkit by recoding published PBPK models. This toolkit, when fully developed, will provide a platform that consists of a series of priority PBPK models of environmental pollutants. Presented here is work on recoded PBPK models for volatile organic compounds (VOCs) and metals. Good agreement was generally obtained between the original and the recoded models. This toolkit will be available for ATSDR scientists and public health assessors to perform simulations of exposures from contaminated environmental media at sites of concern and to help interpret biomonitoring data. It can be used as screening tools that can provide useful information for the protection of the public.
Collapse
Affiliation(s)
- Patricia Ruiz
- Computational Toxicology and Methods Development Laboratory, Division of Toxicology and Environmental Medicine, Agency for Toxic Substances and Disease Registry, Atlanta, GA 30333, USA; E-Mail:
| | - Meredith Ray
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; E-Mail:
| | - Jeffrey Fisher
- USFDA, National Center for Toxicological Research, Jefferson, AR 72079, USA; E-Mail:
| | - Moiz Mumtaz
- Computational Toxicology and Methods Development Laboratory, Division of Toxicology and Environmental Medicine, Agency for Toxic Substances and Disease Registry, Atlanta, GA 30333, USA; E-Mail:
| |
Collapse
|
27
|
Bucher J, Riedmaier S, Schnabel A, Marcus K, Vacun G, Weiss TS, Thasler WE, Nüssler AK, Zanger UM, Reuss M. A systems biology approach to dynamic modeling and inter-subject variability of statin pharmacokinetics in human hepatocytes. BMC SYSTEMS BIOLOGY 2011; 5:66. [PMID: 21548957 PMCID: PMC3117731 DOI: 10.1186/1752-0509-5-66] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 05/06/2011] [Indexed: 12/13/2022]
Abstract
Background The individual character of pharmacokinetics is of great importance in the risk assessment of new drug leads in pharmacological research. Amongst others, it is severely influenced by the properties and inter-individual variability of the enzymes and transporters of the drug detoxification system of the liver. Predicting individual drug biotransformation capacity requires quantitative and detailed models. Results In this contribution we present the de novo deterministic modeling of atorvastatin biotransformation based on comprehensive published knowledge on involved metabolic and transport pathways as well as physicochemical properties. The model was evaluated on primary human hepatocytes and parameter identifiability analysis was performed under multiple experimental constraints. Dynamic simulations of atorvastatin biotransformation considering the inter-individual variability of the two major involved enzymes CYP3A4 and UGT1A3 based on quantitative protein expression data in a large human liver bank (n = 150) highlighted the variability in the individual biotransformation profiles and therefore also points to the individuality of pharmacokinetics. Conclusions A dynamic model for the biotransformation of atorvastatin has been developed using quantitative metabolite measurements in primary human hepatocytes. The model comprises kinetics for transport processes and metabolic enzymes as well as population liver expression data allowing us to assess the impact of inter-individual variability of concentrations of key proteins. Application of computational tools for parameter sensitivity analysis enabled us to considerably improve the validity of the model and to create a consistent framework for precise computer-aided simulations in toxicology.
Collapse
Affiliation(s)
- Joachim Bucher
- Institute of Biochemical Engineering, Allmandring, and Center Systems Biology, Nobelstraße, University of Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 2011; 51:45-73. [PMID: 20854171 DOI: 10.1146/annurev-pharmtox-010510-100540] [Citation(s) in RCA: 428] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The application of physiologically-based pharmacokinetic (PBPK) modeling is coming of age in drug development and regulation, reflecting significant advances over the past 10 years in the predictability of key pharmacokinetic (PK) parameters from human in vitro data and in the availability of dedicated software platforms and associated databases. Specific advances and contemporary challenges with respect to predicting the processes of drug clearance, distribution, and absorption are reviewed, together with the ability to anticipate the quantitative extent of PK-based drug-drug interactions and the impact of age, genetics, disease, and formulation. The value of this capability in selecting and designing appropriate clinical studies, its implications for resource-sparing techniques, and a more holistic view of the application of PK across the preclinical/clinical divide are considered. Finally, some attention is given to the positioning of PBPK within the drug development and approval paradigm and its future application in truly personalized medicine.
Collapse
Affiliation(s)
- Malcolm Rowland
- Centre for Pharmacokinetic Research, University of Manchester, United Kingdom.
| | | | | |
Collapse
|
29
|
Abstract
The ability of a compound to elicit a toxic effect within an organism is dependent upon three factors (i) the external exposure of the organism to the toxicant in the environment or via the food chain (ii) the internal uptake of the compound into the organism and its transport to the site of action in sufficient concentration and (iii) the inherent toxicity of the compound. The in silico prediction of toxicity and the role of external exposure have been dealt with in other chapters of this book. This chapter focuses on the importance of ‘internal exposure’ i.e. the absorption, distribution, metabolism and elimination (ADME) properties of compounds which determine their toxicokinetic profile. An introduction to key concepts in toxicokinetics will be provided, along with examples of modelling approaches and software available to predict these properties. A brief introduction will also be given into the theory of physiologically-based toxicokinetic modelling.
Collapse
Affiliation(s)
- J. C. Madden
- School of Pharmacy and Chemistry, Liverpool John Moores University Byrom Street Liverpool L3 3AF UK
| |
Collapse
|
30
|
Joshi G, Tremblay RT, Martin SA, Fisher JW. Partition coefficients for nonane and its isomers in the rat. Toxicol Mech Methods 2010; 20:594-9. [DOI: 10.3109/15376516.2010.518175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Chiu WA, Euling SY, Scott CS, Subramaniam RP. Approaches to advancing quantitative human health risk assessment of environmental chemicals in the post-genomic era. Toxicol Appl Pharmacol 2010; 271:309-23. [PMID: 20353796 DOI: 10.1016/j.taap.2010.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
The contribution of genomics and associated technologies to human health risk assessment for environmental chemicals has focused largely on elucidating mechanisms of toxicity, as discussed in other articles in this issue. However, there is interest in moving beyond hazard characterization to making more direct impacts on quantitative risk assessment (QRA)--i.e., the determination of toxicity values for setting exposure standards and cleanup values. We propose that the evolution of QRA of environmental chemicals in the post-genomic era will involve three, somewhat overlapping phases in which different types of approaches begin to mature. The initial focus (in Phase I) has been and continues to be on "augmentation" of weight of evidence--using genomic and related technologies qualitatively to increase the confidence in and scientific basis of the results of QRA. Efforts aimed towards "integration" of these data with traditional animal-based approaches, in particular quantitative predictors, or surrogates, for the in vivo toxicity data to which they have been anchored are just beginning to be explored now (in Phase II). In parallel, there is a recognized need for "expansion" of the use of established biomarkers of susceptibility or risk of human diseases and disorders for QRA, particularly for addressing the issues of cumulative assessment and population risk. Ultimately (in Phase III), substantial further advances could be realized by the development of novel molecular and pathway-based biomarkers and statistical and in silico models that build on anticipated progress in understanding the pathways of human diseases and disorders. Such efforts would facilitate a gradual "reorientation" of QRA towards approaches that more directly link environmental exposures to human outcomes.
Collapse
Affiliation(s)
- Weihsueh A Chiu
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington DC, 20460, USA.
| | | | | | | |
Collapse
|
32
|
Luke NS, Sams R, DeVito MJ, Conolly RB, El-Masri HA. Development of a quantitative model incorporating key events in a hepatotoxic mode of action to predict tumor incidence. Toxicol Sci 2010; 115:253-66. [PMID: 20106946 DOI: 10.1093/toxsci/kfq021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Biologically based dose-response (BBDR) modeling of environmental pollutants can be utilized to inform the mode of action (MOA) by which compounds elicit adverse health effects. Chemicals that produce tumors are typically labeled as either genotoxic or nongenotoxic. Though both the genotoxic and the nongenotoxic MOA may be operative as a function of dose, it is important to note that the label informs but does not define a MOA. One commonly proposed MOA for nongenotoxic carcinogens is characterized by the key events cytotoxicity and regenerative proliferation. The increased division rate associated with such proliferation can cause an increase in the probability of mutations, which may result in tumor formation. We included these steps in a generalized computational pharmacodynamic (PD) model incorporating cytotoxicity as a MOA for three carcinogens (chloroform, CHCl(3); carbon tetrachloride, CCL(4); and N,N-dimethylformamide, DMF). For each compound, the BBDR model is composed of a chemical-specific physiologically based pharmacokinetic model linked to a PD model of cytotoxicity and cellular proliferation. The rate of proliferation is then linked to a clonal growth model to predict tumor incidences. Comparisons of the BBDR simulations and parameterizations across chemicals suggested that significant variation among the models for the three chemicals arises in a few parameters expected to be chemical specific (such as metabolism and cellular injury rate constants). Optimization of model parameters to tumor data for CCL(4) and DMF resulted in similar estimates for all parameters related to cytotoxicity and tumor incidences. However, optimization of the CHCl(3) data resulted in a higher estimate for one parameter (BD) related to death of initiated cells. This implies that additional steps beyond cytotoxicity leading to induced cellular proliferation can be quantitatively different among chemicals that share cytotoxicity as a hypothesized carcinogenic MOA.
Collapse
Affiliation(s)
- Nicholas S Luke
- Department of Mathematics, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411, USA
| | | | | | | | | |
Collapse
|
33
|
Evaluation of genotoxic effects of semicarbazide on cultured human lymphocytes and rat bone marrow. Food Chem Toxicol 2010; 48:209-14. [DOI: 10.1016/j.fct.2009.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/09/2009] [Accepted: 10/01/2009] [Indexed: 11/22/2022]
|
34
|
Krishnan K, Crouse LC, Bazar MA, Major MA, Reddy G. Physiologically based pharmacokinetic modeling of cyclotrimethylenetrinitramine in male rats. J Appl Toxicol 2009; 29:629-37. [DOI: 10.1002/jat.1455] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Creton S, Billington R, Davies W, Dent MP, Hawksworth GM, Parry S, Travis KZ. Application of toxicokinetics to improve chemical risk assessment: implications for the use of animals. Regul Toxicol Pharmacol 2009; 55:291-9. [PMID: 19665509 DOI: 10.1016/j.yrtph.2009.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/31/2009] [Accepted: 08/03/2009] [Indexed: 11/30/2022]
Abstract
While toxicokinetics has become an integral part of pharmaceutical safety assessment over the last two decades, its use in the chemical industry is relatively new. However, it is recognised as a potentially important tool in human health risk assessment and recent initiatives have advocated greater application of toxicokinetics as part of an improved assessment strategy for crop protection chemicals that could offer greater efficiency, use fewer animals and provide better data for risk assessment purposes. To explore the potential scientific and animal welfare benefits of increased use of toxicokinetic data across the chemical industry, an international workshop was held in 2008. Experts from a wide range of chemical industry sectors, including industrial chemicals, agrochemicals and consumer products, participated in the meeting as well as representatives from relevant regulatory authorities. Pharmaceutical industry experts were also invited, in order to share experiences from the extensive use of toxicokinetics in drug development. Given that increased generation of toxicokinetic data could potentially result in an increased number of animals undergoing testing, technologies and strategies to reduce and refine animal use for this purpose were also considered. This paper outlines and expands upon the key themes that emerged from the workshop.
Collapse
Affiliation(s)
- Stuart Creton
- National Centre for the Replacement, Refinement and Reduction of Animals in Research, London W1B 1AL, UK.
| | | | | | | | | | | | | |
Collapse
|
36
|
PKQuest_Java: free, interactive physiologically based pharmacokinetic software package and tutorial. BMC Res Notes 2009; 2:158. [PMID: 19656378 PMCID: PMC2728517 DOI: 10.1186/1756-0500-2-158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 08/05/2009] [Indexed: 12/31/2022] Open
Abstract
Background Physiologically based pharmacokinetics (PBPK) uses a realistic organ model to describe drug kinetics. The blood-tissue exchange of each organ is characterized by its volume, perfusion, metabolism, capillary permeability and blood/tissue partition coefficient. PBPK applications require both sophisticated mathematical modeling software and a reliable complete set of physiological parameters. Currently there are no software packages available that combine ease of use with the versatility that is required of a general PBPK program. Findings The program is written in Java and is available for free download at . Included in the download is a detailed tutorial that discusses the pharmacokinetics of 6 solutes (D2O, amoxicillin, desflurane, propofol, ethanol and thiopental) illustrated using experimental human pharmacokinetic data. The complete PBPK description for each solute is stored in Excel spreadsheets that are included in the download. The main features of the program are: 1) Intuitive and versatile interactive interface; 2) Absolute and semi-logarithmic graphical output; 3) Pre-programmed optimized human parameter data set (but, arbitrary values can be input); 4) Time dependent changes in the PBPK parameters; 5) Non-linear parameter optimization; 6) Unique approach to determine the oral "first pass metabolism" of non-linear solutes (e.g. ethanol); 7) Pulmonary perfusion/ventilation heterogeneity for volatile solutes; 8) Input and output of Excel spreadsheet data; 9) Antecubital vein sampling. Conclusion PKQuest_Java is a free, easy to use, interactive PBPK software routine. The user can either directly use the pre-programmed optimized human or rat data set, or enter an arbitrary data set. It is designed so that drugs that are classified as "extracellular" or "highly fat soluble" do not require information about tissue/blood partition coefficients and can be modeled by a minimum of user input parameters. PKQuest_Java, along with the included tutorial, could be used as the basis of an interactive, on-line, pharmacokinetic course.
Collapse
|
37
|
Gargas M, Kirman C, Sweeney L, Tardiff R. Acrylamide: Consideration of species differences and nonlinear processes in estimating risk and safety for human ingestion. Food Chem Toxicol 2009; 47:760-8. [DOI: 10.1016/j.fct.2008.12.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 12/17/2008] [Accepted: 12/24/2008] [Indexed: 10/21/2022]
|
38
|
Makris SL, Thompson CM, Euling SY, Selevan SG, Sonawane B. A lifestage-specific approach to hazard and dose-response characterization for children's health risk assessment. ACTA ACUST UNITED AC 2009; 83:530-46. [PMID: 19085945 DOI: 10.1002/bdrb.20176] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In 2006, the U.S. EPA published a report entitled A Framework for Assessing Health Risks of Environmental Exposures to Children (hereafter referred to as the "Framework") describing a lifestage approach to risk assessment that includes the evaluation of existing data from a temporal perspective (i.e., the timing of both the exposure and the outcome). This article summarizes the lifestage-specific issues discussed in the Framework related to the qualitative and the quantitative hazard and dose-response characterization. Lifestage-specific hazard characterization includes an evaluation of relevant human and experimental animal studies, focusing on the identification of critical windows of development (i.e., exposure intervals of maximum susceptibility) for observed outcomes, evaluation of differential exposure at individual lifestages, the relevance and impact of lifestage-specific toxicokinetic and toxicodynamic data, mode of action information, variability and latency of effects from early lifestage exposure, and describing uncertainties. The interpretation of the hazard data to determine the strength of association between early life exposures and the timing and type of outcomes depends upon the overall weight of evidence. Lifestage-specific dose-response characterization relies on the identification of susceptible lifestages in order to quantify health risk, information on the point of departure, key default assumptions, and descriptions of uncertainty, sensitivity, and variability. Discussion of the strength and limitations of the hazard and dose-response data provides a basis for confidence in risk determinations. Applying a lifestage approach to hazard and dose-response characterization is likely to improve children's health risk assessment by identifying data gaps and providing a better understanding of sources of uncertainty.
Collapse
Affiliation(s)
- Susan L Makris
- National Center for Environmental Assessment (NCEA), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), 1200 Pennsylvania Avenue, NW, Washington, DC 20460, USA.
| | | | | | | | | |
Collapse
|