1
|
Les F, Galiffa V, Cásedas G, Moliner C, Maggi F, López V, Gómez-Rincón C. Essential Oils of Two Subspecies of Satureja montana L. against Gastrointestinal Parasite Anisakis simplex and Acetylcholinesterase Inhibition. Molecules 2024; 29:4640. [PMID: 39407570 PMCID: PMC11477606 DOI: 10.3390/molecules29194640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
The increasing presence of Anisakis spp. in fish is having significant implications for public health due to a rise in cases of anisakiasis. Given this situation, there is a critical need to develop new strategies to fight this parasite. Satureja montana L., commonly known as savory, is a plant recognized in folk medicine for its therapeutic activity, such as being antispasmodic and digestive, among other properties. The aim of this study was to assess the nematicide activity against A. simplex larvae of the essential oil from two varieties of S. montana (subsp. montana (SMM) and variegata (SMV)). The essential oils were obtained via hydro-distillation of the flowering aerial parts. In vitro assays demonstrated the complete inactivation of anisakis larvae after 24 h when exposed to both essential oils, along with a significant reduction in their penetration capacity. Moreover, both essential oils showed an inhibitory effect on acetylcholinesterase (AChE). No differences between the subspecies were observed in any of the assays. Hence, the nematicidal activity of essential oils could be attributed to their capacity to inhibit AChE. These findings suggest the potential of S. montana essential oil for therapeutic and food industry applications.
Collapse
Affiliation(s)
- Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Spain; (G.C.); (C.M.); (V.L.); (C.G.-R.)
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Veronica Galiffa
- Chemistry Interdiscplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy; (V.G.); (F.M.)
| | - Guillermo Cásedas
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Spain; (G.C.); (C.M.); (V.L.); (C.G.-R.)
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Cristina Moliner
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Spain; (G.C.); (C.M.); (V.L.); (C.G.-R.)
| | - Filippo Maggi
- Chemistry Interdiscplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy; (V.G.); (F.M.)
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Spain; (G.C.); (C.M.); (V.L.); (C.G.-R.)
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Carlota Gómez-Rincón
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Spain; (G.C.); (C.M.); (V.L.); (C.G.-R.)
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
2
|
Rahman SS, Klamrak A, Nopkuesuk N, Nabnueangsap J, Janpan P, Choowongkomon K, Daduang J, Daduang S. Impacts of Plu kaow ( Houttuynia cordata Thunb.) Ethanolic Extract on Diabetes and Dyslipidemia in STZ Induced Diabetic Rats: Phytochemical Profiling, Cheminformatics Analyses, and Molecular Docking Studies. Antioxidants (Basel) 2024; 13:1064. [PMID: 39334723 PMCID: PMC11428413 DOI: 10.3390/antiox13091064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing prevalence of diabetes and dyslipidemia poses significant health challenges, impacting millions of people globally and leading to high rates of illness and death. This study aimed to explore the potential antidiabetic and hypolipidemic effects of Plu kaow (Houttuynia cordata Thunb.) ethanolic extract (PK) in streptozotocin (STZ) induced diabetic rats, focusing on its molecular mechanisms. Diabetes was induced in fasting Long Evans rats using streptozotocin (65 mg/kg b. w.), with glibenclamide (5 mg/kg/day) used as the standard experimental drug. The treated groups received oral supplementation of PK (500 mg/kg/day) for 28 days. The study evaluated blood glucose levels, lipid status, body weight, liver, kidney, and heart function biomarkers, antioxidant activity, and histological examination of various organs. Additionally, untargeted metabolomics, cheminformatics, and molecular docking were employed to elucidate the probable mechanisms of action of PK. Based on metabolomic profiling data, the PK was found to contain various putative antidiabetic agents such as kaempferol 7-neohesperidoside, isochlorogenic acid C, rutin, datiscin, and diosmin and they have been proposed to significantly (p < 0.001) reduce blood glucose levels and modulated hyperlipidemia. PK also improved the tested liver, kidney, and heart function biomarkers and reversed damage to normal pancreatic, liver, kidney, and heart cells in histological analysis. In conclusion, PK shows promise as a potential treatment or management option for diabetes and hyperlipidemia, as well as their associated complications in diabetic rats.
Collapse
Affiliation(s)
- Shaikh Shahinur Rahman
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Applied Nutrition and Food Technology, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Anuwatchakij Klamrak
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Napapuch Nopkuesuk
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jaran Nabnueangsap
- Salaya Central Instrument Facility RSPG, Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Piyapon Janpan
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jureerut Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
3
|
Polaki S, Stamatelopoulou V, Kotsou K, Chatzimitakos T, Athanasiadis V, Bozinou E, Lalas SI. Exploring Conventional and Green Extraction Methods for Enhancing the Polyphenol Yield and Antioxidant Activity of Hyssopus officinalis Extracts. PLANTS (BASEL, SWITZERLAND) 2024; 13:2105. [PMID: 39124223 PMCID: PMC11313759 DOI: 10.3390/plants13152105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Hyssopus officinalis L. (HO) is, as one of the most prevalently utilized plants, used in traditional medicine to cure various diseases as well as the in food and cosmetic industries. Moreover, HO is a rich source of polyphenols with potent antioxidant properties. However, the studies on the extraction of such compounds from HO are scanty and sparse. This study aims to optimize the extraction of polyphenols and maximize the antioxidant activity in HO extracts. A comprehensive experimental design was employed, encompassing varied extraction parameters to determine the most effective ones. Alongside conventional stirring (ST), two green approaches, the ultrasonic treatment (US) and the pulsed electric field (PEF), were explored, either alone or in combination. The extracted polyphenolic compounds were identified with a high-performance liquid chromatography-diode array detector (HPLC-DAD). According to the results, the employment of ST along with an ethanolic solvent at 80 °C for 150 min seems beneficial in maximizing the extraction of polyphenols from HO, resulting in extracts with enhanced antioxidant activity. The total polyphenol was noted at 70.65 ± 2.76 mg gallic acid equivalents (GAE)/g dry weight (dw) using the aforementioned techniques, and the antioxidant activity was noted as 582.23 ± 16.88 μmol ascorbic acid equivalents (AAE)/g dw (with FRAP method) and 343.75 ± 15.61 μmol AAE/g dw (with the DPPH method). The as-prepared extracts can be utilized in the food and cosmetics industries to bestow or enhance the antioxidant properties of commercial products.
Collapse
Affiliation(s)
| | | | | | - Theodoros Chatzimitakos
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece; (S.P.); (V.S.); (K.K.); (V.A.); (E.B.); (S.I.L.)
| | | | | | | |
Collapse
|
4
|
Atazhanova G, Ishmuratova M, Levaya Y, Smagulov M, Lakomkina Y. The Genus Hyssopus: Traditional Use, Phytochemicals and Pharmacological Properties. PLANTS (BASEL, SWITZERLAND) 2024; 13:1683. [PMID: 38931115 PMCID: PMC11207324 DOI: 10.3390/plants13121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
According to modern concepts, the genus Hyssopus L. includes seven plant species (Hyssopus ambiguus (Trautv.) Iljin ex Prochorov. & Lebel; Hyssopus cuspidatus Boriss; Hyssopus latilabiatus C.Y.Wu & H.W. Li; Hyssopus macranthus Boriss.; Hyssopus officinalis L.; Hyssopus seravschanicus (Dubj.) Pazij; Hyssopus subulifolius (Rech.f.) Rech.f.). The plants are rich in various groups of biologically active substances with a wide spectrum of pharmacological action. This review presents a modern comprehensive overview of the botanical research, extraction methods, chemical composition and pharmacological activity of plants of the genus Hyssopus L. As a result of the review, it was established that the chemical composition of plant extracts of the genus Hyssopus L. depends on various factors (place of growth, weather conditions, chemotypes, extraction methods, etc.). For the further use of the plants, the extraction methods and low-molecular metabolites isolated from them (mono- and sesquiterpenoids, flavonoids, alkaloids, etc.) are discussed. The data from the review provide an assessment of the relevance.
Collapse
Affiliation(s)
- Gayane Atazhanova
- Research Park of Biotechnology and Eco-Monitoring, Karaganda Buketov University, Universitetskaya Street, 28, Karaganda 100028, Kazakhstan; (G.A.); (M.S.)
- School of Pharmacy, Karaganda Medical University, Gogol Street, 40, Karaganda 100017, Kazakhstan;
| | - Margarita Ishmuratova
- Research Park of Biotechnology and Eco-Monitoring, Karaganda Buketov University, Universitetskaya Street, 28, Karaganda 100028, Kazakhstan; (G.A.); (M.S.)
| | - Yana Levaya
- Research Park of Biotechnology and Eco-Monitoring, Karaganda Buketov University, Universitetskaya Street, 28, Karaganda 100028, Kazakhstan; (G.A.); (M.S.)
- School of Pharmacy, Karaganda Medical University, Gogol Street, 40, Karaganda 100017, Kazakhstan;
| | - Marlen Smagulov
- Research Park of Biotechnology and Eco-Monitoring, Karaganda Buketov University, Universitetskaya Street, 28, Karaganda 100028, Kazakhstan; (G.A.); (M.S.)
| | - Yekaterina Lakomkina
- School of Pharmacy, Karaganda Medical University, Gogol Street, 40, Karaganda 100017, Kazakhstan;
| |
Collapse
|
5
|
Huang L, Liu Z, Wang J, Fu J, Jia Y, Ji L, Wang T. Bioactivity and health effects of garlic essential oil: A review. Food Sci Nutr 2023; 11:2450-2470. [PMID: 37324866 PMCID: PMC10261769 DOI: 10.1002/fsn3.3253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Garlic (Allium sativum L.), the underground bulb of the Allium plant in the family Liliaceae, is a common and popular spice that has historically been used to prevent and treat many different diseases such as pain, deafness, diarrhea, tumors, and other healthy problems. Garlic essential oil contains a variety of organosulfur compounds, such as the most representative diallyl disulfides (DADS) and diallyl trisulfides (DATS), which have attracted great interest in medicine, food, and agriculture because of their rich biological activities. This paper reviews the research progress on the composition and bioactivities of garlic essential oil mixtures and the bioactivity of some typical monomeric sulfides in garlic essential oil. The active mechanisms of representative sulfides in garlic essential oil were analyzed, and the applications of garlic essential oil in functional food, food additives, and clinical treatment were discussed. Combined with the current research status, the limitations and development direction of garlic essential oil in the study of molecular mechanism were discussed, which is of great significance to the development of garlic essential oil as a natural and safe alternative medicine for treatment.
Collapse
Affiliation(s)
- Lei Huang
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Zhenxin Liu
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Jing Wang
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Jiaolong Fu
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Yonglu Jia
- Department of Stomotology, Suzhou Kowloon HospitalShanghai Jiaotong University School of MedicineSuzhouChina
| | - Lilian Ji
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Taoyun Wang
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| |
Collapse
|
6
|
AlDreini S, Fatfat Z, Abou Ibrahim N, Fatfat M, Gali-Muhtasib H, Khalife H. Thymoquinone enhances the antioxidant and anticancer activity of Lebanese propolis. World J Clin Oncol 2023; 14:203-214. [PMID: 37275937 PMCID: PMC10236984 DOI: 10.5306/wjco.v14.i5.203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/24/2023] [Accepted: 04/12/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) are produced by multiple cellular processes and are maintained at optimal levels in normal cells by endogenous antioxidants. In recent years, the search for potential exogenous antioxidants from dietary sources has gained considerable attention to eliminate excess ROS that is associated with oxidative stress related diseases including cancer. Propolis, a resinous honeybee product, has been shown to have protective effects against oxidative stress and anticancer effects against several types of neoplasms. AIM To investigate the antioxidant and anticancer potential of Lebanese propolis when applied alone or in combination with the promising anticancer compound Thymoquinone (TQ) the main constituent of Nigella sativa essential oil. METHODS Crude extracts of Lebanese propolis collected from two locations, Rashaya and Akkar-Danniyeh, were prepared in methanol and the total phenolic content was determined by Folin-Ciocalteu method. The antioxidant activity was assessed by the ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and to inhibit H2O2-induced oxidative hemolysis of human erythrocytes. The anticancer activity was evaluated by [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] MTT assay against HCT-116 human colorectal cancer cells and MDA-MB-231 human breast cancer cells. RESULTS The total phenolic content of propolis extract from Rashaya and Akkar-Danniyeh were 56.81 µg and 83.503 µg of gallic acid equivalent /mg of propolis, respectively. Both natural agents exhibited strong antioxidant activities as evidenced by their ability to scavenge DPPH free radical and to protect erythrocytes against H2O2-induced hemolysis. They also dose-dependently decreased the viability of both cancer cell lines. The IC50 value of each of propolis extract from Rashaya and Akkar-Danniyeh or TQ was 22.3, 61.7, 40.44 µg/mL for breast cancer cells at 72 h and 33.3, 50.9, 33.5 µg/mL for colorectal cancer cells at the same time point, respectively. Importantly, the inhibitory effects of propolis on DPPH radicals and cancer cell viability were achieved at half its concentration when combined with TQ. CONCLUSION Our results indicate that Lebanese propolis extract has antioxidant and anticancer potential and its combination with TQ could possibly prevent ROS- mediated diseases.
Collapse
Affiliation(s)
- Sima AlDreini
- Rammal Rammal Laboratory (ATAC Group), Faculty of Sciences I, Hadath 1003, Lebanon
| | - Zaynab Fatfat
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Najwa Abou Ibrahim
- Rammal Rammal Laboratory (ATAC Group), Faculty of Sciences I, Hadath 1003, Lebanon
| | - Maamoun Fatfat
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hala Khalife
- Rammal Rammal Laboratory (ATAC Group), Faculty of Sciences I, Hadath 1003, Lebanon
- Applied Biochemistry Laboratory, School of Pharmacy, Camerino University, Camerino 62032, Italy
| |
Collapse
|
7
|
da Silva SP, da Costa CBL, de Freitas AFS, da Silva JDF, Costa WK, da Silva WSFL, Machado JCB, da Silva SMS, Ferreira MRA, Soares LAL, da Costa Silva Neto J, da Silva MV, de Oliveira AM, Paiva PMG, Napoleão TH. Saline extract of Portulaca elatior leaves with photoprotective and antioxidant activities does not show acute oral and dermal toxicity in mice. Toxicol Res 2023; 39:179-190. [PMID: 37008695 PMCID: PMC10050472 DOI: 10.1007/s43188-022-00160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to evaluate saline extracts from the leaves (LE) and stem (SE) of Portulaca elatior in relation to their phytochemical composition and photoprotective and antioxidant effects, as well as to evaluate the toxicity of the leaf extract. The extracts were characterized for protein concentration and phenol and flavonoid contents, as well as for thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) profiles. Total antioxidant capacity and DPPH and ABTS+ scavenging activities were determined. In the photoprotective activity assay, the sun protection factor (SPF) was calculated. The toxicity evaluation of LE included in vitro hemolytic assay and in vivo oral and dermal acute toxicity assays in Swiss mice. LE showed the highest protein, phenol, and flavonoid (8.79 mg/mL, 323.46 mg GAE/g, and 101.96 QE/g, respectively). TLC revealed the presence of flavonoids, reducing sugars, terpenes, and steroids in both extracts. In HPLC profiles, LE contained flavonoids, while SE contained flavonoids and ellagic tannins. The antioxidant activity assays showed the lowest IC50 values (34.15-413.3 µg/mL) for LE, which presented relevant SPF (> 6) at 50 and 100 µg/mL. LE demonstrated low hemolytic capacity, and no signs of intoxication were observed in mice treated orally or topically at 1000 mg/kg. However, at 2000 mg/kg, an increase in the mean corpuscular volume of erythrocytes and a reduction in lymphocytes were observed; animals treated topically with 2000 mg/kg displayed scratching behavior during the first hour of observation and showed edema and erythema that regressed after six days. In conclusion, LE did not present acute oral or dermal toxicity in Swiss mice at a dose of 1000 mg/kg and showed slight toxicity in animals treated with 2000 mg/kg. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00160-2.
Collapse
Affiliation(s)
- Suéllen Pedrosa da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | | | | | | | - Wêndeo Kennedy Costa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | | | - Janaina Carla Barbosa Machado
- Departamento de Ciências Farmacêuticas, Centro de Desenvolvimento Analítico e Tecnológico de Fitoterápicos, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | - Sandra Maria Souza da Silva
- Departamento de Histologia e Embriologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | - Magda Rhayanny Assunção Ferreira
- Departamento de Ciências Farmacêuticas, Centro de Desenvolvimento Analítico e Tecnológico de Fitoterápicos, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | - Luiz Alberto Lira Soares
- Departamento de Ciências Farmacêuticas, Centro de Desenvolvimento Analítico e Tecnológico de Fitoterápicos, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | - Jacinto da Costa Silva Neto
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | - Márcia Vanusa da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | - Alisson Macário de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| |
Collapse
|
8
|
Khaksar S, Kiarostami K, Alinaghi S. The Effects of Methanol Extracts of Hyssopus officinalis on Model of Induced Glioblastoma Multiforme (GBM) in Rats. J Mol Neurosci 2022; 72:2045-2066. [PMID: 35963984 DOI: 10.1007/s12031-022-02058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/04/2022] [Indexed: 11/27/2022]
Abstract
Given the complexity of pathophysiological processes of brain tumors, ineffective therapies, and high mortality rate, new therapeutic options with less toxicity are necessary. Hyssopus officinalis (hyssop) is an aromatic plant with important biological activities. The aim of this study is to assess the anti-cancer effect of hyssop extract on damages of glioblastoma multiforme. In this study, total flavonoids, phenolic content, and quantification of phenolic compound of hyssop extracts were analyzed. In vitro antioxidant properties of hyssop extract were also examined. In addition, cell viability, apoptosis, and cell cycle were evaluated in C6 glioma cell culture. In vivo, the rats were divided randomly into four main groups: intact, control, vehicle, and treatment groups. 1 × 106 C6 rat glioma cells were implanted into the right caudate nucleus of the rat's brain. The treatment group received the methanol extract of hyssop (100 mg/kg) for 7 days. Evolution of locomotor activity, tumor volume, survival rate, activities of antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)), vascular endothelial growth factor (VEGF) expression, TUNEL-positive cells, p53 and p21 mRNA expression, and histological alterations were performed. The results showed that the methanol extract of hyssop increased the apoptosis and reduced the cell division of C6 glioma cells in cell culture. Moreover, methanol extract decreased the tumor volume and prolonged survival. Also, the activity of SOD and CAT enzymes was reduced in tumor tissue and enhanced in surrounding tissue. TUNEL-positive cells were increased in methanol extract of hyssop group. The expression of p53 and p21 mRNA was upregulated in the treatment group. Moreover, the histological analysis indicated a considerable decrease in invasion of tumor cells and inflammation in the hyssop-treated rats. According to the achieved results, it can be stated that hyssop has sufficient potential to inhibit damage of brain tumors, at least in part, by affecting the oxidative stress and cell proliferation pathways.
Collapse
Affiliation(s)
- Sepideh Khaksar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Khadijeh Kiarostami
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Shahrzad Alinaghi
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
9
|
Islam AKMM, Suttiyut T, Anwar MP, Juraimi AS, Kato-Noguchi H. Allelopathic Properties of Lamiaceae Species: Prospects and Challenges to Use in Agriculture. PLANTS 2022; 11:plants11111478. [PMID: 35684250 PMCID: PMC9182988 DOI: 10.3390/plants11111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Herbicide resistance due to the increasing reliance on herbicides is a near-term challenge for the world’s agriculture. This has led to a desire to develop new herbicides with a novel mode of action, to address resistance in weed species. Lamiaceae, a large dicotyledonous plant family, is very well known for the multitudinous pharmacological and toxicological properties of its member species. Moreover, many species of this family are significant for their allelopathic activity in natural and laboratory settings. Thus, plants in Lamiaceae have the potential to be sources of alternative herbicides. However, gaps in our knowledge need to be addressed prior to adopting these allelopathic activities in agriculture. Therefore, we review the existing state of knowledge about the Lamiaceae family, the reported allelopathic properties of plant extracts, and their isolated allelochemicals under laboratory, greenhouse, and field conditions. In addition, we offer a perspective on existing challenges and future opportunities for adopting the allelopathic properties of Lamiaceae plant species for green agriculture.
Collapse
Affiliation(s)
- A. K. M. Mominul Islam
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- Correspondence: ; Tel.: +880-1718-512082
| | - Thiti Suttiyut
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Dr, West Lafayette, IN 47907, USA;
- Purdue Center of Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Md. Parvez Anwar
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Abdul Shukor Juraimi
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan;
| |
Collapse
|
10
|
Kakoti M, Hazarika D, Parveen A, Dullah S, Ghosh A, Saha D, Barooah M, Boro R. Nutritional Properties, Antioxidant and Antihaemolytic Activities of the Dry Fruiting Bodies of Wild Edible Mushrooms Consumed by Ethnic Communities of Northeast India. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/144044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Selvaraj K, Katare DP, Chand S, Chaudhary N. Trachyspermum ammi and Cinnamomum verum as nutraceuticals: Spices rich in therapeutically significant protein tyrosine phosphatases. J Food Biochem 2021; 45:e13750. [PMID: 33954990 DOI: 10.1111/jfbc.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022]
Abstract
Nutraceuticals need special attention as preventive molecules to create a natural barrier against various dreadful diseases like cancer and to regulate metabolism. In the present study, two spices, Trachyspermum ammi and Cinnamomum verum, been identified as excellent Protein Tyrosine Phosphatases (PTPases) sources that play significant role in the regulation of cell signal transduction and developmental processes in plants as well as animals, being lucrative and potential targets for pharmacological modulation. PTPases from both cases were partially purified into 0%-40% and 40%-80% fractions based on ammonium sulfate saturation levels. Fraction (40%-80%) exhibited a purification level of 4.44-fold and 2.86-fold with specific activity of 44.06 and 23.33 U/mg for PTPases from T. ammi and C. verum, respectively. PTPases being found to be thermally stable up to 70°C imply their industrial significance. Kinetic studies showed Km values to be 7.14 and 8.33 mM, whereas the activation energy (Ea ) values were 25.89 and 29.13 kJ/mol, respectively. Divalent cations: Cu2+ , Zn2+ , and Mn2+ acted as inhibitors of PTPases, from both sources. The Ki values of inhibitors varied from 0.014-0.125 mM in the descending order Cu2+ > Zn2+ > Mn2+ and Mn2+ > Cu2+ > Zn2+ for PTPases from T. ammi and C. verum, respectively. The inhibitory effect of sodium metavanadate aligns with prominent PTPase characteristics. In addition to these properties, the thermostability of PTPases from two spices enhances their significance in industries with therapeutically vital products. Although the source of PTPases is culinary spices, further studies are required to establish the utilization of PTPases as nutraceuticals and in therapeutic formulations. PRACTICAL APPLICATIONS: For a healthy lifestyle, awareness needs to be created by humankind towards food habits to minimize illnesses. Numerous studies have explored the consumption of nutraceutical products acts as a natural barrier and immune booster for various human ailments including SARS-COV-2. PTPases play important roles in regulating intracellular signaling and, ultimately, biological function along with their structural features. The importance of PTPases and their inhibitors has been implicated in various diseases like cancer, diabetes, and obesity. Further investigations need to be undertaken to explore the therapeutic properties of PTPases in both in vivo and in vitro for their clinical significance.
Collapse
Affiliation(s)
- Kanagarethinam Selvaraj
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Deepshikha Pande Katare
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Subhash Chand
- Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Nidhee Chaudhary
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
12
|
Gallotti FC, Serafini MR, Thomazzi SM. Scenario of the Treatment of Arthritis with Natural Products. ACTA ACUST UNITED AC 2021; 14:95-105. [DOI: 10.2174/1872213x14666200228103001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 11/22/2022]
Abstract
Background:
Conventional treatments of arthritis use toxic and poorly tolerated drugs.
Therefore, natural products are an alternative because they are important sources of bioactive substances
with therapeutic potential.
Objective:
To perform synthesis of patent applications associated with the use of natural products
in the technological development of the invention for use in treating arthritis.
Methods:
The search for patents was conducted using the following databases of World Intellectual
Property Organization (WIPO), European Patent Office (EPO, Espacenet), United States Patents
and Trademark Office (USPTO) and National Institute of Intellectual Property (INPI) using as keywords
- arthritis, treatment and the International Patent Classification (IPC) A61K36 / 00.
Results:
A total of 617 patents related to the subject were registered in the period available in patents
databases during the study period from the years 2005 to 2017, of which 44 were analyzed
based on the established inclusion criteria. The most important countries for protecting these inventions
were China, followed by the United States of America, the Republic of Korea and Japan. As
for the typology of depositors, that were identified by Educational Institutions and Public Institutes
of Research (IEIPP) and Companies and Private Research Institutes (EIPP).
Conclusion:
The analysis of patents made it possible to characterize the natural products used in
the treatment of arthritis, with emphasis on botanical extracts (71%), as a single component, as
well as in association with other botanical extracts, isolated compounds and minerals.
Collapse
Affiliation(s)
| | | | - Sara M. Thomazzi
- Department of Physiology, University of Sergipe, Sao Cristovao, Brazil
| |
Collapse
|
13
|
Franco P, De Marco I. Formation of Rutin-β-Cyclodextrin Inclusion Complexes by Supercritical Antisolvent Precipitation. Polymers (Basel) 2021; 13:polym13020246. [PMID: 33450873 PMCID: PMC7828341 DOI: 10.3390/polym13020246] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, rutin (RUT)–β-cyclodextrin (β-CD) inclusion complexes are prepared by Supercritical AntiSolvent (SAS) precipitation. Well-defined composite microparticles are obtained at guest:host ratios equal to 1:2 and 1:1 mol:mol. The dimensions of composite particles range between 1.45 ± 0.88 µm and 7.94 ± 2.12 µm. The formation of RUT–β-CD inclusion complexes has been proved by different analyses, including Fourier transform infrared spectroscopy, Differential Scanning Calorimetry, X-ray diffraction, and UV-vis spectroscopy. The dissolution tests reveal a significant improvement in the release rate of RUT from inclusion complexes. Indeed, compared to the unprocessed RUT, the dissolution rate is about 3.9 and 2.4 times faster in the case of the complexes RUT–β-CD 1:2 and 1:1 mol:mol, respectively. From a pharmaceutical/nutraceutical point of view, CD-based inclusion complexes allow the reduction of the polymer amount in the SAS composite formulations.
Collapse
Affiliation(s)
- Paola Franco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| |
Collapse
|
14
|
Potential Use of Hyssopus officinalis and Borago officinalis as Curing Ingredients in Pork Meat Formulations. Animals (Basel) 2020; 10:ani10122327. [PMID: 33297565 PMCID: PMC7762358 DOI: 10.3390/ani10122327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Health risks associated with nitrites as curing agents have led consumers to search for products without those additives. Herbs have been used in medicine for many years and are usually positively perceived by consumers. Good-quality products with medicinal plants may be an alternative for those who try to avoid additives other than salt and spices. Hyssopus officinalis and Borago officinalis were tested for their potential to be used as colour forming and antioxidant agents. Both herbs were used in pork meat formulations along with nitrate reducing bacteria. A colour formation similar to a control product containing nitrite was noted in all the samples. Borage had a stronger antioxidant effect. Those additives can be used as an alternative to nitrite cured pork products. Abstract The replacement of nitrites in pork meat products has been a studied issue for many years. Due to potential health threats associated with these additives, consumers tend to search for alternative meat curing methods. In this study, Hyssopus officinalis and Borago officinalis were tested for their potential to be used as colour-forming and antioxidant agents. Dry plant samples from various sources were tested for fat, protein, ash, polyphenol and nitrate content. There were significant differences between the herbs depending on source. Two control samples (containing curing salt and sodium chloride with nitrate reducing bacteria) and samples with herbs (hyssop, hyssop with nitrate reducing bacteria, borage, borage with nitrate reducing bacteria)—0.5% of the meat mass—were prepared and stored for 15 days. In the samples with herbs and bacterial cultures, a red colour was developed, the TBARS values were low and DPPH activity was strong. All the samples with herbs had lower residual nitrite levels compared to the samples with curing salt. Borage had a stronger influence on colour and antioxidant stability of the meat samples compared to hyssop. However, both herbs can be used as colour-forming and antioxidant agents along with nitrate-reducing bacteria.
Collapse
|
15
|
Zhao Y, Zhao Q, Lu Q. Purification, structural analysis, and stability of antioxidant peptides from purple wheat bran. BMC Chem 2020; 14:58. [PMID: 33024957 PMCID: PMC7533037 DOI: 10.1186/s13065-020-00708-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/02/2020] [Indexed: 12/30/2022] Open
Abstract
Protein derived from purple wheat bran was hydrolyzed sequentially using alcalase proteases for the production of antioxidant peptides. Purple wheat bran protein (PWBP) hydrolysates were fractionated using size-exclusion (G-25) and ion-exchange chromatography methods to identify the structure of antioxidant peptides. The free radical scavenging activity of peptides purified from PWBP hydrolysates was evaluated using superoxide anion radical-scavenging activity and determination assays of Trolox equivalent antioxidant capacity (TEAC). Results demonstrated that purple wheat bran peptide F4-4 exhibited the highest antioxidant activity among other hydrolysates. F4-4 was further identified as Cys-Gly-Phe-Pro-Gly-His-Cys, Gln-Ala-Cys, Arg-Asn-Phe, Ser-Ser-Cys, and Trp-Phe by high performance liquid chromatography (HPLC) spectrometer coupled with Orbitrap Elite™ mass spectrometer (LC–MS/MS). Antioxidant peptides 2 and 4 showed improved stability when the temperature was lower than 80 °C. These peptides also demonstrated good digestive stability in vitro system by simulating gastrointestinal digestion.
Collapse
Affiliation(s)
- Yan Zhao
- National Engineering Laboratory of Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou, 450001 China.,College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001 China
| | - Qi Zhao
- National Engineering Laboratory of Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou, 450001 China.,College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001 China
| | - Qingyu Lu
- National Engineering Laboratory of Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou, 450001 China.,College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001 China
| |
Collapse
|
16
|
Zang YY, Yang S, Xu YQ, Chen ZG, Wu T. Carrier-Free Immobilization of Rutin Degrading Enzyme Extracted From Fusarium spp. Front Bioeng Biotechnol 2020; 8:470. [PMID: 32671022 PMCID: PMC7332768 DOI: 10.3389/fbioe.2020.00470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/22/2020] [Indexed: 11/30/2022] Open
Abstract
In this study, a strain with rutin degrading enzyme (RDE) activity was screened from moldy tartary buckwheat and subsequently identified as Fusarium spp. The structure and enzyme characteristics of CLEA-RDE formed by immobilization via cross-linking were then investigated. Further, the optimal catalysis conditions of CLEA-RDE in natural deep eutectic solvents (NADESs) serving as hydrolysis solvents were also investigated. The results of SEM and spectrum indicated that CLEA-RDE became more stable than free-RDE due to the cross-linking. Interestingly, CLEA-RDE showed a wider range of pH adaptation and higher tolerance to low temperatures (20 – 30°C) and hydrophobic environments. The results of orthogonal experiments revealed that the optimal condition for rutin hydrolysis was under pH 5.0 and 40oC with the degradation rate of 10.65 mg min−1 L−1. The preparation of CLEA-RDE without a carrier-based immobilization method reduces the loss of enzyme activity, improves the stability of the enzyme and can be applied to the investigation of immobilization of various enzymes, thus providing a referred idea for the improvement of catalysts in industrial production.
Collapse
Affiliation(s)
- Yuan-Yuan Zang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Sha Yang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yong-Qiang Xu
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Zhi-Gang Chen
- Glycomics and Glycan Bioengineering Research Center, College of Food Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Tao Wu
- Department of Food Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
17
|
Younus M, Hasan MMU, Ahmad K, Sharif A, Asif HM, Aslam MR, Haq IU, Ahmad Z. α-Glucosidase Inhibitory, Anti-Oxidant, and Anti-Hyperglycemic Effects of Euphorbia nivulia-Ham. in STZ-Induced Diabetic Rats. Dose Response 2020; 18:1559325820939429. [PMID: 32684873 PMCID: PMC7343366 DOI: 10.1177/1559325820939429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, we aimed to investigate the antidiabetic effects of Euphorbia nivulia (En), native to Cholistan Desert area of Bahawalpur, Pakistan. First, we performed high-performance liquid chromatography analysis and found that this plant contains ferulic acid, gallic acid, quercetin, benzoic acid, polyphenols, and flavonoids. Then, we performed in vitro and in vivo studies to assess its effects on diabetic Wistar rat model. The experiments were performed and compared with control drug glibenclamide. The 70% hydroalcoholic extract of En exhibited 97.8% in vitro α-glucosidase inhibitory effect at a dose of 1.0 mg/mL. We orally administered the extract of En and control drug to the streptozotocin (STZ)-induced diabetic rats and analyzed its antidiabetic effects. We found that the extract of En with a dose of 500 mg/kg/body weight exhibited significant effect to reduce blood glucose in STZ-induced rats as compared with the control group (P < .001). Our histological data also showed that the extract significantly improved the histopathology of pancreas. Collectively, both in vitro and in vivo studies revealed that En possesses α-glucosidase inhibitory, antioxidant, and anti-hyperglycemic effect in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Muhammad Younus
- Department of Pharmacognosy, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi Pakistan.,Department of Pharmacy, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Mohtasheem Ul Hasan
- Department of Pharmacognosy, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi Pakistan
| | - Khalil Ahmad
- Faculty of Pharmacy and Alternative Medicine, University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ali Sharif
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Hafiz Muhammad Asif
- Faculty of Pharmacy and Alternative Medicine, University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rahil Aslam
- Faculty of Pharmacy and Alternative Medicine, University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zulfiqar Ahmad
- Department of Food Science and Technology, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
18
|
Phytochemical screening, antioxidant and antimicrobial activities of Opuntia streptacantha fruit skin. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00518-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Daoud A, Malika D, Bakari S, Hfaiedh N, Mnafgui K, Kadri A, Gharsallah N. Assessment of polyphenol composition, antioxidant and antimicrobial properties of various extracts of Date Palm Pollen (DPP) from two Tunisian cultivars. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.07.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Ulusoy HG, Sanlier N. A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crit Rev Food Sci Nutr 2019; 60:3290-3303. [PMID: 31680558 DOI: 10.1080/10408398.2019.1683810] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Quercetin, one of the most taken flavonoid with diet, belongs to the family of flavonols in which kaempferol and myricetin are also found. Quercetin occurs as a glycoside (with linked sugars) or as an aglycone (without linked sugars). Although quercetin has many different forms in nature, the form found in plants is quercetin-3-O-glucoside, which generally functions as a pigment that gives color to a multitude of fruits and vegetables. The recent literature has been reviewed using PubMed, Science Direct, and Embase databases. In this article, we reviewed quercetin with respect to chemical properties, absorption mechanism, metabolism, bioavailability, food sources, bioactivities, and possible health-promoting mechanisms. Quercetin is known as an antioxidant, anti-inflammatory, cardioprotective, and anti-obesity compound. It is thought to be beneficial against cardiovascular diseases, cancer, diabetes, neurological diseases, obesity, allergy asthma, and atopic diseases. Further clinical studies with large sample sizes are needed to determine the appropriate dose and form of quercetin for preventing diseases.
Collapse
Affiliation(s)
- Hande Gül Ulusoy
- School of Health Sciences, Department of Nutrition and Dietetic, Ankara Medipol University, Ankara, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Department of Nutrition and Dietetic, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
21
|
Aghaei K, Ghasemi Pirbalouti A, Mousavi A, Badi HN, Mehnatkesh A. Effects of foliar spraying of l-phenylalanine and application of bio-fertilizers on growth, yield, and essential oil of hyssop [Hyssopus officinalis l. subsp. Angustifolius (Bieb.)]. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
S-ethyl ethanethiosulfinate, a derivative of allicin, induces metacaspase-dependent apoptosis through ROS generation in Penicillium chrysogenum. Biosci Rep 2019; 39:BSR20190167. [PMID: 31142631 PMCID: PMC6567679 DOI: 10.1042/bsr20190167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 01/14/2023] Open
Abstract
Allicin can be used as fumigant to protect food and cultural relics from fungal contamination because of its strong antifungal activity and the characteristics of high volatility and no residues. However, the obvious disadvantages such as high minimal inhibitory concentration and instability prevent it from wide application. In this study, a stable derivative of allicin, S-ethyl ethanethiosulfinate (ALE), was synthesized. We further explored its antifungal activity and apoptosis-inducing effect, as well as the underlying mechanism. ALE had an excellent capability of inhibiting spore germination and mycelial growth of Penicillium chrysogenum observed by inverted microscope and scanning electron microscopy. XTT colorimetric assay indicated ALE could reduce the cell viability obviously and IC50 was 0.92 μg/ml, only 1/42 of allicin (38.68 μg/ml). DHR 123 ROS Assay Kit, flow cytometry assay and confocal immunofluorescence revealed intercellular ROS generation and metacaspase-dependent apoptosis triggered by ALE, while antioxidant tocopherol could reverse ALE-induced cytotoxicity effect and metacaspase activation. These results indicate that ALE induces metacaspase-dependent apoptosis through ROS generation, thus possesses an effective antifungal activity. This new derivative of allicin might be developed as a high efficient alternative to the conventional fungicides for food storage and cultural relic protection.
Collapse
|
23
|
Bodiba DC, Prasad P, Srivastava A, Crampton B, Lall NS. Antibacterial Activity of Azadirachta indica, Pongamia pinnata, Psidium guajava, and Mangifera indica and their mechanism of action against Streptococcus mutans. Pharmacogn Mag 2018; 14:76-80. [PMID: 29576705 PMCID: PMC5858246 DOI: 10.4103/pm.pm_102_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/13/2017] [Indexed: 11/09/2022] Open
Abstract
Background: Curative plants have reportedly been used to make chewing sticks/toothbrushes intended for the treatment of oral diseases. Objective: The in vitro antibacterial activities of Azadirachta indica, Pongamia pinnata, Psidium guajava, and Mangifera indica were evaluated against Streptococcus mutans, along with the cytotoxicity and antioxidant and synergistic potentials. The effect of M. indica on the expression of crucial virulence genes spaP and gtfB of S. mutans was determined. Materials and Methods: The antibacterial activity was determined using a modified microdilution method. The antioxidant potential was evaluated using diphenyl picrylhydrazyl (DPPH), Griess reagent, and nitroblue tetrazolium calorimetric assays. The synergistic activity was investigated using a modified checkerboard method, while the cytotoxicity was determined according to a cell proliferation 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt assay. Reverse transcription was the chosen method for determining the difference in expression of the spaP and gtfB genes after treatment with the plant sample. Results: M. indica and A. indica had the highest antibacterial activity at concentrations of 0.3 mg/ml and 6.25 mg/ml, respectively. A. indica had the best free radical scavenging of DPPH, exhibiting 50% inhibition at 28.72 μg/ml; while M. indica showed better superoxide scavenging potential than the positive control quercetin. Both M. indica and A. indica had adequate activity against the nitric oxide-free radical (12.87 and 18.89 μg/ml, respectively). M. indica selectively reduced the expression of the gtfB gene, indicating a mechanism involving Glucotranferases, specifically targeting bacterial attachment. SUMMARY Mangifera indica and Azadirachta indica had very good antibacterial activity against Streptococcus mutans and moderate toxicity against Vero cells M. indica had the best antioxidant capacity overall M. indica reduced the expression of gtfB gene at 0.5 mg/ml.
Abbreviations used: AA: Ascorbic acid; BHI: Brain–heart infusion; CHX: Chlorhexidine; DPPH: Diphenyl picrylhydrazyl; DMSO: Dimethlysulfoxide; NBT: Nitroblue tetrazolium; NO: Nitric oxide;
Collapse
Affiliation(s)
- Dikonketso Cathrine Bodiba
- Department of Integrated Plant and Soil Sciences (Medicinal Plant Sciences), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Preety Prasad
- Department of Integrated Plant and Soil Sciences (Medicinal Plant Sciences), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.,Department of Botany, St. Xavier's College, Ranchi, Jharkhand, India
| | - Ajay Srivastava
- Department of Integrated Plant and Soil Sciences (Medicinal Plant Sciences), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.,Department of Botany, St. Xavier's College, Ranchi, Jharkhand, India
| | - Brigdet Crampton
- Department of Integrated Plant and Soil Sciences (Medicinal Plant Sciences), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Namrita Sharan Lall
- Department of Integrated Plant and Soil Sciences (Medicinal Plant Sciences), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
24
|
Miltonprabu S, Tomczyk M, Skalicka-Woźniak K, Rastrelli L, Daglia M, Nabavi SF, Alavian SM, Nabavi SM. Hepatoprotective effect of quercetin: From chemistry to medicine. Food Chem Toxicol 2017; 108:365-374. [DOI: 10.1016/j.fct.2016.08.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/04/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
|
25
|
Nagoor Meeran MF, Javed H, Al Taee H, Azimullah S, Ojha SK. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front Pharmacol 2017; 8:380. [PMID: 28694777 PMCID: PMC5483461 DOI: 10.3389/fphar.2017.00380] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Thymol, chemically known as 2-isopropyl-5-methylphenol is a colorless crystalline monoterpene phenol. It is one of the most important dietary constituents in thyme species. For centuries, it has been used in traditional medicine and has been shown to possess various pharmacological properties including antioxidant, free radical scavenging, anti-inflammatory, analgesic, antispasmodic, antibacterial, antifungal, antiseptic and antitumor activities. The present article presents a detailed review of the scientific literature which reveals the pharmacological properties of thymol and its multiple therapeutic actions against various cardiovascular, neurological, rheumatological, gastrointestinal, metabolic and malignant diseases at both biochemical and molecular levels. The noteworthy effects of thymol are largely attributed to its anti-inflammatory (via inhibiting recruitment of cytokines and chemokines), antioxidant (via scavenging of free radicals, enhancing the endogenous enzymatic and non-enzymatic antioxidants and chelation of metal ions), antihyperlipidemic (via increasing the levels of high density lipoprotein cholesterol and decreasing the levels of low density lipoprotein cholesterol and low density lipoprotein cholesterol in the circulation and membrane stabilization) (via maintaining ionic homeostasis) effects. This review presents an overview of the current in vitro and in vivo data supporting thymol's therapeutic activity and the challenges concerning its use for prevention and its therapeutic value as a dietary supplement or as a pharmacological agent or as an adjuvant along with current therapeutic agents for the treatment of various diseases. It is one of the potential candidates of natural origin that has shown promising therapeutic potential, pharmacological properties and molecular mechanisms as well as pharmacokinetic properties for the pharmaceutical development of thymol.
Collapse
Affiliation(s)
- Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hayate Javed
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hasan Al Taee
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|
26
|
Tanshinones and mental diseases: from chemistry to medicine. Rev Neurosci 2016; 27:777-791. [DOI: 10.1515/revneuro-2016-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/03/2016] [Indexed: 11/15/2022]
Abstract
AbstractThe prevalence of mental diseases, especially neurodegenerative disorders, is ever-increasing, while treatment options for such disorders are limited and insufficient. In this scarcity of available medication, it is a feasible strategy to search for potential drugs among natural compounds, such as those found in plants. One such plant source is the root of Chinese sage, Salvia miltiorrhiza Bunge (Labiatae), which contains several compounds reported to possess neuroprotective activities. The most important of these compounds are tanshinones, which have been reported to possess ameliorative activity against a myriad of mental diseases such as Alzheimer’s disease, cerebral ischemia/reperfusion injury, and glioma, along with promoting neuronal differentiation and manifesting antinociceptive and anticonvulsant outcomes. This review offers a critical evaluation of the utility of tanshinones to treat mental illnesses, and sheds light on the underlying mechanisms through which these naturally occurring compounds confer neuroprotection.
Collapse
|
27
|
Kasi PD, Tamilselvam R, Skalicka-Woźniak K, Nabavi SF, Daglia M, Bishayee A, Pazoki-toroudi H, Nabavi SM. Molecular targets of curcumin for cancer therapy: an updated review. Tumour Biol 2016; 37:13017-13028. [DOI: 10.1007/s13277-016-5183-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/13/2016] [Indexed: 01/27/2023] Open
|
28
|
Marchese A, Barbieri R, Sanches-Silva A, Daglia M, Nabavi SF, Jafari NJ, Izadi M, Ajami M, Nabavi SM. Antifungal and antibacterial activities of allicin: A review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.03.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, Nabavi SF, Gortzi O, Izadi M, Nabavi SM. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem 2016; 210:402-14. [PMID: 27211664 DOI: 10.1016/j.foodchem.2016.04.111] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/27/2016] [Accepted: 04/25/2016] [Indexed: 12/22/2022]
Abstract
Thymol (2-isopropyl-5-methylphenol) is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family (Thymus, Ocimum, Origanum, and Monarda genera), and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae, and Apiaceae families. These essential oils are used in the food industry for their flavouring and preservative properties, in commercial mosquito repellent formulations for their natural repellent effect, in aromatherapy, and in traditional medicine for the treatment of headaches, coughs, and diarrhea. Many different activities of thymol such as antioxidant, anti-inflammatory, local anaesthetic, antinociceptive, cicatrizing, antiseptic, and especially antibacterial and antifungal properties have been shown. This review aims to critically evaluate the available literature regarding the antibacterial and antifungal effects of thymol.
Collapse
Affiliation(s)
- Anna Marchese
- Microbiology Unit, IRCCS-San Martino-IST and DISC, University of Genoa, Italy
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Ramona Barbieri
- Microbiology Unit, IRCCS-San Martino-IST and DISC, University of Genoa, Italy
| | - Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Olga Gortzi
- Department of Food Technology, Technological Educational Institution of Thessaly, Terma N. Temponera Str., Greece
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Nabavi SF, Barber AJ, Spagnuolo C, Russo GL, Daglia M, Nabavi SM, Sobarzo-Sánchez E. Nrf2 as molecular target for polyphenols: A novel therapeutic strategy in diabetic retinopathy. Crit Rev Clin Lab Sci 2016; 53:293-312. [PMID: 26926494 DOI: 10.3109/10408363.2015.1129530] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetic retinopathy is a microvascular complication of diabetes that is considered one of the leading causes of blindness among adults. More than 4.4 million people suffer from this disorder throughout the world. Growing evidence suggests that oxidative stress plays a crucial role in the pathophysiology of diabetic retinopathy. Nuclear factor erythroid 2-related factor 2 (Nrf2), a redox sensitive transcription factor, plays an essential protective role in regulating the physiological response to oxidative and electrophilic stress via regulation of multiple genes encoding antioxidant proteins and phase II detoxifying enzymes. Many studies suggest that dozens of natural compounds, including polyphenols, can supress oxidative stress and inflammation through targeting Nrf2 and consequently activating the antioxidant response element-related cytoprotective genes. Therefore, Nrf2 may provide a new therapeutic target for treatment of diabetic retinopathy. In the present article, we will focus on the role of Nrf2 in diabetic retinopathy and the ability of polyphenols to target Nrf2 as a therapeutic strategy.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- a Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Alistair J Barber
- b Department of Ophthalmology , Penn State Hershey Eye Center, Penn State Hershey College of Medicine , Hershey , PA , USA
| | - Carmela Spagnuolo
- c Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Gian Luigi Russo
- c Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Maria Daglia
- d Department of Drug Sciences , Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia , Pavia , Italy , and
| | - Seyed Mohammad Nabavi
- a Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Eduardo Sobarzo-Sánchez
- e Laboratory of Pharmaceutical Chemistry , Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago De Compostela , Santiago De Compostela , Spain
| |
Collapse
|
31
|
Yatmaz HA, Gokoglu N. Effects of Plant Extract-Sulphide Combinations on Melanosis Inhibition and Quality in Shrimp ( Aristeus Antennatus). INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1031247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab (Lond) 2015; 12:60. [PMID: 26705405 PMCID: PMC4690284 DOI: 10.1186/s12986-015-0057-7] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022] Open
Abstract
Background Natural food products have been used for combating human diseases for thousands of years. Naturally occurring flavonoids including flavones, flavonols, flavanones, flavonols, isoflavones and anthocyanidins have been proposed as effective supplements for management and prevention of diabetes and its long-term complications based on in vitro and animal models. Aim To summarize the roles of dietary flavonoids in diabetes management and their molecular mechanisms. Findings Tremendous studies have found that flavonoids originated from foods could improve glucose metabolism, lipid profile, regulating the hormones and enzymes in human body, further protecting human being from diseases like obesity, diabetes and their complications. Conclusion In the current review, we summarize recent progress in understanding the biological action, mechanism and therapeutic potential of the dietary flavonoids and its subsequent clinical outcomes in the field of drug discovery in management of diabetes mellitus.
Collapse
Affiliation(s)
- Ramachandran Vinayagam
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, 28, Jinfeng Road, Tangjiawan, Zhuhai, Guangdong 519085 China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, 28, Jinfeng Road, Tangjiawan, Zhuhai, Guangdong 519085 China
| |
Collapse
|
33
|
Erdem SA, Nabavi SF, Orhan IE, Daglia M, Izadi M, Nabavi SM. Blessings in disguise: a review of phytochemical composition and antimicrobial activity of plants belonging to the genus Eryngium. Daru 2015; 23:53. [PMID: 26667677 PMCID: PMC4678568 DOI: 10.1186/s40199-015-0136-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/03/2015] [Indexed: 12/14/2022] Open
Abstract
Medicinal and edible plants play a crucial role in the prevention and/or mitigation of different human diseases from ancient times to today. In folk medicine, there are different plants used for infectious disease treatment. During the past two decades, much attention has been paid to plants as novel alternative therapeutic agents for the treatment of infectious diseases due to their bioactive natural compounds such as phenol, flavonoids, tannins, etc. The genus Eryngium (Apiaceae) contains more than 250 flowering plant species, which are commonly used as edible and medicinal plants in different countries. In fact, some genus Eryngium species are used as spices and are cultivated throughout the world and others species are used for the treatment of hypertension, gastrointestinal problems, asthma, burns, fevers, diarrhea, malaria, etc. Phytochemical analysis has shown that genus Eryngium species are a rich source of flavonoids, tannins, saponins, and triterpenoids. Moreover, eryngial, one the most important and major compounds of genus Eryngium plant essential oil, possesses a significant antibacterial effect. Thus, the objective of this review is to critically review the scientific literature on the phytochemical composition and antibacterial effects of the genus Eryngium plants. In addition, we provide some information about traditional uses, cultivation, as well as phytochemistry.
Collapse
Affiliation(s)
- Sinem Aslan Erdem
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19395-5487, Tehran, Iran
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19395-5487, Tehran, Iran.
| |
Collapse
|
34
|
Nabavi SM, Daglia M, Braidy N, Nabavi SF. Natural products, micronutrients, and nutraceuticals for the treatment of depression: A short review. Nutr Neurosci 2015; 20:180-194. [DOI: 10.1080/1028415x.2015.1103461] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Devi KP, Rajavel T, Habtemariam S, Nabavi SF, Nabavi SM. Molecular mechanisms underlying anticancer effects of myricetin. Life Sci 2015; 142:19-25. [PMID: 26455550 DOI: 10.1016/j.lfs.2015.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Dietary guidelines published in the past two decades have acknowledged the beneficial effects of myricetin, an important and common type of herbal flavonoid, against several human diseases such as inflammation, cardiovascular pathologies, and cancer. An increasing number of studies have shown the beneficial effects of myricetin against different types of cancer by modifying several cancer hallmarks including aberrant cell proliferation, signaling pathways, apoptosis, angiogenesis, and tumor metastasis. Most importantly, myricetin interacts with oncoproteins such as protein kinase B (PKB) (Akt), Fyn, MEK1, and JAK1-STAT3 (Janus kinase-signal transducer and activator of transcription 3), and it attenuates the neoplastic transformation of cancer cells. In addition, myricetin exerts antimitotic effects by targeting the overexpression of cyclin-dependent kinase 1 (CDK1) in liver cancer. Moreover, it also targets the mitochondria and promotes different kinds of cell death in various cancer cells. In the present paper, a critical review of the available literature is presented to identify the molecular targets underlying the anticancer effects of myricetin.
Collapse
Affiliation(s)
- Kasi Pandima Devi
- Department of Biotechnology, Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Tamilselvam Rajavel
- Department of Biotechnology, Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Kent, UK
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Nabavi SF, Sureda A, Habtemariam S, Nabavi SM. Ginsenoside Rd and ischemic stroke; a short review of literatures. J Ginseng Res 2015; 39:299-303. [PMID: 26869821 PMCID: PMC4593783 DOI: 10.1016/j.jgr.2015.02.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/08/2015] [Indexed: 01/05/2023] Open
Abstract
Panax ginseng is a well-known economic medical plant that is widely used in Chinese traditional medicine. This species contains a unique class of natural products-ginsenosides. Recent clinical and experimental studies have presented numerous lines of evidence on the promising role of ginsenosides on different diseases including neurodegenerative diseases, cardiovascular diseases, and certain types of cancer. Nowadays, most of the attention has focused on ginsenoside Rd as a neuroprotective agent to attenuate ischemic stroke damages. Some of the evidence showed that ginsenoside Rd ameliorates ischemic stroke-induced damages through the suppression of oxidative stress and inflammation. Ginsenoside Rd can prolong neural cells' survival through the upregulation of the endogenous antioxidant system, phosphoinositide-3-kinase/AKT and extracellular signal-regulated protein kinase 1/2 pathways, preservation of mitochondrial membrane potential, suppression of the nuclear factor-kappa B, transient receptor potential melastatin, acid sensing ion channels 1a, poly(ADP-ribose) polymerase-1, protein tyrosine kinase activation, as well as reduction of cytochrome c-releasing and apoptosis-inducing factor. In the current work, we review the available reports on the promising role of ginsenoside Rd on ischemic stroke. We also discuss its chemistry, source, and the molecular mechanism underlying this effect.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, and CIBERobn (Physiopathology of Obesity and Nutrition), Palma de Mallorca, Balearic Islands, Spain
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Berberine and neurodegeneration: A review of literature. Pharmacol Rep 2015; 67:970-9. [DOI: 10.1016/j.pharep.2015.03.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 01/09/2023]
|
38
|
Nabavi SF, Di Lorenzo A, Izadi M, Sobarzo-Sánchez E, Daglia M, Nabavi SM. Antibacterial Effects of Cinnamon: From Farm to Food, Cosmetic and Pharmaceutical Industries. Nutrients 2015; 7:7729-48. [PMID: 26378575 PMCID: PMC4586554 DOI: 10.3390/nu7095359] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 11/18/2022] Open
Abstract
Herbs and spices have been used since ancient times, because of their antimicrobial properties increasing the safety and shelf life of food products by acting against foodborne pathogens and spoilage bacteria. Plants have historically been used in traditional medicine as sources of natural antimicrobial substances for the treatment of infectious disease. Therefore, much attention has been paid to medicinal plants as a source of alternative antimicrobial strategies. Moreover, due to the growing demand for preservative-free cosmetics, herbal extracts with antimicrobial activity have recently been used in the cosmetic industry to reduce the risk of allergies connected to the presence of methylparabens. Some species belonging to the genus Cinnamomum, commonly used as spices, contain many antibacterial compounds. This paper reviews the literature published over the last five years regarding the antibacterial effects of cinnamon. In addition, a brief summary of the history, traditional uses, phytochemical constituents, and clinical impact of cinnamon is provided.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19395-5487, Tehran 14359-16471, Iran.
| | - Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia 27100, Italy.
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran.
| | - Eduardo Sobarzo-Sánchez
- Laboratorio de Química Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia 27100, Italy.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19395-5487, Tehran 14359-16471, Iran.
| |
Collapse
|
39
|
Manayi A, Abdollahi M, Raman T, Nabavi SF, Habtemariam S, Daglia M, Nabavi SM. Lutein and cataract: from bench to bedside. Crit Rev Biotechnol 2015; 36:829-39. [DOI: 10.3109/07388551.2015.1049510] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran,
| | - Thiagarajan Raman
- Department of Bioengineering, School of Chemical & Biotechnology, SASTRA University, Thanjavur, India,
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Chatham-Maritime, Kent, UK, and
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
40
|
Kaempferol and inflammation: From chemistry to medicine. Pharmacol Res 2015; 99:1-10. [PMID: 25982933 DOI: 10.1016/j.phrs.2015.05.002] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 02/08/2023]
Abstract
Inflammation is an important process of human healing response, wherein the tissues respond to injuries induced by many agents including pathogens. It is characterized by pain, redness and heat in the injured tissues. Chronic inflammation seems to be associated with different types of diseases such as arthritis, allergies, atherosclerosis, and even cancer. In recent years natural product based drugs are considered as the novel therapeutic strategy for prevention and treatment of inflammatory diseases. Among the different types of phyto-constituents present in natural products, flavonoids which occur in many vegetable foods and herbal medicines are considered as the most active constituent, which has the potency to ameliorate inflammation under both in vitro and in vivo conditions. Kaempferol is a natural flavonol present in different plant species, which has been described to possess potent anti-inflammatory properties. Despite the voluminous literature on the anti-inflammatory effects of kaempferol, only very limited review articles has been published on this topic. Hence the present review is aimed to provide a critical overview on the anti-inflammatory effects and the mechanisms of action of kaempferol, based on the current scientific literature. In addition, emphasis is also given on the chemistry, natural sources, bioavailability and toxicity of kaempferol.
Collapse
|
41
|
Hyun TK, Kim HC, Ko YJ, Kim JS. Antioxidant, α-glucosidase inhibitory and anti-inflammatory effects of aerial parts extract from Korean crowberry (Empetrum nigrum var. japonicum). Saudi J Biol Sci 2015; 23:181-8. [PMID: 26980998 PMCID: PMC4778518 DOI: 10.1016/j.sjbs.2015.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/02/2015] [Accepted: 02/07/2015] [Indexed: 11/12/2022] Open
Abstract
Crowberry (Empetrum nigrum L.) is a wild berry commonly found in the northern hemisphere. Crowberry fruits have been suggested as good resources for functional applications in the cosmetic and pharmaceutical industries, but the high polyphenolic content in crowberry leaves also indicates crowberry aerial parts as potential dietary health supplements. In this study, therefore, the biological activities of the aerial parts of Korean crowberry (E. nigrum var. japonicum) were investigated. Antioxidant activity was measured by three different assays on DPPH free radical scavenging, reducing power, and total antioxidant capacities. Dose-dependent antioxidant activities were exhibited by crude methanol extract and its fractions, suggesting that the crude methanol extract and EtOAc fraction possessed strong antioxidant activities and capacities. In addition, the crude methanol extract and EtOAc strongly inhibited α-glucosidase activity and suppressed the secretion of pro-inflammatory mediator and nitrite oxide from LPS-stimulated RAW 264.7 cells. These findings provide valuable evidence for the potential of such parts as good dietary sources of natural antioxidant, α-glucosidase inhibitory, and anti-inflammatory components, suggesting that using the non-edible parts (e.g., leaves and stems) of crowberry can be a potential natural avenue for improving human health.
Collapse
Affiliation(s)
- Tae Kyung Hyun
- Department of Industrial Plant Science & Technology, College of Agricultural, Life and Environmental Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Hyoun-Chol Kim
- Research Institute for Hallasan, Jeju Special Self-Governing Province 690-816, Republic of Korea
| | - Yeong-Jong Ko
- Majors in Plant Resource and Environment, College of Applied Life Sciences, SARI, Jeju National University, Jeju 690-756, Republic of Korea
| | - Ju-Sung Kim
- Majors in Plant Resource and Environment, College of Applied Life Sciences, SARI, Jeju National University, Jeju 690-756, Republic of Korea; The Research Institute for Subtropical Agriculture and Biotechnology, Jeju National University, Republic of Korea
| |
Collapse
|
42
|
Nabavi SF, Russo GL, Daglia M, Nabavi SM. Role of quercetin as an alternative for obesity treatment: you are what you eat! Food Chem 2015; 179:305-10. [PMID: 25722169 DOI: 10.1016/j.foodchem.2015.02.006] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/05/2015] [Accepted: 02/02/2015] [Indexed: 12/19/2022]
Abstract
Obesity is one of the most serious global health problems, which increases the risk of other different chronic diseases. The crucial role of oxidative stress in the initiation and progression of obesity leads to the hypothesis that antioxidants can be used as therapeutic agents for obesity treatment. Among antioxidants, much attention has been paid to polyphenols due to their negligible adverse effects. Among them, quercetin is one of the most common dietary antioxidants widely distributed in different plant materials, such as fruits, vegetables and cereals. Quercetin shows a wide range of biological and health-promoting effects, such as anticancer, hepatoprotective, antidiabetic, anti-inflammatory and antibacterial activities. Furthermore, quercetin has anti-obesity activity through mitogen-activated protein kinase and adenine monophosphate-activated protein kinase signaling pathways. In this study, we reviewed the available scientific reports concerning the beneficial role of quercetin against obesity with emphasis on its mechanisms of action.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Sentkowska A, Biesaga M, Pyrzynska K. Polyphenolic Composition and Antioxidative Properties of Lemon Balm (Melissa officinalisL.) Extract Affected by Different Brewing Processes. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2014. [DOI: 10.1080/10942912.2014.960932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Evaluation of antioxidant and antimicrobial activities and phenolic profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules 2014; 19:5490-507. [PMID: 24786688 PMCID: PMC6270679 DOI: 10.3390/molecules19055490] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 02/06/2023] Open
Abstract
This study was designed to examine the in vitro antioxidant and antimicrobial activities and to characterize the polyphenolic composition of the ethanolic extracts of Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Qualitative and quantitative analysis of the major phenolic compounds were conducted using high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). The total polyphenols, caffeic acid derivatives and flavonoids content was spectrophotometrically determined. The phenolic profile showed the presence of phenolic acid derivatives (caftaric, gentisic, caffeic, p-coumaric, chlorogenic and ferulic acids), flavonoid glycosides (rutin, isoquercitrin and quercitrin) and free flavonoid aglycons (luteolin, quercetin), in different concentrations. DPPH radical scavenging assay, Trolox equivalent antioxidant capacity (TEAC) method, hemoglobin ascorbate peroxidase activity inhibition (HAPX) assay, and electron paramagnetic resonance (EPR) radicals detection were employed, revealing several aspects of the antioxidant activities of these species. The antimicrobial tests were performed using the disk diffusion assay. These extracts contained a large amount of the polyphenolic compounds (77.72, 175.57, and 243.65 mg/g, respectively), and they showed a good antioxidant activity, as witnessed by a number of methods. T. chamaedrys had a high antimicrobial activity. Besides their antioxidant activity, the antimicrobial effect of these extracts confirms the biological activities of these herbal medicinal products.
Collapse
|