1
|
Charles AL, Nero Z, Sulmartiwi L, Triningtyas PH, Putra NR, Abdillah AA, Alamsjah MA. Characterization of a biocomposite film using coconut jelly powder to improve arrowroot starch and sodium alginate film forming properties. Int J Biol Macromol 2024; 292:139161. [PMID: 39730049 DOI: 10.1016/j.ijbiomac.2024.139161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato. The results showed CJP improved tensile strength from 1.84 to 9.35 MPa and lowered moisture content from 33.44 to 18.92 %, and revealed compatibility within a semi-crystalline film matrix of high thermal stability, which depicted smooth surface areas and opacity suitable for packaging. The findings demonstrated faster biodegradability rates in soils (14-35 days) than water tests (152-180 days). Furthermore, coating significantly delayed weight loss while preserving visible color and flesh quality of the cherry tomato. In conclusion, the CJP-based biocomposite films presented a potential biodegradable eco-friendly alternative to the food packaging industry.
Collapse
Affiliation(s)
- Albert Linton Charles
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology,1 Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Zoannie Nero
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology,1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Laksmi Sulmartiwi
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia
| | - Putranti Hikmah Triningtyas
- Study Program of Fisheries Product Technology, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia
| | - Nanda Rizki Putra
- Study Program of Fisheries Product Technology, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia
| | - Annur Ahadi Abdillah
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Study Program of Fisheries Product Technology, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia
| | - Mochammad Amin Alamsjah
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia.
| |
Collapse
|
2
|
Hamilton PD, Charles KT, Bih Loh AM, Aristide Loïc NN, Germain K, Elie F. Physicochemical, nutritional, antioxidant properties and stability monitoring of coconut ( Cocos nucifera L.) water from two localities in Cameroon. Heliyon 2024; 10:e40712. [PMID: 39719997 PMCID: PMC11666943 DOI: 10.1016/j.heliyon.2024.e40712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
The nutritional value of a food is linked to the quality and quantity of the nutrients it contains. It offers a major advantage in establishing a food table composition (FTC) which is a tool that provides information on the quantity of nutrients contained in a food. Furthermore, certain natural beverage are not taken into account in the FTC. This is the case of the water of Cocos nucifera nuts, although widely consumed around the world. The aim of this study was to valorise the water of Cocos nucifera nuts (mature and mid-mature) to contribute to the enrichment for the cameroonian FTC. Physicochemical, nutritional and antioxidant parameters were assessed by standard methods. Physicochemical analyses showed that mid-mature nuts from Edea and Bafia, have respectively an average of 0.2 ± 0.04 and 0.19 ± 0.05 mL of water/g of nut, with soluble dry extract of 4.3 ± 0.28 and 5 ± 0.0°B for a pH of 5.01 ± 0.01 and 5.11 ± 0.0. The total titratable acidity was of 0.113 ± 0.0 and 0.117 ± 0.0 mg citric acid per 100 mL water. The mean contents of total and reducing sugars, proteins, free amino acids and lipids in the same samples were 5.49 ± 0.05 and 5.56 ± 0.04; 5.09 ± 0.6 and 4.99 ± 0.7; 0.12 ± 0.0 and 0.15 ± 0.0; 0.06 ± 0.0 and 0.09 ± 0.0; 0.07 ± 0.0 and 0.10 ± 0.0g/100 mL of water, respectively. These data showed that from mid-maturity to full maturity, there was a significant increase (p < 0.05) in pH, lipid, protein, free amino acid, and phenolic contents and decrease in water volume, total titratable acidity, total and reducing sugars contents. In general, mineral contents increased significantly (p < 0.05), while total antioxidant power decreased with maturity. As for stability, degradation processes are more intense at room temperature than in the refrigerator.
Collapse
Affiliation(s)
- Pounde Djeumeni Hamilton
- Laboratory for Food Science and Metabolism, Department of Biochemistry, Faculty of Science, University of Yaounde1, Cameroon
| | - Kotue Taptue Charles
- Laboratory for Food Science and Metabolism, Department of Biochemistry, Faculty of Science, University of Yaounde1, Cameroon
| | - Achu Mercy Bih Loh
- Laboratory for Food Science and Metabolism, Department of Biochemistry, Faculty of Science, University of Yaounde1, Cameroon
| | | | - Kansci Germain
- Laboratory for Food Science and Metabolism, Department of Biochemistry, Faculty of Science, University of Yaounde1, Cameroon
| | - Fokou Elie
- Laboratory for Food Science and Metabolism, Department of Biochemistry, Faculty of Science, University of Yaounde1, Cameroon
| |
Collapse
|
3
|
Hou M, John Martin JJ, Song Y, Wang Q, Cao H, Li W, Sun C. Dynamics of flavonoid metabolites in coconut water based on metabolomics perspective. FRONTIERS IN PLANT SCIENCE 2024; 15:1468858. [PMID: 39435019 PMCID: PMC11491327 DOI: 10.3389/fpls.2024.1468858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
Coconut meat and coconut water have garnered significant attention for their richness in healthful flavonoids. However, the dynamics of flavonoid metabolites in coconut water during different developmental stages remain poorly understood. This study employed the metabolomics approach using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to investigate the changes in flavonoid metabolite profiles in coconut water from two varieties, 'Wenye No.5'(W5) and Hainan local coconut (CK), across six developmental stages. The results showed that a total of 123 flavonoid metabolites including chalcones, dihydroflavonoids, dihydroflavonols, flavonoids, flavonols, flavonoid carboglycosides, and flavanols were identified in the coconut water as compared to the control. The total flavonoid content in both types of coconut water exhibited a decreasing trend with developmental progression, but the total flavonoid content in CK was significantly higher than that in W5. The number of flavonoid metabolites that differed significantly between the W5 and CK groups at different developmental stages were 74, 74, 60, 92, 40 and 54, respectively. KEGG pathway analysis revealed 38 differential metabolites involved in key pathways for flavonoid biosynthesis and secondary metabolite biosynthesis. This study provides new insights into the dynamics of flavonoid metabolites in coconut water and highlights the potential for selecting and breeding high-quality coconuts with enhanced flavonoid content. The findings have implications for the development of coconut-based products with improved nutritional and functional properties.
Collapse
Affiliation(s)
- Mingming Hou
- School of Life Sciences, Henan University, Kaifeng, Henan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Jerome Jeyakumar John Martin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yuqiao Song
- School of Life Sciences, Henan University, Kaifeng, Henan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qi Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- College of Wine and Horticulture, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenrao Li
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Chengxu Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| |
Collapse
|
4
|
Bharadwaj M R S, Prasad B R H, Chaudhari SR. Understanding the maturity of coconut water through 1H NMR profiling and MPAES analyses. Food Chem 2024; 454:139748. [PMID: 38805921 DOI: 10.1016/j.foodchem.2024.139748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
This study investigated the relationship between coconut maturity stages and the sugar, amino acid, and mineral profiles of coconut water (CW). Metabolite profiles were analysed using 1H NMR, covering glucose (G), fructose (F), sucrose (S), reducing sugars (RS), total sugars (TS), amino acids, and organic acids. Mineral composition was measured using Microwave Plasma Atomic Emission Spectroscopy (MPAES). The results revealed distinct metabolite and mineral profiles across different maturity stages. Immature CW had high G/F and RS/TS ratios but low S/G ratios. Conversely, mature CW showed decreased G/F and RS/TS ratios but an increase in S/G. Mineral analysis revealed potassium as the predominant mineral in CW, peaking in the youngest stage and declining with maturity. Sodium, magnesium, and calcium showed a similar pattern, with higher concentrations in early than in later stages. The study identifies the age of 9-10 months as optimal stages for selecting tender coconut water.
Collapse
Affiliation(s)
- Sanjay Bharadwaj M R
- Department of Plantation Products, Spice and Flavor Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Hari Prasad B R
- Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Sachin R Chaudhari
- Department of Plantation Products, Spice and Flavor Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Peterle VM, Cardoso JAB, Ferraz CM, Sousa DFD, Pereira N, Nassar AFDC, Castro V, Mathias LA, Cardozo MV, Rossi GAM. Microbiological Quality of Coconut Water Sold in the Grande Vitória Region, Brazil, and Phenogenotypic Antimicrobial Resistance of Associated Enterobacteria. Microorganisms 2024; 12:1883. [PMID: 39338557 PMCID: PMC11434256 DOI: 10.3390/microorganisms12091883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to evaluate the microbiological quality of coconut water sold from street carts equipped with cooling coils or refrigerated at bakeries in the Grande Vitória Region, Brazil. Additionally, it assessed the phenotypic and genotypic antimicrobial resistance profiles of isolated enterobacteria. The results indicated that coconut water sold at street carts had lower microbiological quality compared to refrigerated samples, as evidenced by significantly higher counts of mesophilic microorganisms. Using MALDI-TOF, the following opportunistic pathogens were identified: Citrobacter freundii, Enterobacter bugandensis, E. kobei, E. roggenkampii, Klebsiella pneumoniae, and Kluyvera ascorbata. Three isolates-E. bugandensis, K. pneumoniae, and K. ascorbata-were classified as multidrug-resistant (MDR). Widespread resistance to β-lactams and cephalosporins was detected, and some isolates were resistant to quinolones, nitrofurans, and phosphonic acids. The gene blaCTX-M-2 was detected in C. freundii, E. bugandensis, E. kobei, and K. ascorbata. However, genes blaNDM, blaKPC, blaCMY-1, and blaCMY-2 were not detected in any isolate. The findings underscore the need to enhance good manufacturing practices in this sector to control the spread of antimicrobial resistance (AMR). To our knowledge, this is the first study documenting the presence of potentially pathogenic enterobacteria in coconut water samples and their associated phenotypic and genotypic AMR profiles.
Collapse
Affiliation(s)
- Valéria Modolo Peterle
- Department of Veterinary Medicine, University of Vila Velha (UVV), Vila Velha 29102-920, ES, Brazil
| | | | - Carolina Magri Ferraz
- Department of Veterinary Medicine, University of Vila Velha (UVV), Vila Velha 29102-920, ES, Brazil
| | | | - Natália Pereira
- Department of Pathology, Reproduction and One Health, Sao Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
| | | | - Vanessa Castro
- Instituto Biológico (IB) de São Paulo, Rua Conselheiro Rodrigues Alves, 1252, São Paulo 04014-002, SP, Brazil
| | - Luis Antonio Mathias
- Department of Pathology, Reproduction and One Health, Sao Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
| | - Marita Vedovelli Cardozo
- Department of Pathology, Reproduction and One Health, Sao Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
| | | |
Collapse
|
6
|
Sarkar S, Akhter S, Roy J, Wazed MA, Abedin R, Neogie S, Mishat KB, Sarker MSH. Preventing enzymatic browning of freshly cut green bananas through immersion in normal water, lemon juice, and coconut water. Food Sci Nutr 2024; 12:6612-6626. [PMID: 39554348 PMCID: PMC11561812 DOI: 10.1002/fsn3.4284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 11/19/2024] Open
Abstract
The rising demand for freshly cut agricultural produce like bananas, apples, pears, potatoes, and roots due to health concerns and modern lifestyles has heightened awareness of their susceptibility to browning, which diminishes their appeal and contributes to food waste. The present study explored the efficacy of natural anti-browning agents in prolonging the quality and shelf-life of freshly cut green banana slices. The bananas underwent treatment with normal water (NW), lemon juice (LJ), and coconut water (CW), and the changes in physicochemical properties, such as browning intensity, color, firmness, total soluble solid (TSS), total phenolic content (TPC), total flavonoid content (TFC), and also microbial attributes, were evaluated during their storage at 4 ± 1°C for 12 days. The results demonstrated significant enhancements in treated samples compared to untreated ones. While normal water and lemon juice-treated banana slices exhibited visual browning during storage, coconut water immersion proved superior in maintaining visual appeal, whiteness, and lightness while delaying yellowing and browning. Coconut water-treated samples also displayed firmer texture (0.75 kg), lower TSS (5.67 °Brix), and reduced weight loss (9.14%) after 12 days, in contrast to samples subjected to lemon juice and normal water treatments which showed lesser texture (0.68 kg, 0.58 kg), higher TSS (5.87 °Brix, 6.10 °Brix), and greater weight loss (11.76%, 16.09%), respectively. Furthermore, coconut water-treated samples retained higher levels of total phenols (392.67 mg GAE (gallic acid equivalent)/100 g FW (fresh weight), total flavonoids (55.67 mg QE (quercetin equivalent)/100 g FW), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity (38.68%). Coconut water treatment also significantly suppressed polyphenol oxidase (PPO) activity (14 U/g) compared to lemon juice (16 U/g) and normal water (26 U/g) treatments, and untreated samples (133 U/g) after 12 days. Additionally, microbial load remained within acceptable limits for all samples, with coconut water-treated samples showing the lowest values. Thus, coconut water is a promising natural solution for inhibiting browning and preserving the quality of fresh-cut green banana slices during storage.
Collapse
Affiliation(s)
- Shampa Sarkar
- Department of Food Processing and PreservationHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| | - Sumaia Akhter
- Department of Food Processing and PreservationHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| | - Joysree Roy
- Department of Food Engineering and TechnologyHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| | - Md. Abdul Wazed
- Department of Food Engineering and TechnologyHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| | - Raihan Abedin
- Department of Food Engineering and TechnologyHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| | - Suvrow Neogie
- Department of Food Engineering and TechnologyHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| | - Khairul Bashar Mishat
- Department of Food Engineering and TechnologyHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| | - Md. Sazzat Hossain Sarker
- Department of Food Engineering and TechnologyHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| |
Collapse
|
7
|
Grainger EM, Jiang K, Webb MZ, Kennedy AJ, Chitchumroonchokchai C, Riedl KM, Manubolu M, Clinton SK. Bioactive (Poly)phenol Concentrations in Plant-Based Milk Alternatives in the US Market. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18638-18648. [PMID: 39165162 DOI: 10.1021/acs.jafc.3c09063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Plant-based milk alternatives (PBMAs) are increasingly consumed as a dairy alternative [Olson, S. Milk and Non-Dairy Milk - US - 2021, 2021.]. Plant foods are rich sources of (poly)phenols, but concentrations of these bioactive phytochemicals in processed PBMAs are not well documented. We procured twenty-seven PBMA products of 6 types (almond, coconut, oat, pea, rice, and soy) for (poly)phenol analysis. Samples were analyzed via ultra high-performance liquid chromatography-diode array with mass spectrometry. The (poly)phenol content of PBMAs varies and is dependent on plant source, brand, and added flavorings. Soy milk had the highest concentration and rice milk had the lowest (91.9 ± 2.7 and 0.9 ± 0.2 mean mg ± SD/cup serving, respectively). Almond milk, the most widely consumed PBMA, averaged 12.1 ± 8.2 mg/cup serving, but the majority of (poly)phenols are derived from added flavorings. PBMAs contain a wide range of potentially bioactive (poly)phenols and may contribute significantly to overall dietary (poly)phenol intake with the potential to impact health outcomes.
Collapse
Affiliation(s)
- Elizabeth M Grainger
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Ave., Columbus, Ohio 43210, United States
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University College of Medicine, 1335 Lincoln Tower, 1800 Cannon Drive, Columbus, Ohio 43210, United States
| | - Kaitlyn Jiang
- Pharmaceutical Sciences, The Ohio State University College of Pharmacy, 217 Lloyd M. Parks Hall, 500 West 12th Ave., Columbus, Ohio 43210, United States
| | - Maxine Z Webb
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Ave., Columbus, Ohio 43210, United States
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University College of Medicine, 1335 Lincoln Tower, 1800 Cannon Drive, Columbus, Ohio 43210, United States
| | - Ashley J Kennedy
- The Ohio State University Interdisciplinary PhD in Nutrition Program, The Ohio State University, 301 Wiseman Hall, 400 W. 12th Avenue, Columbus, Ohio 43210, United States
| | - Chureeporn Chitchumroonchokchai
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Ave., Columbus, Ohio 43210, United States
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University College of Medicine, 1335 Lincoln Tower, 1800 Cannon Drive, Columbus, Ohio 43210, United States
| | - Ken M Riedl
- Nutrient and Phytochemical Analytic Shared Resource, The Ohio State University Comprehensive Cancer Center, 260 Parker Food Science & Technology Building, 2015 Fyffe Ct., Columbus, Ohio 43210, United States
| | - Manjunath Manubolu
- Nutrient and Phytochemical Analytic Shared Resource, The Ohio State University Comprehensive Cancer Center, 260 Parker Food Science & Technology Building, 2015 Fyffe Ct., Columbus, Ohio 43210, United States
| | - Steven K Clinton
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Ave., Columbus, Ohio 43210, United States
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University College of Medicine, 1335 Lincoln Tower, 1800 Cannon Drive, Columbus, Ohio 43210, United States
- Nutrient and Phytochemical Analytic Shared Resource, The Ohio State University Comprehensive Cancer Center, 260 Parker Food Science & Technology Building, 2015 Fyffe Ct., Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Lu Y, Zhang Y, Wang S. From Palm to Plate: Unveiling the Potential of Coconut as a Plant-Based Food Alternative. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15058-15076. [PMID: 38920018 DOI: 10.1021/acs.jafc.3c09838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This review investigates coconut as a sustainable and nutrient-rich plant-based alternative to traditional animal-based food sources. We have explored the nutritional profile, culinary versatility, particularly focusing on the use of coconut meat, milk, cream, and oil in diverse dietary contexts when consumed in balance. Comparative analysis with animal-derived products reveals the high content of medium-chain triglycerides (MCTs), essential vitamins, and minerals in coconut, contrasted with its lower protein content. Researchers have underscored the environmental sustainability of coconut, advocating for its role in eco-friendly food production chains. We have also addressed challenges like potential allergies, nutritional balance, sensory attributes, and consumer motivations for coconut-based products, in terms of understanding the market dynamics. In conclusion, this review positions coconut as a promising candidate within sustainable diet frameworks, advocating for further research to augment its nutritional value, sensory characteristics, and product stability, thereby facilitating its integration into health-conscious and eco-centric dietary practices.
Collapse
Affiliation(s)
- Yingshuang Lu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Patricio Rocha B, de Brito Lopes PL, Oliveira Morais da Silva M, Guimarães Gomes AC, Alonso Buriti FC, Menezes Florêncio I, Rolim Florentino E. Utilization of ripe coconut water in the development of probiotic gelatin. PeerJ 2024; 12:e17502. [PMID: 38952971 PMCID: PMC11216217 DOI: 10.7717/peerj.17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
Background Desserts with vegetable ingredients are a constantly expanding global market due to the search for alternatives to cow's milk. Fermentation of these matrices by lactic acid bacteria can add greater functionality to the product, improving its nutritional, sensory, and food safety characteristics, as well as creating bioactive components with beneficial effects on health. Concern for health and well-being has aroused interest in byproducts of the industry that have functional properties for the body, such as mature coconut water, a normally discarded residue that is rich in nutrients. This study aimed to develop a probiotic gelatin based on pulp and water from mature coconuts and evaluate the physicochemical characteristics, viability of the Lacticaseibacillus rhamnosus LR32 strain in the medium, as well as the texture properties of the product. Methods After collection and cleaning, the physicochemical characterization, mineral analysis, analysis of the total phenolic content and antioxidant activity of mature coconut water were carried out, as well as the centesimal composition of its pulp. Afterwards, the gelling was developed with the addition of modified corn starch, gelatin, sucrose, and probiotic culture, being subjected to acidity analysis, texture profile and cell count, on the first day and every 7 days during 21 days of storage, under refrigeration at 5 °C. An analysis of the centesimal composition was also carried out. Results The main minerals in coconut water were potassium (1,932.57 mg L-1), sodium (19.57 mg L-1), magnesium (85.13 mg L-1) calcium (279.93 mg L-1) and phosphorus (11.17 mg L- 1), while the pulp had potassium (35.96 g kg-1), sodium (0.97 g kg-1), magnesium (2.18 g kg-1), 37 calcium (1.64 g kg-1), and phosphorus (3.32 g kg-1). The phenolic content of the water and pulp was 5.72 and 9.77 mg gallic acid equivalent (GAE) 100 g-1, respectively, and the antioxidant capacity was 1.67 and 0.98 39 g of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) mg-1, respectively. The coconut pulp had 2.81 g 100 g-1of protein, 1.11 g 100 g-1 of 40 ash, 53% moisture, and 5.81 g 100 g-1 of carbohydrates. The gelatin produced during the storage period presented firmness parameters ranging from 145.82 to 206.81 grams-force (gf), adhesiveness from 692.85 to 1,028.63 gf sec, cohesiveness from 0.604 to 0.473, elasticity from 0.901 to 0.881, gumminess from 86.27 to 97.87 gf, and chewiness from 77.72 to 91.98 gf. Regarding the viability of the probiotic microorganism, the dessert had 7.49 log CFU g-1 that remained viable during the 21-day storage, reaching 8.51 CFU g-1. Acidity ranged from 0.15 to 0.64 g of lactic acid 100 g-1. The centesimal composition of the product showed 4.88 g 100 g-1 of protein, 0.54 g 100 g-1 of ash, 85.21% moisture, and 5.37g 100 g-1 of carbohydrates. The development of the gelatin made it possible to obtain a differentiated product, contributing to diversification in the food sector, providing a viable alternative for maintaining consumer health and reducing costs compared to desserts already available on the market.
Collapse
Affiliation(s)
- Beatriz Patricio Rocha
- Núcleo de Pesquisa e Extensão em Alimentos, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
| | | | - Miqueas Oliveira Morais da Silva
- Núcleo de Pesquisa e Extensão em Alimentos, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
| | - Ana Catarina Guimarães Gomes
- Núcleo de Pesquisa e Extensão em Alimentos, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
| | - Flávia Carolina Alonso Buriti
- Núcleo de Pesquisa e Extensão em Alimentos, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
| | - Isanna Menezes Florêncio
- Núcleo de Pesquisa e Extensão em Alimentos, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
| | - Eliane Rolim Florentino
- Núcleo de Pesquisa e Extensão em Alimentos, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
| |
Collapse
|
10
|
Kim RH, Lee SJ, Lee K, Hwang KT, Kim J. Profiling of phenolic acids, flavonoids, terpenoids, and steroid derivatives in coconut ( Cocos nucifera L.) haustorium. Food Sci Biotechnol 2023; 32:1841-1850. [PMID: 37781060 PMCID: PMC10541354 DOI: 10.1007/s10068-023-01300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Coconut haustorium (CH) is formed inside coconut shell during coconut germination. This study aimed to investigate the compositions and contents of CH phytochemicals. Phytochemical compositions and contents in CH were analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and spectrophotometrical method. Five phenolic acids and four flavonoids were identified in CH. Ferulic acid and myricetin were the most abundant among phenolic acids and flavonoids identified in CH, respectively. Nepetariaside and 1-methylene-5α-androstan-3α-ol-17-one glucuronide were the most abundant terpenoids and steroid derivatives identified in CH, respectively. To our knowledge, this study screened several classes of phytochemicals in CH for the first. Terpenoids and steroid derivatives were likely to be more major phytochemicals than phenolic acids and flavonoids in CH. The functionality of CH itself and the compounds found in CH might be utilized in functional foods or cosmetics. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01300-6.
Collapse
Affiliation(s)
- Ryun Hee Kim
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, 08826 Republic of Korea
| | - Su Jin Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Kiuk Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jaecheol Kim
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
11
|
Zhang W, Chen Y, Yun Y, Li C, Fang Y, Zhang W. Discrimination and characterization of different coconut water (CW) by their phenolic composition and volatile organic compounds (VOCs) using LC-MS/MS, HS-SPME-GC-MS, and HS-GC-IMS. J Food Sci 2023; 88:3758-3772. [PMID: 37530630 DOI: 10.1111/1750-3841.16711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023]
Abstract
Three varieties of coconut (Cocos nucifera L.) water (CW) at two maturity stages were investigated for physicochemical and nutritional properties. The profile of phenolic compounds and volatile organic compounds (VOCs) was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS), headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Most of the properties of CW changed significantly with maturity rather than variety. The five most relevant phenolic compounds in CW were chlorogenic acid, 4-hydroxy-3,5-dimethoxycinnamic acid, L-epicatechin, and procyanidins B2 and B1. Variety played a more important role in phenolic composition than maturity, and Wenye No. 4 can be distinguished from other two varieties. Alcohols and esters were the main VOCs in CW identified by HS-GC-IMS and HS-SPME-GC-MS, respectively. Five and four compounds (VIP scores > 1) were characteristic compounds for CW by HS-GC-IMS and HS-SPME-GC-MS, respectively. The VOCs of Wenye Nos. 2 and 3 were more similar than those of Wenye No. 4. These findings could provide useful information for the selection of raw materials of CW used for different industrial purposes.
Collapse
Affiliation(s)
- Wende Zhang
- School of Food Science and Engineering, Hainan University, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou, P. R. China
| | - Yang Chen
- School of Food Science and Engineering, Hainan University, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou, P. R. China
| | - Yonghuan Yun
- School of Food Science and Engineering, Hainan University, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou, P. R. China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou, P. R. China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou City, Haikou, P. R. China
| | - Yajing Fang
- School of Food Science and Engineering, Hainan University, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou, P. R. China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou, P. R. China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou City, Haikou, P. R. China
| |
Collapse
|
12
|
Shen X, Wang T, Wei J, Li X, Deng F, Niu X, Wang Y, Kan J, Zhang W, Yun YH, Chen F. Potential of Near-Infrared Spectroscopy (NIRS) for Efficient Classification Based on Postharvest Storage Time, Cultivar and Maturity in Coconut Water. Foods 2023; 12:2415. [PMID: 37372626 DOI: 10.3390/foods12122415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Coconut water (CW) is a popular and healthful beverage, and ensuring its quality is crucial for consumer satisfaction. This study aimed to explore the potential of near-infrared spectroscopy (NIRS) and chemometric methods for analyzing CW quality and distinguishing samples based on postharvest storage time, cultivar, and maturity. CW from nuts of Wenye No. 2 and Wenye No. 4 cultivars in China, with varying postharvest storage time and maturities, were subjected to NIRS analysis. Partial least squares regression (PLSR) models were developed to predict reducing sugar and soluble sugar contents, revealing moderate applicability but lacking accuracy, with the residual prediction deviation (RPD) values ranging from 1.54 to 1.83. Models for TSS, pH, and TSS/pH exhibited poor performance with RPD values below 1.4, indicating limited predictability. However, the study achieved a total correct classification rate exceeding 95% through orthogonal partial least squares discriminant analysis (OPLS-DA) models, effectively discriminating CW samples based on postharvest storage time, cultivar, and maturity. These findings highlight the potential of NIRS combined with appropriate chemometric methods as a valuable tool for analyzing CW quality and efficiently distinguishing samples. NIRS and chemometric techniques enhance quality control in coconut water, ensuring consumer satisfaction and product integrity.
Collapse
Affiliation(s)
- Xiaojun Shen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Wang
- School of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Jingyi Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Fuming Deng
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xiaoqing Niu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- The Innovation Platform for Academicians of Hainan Province, Wenchang 571339, China
| | - Yuanyuan Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Jintao Kan
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Weimin Zhang
- School of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Yong-Huan Yun
- School of Food Science and Technology, Hainan University, Haikou 570228, China
- The Innovation Platform for Academicians of Hainan Province, Wenchang 571339, China
| | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
13
|
Divya PM, Roopa BS, Manusha C, Balannara P. A concise review on oil extraction methods, nutritional and therapeutic role of coconut products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:441-452. [PMID: 36712217 PMCID: PMC9873890 DOI: 10.1007/s13197-022-05352-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/07/2021] [Accepted: 12/25/2021] [Indexed: 02/01/2023]
Abstract
The coconut palm belongs to the Arecaceae family, which is distinct from other fruits, known for its versatility. Fresh coconut products are valuable for many food preparations owing to their nutritional and flavour properties. For example, tender coconut yields coconut water, a refreshing nutritious drink that provides good nutrients including electrolytes and other interesting compounds. The mature coconut meat which is rich in fat and protein, aids in coconut milk extraction and is a major component in the wet and dry process of oil extraction. Coconut milk has market potential owing to its increasing applications in food and beverage industries. Coconut is also known for its by-product namely coconut flour, which is rich in protein and dietary fiber, could be used in the preparation of functional foods. The different methods involved in the oil extraction process which helps in more efficient oil recovery were discussed briefly. The nutritional health-promoting functional role of coconut water and virgin coconut oil is highlighted in review paper.
Collapse
Affiliation(s)
- P. M. Divya
- Department of Traditional Food and Sensory Science, CSIR—Central Food Technological Research Institute, Mysuru, 570 020 Karnataka India
| | - B. S. Roopa
- Department of Traditional Food and Sensory Science, CSIR—Central Food Technological Research Institute, Mysuru, 570 020 Karnataka India
| | - C. Manusha
- Department of Traditional Food and Sensory Science, CSIR—Central Food Technological Research Institute, Mysuru, 570 020 Karnataka India
| | - Prema Balannara
- Department of Traditional Food and Sensory Science, CSIR—Central Food Technological Research Institute, Mysuru, 570 020 Karnataka India
| |
Collapse
|
14
|
Halim HH, Pak Dek MS, Hamid AA, Saari N, Mohd Lazim MI, Abas F, Ngalim A, Ismail A, Jaafar AH. Novel sources of bioactive compounds in coconut (Cocos nucifera L.) water from different maturity levels and varieties as potent skin anti-aging strategies and anti-fatigue agents. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Rincón-Cervera MÁ, Lahlou A, Chileh-Chelh T, Lyashenko S, López-Ruiz R, Guil-Guerrero JL. Arecaceae Seeds Constitute a Healthy Source of Fatty Acids and Phenolic Compounds. PLANTS (BASEL, SWITZERLAND) 2023; 12:226. [PMID: 36678939 PMCID: PMC9867020 DOI: 10.3390/plants12020226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Seeds of most Arecaceae species are an underutilized raw material that can constitute a source of nutritionally relevant compounds. In this work, seeds of 24 Arecaceae taxa were analyzed for fatty acids (FAs) by GC-FID, for phenolics by HPLC-DAD and LC-MS, and for their antitumor activity against the HT-29 colorectal cancer cell line by the MTT assay. Lauric, oleic, and linoleic acids were the prominent FAs. Cocoseae species contained total FAs at 28.0-68.3 g/100 g seeds, and in other species total FAs were from 1.2 (Livistona saribus) to 9.9 g/100 g (Washingtonia robusta). Sabal domingensis, Chamaerops humilis, and Phoenix dactylifera var. Medjool had unsaturated/saturated FA ratios of 1.65, 1.33-1.78, and 1.31, respectively, and contained 7.4, 5.5-6.3, and 6.4 g FAs/100 g seeds, respectively. Thus, they could be used as raw materials for healthy oilseed production. Phenolics ranged between 39 (Livistona fulva) and 246 mg/100 g (Sabal palmetto), and of these, caffeic acid, catechin, dactylifric acid, and rutin had the highest values. (-)-Epicatechin was identified in most seed extracts by LC-MS. Hydroalcoholic extracts from five species showed a dose-dependent inhibitory effect on HT-20 cells growth at 72 h (GI50 at 1533-1968 µg/mL). Overall, Arecaceae seeds could be considered as a cheap source of health-promoting compounds.
Collapse
Affiliation(s)
- Miguel Ángel Rincón-Cervera
- Food Technology Division, ceiA3, CIAMBITAL, University of Almería, 04120 Almería, Spain
- Institute of Nutrition and Food Technology, University of Chile, Macul 7830490, Chile
| | - Abdallah Lahlou
- Food Technology Division, ceiA3, CIAMBITAL, University of Almería, 04120 Almería, Spain
| | - Tarik Chileh-Chelh
- Food Technology Division, ceiA3, CIAMBITAL, University of Almería, 04120 Almería, Spain
| | - Svetlana Lyashenko
- Food Technology Division, ceiA3, CIAMBITAL, University of Almería, 04120 Almería, Spain
| | - Rosalía López-Ruiz
- Chemical-Physical Department, Analytical Chemistry of Pollutants, University of Almería, 04120 Almería, Spain
| | | |
Collapse
|
16
|
Ramesh SV, Pandiselvam R, Shameena Beegum PP, Saravana Kumar RM, Manikantan MR, Hebbar KB. Review of Cocos nucifera L. testa-derived phytonutrients with special reference to phenolics and its potential for encapsulation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1-10. [PMID: 36618037 PMCID: PMC9813294 DOI: 10.1007/s13197-021-05310-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Coconut (Cocos nucifera L.) and its value-added products are rich in medium chain triglycerides, polyphenols and flavonoids with a significant anti-oxidant potential. However, coconut and its products are underutilized for the development of nutraceuticals. Coconut testa is a brown cover of the endosperm, which is characterized with the considerable amount of phytonutrients, especially phenolics and flavonoids. The nutrient rich coconut testa is generally diverted for the production of animal feed or abandoned. Around 10-15% of the coconut kernel is removed as testa while preparing coconut desiccated powder. The coconut testa from the virgin coconut oil (VCO) industry also remains underutilized. Nevertheless, biochemical characterization of coconut testa has revealed its enormous anti-oxidant and nutraceutical potential. On the other hand there are reports describing the suitable encapsulation techniques to develop nutraceuticals from the plant-derived bioactives. In this context this review explores the prospect of utilizing the coconut testa-derived phytonutrients in developing a nutraceutical product.
Collapse
Affiliation(s)
- S. V. Ramesh
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala 671 124 India
| | - R. Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala 671 124 India
| | - P. P. Shameena Beegum
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala 671 124 India
| | - R. M. Saravana Kumar
- Department of Biotechnology, Saveetha School of Engineering, Saveetha University, Chennai, Tamil Nadu 602105 India
| | - M. R. Manikantan
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala 671 124 India
| | - K. B Hebbar
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala 671 124 India
| |
Collapse
|
17
|
Hernández-Flores EJ, Blancas-Benitez FJ, Montaño-Leyva B, González-Estrada RR. Antifungal potential of aqueous extracts of coconut (Cocos nucifera L.) by-products against blue mold disease on Persian lime during storage. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Raj CT D, Palaninathan V, James RA. Anti-uropathogenic, antioxidant and struvite crystallization inhibitory potential of fresh and fermented coconut water. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Sulfite-free treatment combined with modified atmosphere packaging to extend trimmed young coconut shelf life during cold storage. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Mat K, Abdul Kari Z, Rusli ND, Che Harun H, Wei LS, Rahman MM, Mohd Khalid HN, Mohd Ali Hanafiah MH, Mohamad Sukri SA, Raja Khalif RIA, Mohd Zin Z, Mohd Zainol MK, Panadi M, Mohd Nor MF, Goh KW. Coconut Palm: Food, Feed, and Nutraceutical Properties. Animals (Basel) 2022; 12:ani12162107. [PMID: 36009697 PMCID: PMC9405385 DOI: 10.3390/ani12162107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Different components of the coconut are being looked into and used as a potential substitute to create or substitute animal feed components. Different coconut products and by-products—such as coconut water, milk, copra, testa, flour, raw kernels, oil, and desiccated coconut—are used with livestock, especially ruminants and aquaculture industries. However, the use of coconut in animal feed may be limited by several things that make it less nutritious. There is a possibility to research new technologies, such as pre-treating coconut to reduce the effects of anti-nutritional substances before they can be used to feed the animals. This review article describes a few important discoveries, which gives a somewhat hopeful view of the future. Different parts of the coconut can and should be used more in animal feed. Coconut in animal feed makes it much cheaper to feed animals and helps them in the digestion process, growth, and health. However, innovative methods of processing, extracting, and treating coconut need to be encouraged to improve nutritional quality and make coconut products function efficiently in feed. Abstract The price of traditional sources of nutrients used in animal feed rations is increasing steeply in developed countries due to their scarcity, high demand from humans for the same food items, and expensive costs of raw materials. Thus, one of the alternative sources is coconut parts or coconut as a whole fruit. Coconut is known as the ‘tree of abundance’, ‘tree of heaven’, and ‘tree of life’ owing to its numerous uses, becoming a very important tree in tropical areas for its provision of food, employment, and business opportunities to millions of people. Coconut contains a rich profile of macro and micronutrients that vary depending on the parts and how they are used. It is frequently chosen as an alternative source of protein and fiber. Its uses as an antibacterial agent, immunomodulant, and antioxidant further increase its importance. Using coconut oil in ruminant feed helps to minimize methane gas emissions by 18–30%, and to reduce dry matter intake up to 4.2 kg/d. The aquaculture sectors also use coconut palm as an alternative source because it significantly improves the digestion, growth, lipid metabolism, health, and antioxidative responses. However, coconut is not widely used in poultry diets although it has adequate amount of protein and carbohydrate due to anti-nutritional factors such cellulose (13%), galactomannan (61%), and mannan (26%). This review considered the importance and potential of coconut usage as an alternative ingredient in feed and supplements in various livestock sectors as it has plentiful nutrients and functional qualities, simultaneously leading to reduced feed cost and enhanced production.
Collapse
Affiliation(s)
- Khairiyah Mat
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
- Institute of Food Security and Sustainable Agriculture, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
- Correspondence: (K.M.); (K.W.G.)
| | - Zulhisyam Abdul Kari
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | - Nor Dini Rusli
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
- Institute of Food Security and Sustainable Agriculture, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | - Hasnita Che Harun
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
- Institute of Food Security and Sustainable Agriculture, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | - Lee Seong Wei
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | - Mohammad Mijanur Rahman
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | - Hazreen Nita Mohd Khalid
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | | | - Suniza Anis Mohamad Sukri
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | | | - Zamzahaila Mohd Zin
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Mengabang Telipot, Kuala Nerus 21030, Terengganu, Malaysia
| | - Mohamad Khairi Mohd Zainol
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Mengabang Telipot, Kuala Nerus 21030, Terengganu, Malaysia
| | - Mira Panadi
- Department of Clinical Sciences and Sport Technology, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Jalan Pontian Lama, Skudai, Johor Bahru 81300, Johor, Malaysia
| | - Mohamad Faiz Mohd Nor
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia
- Correspondence: (K.M.); (K.W.G.)
| |
Collapse
|
21
|
Kumar M, Agrawal PK, Roy P, Sircar D. GC-MS-based metabolomics reveals dynamic changes in the nutritionally important metabolites in coconut meat during nut maturation. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Tender Coconut Water Protects Mice From Ischemia-Reperfusion-Mediated Liver Injury and Secondary Lung Injury. Shock 2021; 56:762-772. [PMID: 34652342 DOI: 10.1097/shk.0000000000001770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ABSTRACT Organ injury by oxidative and inflammatory mediators occurs during ischemia-reperfusion (I/R) of the liver. Remote organ injury secondary to liver I/R increases the systemic insult. Tender coconut water (TCW) has been studied in chemical and fructose-induced liver injury but its ability to decrease tissue injury in clinically relevant injury models is unknown. We evaluated the therapeutic potential of TCW in preventing liver I/R injury and associated remote organ injury. Mice were fed sugar water (SUG; control) or TCW for a week and then subjected to 60 min of liver ischemia followed by reperfusion for 6 h. Plasma alanine transaminase levels, tissue damage, and mRNA levels of Nos2, Tnf, and Il6 were significantly lower in mice fed TCW prior to I/R. Plasma cytokines followed liver cytokine patterns. TCW increased mRNA levels of the anti-oxidant genes Hmox1 and Ptgs2 in the liver of mice subjected to I/R. Remote lung injury from liver I/R was also decreased by TCW feeding as evident by less neutrophil infiltration, decreased pro-inflammatory Il6, and increased anti-inflammatory Il10 mRNA levels in the lung. To examine macrophage activation as a potential mechanism, TCW pretreatment decreased the amount of nitrite produced by RAW264.7 macrophages stimulated with LPS. The levels of Nos2, Il1b, Tnf, and Il6 were decreased while Il10 and Hmox1 mRNA levels were significantly up-regulated upon LPS stimulation of TCW pretreated RAW264.7 macrophages. Collectively, our results indicate that TCW decreased hepatic I/R-mediated damage to liver and lung and suggest that decreased macrophage activation contributes to this effect.
Collapse
|
23
|
Chemical composition and antioxidant activity of oil obtained from coconut meal by subcritical ethanol extraction. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Sayago-Ayerdi S, García-Martínez DL, Ramírez-Castillo AC, Ramírez-Concepción HR, Viuda-Martos M. Tropical Fruits and Their Co-Products as Bioactive Compounds and Their Health Effects: A Review. Foods 2021; 10:foods10081952. [PMID: 34441729 PMCID: PMC8393595 DOI: 10.3390/foods10081952] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Tropical and subtropical fruits are recognized as a source of a high content of bioactive compounds and health promoting properties due to their nutritional composition. These beneficial health effects are related to the content of several of these bioactive compounds, mainly flavonoids and non-flavonoid phenolics. Many of these compounds are common in different tropical fruits, such as epicatechin in mango, pineapple, and banana, or catechin in pineapple, cocoa or avocado. Many studies of tropical fruits had been carried out, but in this work an examination is made in the current literature of the flavonoids and non-flavonoid phenolics content of some tropical fruits and their coproducts, comparing the content in the same units, as well as examining the role that these compounds play in health benefits.
Collapse
Affiliation(s)
- Sonia Sayago-Ayerdi
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Diana Laura García-Martínez
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Ailin Cecilia Ramírez-Castillo
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Heidi Rubí Ramírez-Concepción
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Agro-Food Technology Department, Miguel Hernández University, Orihuela, 03312 Alicante, Spain
- Correspondence: ; Tel.: +34-966-749-661
| |
Collapse
|
25
|
Elekwa I, Ude VC, Emmanuel O, Amachaghi VO, Ugbogu EA. In vivo studies on the ameliorative effect of coconut water against carbon tetrachloride induced toxicity in rats. Biomarkers 2021; 26:570-577. [PMID: 34167403 DOI: 10.1080/1354750x.2021.1946848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Coconut water is used in folklore medicine for oral rehydration, treatment of childhood diarrhoea, gastroenteritis and cholera, and is also known to possess antioxidant properties. OBJECTIVE In this study, we examined the ameliorative potentials of coconut water on carbon tetrachloride (CCl4) induced toxicity in rats. MATERIALS AND METHODS Rats were randomly assigned into separate cages according to the sex of 5 groups. Groups 2-5 were intraperitoneally injected a single dose of 1 mL/kg CCl4 diluted in olive oil. Only 3, 4 and 5 were orally given 2, 4, 6 mL/kg coconut water respectively, whereas groups 1 and 2 received distilled water. RESULTS Treatment with coconut water significantly (p < 0.05) increased red blood cell, packed cell volume, haemoglobin, high-density lipoprotein, glutathione, superoxide dismutase, catalase, total protein, and albumin compared to the negative control in both sexes of the rats. Furthermore, platelets, white blood cells, urea, low-density lipoprotein, triglyceride, total cholesterol, malondialdehyde, bilirubin, alkaline phosphatase, alanine and aspartate transaminases decreased significantly (p < 0.05) compared to the negative control in both male and female rats. CONCLUSION Thus, coconut water supplementation may reverse CCl4 induced toxicity and distortions on haematological parameters, lipid profile and antioxidant enzymes, liver and kidney biomarkers in rats.
Collapse
Affiliation(s)
| | - Victor Chibueze Ude
- Department of Applied Biochemistry, Enugu State University of Science and Technology, Enugu, Nigeria
| | - Okezie Emmanuel
- Department of Biochemistry, Abia State University, Uturu, Nigeria
| | | | | |
Collapse
|
26
|
Leow SS, Fairus S, Sambanthamurthi R. Water-soluble palm fruit extract: composition, biological properties, and molecular mechanisms for health and non-health applications. Crit Rev Food Sci Nutr 2021; 62:9076-9092. [PMID: 34156318 DOI: 10.1080/10408398.2021.1939648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The oil palm (Elaeis guineensis) fruit is a source of vegetable oil and various phytonutrients. Phytochemical compounds present in palm oil include tocotrienols, carotenoids, phytosterols, squalene, coenzyme Q10, and phospholipids. Being a fruit, the oil palm is also a rich source of water-soluble phytonutrients, including phenolic compounds. Extraction of phytonutrients from the oil palm vegetation liquor of palm oil milling results in a phenolic acid-rich fraction termed Water-Soluble Palm Fruit Extract (WSPFE). Pre-clinical in vitro, ex vivo, and in vivo studies carried out using various biological models have shown that WSPFE has beneficial bioactive properties, while clinical studies in healthy volunteers showed that it is safe for human consumption and confers antioxidant and anti-inflammatory effects. The composition, biological properties, and relevant molecular mechanisms of WSPFE discovered thus far are discussed in the present review, with a view to offer future research perspectives on WSPFE for health and non-health applications.
Collapse
Affiliation(s)
- Soon-Sen Leow
- Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Syed Fairus
- Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | | |
Collapse
|
27
|
Azra JM, Setiawan B, Nasution Z, Sulaeman A. Effects of variety and maturity stage of coconut on physicochemical and sensory characteristics of powdered coconut drink. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-1-43-51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Coconut water is rich in nutrients and biologically-active compounds. However, it has a short shelf life that can be prolonged by freeze drying. The purpose of this study was to analyze the physicochemical and sensory characteristics of fresh and powdered coconut drinks.
Study objects and methods. The experiments included eight samples, namely fresh and powdered coconut drinks obtained from coconuts of different varieties (tall and hybrid) and maturity stages (4 and 6 m.o.). The samples were analyzed for nutrient content (ash, protein, fat, total carbohydrate, and fibre), physicochemical properties (titratable acidity, pH, viscosity, total soluble solids, turbidity, water activity, and browning index), and sensory characteristics (color, aroma, taste, texture, and overall acceptance).
Results and discussion. The results obtained showed that there were significant differences among the coconut drinks of different varieties and maturity stages. They differed in nutrient content, pH value, titratable acidity, viscosity, and water activity. Meanwhile, the aroma, taste, and overall acceptance scores of all the samples were not significantly different. The powdered drink from 6 m.o. hybrid coconut was selected as the optimal sample due to its good sensory and physicochemical attributes. These attributes were similar to those of the fresh coconut drink.
Conclusion. The powdered drink from 6 m.o. hybrid coconut obtained by freeze drying could be considered as an alternative healthy drink with good quality characteristics.
Collapse
|
28
|
Ndubuisi-Nnaji UU, Ofon UA, Offiong NAO. Anaerobic co-digestion of spent coconut copra with cow urine for enhanced biogas production. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2021; 39:594-600. [PMID: 33238822 DOI: 10.1177/0734242x20975092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Laboratory-scale bioreactors were used to co-digest spent coconut copra (SCC) and cow urine (CU) as a co-substrate (SCC + CU) in a batch mode under thermophilic condition (45 ± 2°C) in order to enhance biogas production. The effect of CU pretreatment on the performance indicators (biogas and biomethane yields, total solids (TS), and volatile solids (VS) reduction, pH and volatile fatty acids (VFAs) concentrations) were also examined. This was compared with mono-digestion of SCC. The experiment was performed with different mixing ratios in reactors labelled as follows: A = 75 g SCC + 5 ml CU; B = 70 g SCC + 10 ml CU; C = 65 g SCC + 15 ml CU; and D (control) = 80 g SCC at a hydraulic retention time of 42 days. Co-digestion (SCC + CU) significantly improved anaerobic digestion (AD) performance resulting in a threefold and fivefold increase in biogas and biomethane production, respectively, with concomitant TS (44.9-57.7%) and VS (55.4-60.3%) removal efficiencies. But for mono-digestion (control experiment), all CU treated and co-digestion assays showed pH stability ranging between 6.6 and 7.4 and VFAs' concentrations ranging from 15-330 mgL-1. By acting as a buffer, CU effectively enhanced the AD performance of SCC as demonstrated in this study.
Collapse
Affiliation(s)
| | - Utibe A Ofon
- Department of Microbiology, University of Uyo, Uyo, Nigeria
| | - Nnanake-Abasi O Offiong
- International Centre for Energy and Environmental Sustainability Research, University of Uyo, Uyo, Nigeria
| |
Collapse
|
29
|
Deen A, Visvanathan R, Wickramarachchi D, Marikkar N, Nammi S, Jayawardana BC, Liyanage R. Chemical composition and health benefits of coconut oil: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2182-2193. [PMID: 33022082 DOI: 10.1002/jsfa.10870] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/10/2020] [Accepted: 10/06/2020] [Indexed: 05/27/2023]
Abstract
Coconut oil is an integral part of Sri Lankan and many South Asian diets. Initially, coconut oil was classified along with saturated fatty acid food items and criticized for its negative impact on health. However, research studies have shown that coconut oil is a rich source of medium-chain fatty acids. Thus, this has opened new prospects for its use in many fields. Beyond its usage in cooking, coconut oil has attracted attention due to its hypocholesterolemic, anticancer, antihepatosteatotic, antidiabetic, antioxidant, anti-inflammatory, antimicrobial and skin moisturizing properties. Despite all the health benefits, consumption of coconut oil is still underrated due to a lack of supportive scientific evidence. Even though studies done in Asian countries claim a favorable impact on cardiac health and serum lipid profile, the limitations in the number of studies conducted among Western countries impede the endorsement of the real value of coconut oil. Hence, long-term extensive studies with proper methodologies are suggested to clear all the controversies and misconceptions of coconut oil consumption. This review discusses the composition and functional properties of coconut oils extracted using various processing methods. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Afka Deen
- Laboratory of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Kandy, Sri Lanka
| | - Rizliya Visvanathan
- Laboratory of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | | | - Nazrim Marikkar
- Laboratory of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Sirinivas Nammi
- Laboratory of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, New South Wales, Australia
| | - Barana C Jayawardana
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Kandy, Sri Lanka
| | - Ruvini Liyanage
- Laboratory of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| |
Collapse
|
30
|
Kumar M, Saini SS, Agrawal PK, Roy P, Sircar D. Nutritional and metabolomics characterization of the coconut water at different nut developmental stages. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Vongluanngam I, Tocharoenvanith N, Assatarakul K. Inactivation kinetic of selected pathogens of coconut water by dimethyl dicarbonate and microbial shelf life during cold storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Isara Vongluanngam
- Department of Food Technology Faculty of Science Chulalongkorn University Bangkok Thailand
| | | | - Kitipong Assatarakul
- Department of Food Technology Faculty of Science Chulalongkorn University Bangkok Thailand
| |
Collapse
|
32
|
Supapvanich S, Yimpong A, Srisuwanwichan J. Browning inhibition on fresh-cut apple by the immersion of liquid endosperm from mature coconuts. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:4424-4431. [PMID: 33087956 DOI: 10.1007/s13197-020-04479-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/11/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
The application of natural antibrowning agents for fresh-cut products has been recently considered. This study manifested the efficiency of coconut liquid endosperm, coconut water (CW), from mature tall (cooking) coconut (C-CW) and yellow dwarf coconut (Y-CW) on browning inhibition of 'Gala' apple wedges during storage at 4 ± 1 °C for 9 days. The apple wedges were immersed in water (control), C-CW or Y-CW for 1 min. The visual appearance, superficial colour attributes, browning pigment concentration, total phenols concentration, polyphenoloxidase (PPO) activity and reducing antioxidant capacity of apple wedges were monitored. Moreover, antioxidant activity of both C-CW and Y-CW was also observed. Antioxidant activity of Y-CW was higher than that of C-CW. Both of the CW immersions maintained visual appearance, whiteness and lightness values as well as delayed the increased yellowness and brownness values of hypanthium (flesh) and mesocarp (core) of apple wedges. The browning pigment concentration and PPO activity were obviously lowered by both CW immersions. Total phenols concentration and antioxidant activity of C-CW and Y-CW immersed apple wedges were higher than those of control samples. In conclusion, both of the mature coconut liquid endosperms are feasible natural agent inhibiting browning incidence of fresh-cut fruits during storage.
Collapse
Affiliation(s)
- Suriyan Supapvanich
- Department of Agricultural Education, Faculty of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, 10520 Bangkok Thailand
| | - Aiyarath Yimpong
- Department of Agricultural Education, Faculty of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, 10520 Bangkok Thailand
| | - Jiraporn Srisuwanwichan
- Department of Agricultural Education, Faculty of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, 10520 Bangkok Thailand
| |
Collapse
|
33
|
Antioxidant and Nutritional Properties of Domestic and Commercial Coconut Milk Preparations. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:3489605. [PMID: 32832538 PMCID: PMC7422486 DOI: 10.1155/2020/3489605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022]
Abstract
The aqueous extract of scraped coconut kernel is known as coconut milk. Coconut milk preparations are also commercially available in the form of desiccated powders or liquids. While these various coconut milk preparations are heavily used in cooking in the Asian countries as a major source of dietary fat, limited studies have been conducted on their chemical and nutritional composition. In this study, we have determined the chemical composition and nutritional effects of both domestic preparations of coconut milk and the commercially available counterparts. The results indicate that the phenolic compounds of all coconut milk preparations provide protection against oxidative damage on lipids and inhibit oxidative damage of both proteins and DNA. The lipid profiles are not significantly affected by the consumption of the three coconut milk preparations despite their different fat contents.
Collapse
|
34
|
Raghubeer EV, Phan BN, Onuoha E, Diggins S, Aguilar V, Swanson S, Lee A. The use of High-Pressure Processing (HPP) to improve the safety and quality of raw coconut (Cocos nucifera L) water. Int J Food Microbiol 2020; 331:108697. [PMID: 32563133 DOI: 10.1016/j.ijfoodmicro.2020.108697] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
This research investigated the use of high-pressure processing (HPP) for inactivating vegetative pathogens and spoilage microbiota in fresh unfiltered coconut water (Cocos nucifera L) from nuts obtained from Florida and frozen CW from Brazil with pH >5.0 and storage at 4 °C. Additionally, CW was evaluated to determine if it supported the growth and toxin production of Clostridium botulinum with or without the use of HPP when stored at refrigeration temperatures. Samples of fresh unfiltered CW were inoculated to 5.5 to 6.5 logs/mL with multiple strain cocktails of E. coli O157:H7, Salmonella spp. and Listeria monocytogenes and HPP at 593 MPa for 3 min at 4 °C. HPP and inoculated non-HPP controls were stored at 4 °C for 54 and 75 days for Florida CW and Brazil CW, respectively. Results of analyses showed HPP samples with <1 CFU/mL and no detection (negative/25 mL) with enrichment procedures for the 3 inoculated pathogens for all analyses. The non-HPP control samples did not show growth of the pathogens but a gradual decrease in levels to ca. 3-Logs/mL by day 54 in the fresh Florida CW and similarly in frozen Brazil CW by Day 75. Microbial spoilage of uninoculated samples was evaluated for normal spoilage microbiota through 120 days storage at 4 °C. Microbial counts remained at ca. 2-logs with no detectable signs of spoilage for HPP samples through 120 d. The non-HPP control samples spoiled within 2 weeks of storage at 4 °C with gas production, cloudiness, and off-odors. To evaluate if CW supports the growth and toxin production of C. botulinum, samples of unfiltered and filtered (0.2 μm) CW were inoculated with either proteolytic or non-proteolytic C. botulinum spores at 2 log CFU/mL that were processed at 593 MPa for 3 min and stored at 4 °C and 10 °C for 45 days. Inoculated positive and non-inoculated negative controls were prepared and stored as the HPP treated and non-HPP samples. No growth of C. botulinum or toxin production was detected in either the unfiltered or filtered CW regardless if products were HPP treated or not. All inoculated samples with C. botulinum spores were enriched at Day-45 in PYGS media to determine the viability of the inoculated spores at the end of shelf-life and screened for C. botulinum toxins. In all samples, C. botulinum toxin Types A, B and E were detected indicating spores were viable throughout the storage. Type F toxin was not detected possibly due to inherent conditions in the samples that may affected toxin screening.
Collapse
Affiliation(s)
- Errol V Raghubeer
- JBT Corporation - Avure Technologies, HPP Science & Technology, 1830 Airport Exchange Blvd. Suite 130/160, Erlanger, KY 41018, USA.
| | - Bick Ngoc Phan
- JBT Corporation - Avure Technologies, HPP Science & Technology, 1830 Airport Exchange Blvd. Suite 130/160, Erlanger, KY 41018, USA
| | - Emmanuel Onuoha
- JBT Corporation - Avure Technologies, HPP Science & Technology, 1830 Airport Exchange Blvd. Suite 130/160, Erlanger, KY 41018, USA
| | - Sheylend Diggins
- JBT Corporation - Avure Technologies, HPP Science & Technology, 1830 Airport Exchange Blvd. Suite 130/160, Erlanger, KY 41018, USA
| | - Viviana Aguilar
- Institute for Food Safety and Health (IFSH), 6502 South Archer Road, Bedford Park, IL, USA
| | - Sara Swanson
- Institute for Food Safety and Health (IFSH), 6502 South Archer Road, Bedford Park, IL, USA
| | - Alvin Lee
- Institute for Food Safety and Health (IFSH), 6502 South Archer Road, Bedford Park, IL, USA
| |
Collapse
|
35
|
Nyayiru Kannaian UP, Edwin JB, Rajagopal V, Nannu Shankar S, Srinivasan B. Phytochemical composition and antioxidant activity of coconut cotyledon. Heliyon 2020; 6:e03411. [PMID: 32083218 PMCID: PMC7021540 DOI: 10.1016/j.heliyon.2020.e03411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/05/2019] [Accepted: 01/28/2020] [Indexed: 01/13/2023] Open
Abstract
Coconut tree (Cocos nucifera L.), a perennial, monocot tree, belonging to the family Arecaceae, is distributed through the tropics. Bioactivities of coconut water, husk fiber, oil, flowers, spadix and mesocarp of coconut fruit are widely reported. However, there is no study on cotyledon of coconut. In this study, carbohydrates, proteins, lipids, phenols, flavonoids, tannins, alkaloids and antioxidants were quantified in hot and cold percolated extracts of coconut cotyledon. Further, the antioxidant activity was studied using 2,2-diphenyl-1-picrylhydrazyl (DPPH); ferric reducing antioxidant power (FRAP); ferric thiocyanate (FTC); thiobarbituric acid (TBA); nitric oxide (NO) radical scavenging and β-carotene bleaching assays. Among the secondary metabolites, only cardiac glycosides were detected. Methanolic extraction by cold percolation extracted high content of secondary metabolites and exhibited significant antioxidant activity in DPPH, FRAP, NO and β-carotene bleaching assays, with EC50 of 0.12, 6.43, 16.21 and 8.09 mg/ml respectively. The chloroform extracts recorded high lipid content and scavenged the radicals in FTC (EC50 13.31 mg/ml) and TBA (EC50 9.21 mg/ml) assays. The study recommends extraction of compounds using methanol through cold percolation. The cotyledon of coconut is found to be a potent nutritive source equivalent to the endosperm.
Collapse
Affiliation(s)
- Udaya Prakash Nyayiru Kannaian
- Department of Biotechnology, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai 600117, India
- Corresponding author.
| | - Jasmine Brighty Edwin
- R and D, Marina Labs, 14, Kavya Gardens, N.T. Patel Road, Nerkundram, Chennai 600107, India
| | - Vidhya Rajagopal
- Department of Biotechnology, Valliammal College for Women, Anna Nagar, Chennai 600040, India
| | - Sripriya Nannu Shankar
- R and D, Marina Labs, 14, Kavya Gardens, N.T. Patel Road, Nerkundram, Chennai 600107, India
| | - Bhuvaneswari Srinivasan
- Department of Botany, Bharathi Women's College (Autonomous), Broadway, Chennai 600108, India
| |
Collapse
|
36
|
Rajashri K, Roopa BS, Negi PS, Rastogi NK. Effect of ozone and ultrasound treatments on polyphenol content, browning enzyme activities, and shelf life of tender coconut water. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kulal Rajashri
- Department of Food Engineering CSIR‐Central Food Technological Research Institute Mysore India
| | | | - Pradeep Singh Negi
- Department of Fruit and Vegetable Technology CSIR‐Central Food Technological Research Institute Mysore India
| | - Navin Kumar Rastogi
- Department of Food Engineering CSIR‐Central Food Technological Research Institute Mysore India
| |
Collapse
|
37
|
Teng M, Zhao YJ, Khoo AL, Yeo TC, Yong QW, Lim BP. Impact of coconut oil consumption on cardiovascular health: a systematic review and meta-analysis. Nutr Rev 2019; 78:249-259. [DOI: 10.1093/nutrit/nuz074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 08/17/2019] [Indexed: 12/19/2022] Open
Abstract
AbstractContextCoconut oil is rich in medium-chain fatty acids and has been claimed to have numerous health benefits.ObjectiveThis review aimed to examine the evidence surrounding coconut oil consumption and its impact on cardiovascular health.Data SourcesA systematic literature search of the PubMed, Embase, the Cochrane Library, and CINAHL databases, up to May 2019, was performed.Data ExtractionStudy characteristics including study design, population, intervention, comparator, outcome, and source of funding were summarized.Data AnalysisMeta-analyses included 12 studies to provide estimates of effects. Subgroup analyses were performed to account for any differences in the study-level characteristics. When compared with plant oils and animal oils, coconut oil was found to significantly increase high-density lipoprotein cholesterol (HDL-C) by 0.57 mg/dL (95%CI, 0.40–0.74 mg/dL; I2 = 6.7%) and 0.33 mg/dL (0.01–0.65 mg/dL; I2 = 0%), respectively. Coconut oil significantly raised low-density lipoprotein cholesterol (LDL-C) by 0.26 mg/dL (0.09–0.43 mg/dL; I2 = 59.7%) compared with plant oils and lowered LDL-C (−0.37 mg/dL; −0.69 to −0.05 mg/dL; I2 = 48.1%) compared with animal oils. No significant effects on triglyceride were observed. Better lipid profiles were demonstrated with the virgin form of coconut oil.ConclusionCompared with animal oils, coconut oil demonstrated a better lipid profile n comparison with plant oils, coconut oil significantly increased HDL-C and LDL-C.
Collapse
Affiliation(s)
- Monica Teng
- M. Teng, Y.J. Zhao, A.L. Khoo, and B.P. Lim are with the Pharmacy and Therapeutics Office, Group Health Informatics, National Healthcare Group, Singapore
| | - Ying Jiao Zhao
- M. Teng, Y.J. Zhao, A.L. Khoo, and B.P. Lim are with the Pharmacy and Therapeutics Office, Group Health Informatics, National Healthcare Group, Singapore
| | - Ai Leng Khoo
- M. Teng, Y.J. Zhao, A.L. Khoo, and B.P. Lim are with the Pharmacy and Therapeutics Office, Group Health Informatics, National Healthcare Group, Singapore
| | - Tiong Cheng Yeo
- T.C. Yeo is with the Department of Cardiology, National University Heart Centre, Singapore
- T.C. Yeo is with the Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Quek Wei Yong
- Q.W. Yong is with the Department of Cardiology, Tan Tock Seng Hospital, Singapore
| | - Boon Peng Lim
- M. Teng, Y.J. Zhao, A.L. Khoo, and B.P. Lim are with the Pharmacy and Therapeutics Office, Group Health Informatics, National Healthcare Group, Singapore
| |
Collapse
|
38
|
Wang J, Li L, Tan J, Song X, Chen D, Xu J, Ding G. Variations in the Components and Antioxidant and Tyrosinase Inhibitory Activities ofStyphnolobium japonicum(L.)Schott Extract during Flower Maturity Stages. Chem Biodivers 2019; 16:e1800504. [DOI: 10.1002/cbdv.201800504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Ji‐Rui Wang
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing Key Laboratory of Chinese Materia Medica, Chongqing Sub-Center of National Resource Center for Chinese Materia Medica China Academy of Chinese Medical ScienceChongqing Academy of Chinese Materia Medica No. 34 Nanshan Road, Nan‘an, Chongqing 400065 P. R. China
| | - Long‐Yun Li
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing Key Laboratory of Chinese Materia Medica, Chongqing Sub-Center of National Resource Center for Chinese Materia Medica China Academy of Chinese Medical ScienceChongqing Academy of Chinese Materia Medica No. 34 Nanshan Road, Nan‘an, Chongqing 400065 P. R. China
| | - Jun Tan
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing Key Laboratory of Chinese Materia Medica, Chongqing Sub-Center of National Resource Center for Chinese Materia Medica China Academy of Chinese Medical ScienceChongqing Academy of Chinese Materia Medica No. 34 Nanshan Road, Nan‘an, Chongqing 400065 P. R. China
| | - Xu‐Hong Song
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing Key Laboratory of Chinese Materia Medica, Chongqing Sub-Center of National Resource Center for Chinese Materia Medica China Academy of Chinese Medical ScienceChongqing Academy of Chinese Materia Medica No. 34 Nanshan Road, Nan‘an, Chongqing 400065 P. R. China
| | - Da‐Xia Chen
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing Key Laboratory of Chinese Materia Medica, Chongqing Sub-Center of National Resource Center for Chinese Materia Medica China Academy of Chinese Medical ScienceChongqing Academy of Chinese Materia Medica No. 34 Nanshan Road, Nan‘an, Chongqing 400065 P. R. China
| | - Jin Xu
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing Key Laboratory of Chinese Materia Medica, Chongqing Sub-Center of National Resource Center for Chinese Materia Medica China Academy of Chinese Medical ScienceChongqing Academy of Chinese Materia Medica No. 34 Nanshan Road, Nan‘an, Chongqing 400065 P. R. China
| | - Gang Ding
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing Key Laboratory of Chinese Materia Medica, Chongqing Sub-Center of National Resource Center for Chinese Materia Medica China Academy of Chinese Medical ScienceChongqing Academy of Chinese Materia Medica No. 34 Nanshan Road, Nan‘an, Chongqing 400065 P. R. China
| |
Collapse
|
39
|
Tanapichatsakul C, Khruengsai S, Monggoot S, Pripdeevech P. Production of eugenol from fungal endophytes Neopestalotiopsis sp. and Diaporthe sp. isolated from Cinnamomum loureiroi leaves. PeerJ 2019; 7:e6427. [PMID: 30775186 PMCID: PMC6376936 DOI: 10.7717/peerj.6427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022] Open
Abstract
Endophytic fungi, which colonize within a host plant without causing any apparent diseases, have been considered as an important source of bioactive secondary metabolites containing antimicrobial and antioxidant activities. The aim of this research was to isolate the endophytic fungi of Cinnamomum loureiroi and then to screen their antimicrobial and antioxidant activities. A total of 11 fungal endophytes were isolated from healthy leaves of Cinnamomum loureiroi belonging to six genera: Botryosphaeria, Colletotrichum, Diaporthe, Fusarium, Neopestalotiopsis, and Pestalotiopsis. All isolated strains were cultured and further extracted with ethyl acetate solvent. Antimicrobial activity of all crude endophytic fungal extracts was analyzed using disc diffusion assay against six bacterial and two fungal pathogens. Crude extracts of strains MFLUCC15-1130 and MFLUCC15-1131 showed broad-spectrum antimicrobial activity against all tested pathogens. Activity against Bacillus cereus and Staphylococcus epidermidis was notable, showing the lowest minimum inhibitory concentration at 3.91 μg/mL. Antioxidant activity of all crude endophytic fungal extracts was also evaluated based on 2,2-diphenyl-1-picrylhydrazyl assay. Significant antioxidant activity was detected in the crude extracts of fungus MFLUCC15-1130 and MFLUCC15-1131 with IC50 of 22.92 ± 0.67 and 37.61 ± 0.49 μg/mL, respectively. Using molecular identification, MFLUCC15-1130 and MFLUCC15-1131 were identified as Neopestalotiopsis sp. and Diaporthe sp., respectively. The major chemical constituents produced by both crude extracts were identified by gas chromatography-mass spectrometry. Eugenol, myristaldehyde, lauric acid, and caprylic acid were the primary antimicrobial and antioxidant compounds in both crude extracts. This is the first report of eugenol being a biologically active compound of Neopestalotiopsis sp. and Diaporthe sp. fungal endophytes. Eugenol has been reported as antimicrobial and antioxidant agents with agronomic applications. Thus the two newly-isolated endophytes may be used for eugenol production, which in turn can be used in a variety of applications.
Collapse
Affiliation(s)
| | | | - Sakon Monggoot
- Milott Laboratories Co., Ltd., Bangplee, Samutprakarn, Thailand
| | - Patcharee Pripdeevech
- School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand.,Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Muang, Chiang Rai, Thailand
| |
Collapse
|
40
|
Halim HH, Williams Dee E, Pak Dek MS, Hamid AA, Ngalim A, Saari N, Jaafar AH. Ergogenic Attributes of Young and Mature Coconut (Cocos nucifera L.) Water Based on Physical Properties, Sugars and Electrolytes Contents. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1522329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hani Hafeeza Halim
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Elfy Williams Dee
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Sabri Pak Dek
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Azizah Abdul Hamid
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ahmad Ngalim
- Malaysian Agricultural Research and Development Institute (MARDI), Bagan Datuk Station, Perak, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ahmad Haniff Jaafar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
41
|
Bioactive coconut protein concentrate films incorporated with antioxidant extract of mature coconut water. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.12.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Abdullah MZ, Mohd Ali J, Abolmaesoomi M, Abdul-Rahman PS, Hashim OH. Anti-proliferative, in vitro antioxidant, and cellular antioxidant activities of the leaf extracts from Polygonum minus Huds: Effects of solvent polarity. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1315591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Johari Mohd Ali
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mitra Abolmaesoomi
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Onn Haji Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Nagashree RS, Manjunath NK, Indu M, Ramesh M, Venugopal V, Sreedhar P, Pavithra N, Nagendra HR. Effect of a Diet Enriched with Fresh Coconut Saturated Fats on Plasma Lipids and Erythrocyte Fatty Acid Composition in Normal Adults. J Am Coll Nutr 2017; 36:330-334. [PMID: 28506118 DOI: 10.1080/07315724.2017.1280713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The objective of this study was to compare the effects of increased saturated fatty acid (SFA) (provided by fresh coconut) versus monounsaturated fatty acid (MUFA) intake (provided by a combination of groundnuts and groundnut oil) on plasma lipids and erythrocyte fatty acid (EFA) composition in healthy adults. MATERIAL AND METHODS Fifty-eight healthy volunteers, randomized into 2 groups, were provided standardized diet along with 100 g fresh coconut or groundnuts and groundnut oil combination for 90 days in a Yoga University. Fasting blood samples were collected before and after the intervention period for the measurement of plasma lipids and EFA profile. RESULTS Coconut diet increased low-density lipoprotein (LDL) and high-density lipoprotein (HDL) levels significantly. In contrast, the groundnut diet decreased total cholesterol (TC), mainly due to a decrease in HDL levels. There were no differences in the major SFA of erythrocytes in either group. However, coconut consumption resulted in an increase in C14:0 and C24:0 along with a decrease in levels of C18:1 n9 (oleic acid). There was a significant increase in levels of C20:3 n6 (dihomo-gamma linolenic acid, DGLA). CONCLUSIONS Consumption of SFA-rich coconut for 3 months had no significant deleterious effect on erythrocytes or lipid-related factors compared to groundnut consumption. On the contrary, there was an increase in the anti-atherogenic HDL levels and anti-inflammatory precursor DGLA in erythrocyte lipids. This suggests that coconut consumption may not have any deleterious effects on cardiovascular risk in normal subjects.
Collapse
Affiliation(s)
- Rokkam Shankar Nagashree
- a Swami Vivekananda Yoga Anusandhana Samsthana , Department of Yoga and Life Sciences , Bengaluru , India
| | - N K Manjunath
- a Swami Vivekananda Yoga Anusandhana Samsthana , Department of Yoga and Life Sciences , Bengaluru , India
| | - M Indu
- b St. John's Research Institute, Division of Nutrition , Bengaluru , India
| | - M Ramesh
- a Swami Vivekananda Yoga Anusandhana Samsthana , Department of Yoga and Life Sciences , Bengaluru , India
| | - V Venugopal
- a Swami Vivekananda Yoga Anusandhana Samsthana , Department of Yoga and Life Sciences , Bengaluru , India
| | - P Sreedhar
- a Swami Vivekananda Yoga Anusandhana Samsthana , Department of Yoga and Life Sciences , Bengaluru , India
| | - N Pavithra
- b St. John's Research Institute, Division of Nutrition , Bengaluru , India
| | - Hongasandra R Nagendra
- a Swami Vivekananda Yoga Anusandhana Samsthana , Department of Yoga and Life Sciences , Bengaluru , India
| |
Collapse
|
44
|
Das S, Acharya J, De B. Metabolite profiling, antioxidant activity, and glycosidase inhibition property of the mesocarp tissue extracts of sugar date palm [Phoenix sylvestris (L.) Roxb.] fruits. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2016.1263863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Susmita Das
- Phytochemistry and Pharmacognosy Research Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Jayashree Acharya
- Phytochemistry and Pharmacognosy Research Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Bratati De
- Phytochemistry and Pharmacognosy Research Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|