1
|
Pol R, Rahaman A, Diwakar M, Pable A, Jagtap S, Barvkar VT, Jadhav UU. Antioxidant peptide nanohybrid: a new perspective to immobilize bioactive peptides from milk industry wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38723-38742. [PMID: 37454376 DOI: 10.1007/s11356-023-28735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
In this study, dairy industry wastewater was collected and used as a protein source. The proteins were converted into powder form using lyophilization. The proteins were digested using Bacillus subtilis (B. subtilis) NCIM 2724. The maximum degree of hydrolysis (DH) of protein was observed at pH of 7, 30 °C incubation temperature, 120 rpm shaking speed, and 96 h incubation. The tris-glycine sodium dodecyl sulfate-polyacrylamide (tris-glycine-SDS) gel electrophoresis showed the disappearance of large molecular weight proteins due to the proteolytic action of B. subtilis. The resulting digest was fractionated using a 3 kDa membrane filter. The antioxidant activity of the obtained fractions was evaluated. Antioxidant activity of digest and filtrate was found to be 12.78% (±0.040) and 49% (±0.025), respectively, at a concentration of 50 mg/mL. The 3 kDa filtrate was subjected to liquid chromatography-mass spectrometry (LCMS) analysis. Bioinformatics tools were used to predict the sequences of antioxidant peptides. Furthermore, the 3 kDa filtrate was used for the synthesis of antioxidant nanohybrid. Scanning electron microscopy (SEM)-energy dispersive spectroscopy (EDS) confirmed the nanohybrid formation and encapsulation of peptides. The antioxidant nanohybrid showed enhanced antioxidant activity compared to the free peptide solution. The dairy industry has a significant environmental impact due to high water use and waste generation. This study addresses an important issue of recycling protein-containing wastewater and the potential to be used for converting these proteins into antioxidant peptides. Such practices will help to reduce environmental impact and sustainably operate the industry.
Collapse
Affiliation(s)
- Rushikesh Pol
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Alisha Rahaman
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Manasi Diwakar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Anupama Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Shweta Jagtap
- Department of Electronic and Instrumentation Science, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Umesh U Jadhav
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India.
| |
Collapse
|
2
|
de Albuquerque Mendes MK, dos Santos Oliveira CB, da Silva Medeiros CM, Dantas C, Carrilho E, de Araujo Nogueira AR, Lopes Júnior CA, Vieira EC. Application of experimental design as a statistical approach to recover bioactive peptides from different food sources. Food Sci Biotechnol 2024; 33:1559-1583. [PMID: 38623435 PMCID: PMC11016049 DOI: 10.1007/s10068-024-01540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 04/17/2024] Open
Abstract
Bioactive peptides (BAPs) derived from samples of animals and plants have been widely recommended and consumed for their beneficial properties to human health and to control several diseases. This work presents the applications of experimental designs (DoE) used to perform factor screening and/or optimization focused on finding the ideal hydrolysis condition to obtain BAPs with specific biological activities. The collection and discussion of articles revealed that Box Behnken Desing and Central Composite Design were the most used. The main parameters evaluated were pH, time, temperature and enzyme/substrate ratio. Among vegetable protein sources, soy was the most used in the generation of BAPs, and among animal proteins, milk and shrimp stood out as the most explored sources. The degree of hydrolysis and antioxidant activity were the most investigated responses in obtaining BAPs. This review brings new information that helps researchers apply these DoE to obtain high-quality BAPs with the desired biological activities.
Collapse
Affiliation(s)
| | | | | | - Clecio Dantas
- Departamento de Química, Universidade Estadual do Maranhão – UEMA, P.O. Box, 65604-380, Caxias, MA Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590 Brazil
| | | | - Cícero Alves Lopes Júnior
- Departamento de Química, Universidade Federal do Piauí – UFPI, P.O. Box 64049-550, Teresina, PI Brazil
| | - Edivan Carvalho Vieira
- Departamento de Química, Universidade Federal do Piauí – UFPI, P.O. Box 64049-550, Teresina, PI Brazil
| |
Collapse
|
3
|
Kuptawach K, Noitung S, Buakeaw A, Puthong S, Sawangkeaw R, Sangtanoo P, Srimongkol P, Reamtong O, Choowongkomon K, Karnchanatat A. Lemon basil seed-derived peptide: Hydrolysis, purification, and its role as a pancreatic lipase inhibitor that reduces adipogenesis by downregulating SREBP-1c and PPAR-γ in 3T3-L1 adipocytes. PLoS One 2024; 19:e0301966. [PMID: 38776280 PMCID: PMC11111035 DOI: 10.1371/journal.pone.0301966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/26/2024] [Indexed: 05/24/2024] Open
Abstract
The purpose of this study is to assess the bioactive peptides derived from the defatted lemon basil seeds hydrolysate (DLSH) for their ability to inhibit pancreatic lipase, decrease intracellular lipid accumulation, and reduce adipogenesis. Response surface methodology (RSM) was employed to optimize trypsin hydrolysis conditions for maximizing lipase inhibitory activity (LI). A hydrolysis time of 387.06 min, a temperature of 49.03°C, and an enzyme concentration of 1.61% w/v, resulted in the highest LI with an IC50 of 368.07 μg/mL. The ultrafiltration of the protein hydrolysate revealed that the fraction below 0.65kDa exhibited the greatest LI potential. Further purification via RP-HPLC identified the Gly-Arg-Ser-Pro-Asp-Thr-His-Ser-Gly (GRSPDTHSG) peptide in the HPLC fraction F1 using mass spectrometry. The peptide was synthesized and demonstrated LI with an IC50 of 0.255 mM through a non-competitive mechanism, with a constant (Ki) of 0.61 mM. Docking studies revealed its binding site with the pancreatic lipase-colipase complex. Additionally, GRSPDTHSG inhibited lipid accumulation in 3T3-L1 cells in a dose-dependent manner without cytotoxic effects. Western blot analysis indicated downregulation of PPAR-γ and SREBP-1c levels under GRSPDTHSG treatment, while an increase in AMPK-α phosphorylation was observed, suggesting a role in regulating cellular lipid metabolism. Overall, GRSPDTHSG demonstrates potential in attenuating lipid absorption and adipogenesis, suggesting a prospective application in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Kittisak Kuptawach
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sajee Noitung
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Anumart Buakeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Songchan Puthong
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Ruengwit Sawangkeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Papassara Sangtanoo
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Aphichart Karnchanatat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Li X, Peng C, Xiao S, Wang Q, Zhou A. Two Novel Angiotensin-Converting Enzyme (ACE) Inhibitory and ACE2 Upregulating Peptides from the Hydrolysate of Pumpkin ( Cucurbita moschata) Seed Meal. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10909-10922. [PMID: 38689562 DOI: 10.1021/acs.jafc.4c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Pumpkin (Cucurbita moschata) seed meal (PSM), the major byproduct of pumpkin seed oil industry, was used to prepare angiotensin-converting enzyme (ACE) inhibitory and angiotensin-converting enzyme 2 (ACE2) upregulating peptides. These peptides were isolated and purified from the PSM hydrolysate prepared using Neutrase 5.0 BG by ultrafiltration, Sephadex G-15 column chromatography, and reversed-phase high-performance liquid chromatography. Two peptides with significant ACE inhibition activity were identified as SNHANQLDFHP and PVQVLASAYR with IC50 values of 172.07 and 90.69 μM, respectively. The C-terminal tripeptides of the two peptides contained Pro, Phe, and Tyr, respectively, and PVQVLASAYR also had Val in its N-terminal tripeptide, which was a favorable structure for ACE inhibition. Molecular docking results declared that the two peptides could interact with ACE through hydrogen bonds and hydrophobic interactions. Furthermore, the two peptides performed protective function on EA.hy926 cells by decreasing the secretion of endothelin-1, increasing the release of nitric oxide, and regulating the ACE2 activity. In vitro simulated gastrointestinal digestion showed the two peptides exhibited good stability against gastrointestinal enzyme digestion. In conclusion, PSM is a promising material for preparing antihypertensive peptides.
Collapse
Affiliation(s)
- Xin Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, GuangDong 510642, China
| | - Chenghai Peng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, GuangDong 510642, China
| | - Suyao Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, GuangDong 510642, China
| | - Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, GuangDong 510642, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, GuangDong 510642, China
| |
Collapse
|
5
|
Figueroa-Salcido OG, Arámburo-Gálvez JG, Mora-Melgem JA, Camacho-Cervantes DL, Gracia-Valenzuela MH, Cuevas-Rodríguez EO, Ontiveros N. Alcalase-Based Chickpea ( Cicer arietinum L.) Protein Hydrolysates Efficiently Reduce Systolic Blood Pressure in Spontaneously Hypertensive Rats. Foods 2024; 13:1216. [PMID: 38672889 PMCID: PMC11049421 DOI: 10.3390/foods13081216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Studies on antihypertensive chickpea protein hydrolysates have rarely performed in vivo evaluations, limiting the entry of such hydrolysates into functional food development and clinical trials. Thus, our aim was to optimize the hydrolysis conditions to produce an alcalase-based chickpea hydrolysate with a hypotensive effect in vivo at convenient oral doses. The hydrolysis reaction time, temperature, and alcalase/substrate concentration were optimized using a response surface analysis (RSA). ACE-I inhibition was the response variable. The optimized hydrolysis conditions were time = 0.5 h, temperature = 40 °C, and E/S concentration = 0.254 (U/g). The IC50 of the optimized hydrolysate (OCPH) was 0.358 mg/mL. Five hydrolysates from the RSA worksheet (one of them obtained after 5 min of hydrolysis (CPH15)) had an ACE-I inhibitory potential similar to that of OCPH (p > 0.05). At 50 mg/kg doses, OCPH and CPH15 promoted a clinically relevant hypotensive effect in spontaneously hypertensive rats, up to -47.35 mmHg and -28.95 mmHg, respectively (p < 0.05 vs. negative control). Furthermore, the hypotensive effect was sustained for at least 7 h post-supplementation. Overall, OCPH and CPH15 are promising ingredients for functional food development and as test materials for clinical trials.
Collapse
Affiliation(s)
- Oscar Gerardo Figueroa-Salcido
- Integral Postgraduate Program in Biotechnology, Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Ciudad Universitaria, Culiacan 80010, Sinaloa, Mexico;
| | - Jesús Gilberto Arámburo-Gálvez
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition Sciences, Autonomous University of Sinaloa, Culiacan 80019, Sinaloa, Mexico; (J.G.A.-G.); (J.A.M.-M.); (D.L.C.-C.)
| | - José Antonio Mora-Melgem
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition Sciences, Autonomous University of Sinaloa, Culiacan 80019, Sinaloa, Mexico; (J.G.A.-G.); (J.A.M.-M.); (D.L.C.-C.)
| | - Diana Laura Camacho-Cervantes
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition Sciences, Autonomous University of Sinaloa, Culiacan 80019, Sinaloa, Mexico; (J.G.A.-G.); (J.A.M.-M.); (D.L.C.-C.)
| | | | - Edith Oliva Cuevas-Rodríguez
- Integral Postgraduate Program in Biotechnology, Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Ciudad Universitaria, Culiacan 80010, Sinaloa, Mexico;
| | - Noé Ontiveros
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition Sciences, Autonomous University of Sinaloa, Culiacan 80019, Sinaloa, Mexico; (J.G.A.-G.); (J.A.M.-M.); (D.L.C.-C.)
- Clinical and Research Laboratory (LACIUS, C.N.), Department of Chemical, Biological, and Agricultural Sciences (DC-QB), Faculty of Biological and Health Sciences, University of Sonora, Navojoa 85880, Sonora, Mexico
| |
Collapse
|
6
|
Optimization and Molecular Mechanism of Novel α-Glucosidase Inhibitory Peptides Derived from Camellia Seed Cake through Enzymatic Hydrolysis. Foods 2023; 12:foods12020393. [PMID: 36673484 PMCID: PMC9857891 DOI: 10.3390/foods12020393] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
In recent years, food-derived hypoglycemic peptides have received a lot of attention in the study of active peptides, but their anti-diabetic mechanism of action is not yet clear. In this study, camellia seed cake protein (CSCP) was used to prepare active peptides with α-glucosidase inhibition. The optimization of the preparation of camellia seed cake protein hydrolyzed peptides (CSCPH) was conducted via response surface methodology (RSM) using a protamex with α-glucosidase inhibition as an indicator. The optimal hydrolysis conditions were pH 7.11, 4300 U/g enzyme concentration, 50 °C hydrolysis temperature, and 3.95 h hydrolysis time. Under these conditions, the α-glucosidase inhibition rate of CSCPH was 58.70% (IC50 8.442 ± 0.33 mg/mL). The peptides with high α-glucosidase inhibitory activity were isolated from CSCPH by ultrafiltration and Sephadex G25. Leu-Leu-Val-Leu-Tyr-Tyr-Glu-Tyr (LLVLYYEY) and Leu-Leu-Leu-Leu-Pro-Ser-Tyr-Ser-Glu-Phe (LLLLPSYSEF) were identified and synthesized for the first time by Liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS) analysis and virtual screening with IC50 values of 0.33 and 1.11 mM, respectively. Lineweaver-Burk analysis and molecular docking demonstrated that LLVLYYEY was a non-competitive inhibitor of α-glucosidase, whereas LLLLPSYSEF inhibited α-glucosidase, which displayed a mixed inhibition mechanism. The study suggests the possibility of using peptides from Camellia seed cake as hypoglycaemic compounds for the prevention and treatment of diabetes.
Collapse
|
7
|
Göksu AG, Çakır B, Gülseren İ. Hazelnut peptide fractions preserve their bioactivities beyond industrial manufacture and simulated digestion of hazelnut cocoa cream. Food Res Int 2022; 161:111865. [DOI: 10.1016/j.foodres.2022.111865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
|
8
|
Zhou S, Xu T, Zhang X, Luo J, An P, Luo Y. Effect of Casein Hydrolysate on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022; 14:nu14194207. [PMID: 36235859 PMCID: PMC9573574 DOI: 10.3390/nu14194207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/24/2022] Open
Abstract
Casein hydrolysate has various biological functional activities, especially prominent are angiotensin I-converting enzyme inhibitory activities. Increasing evidence has reported the prominent hypotensive effect of casein hydrolysate. However, the effects of casein hydrolysate on cardiovascular risk factors remain unclear and require more comprehensive and detailed studies. Here, we conducted a systematic review and meta-analysis on eligible randomized controlled trials (RCTs) to summarize the effects of casein hydrolysate supplementation on blood pressure, blood lipids, and blood glucose. In the pooled analyses, casein hydrolysate significantly reduced systolic blood pressure by 3.20 mmHg (-4.53 to -1.87 mmHg) and diastolic blood pressure by 1.50 mmHg (-2.31 to -0.69 mmHg). Supplementation of casein hydrolysate displayed no effect on total cholesterol (-0.07 mmol/L; -0.17 to 0.03 mmol/L), low-density lipoprotein cholesterol (-0.04 mmol/L; -0.15 to 0.08 mmol/L), high-density lipoprotein cholesterol (-0.01 mmol/L; -0.06 to 0.03 mmol/L), triglycerides (-0.05 mmol/L, -0.14 to 0.05 mmol/L), or fasting blood glucose (-0.01 mmol/L; -0.10 to 0.09 mmol/L) compared with the placebo diets. Collectively, this study indicated that supplementation of casein hydrolysate displayed decreasing effect on blood pressure without affecting blood lipids or glycemic status.
Collapse
Affiliation(s)
| | | | | | | | - Peng An
- Correspondence: (J.L.); (P.A.); (Y.L.)
| | | |
Collapse
|
9
|
Exploration of ACE-Inhibiting Peptides Encrypted in Artemisia annua Using In Silico Approach. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5367125. [PMID: 35655475 PMCID: PMC9152397 DOI: 10.1155/2022/5367125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
Abstract
The renin-angiotensin system (RAS) is involved in body fluid regulation, but one of its enzymes, angiotensin-converting enzyme (ACE), indirectly causes hypertension by constricting blood vessels. Autoimmune illness is linked to the increased risk of hypertension and cardiovascular disease. In this study, ACE-inhibiting peptides were studied from Artemisia annua proteins. In silico hydrolysis of proteins was performed by BIOPEP-UWM using proteolytic enzymes from plant, microbial, and digestive sources. The physicochemical properties of 1160 peptides were determined using the peptide package of R studio. Di- and tripeptides were mostly released with a molecular weight of 170 to 350 Da. PeptideRanker was used to select 16 peptides from a pool of 1160 peptides based on their likelihood of being bioactive. Molecular docking was performed by DS 2020 and AutoDock Vina, which revealed that the stability of the ligand-receptor complex is due to hydrogen bonding and electrostatic and hydrophobic interactions. Their binding energies ranged from -31.81 to -20.09 kJ/mol. For drug-likeness evaluation, an online tool SwissADME was used that follows the ADME rule (absorption, distribution, metabolism, and excretion) to check the pharmacokinetics and drug-likeness of the compound. In the future, the released peptides can be used to make functional nutraceutical foods against hypertension.
Collapse
|
10
|
Fadimu GJ, Farahnaky A, Gill H, Truong T. Influence of ultrasonic pretreatment on structural properties and biological activities of lupin protein hydrolysate. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gbemisola J. Fadimu
- School of Science RMIT University GPO Box 2476 Melbourne Victoria 3001 Australia
| | - Asgar Farahnaky
- School of Science RMIT University GPO Box 2476 Melbourne Victoria 3001 Australia
| | - Harsharn Gill
- School of Science RMIT University GPO Box 2476 Melbourne Victoria 3001 Australia
| | - Tuyen Truong
- School of Science RMIT University GPO Box 2476 Melbourne Victoria 3001 Australia
| |
Collapse
|
11
|
Liu J, Luo Y, Zhang X, Gao Y, Zhang W. Effects of bioactive peptides derived from cottonseed meal solid‐state fermentation on the growth, metabolism, and immunity of yellow‐feathered broilers. Anim Sci J 2022; 93:e13781. [PMID: 36437240 DOI: 10.1111/asj.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/27/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022]
Abstract
This study investigated the effects of bioactive peptides derived from solid-state fermentation of cottonseed meal on the growth performance, apparent dietary digestibility, serum biochemical parameters, protein metabolism, antioxidant activity, and immunity in yellow-feathered broilers. A total of two hundred forty 21-days-old male broilers were randomly divided into four groups with six replicates per group. The control group received a basal diet and three experimental groups were fed diets with 1%, 2%, and 3% cottonseed meal bioactive peptides (CSBP) replacing equivalent protein of cottonseed meal in basic diet. Dietary supplementation of 2% and 3% CSBP increased the average daily weight gain, crude protein digestibility, total serum protein, and immunoglobulin (Ig) G contents in serum (P < 0.05). The 3% CSBP increased albumin, total antioxidant capacity, spleen weight/bodyweight, interleukin-6, and IgM, while reducing the feed to gain ratio, total cholesterol, urea nitrogen, total superoxide dismutase, glutathione peroxidase, and malondialdehyde contents in serum (P < 0.05). The 2% CSBP diet increased PepT1 expression in duodenum, jejunum, and ileum (P < 0.05). The 1%, 2%, and 3% CSBP diets increased S6kinase-polypeptide-1 and inositol-3-hydroxylase expression in chest and leg muscles (P < 0.05). The CSBP addition in diets can improve growth performance, nutrient digestibility, protein metabolism, antioxidant, and immune capabilities of yellow-feathered broilers.
Collapse
Affiliation(s)
- Jiancheng Liu
- College of Animal Science Xinjiang Agricultural University Urumqi China
- College of Animal Science and Technology Shihezi University Shihezi China
| | - Yuanqin Luo
- College of Animal Science and Technology Shihezi University Shihezi China
| | - Xiaoyang Zhang
- College of Animal Science and Technology Shihezi University Shihezi China
| | - Yan Gao
- Institute of Applied Microbiology Xinjiang Academy of Agriculture Science, Xinjiang Special Environmental Microbiology Laboratory Urumqi China
| | - Wenju Zhang
- College of Animal Science and Technology Shihezi University Shihezi China
| |
Collapse
|
12
|
YE S, LUO J, LIN J, MENG C, HONG J. Preparation of angiotensin I-converting enzyme (ACE) inhibitory peptides from Tie Guanyin tea residue protein using two-step enzymatic hydrolysis. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.61622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Yu Z, Wang L, Wu S, Xue W, Zhao W, Li J. Potential mechanisms of the anti-hypertensive effects of RVPSL on spontaneously hypertensive rats using non-targeted serum metabolomics. Food Funct 2021; 12:8561-8569. [PMID: 34337639 DOI: 10.1039/d1fo01546j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The study aimed to investigate potential mechanisms for the anti-hypertensive effects of RVPSL on spontaneously hypertensive rats (SHRs) using a non-targeted metabonomic approach. In this study, UPLC/MS-based non-targeted metabolomics was performed to discover metabolite variation of serum in SHRs with RVPSL treatment. As a result, the serum metabolites of SHRs that were administered RVPSL for four weeks exhibited distinct alterations. Nine potential biomarkers, i.e., choline, adenosine, adrenic acid, L-tryptophan, niacinamide, glycocholic acid, propiolic acid, D-glyceraldehyde 3-phosphate, and phosphoglycolic acid, were significantly altered, which were mainly involved in lipid metabolism, vitamin and amino acid metabolism, purine metabolism, the MAPK signaling pathway, and the renin-angiotensin system. This study suggested that RVPSL potentially exerted potent effects of alleviating hypertension in the SHRs mainly via integrated regulations of metabolism and production of choline, L-tryptophan, nicotinamide, and adenosine.
Collapse
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P. R. China.
| | - Li Wang
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P. R. China.
| | - Sijia Wu
- Lab of Nutrition and Functional Food, Jilin University, Changchun 130062, P. R. China
| | - Wenjun Xue
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P. R. China.
| | - Wenzhu Zhao
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P. R. China.
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P. R. China.
| |
Collapse
|
14
|
Kaewsahnguan T, Noitang S, Sangtanoo P, Srimongkol P, Saisavoey T, Reamtong O, Choowongkomon K, Karnchanatat A. A novel angiotensin I-converting enzyme inhibitory peptide derived from the trypsin hydrolysates of salmon bone proteins. PLoS One 2021; 16:e0256595. [PMID: 34473745 PMCID: PMC8412326 DOI: 10.1371/journal.pone.0256595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
When fish are processed, fish bone becomes a key component of the waste, but to date very few researchers have sought to use fish bone to prepare protein hydrolysates as a means of adding value to the final product. This study, therefore, examines the potential of salmon bone, through an analysis of the benefits of its constituent components, namely fat, moisture, protein, and ash. In particular, the study seeks to optimize the process of enzymatic hydrolysis of salmon bone with trypsin in order to produce angiotensin-I converting enzyme (ACE) inhibitory peptides making use of response surface methodology in combination with central composite design (CCD). Optimum hydrolysis conditions concerning DH (degree of hydrolysis) and ACE-inhibitory activity were initially determined using the response surface model. Having thus determined which of the salmon bone protein hydrolysates (SBPH) offered the greatest level of ACE-inhibitory activity, these SBPH were duly selected to undergo ultrafiltration for further fractionation. It was found that the greatest ACE-inhibitory activity was achieved by the SBPH fraction which had a molecular weight lower than 0.65 kDa. This fraction underwent further purification using RP-HPLC, revealing that the F7 fraction offered the best ACE-inhibitory activity. For ACE inhibition, the ideal peptide in the context of the F7 fraction comprised eight amino acids: Phe-Cys-Leu-Tyr-Glu-Leu-Ala-Arg (FCLYELAR), while analysis of the Lineweaver-Burk plot revealed that the FCLYELAR peptide can serve as an uncompetitive ACE inhibitor. An examination of the molecular docking process showed that the FCLYELAR peptide was primarily able to provide ACE-inhibitory qualities as a consequence of the hydrogen bond interactions taking place between ACE and the peptide. Furthermore, upon isolation form the SBPH, the ACE-inhibitory peptide demonstrated ACE-inhibitory capabilities in vitro, underlining its potential for applications in the food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Thanakrit Kaewsahnguan
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Sajee Noitang
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Piroonporn Srimongkol
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Tanatorn Saisavoey
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Aphichart Karnchanatat
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
15
|
Cao X, Yang J, Ma H, Guo P, Cai Y, Xu H, Ding G, Gao D. Angiotensin I converting enzyme (ACE) inhibitory peptides derived from alfalfa (
Medicago sativa
L.) leaf protein and its membrane fractions. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xin Cao
- China‐Malaysia National Joint Laboratory Biomedical Research Center Northwest Minzu University Lanzhou P.R. China
- College of Life Sciences and Engineering Northwest Minzu University Lanzhou P.R. China
- Experimental Teaching Department Northwest Minzu University Lanzhou P.R. China
| | - Jutian Yang
- China‐Malaysia National Joint Laboratory Biomedical Research Center Northwest Minzu University Lanzhou P.R. China
- College of Life Sciences and Engineering Northwest Minzu University Lanzhou P.R. China
| | - Hongxin Ma
- China‐Malaysia National Joint Laboratory Biomedical Research Center Northwest Minzu University Lanzhou P.R. China
- College of Life Sciences and Engineering Northwest Minzu University Lanzhou P.R. China
| | - Penghui Guo
- China‐Malaysia National Joint Laboratory Biomedical Research Center Northwest Minzu University Lanzhou P.R. China
- College of Life Sciences and Engineering Northwest Minzu University Lanzhou P.R. China
| | - Yong Cai
- Experimental Teaching Department Northwest Minzu University Lanzhou P.R. China
| | - Hongwei Xu
- College of Life Sciences and Engineering Northwest Minzu University Lanzhou P.R. China
| | - Gongtao Ding
- China‐Malaysia National Joint Laboratory Biomedical Research Center Northwest Minzu University Lanzhou P.R. China
| | - Dandan Gao
- China‐Malaysia National Joint Laboratory Biomedical Research Center Northwest Minzu University Lanzhou P.R. China
- College of Life Sciences and Engineering Northwest Minzu University Lanzhou P.R. China
| |
Collapse
|
16
|
Pepsin generated camel whey protein hydrolysates with potential antihypertensive properties: Identification and molecular docking of antihypertensive peptides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111135] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Wang L, Ma M, Yu Z, Du SK. Preparation and identification of antioxidant peptides from cottonseed proteins. Food Chem 2021; 352:129399. [PMID: 33662918 DOI: 10.1016/j.foodchem.2021.129399] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/29/2022]
Abstract
The objective of this study was to investigate the antioxidant properties of cottonseed peptides. Results indicated that cottonseed peptides prepared by enzymatic hydrolysis and microbial fermentation both showed antioxidant properties. The cottonseed protein enzymatic hydrolysate with molecular weight less than 3 kDa exhibited excellent DPPH, ABTS and hydroxyl radical scavenging activity and ferrous ion chelating activity with EC50 values of 0.49 ± 0.02, 2.05 ± 0.02, 2.21 ± 0.12, and 0.99 ± 0.03 mg/mL, respectively. Amino acid composition analysis revealed that cottonseed protein hydrolysates are rich in acidic/basic and aromatic amino acids. In addition, among the 19 identified cottonseed protein-derived peptides, YSNQNGRF had the lowest CDOCKER energy and formed hydrogen bonds with Tyr334, Arg380, Arg415, Ser508, and Ser602, and van der Waals interactions with Asn382, Tyr525, Gln530, and Ser555, which all located in the binding site of Keap1-Nrf2 interaction. These findings suggested that the antioxidant peptides from cottonseed protein had the potential as functional ingredients in foods.
Collapse
Affiliation(s)
- Liying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengting Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhipeng Yu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Shuang-Kui Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
18
|
Lu X, Sun Q, Zhang L, Wang R, Gao J, Jia C, Huang J. Dual-enzyme hydrolysis for preparation of ACE-inhibitory peptides from sesame seed protein: Optimization, separation, and identification. J Food Biochem 2021; 45:e13638. [PMID: 33543791 DOI: 10.1111/jfbc.13638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/16/2023]
Abstract
To prepare and identify ACE-inhibitory peptides originated from sesame seed protein, peptides with strong ACE-inhibitory activities were obtained via the optimization of protease and hydrolysis conditions, and these peptides were purified and identified by membrane separation, gel filtration, and liquid chromatography-mass spectrometry. Results showed that the dual-enzyme comprised alcalase and trypsin with the enzyme activity ratio of 3:7 was suitable to produce ACE-inhibitory peptides. The highest ACE-inhibitory activity of 98.10 ± 0.26% was obtained at the following parameters, pH 8.35, E/S ratio of 6,145 U/g, and hydrolysis time of 4.4 hr. ISGAQPSLR and VVISAPSK ranked the first and second ACE-inhibitory activity among 15 identified ACE-inhibitory peptides. Both peptides influenced ACE via binding with the S1 pocket, S2 pocket, and Zn2+ ion. ISGAQPSLR even impacted the S1' pocket. ISGAQPSLR and VVISAPSK acted as a competitive and noncompetitive inhibitor, respectively. ACE-inhibitory peptides derivated from sesame seed protein have potential applications in functional food. PRACTICAL APPLICATIONS: Although sesame seed protein is proven as the precursor of ACE-inhibitory peptide, preparing ACE-inhibitory peptide from sesame seed protein is still suffering from insufficient information on hydrolysis condition and the peptide sequence. Therefore, the performance of the typical protease on preparing ACE-inhibitory peptide from sesame seed protein has been evaluated, the effect of the amino acid composition of sesame seed protein and cleavage specificity of protease on the generation of ACE-inhibitory peptide has been investigated, hydrolysis conditions have been optimized, the peptide sequence has been identified to illuminate the effect of sesame seed protein fraction on the formation of ACE-inhibitory peptide and discuss the structural characteristics. ACE-inhibitory peptides originating from sesame seed protein could apply in functional food. It is promising for dual-enzyme hydrolysis to utilize in preparation of high-value bioactive peptides.
Collapse
Affiliation(s)
- Xin Lu
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Qiang Sun
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Lixia Zhang
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Ruidan Wang
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Jinhong Gao
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Cong Jia
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Jinian Huang
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| |
Collapse
|
19
|
Ketprayoon T, Noitang S, Sangtanoo P, Srimongkol P, Saisavoey T, Reamtong O, Choowongkomon K, Karnchanatat A. An in vitro study of lipase inhibitory peptides obtained from de-oiled rice bran. RSC Adv 2021; 11:18915-18929. [PMID: 35478653 PMCID: PMC9033478 DOI: 10.1039/d1ra01411k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023] Open
Abstract
De-oiled rice bran (DORB) is a potentially useful by-product of the rice bran oil industry.
Collapse
Affiliation(s)
- Titima Ketprayoon
- Program in Biotechnology
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Sajee Noitang
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Piroonporn Srimongkol
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Tanatorn Saisavoey
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics
- Faculty of Tropical Medicine
- Mahidol University
- Bangkok 10400
- Thailand
| | | | - Aphichart Karnchanatat
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| |
Collapse
|
20
|
Yu Z, Wang L, Wu S, Zhao W, Ding L, Liu J. In vivo
anti‐hypertensive effect of peptides from egg white and its molecular mechanism with ACE. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering Bohai University Jinzhou121013China
| | - Li Wang
- College of Food Science and Engineering Bohai University Jinzhou121013China
| | - Sijia Wu
- College of Food Science and Engineering Bohai University Jinzhou121013China
| | - Wenzhu Zhao
- College of Food Science and Engineering Bohai University Jinzhou121013China
| | - Long Ding
- College of Food Science and Engineering Northwest A&F University Yangling712100China
| | - Jingbo Liu
- Lab of Nutrition and Functional Food Jilin University Changchun130062China
| |
Collapse
|
21
|
Iwaniak A, Minkiewicz P, Pliszka M, Mogut D, Darewicz M. Characteristics of Biopeptides Released In Silico from Collagens Using Quantitative Parameters. Foods 2020; 9:E965. [PMID: 32708318 PMCID: PMC7404701 DOI: 10.3390/foods9070965] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
The potential of collagens to release biopeptides was evaluated using the BIOPEP-UWM-implemented quantitative criteria including the frequency of the release of fragments with a given activity by selected enzyme(s) (AE), relative frequency of release of fragments with a given activity by selected enzyme(s) (W), and the theoretical degree of hydrolysis (DHt). Cow, pig, sheep, chicken, duck, horse, salmon, rainbow trout, goat, rabbit, and turkey collagens were theoretically hydrolyzed using: stem bromelain, ficin, papain, pepsin, trypsin, chymotrypsin, pepsin+trypsin, and pepsin+trypsin+chymotrypsin. Peptides released from the collagens having comparable AE and W were estimated for their likelihood to be bioactive using PeptideRanker Score. The collagens tested were the best sources of angiotensin I-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) inhibitors. AE and W values revealed that pepsin and/or trypsin were effective producers of such peptides from the majority of the collagens examined. Then, the SwissTargetPrediction program was used to estimate the possible interactions of such peptides with enzymes and proteins, whereas ADMETlab was applied to evaluate their safety and drug-likeness properties. Target prediction revealed that the collagen-derived peptides might interact with several human proteins, especially proteinases, but with relatively low probability. In turn, their bioactivity may be limited by their short half-life in the body.
Collapse
Affiliation(s)
- Anna Iwaniak
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Piotr Minkiewicz
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Monika Pliszka
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Damir Mogut
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Małgorzata Darewicz
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| |
Collapse
|
22
|
Gao D, Guo P, Cao X, Ge L, Ma H, Cheng H, Ke Y, Chen S, Ding G, Feng R, Qiao Z, Bai J, Nordin NI, Ma Z. Improvement of chicken plasma protein hydrolysate angiotensin I-converting enzyme inhibitory activity by optimizing plastein reaction. Food Sci Nutr 2020; 8:2798-2808. [PMID: 32566197 PMCID: PMC7300043 DOI: 10.1002/fsn3.1572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/21/2020] [Accepted: 03/22/2020] [Indexed: 11/06/2022] Open
Abstract
Chicken plasma protein hydrolysate (CPPH) was prepared by trypsin with angiotensin I-converting enzyme (ACE) inhibitory activity of 53.5% ± 0.14% and the degree of hydrolysis (DH) of 16.22% ± 0.21% at 1 mg·ml-1; then, five proteases, including pepsin, trypsin, papain, alcalase, and neutrase, were employed to improve ACE inhibitory ability by catalyzing plastein reaction. The results indicated that trypsin-catalyzed plastein reaction showed the highest ACE inhibitory activity. The exogenous amino acids of leucine, histidine, tyrosine, valine, and cysteine were selected to modify the CPPH. The leucine-modified plastein reaction released the highest ACE inhibitory activity. The effects of four reaction parameters on plastein reaction were studied, and the optimal conditions with the purpose of obtaining the most powerful ACE inhibitory peptides from modified products were obtained by response surface methodology (RSM). The maximum ACE inhibition rate of the modified hydrolysate reached 82.07% ± 0.03% prepared at concentration of hydrolysates of 30%, reaction time of 4.9 hr, pH value of 8.0, temperature of 40°C, and E/S ratio of 5,681.62 U·g-1. The results indicated that trypsin-catalyzed plastein reaction increased ACE inhibitory activity of chicken plasma protein hydrolysates by 28.57%.
Collapse
Affiliation(s)
- Dandan Gao
- China‐Malaysia National Joint LaboratoryBiomedical Research CenterNorthwest Minzu UniversityLanzhouP. R. China
- College of Life Sciences and EngineeringNorthwest Minzu UniversityLanzhouP. R. China
| | - Penghui Guo
- China‐Malaysia National Joint LaboratoryBiomedical Research CenterNorthwest Minzu UniversityLanzhouP. R. China
- College of Life Sciences and EngineeringNorthwest Minzu UniversityLanzhouP. R. China
| | - Xin Cao
- College of Life Sciences and EngineeringNorthwest Minzu UniversityLanzhouP. R. China
| | - Lili Ge
- College of Life Sciences and EngineeringNorthwest Minzu UniversityLanzhouP. R. China
| | - Hongxin Ma
- China‐Malaysia National Joint LaboratoryBiomedical Research CenterNorthwest Minzu UniversityLanzhouP. R. China
- College of Life Sciences and EngineeringNorthwest Minzu UniversityLanzhouP. R. China
| | - Hao Cheng
- China‐Malaysia National Joint LaboratoryBiomedical Research CenterNorthwest Minzu UniversityLanzhouP. R. China
- College of Life Sciences and EngineeringNorthwest Minzu UniversityLanzhouP. R. China
| | - Yiqiang Ke
- China‐Malaysia National Joint LaboratoryBiomedical Research CenterNorthwest Minzu UniversityLanzhouP. R. China
- College of Life Sciences and EngineeringNorthwest Minzu UniversityLanzhouP. R. China
| | - Shien Chen
- China‐Malaysia National Joint LaboratoryBiomedical Research CenterNorthwest Minzu UniversityLanzhouP. R. China
- College of Life Sciences and EngineeringNorthwest Minzu UniversityLanzhouP. R. China
| | - Gongtao Ding
- China‐Malaysia National Joint LaboratoryBiomedical Research CenterNorthwest Minzu UniversityLanzhouP. R. China
| | - Ruofei Feng
- China‐Malaysia National Joint LaboratoryBiomedical Research CenterNorthwest Minzu UniversityLanzhouP. R. China
| | - Zilin Qiao
- China‐Malaysia National Joint LaboratoryBiomedical Research CenterNorthwest Minzu UniversityLanzhouP. R. China
| | - Jialin Bai
- China‐Malaysia National Joint LaboratoryBiomedical Research CenterNorthwest Minzu UniversityLanzhouP. R. China
| | - Nurul I. Nordin
- Industrial Biotechnology Research CentreSIRIM BerhadSelangorMalaysia
| | - Zhongren Ma
- China‐Malaysia National Joint LaboratoryBiomedical Research CenterNorthwest Minzu UniversityLanzhouP. R. China
| |
Collapse
|
23
|
Chen J, Tan L, Li C, Zhou C, Hong P, Sun S, Qian ZJ. Mechanism Analysis of a Novel Angiotensin-I-Converting Enzyme Inhibitory Peptide from Isochrysis zhanjiangensis Microalgae for Suppressing Vascular Injury in Human Umbilical Vein Endothelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4411-4423. [PMID: 32212693 DOI: 10.1021/acs.jafc.0c00925] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microalgae are primary producers with multiple nutrients in aquatic environments and mostly have applications in biological feed and fuel industry. There are few studies assessing the angiotensin-I-converting enzyme (ACE) inhibition potential of Isochrysis zhanjiangensis, other than its antioxidant potential. In this study, we evaluated a peptide from I. zhanjiangensis (PIZ, FEIHCC) and its vascular endothelial factors and mechanism in human umbilical vein endothelial cells (HUVEC). The results reveal that PIZ (IC50 = 61.38 μM) acts against ACE in a non-competitive binding mode. In addition, PIZ inhibits angiotensin II (Ang II)-induced vascular factor secretion and expression by blocking inflammation and apoptosis through nuclear factor κB (NF-κB), nuclear erythroid 2-related factor 2 (Nrf2), mitogen-activated protein kinases (MAPKs), and the serine/threonine kinase (Akt) signal pathways. This study reveals that PIZ has potential to be developed as a therapeutic agent for hypertension and provides a new method of high-value utilization of I. zhanjiangensis.
Collapse
Affiliation(s)
- Jiali Chen
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong 524088, People's Republic of China
| | - Li Tan
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong 524088, People's Republic of China
| | - Chengyong Li
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong 524088, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, Guangdong 524088, People's Republic of China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, People's Republic of China
| | - Chunxia Zhou
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong 524088, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, Guangdong 524088, People's Republic of China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, People's Republic of China
| | - Pengzhi Hong
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong 524088, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, Guangdong 524088, People's Republic of China
| | - Shengli Sun
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong 524088, People's Republic of China
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong 524088, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, Guangdong 524088, People's Republic of China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, People's Republic of China
| |
Collapse
|