1
|
Yang CY, Zhang YC, Hou YL. Assessing water status in rice plants in water-deficient environments using thermal imaging. BOTANICAL STUDIES 2025; 66:6. [PMID: 39864037 PMCID: PMC11769923 DOI: 10.1186/s40529-025-00452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Rice is a staple food for the global population. However, extreme weather events threaten the stability of the water supply for agriculture, posing a critical challenge to the stability of the food supply. The use of technology to assess the water status of rice plants enables the precise management of agricultural water resources. RESULTS The results of this study reveal that rice-producing regions with more severe drought have higher ion leakage rates, lower Soil Plant Analysis Development (SPAD) meter values, and reduced total chlorophyll content in plants. Although no significant differences were observed in red-green-blue (RGB) images, physiological parameters and canopy temperature differed significantly from conventional farming when infrared thermography was used to capture rice plants in the early stages of drought. The Crop Water Stress Index (CWSI), calculated from canopy temperature and atmospheric temperature, indicated a high correlation between access to water for rice plants and their physiological parameters. Regression analysis using CWSI and plant water status yielded a corrected coefficient of determination of 0.86. CONCLUSION Our study demonstrate that infrared thermography can effectively detect early signs of water stress in rice, aiding farmers in irrigation planning and enabling precise management and optimal utilization of water resources.
Collapse
Affiliation(s)
- Chin-Ying Yang
- Department of Agronomy, National Chung Hsing University, Taichung, 402, Taiwan.
- Smart Sustainable New Agriculture Research Center (SMARTer), National Chung Hsing University, Taichung, 402, Taiwan.
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 402, Taiwan.
| | - Yan-Ci Zhang
- Department of Agronomy, National Chung Hsing University, Taichung, 402, Taiwan
| | - Ya-Ling Hou
- Crop Science Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung, 413, Taiwan
| |
Collapse
|
2
|
Wu B, Yang G, Huang W, Ruan J, Fang Z. Altered expression of amino acid permease OsAAP11 mediates bud outgrowth and tillering by regulating transport and accumulation of amino acids in rice. Int J Biol Macromol 2024; 280:136230. [PMID: 39362435 DOI: 10.1016/j.ijbiomac.2024.136230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Kam sweet rice is a cultural treasure in Qiandongnan, Guizhou Province. However, the situation with low yield and economic value in Kam sweet rice urgently requires improved mechanistic understanding of tillering to increase its yield. In this study, we found that the rate of axillary bud elongation differed significantly among Kam sweet rice varieties, which was positively correlated with tiller number. Transcriptome analysis suggests that genes involved in nitrogen metabolism and plant hormone signaling pathways could be the main reasons for the differences in tillering among these varieties. The amino acid transporter OsAAP11 in the transcriptome was essential for bud outgrowth and rice tillering based on the phenotypic performance of its transgenic plants. Further results found that OsAAP11 was able to transport amino acids such as proline, glycine, and alanine in rice. Natural variations were found in the promoter region of this gene in different Kam sweet rice varieties, which may lead to differences in the transcription levels of OsAAP11. Overall, the results suggest that the natural variations of OsAAP11 in rice might lead to variations in its expression levels, further affecting bud outgrowth and tillering through regulating the transport and accumulation of amino acids.
Collapse
Affiliation(s)
- Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Guo Yang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Weiting Huang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jingjun Ruan
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, Guizhou, China
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
3
|
Luo J, Amin B, Wu B, Wu B, Huang W, Salmen SH, Fang Z. Blocking of awn development-related gene OsGAD1 coordinately boosts yield and quality of Kam Sweet Rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14229. [PMID: 38413386 DOI: 10.1111/ppl.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
Kam Sweet Rice is a high-quality local variety of Guizhou province in China, but most varieties have awns on lemma. In this study, we aimed to obtain awnless varieties of Kam Sweet Rice by blocking the awn development-related gene OsGAD1 using CRISPR/Cas9 technology. We determined that natural variations of the OsGAD1 triggered different lengths of awns of Kam Sweet Rice. We found that the awning rate of the CRISPR lines of OsGAD1 in Guxiangnuo, Goujingao and Gouhuanggang decreased by over 65%, and the number of grains per panicle and yield per plant increased by more than 17% and 20% compared to the wild-types. Furthermore, we indicated that blocking OsGAD1 resulted in an increase of over 2% in the brown rice rate and milled rice rate in these varieties. In addition, the analysis of the transcriptome revealed that the regulation of awn development and yield formation in CRISPR lines of OsGAD1 may involve genes associated with phytohormone and nitrogen pathways. These results suggest that blocking OsGAD1 in Kam Sweet Rice using CRISPR/Cas9 technology can be used for breeding programs seeking high yield and grain quality of Kam Sweet Rice.
Collapse
Affiliation(s)
- Jun Luo
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Bakht Amin
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Bilong Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Weiting Huang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Dou Z, Yang Q, Guo H, Zhou Y, Xu Q, Gao H. A comparative study of grain quality and physicochemical properties of premium japonica rice from three typical production regions. FRONTIERS IN PLANT SCIENCE 2024; 15:1270388. [PMID: 38332770 PMCID: PMC10850325 DOI: 10.3389/fpls.2024.1270388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
Grain quality indicates rice commodity value. This research compared grain quality and physicochemical properties of premium japonica rice from three production regions, Yangtze River downstream of China (YRDCN), Northeast region of China (NECN) and Japan. Results showed that there were distinct quality and physicochemical characteristics variance among the three groups of japonica rice, while CVs of most quality parameters from low to high was Japan, YRDCN and NECN. YRDCN rice presented obvious lower apparent amylose content (AAC) and ratio of each chain-length sections of amylopectin, and showed higher protein contents especially glutelin and ratio in short and intermediate amylopectin molecules. Among three rice groups, YRDCN rice presented weaker appearance, whereas did not show inferior cooking and eating properties, which was primarily linked to lower AAC. Rice AAC and starch fine structure significantly correlated with pasting parameters, swelling power and solubility, while protein content had close relation with taste analyzer parameters. Results of this study indicated improvement direction for japonica rice of YRDCN, and also provided reference for consumers' rice purchasing selection in accordance with individual taste preference.
Collapse
Affiliation(s)
- Zhi Dou
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
- College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qian Yang
- College of Agriculture, Yangzhou University, Yangzhou, China
| | - Halun Guo
- College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yicheng Zhou
- College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qiang Xu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Hui Gao
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Park JR, Kim EG, Jang YH, Kim KM. Utilization of the Winkler scale of plants using big data temperature presented by the Korea Meteorological Administration. FRONTIERS IN PLANT SCIENCE 2024; 14:1349606. [PMID: 38283972 PMCID: PMC10811219 DOI: 10.3389/fpls.2023.1349606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
Introduction Rice is an important food source that can provide a stable supply of calories for most people around the world. However, owing to the recent rapid temperature rise, we are facing social issues related to the increase in the Winkler scale. In this study, a strategy for screening potential candidate genes related to the yield according to the Winkler scale is presented, and the possibility of using a candidate gene identified through sequence haplotype and homology analysis as a breeding source is suggested. Methods QTL for the Winkler scale was identified using a population of 120 double haploids derived from a cross between Cheongchoneg, Indica, and Nagdong, Japonica. Results and discussion A total of 79 candidate genes were detected in the identified QTL region, and OsHAq8 was finally screened. Through haplotype analysis, OsHAq8 was derived from the Indica group and orthologous to Graminae's activator of Hsp90 ATPase, suggesting that it is a candidate gene involved in yield according to temperature during the growing period. The expression level of OsHAq8 increased as the Winkler scale increased. The findings of this study can serve as a crucial indicator for predicting harvest time and grain quality while achieving a stable yield through marker selection and adaptation to climate change. Climate change occurs more frequently. In these situations, it is very important to predict harvest time and apply relevant candidate genes to breeding. The candidate genes presented in this study can be effectively applied to rice breeding in preparation for climate change.
Collapse
Affiliation(s)
- Jae-Ryoung Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Gyeong Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Yoon-Hee Jang
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
6
|
Pereira CL, Sousa I, Lourenço VM, Sampaio P, Gárzon R, Rosell CM, Brites C. Relationship between Physicochemical and Cooking Quality Parameters with Estimated Glycaemic Index of Rice Varieties. Foods 2023; 13:135. [PMID: 38201163 PMCID: PMC10778676 DOI: 10.3390/foods13010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Rice is a significant staple food in the basic diet of the global population that is considered to have a high glycaemic index. The study of the physical and chemical parameters in rice that are related to the starch digestion process, which allows us to quickly predict the glycaemic index of varieties, is a major challenge, particularly in the classification and selection process. In this context, and with the goal of establishing a relationship between physicochemical properties and starch digestibility rates, thus shedding light on the connections between quality indicators and their glycaemic impact, we evaluated various commercial rice types based on their basic chemical composition, physicochemical properties, cooking parameters, and the correlations with digestibility rates. The resistant starch, the gelatinization temperature and the retrogradation (setback) emerge as potent predictors of rice starch digestibility and estimated glycaemic index, exhibiting robust correlations of r = -0.90, r = -0.90, and r = -0.70 (p ≤ 0.05), respectively. Among the rice types, Long B and Basmati stand out with the lowest estimated glycaemic index values (68.44 and 68.10), elevated levels of resistant starch, gelatinization temperature, and setback values. Furthermore, the Long B showcases the highest amylose, while the Basmati with intermediate, revealing intriguingly strong grain integrity during cooking, setting it apart from other rice varieties.
Collapse
Affiliation(s)
- Cristiana L. Pereira
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- Department of Earth Sciences, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Inês Sousa
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Center, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Vanda M. Lourenço
- Center for Mathematics and Applications (NOVA Math) and Department of Mathematics, NOVA SST, 2829-516 Caparica, Portugal
| | - Pedro Sampaio
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- Computação e Cognição Centrada nas Pessoas, BioRG—Biomedical Research Group, Lusófona University, Campo Grande, 376, 1749-019 Lisboa, Portugal
| | - Raquel Gárzon
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain
| | - Cristina M. Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain
- Food and Human Nutritional Department, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Carla Brites
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
7
|
Brunet-Loredo A, López-Belchí MD, Cordero-Lara K, Noriega F, Cabeza RA, Fischer S, Careaga P, Garriga M. Assessing Grain Quality Changes in White and Black Rice under Water Deficit. PLANTS (BASEL, SWITZERLAND) 2023; 12:4091. [PMID: 38140418 PMCID: PMC10748231 DOI: 10.3390/plants12244091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
Rice is an essential diet component for a significant portion of the population worldwide. Due to the high water demand associated with rice production, improving water use efficiency and grain quality is critical to increasing the sustainability of the crop. This species includes rice varieties with diverse pigmentation patterns. Grain quality, including industrial, nutritional, and functional quality traits, of two black rice genotypes and a commercial white rice cultivar were evaluated in different locations and under different water regimes. Flooding produced higher grain weight compared to alternate wetting and drying irrigation. A high correlation was found between grain color, total phenolic content (TPC), and antioxidant activity. The black rice genotypes showed higher TPC levels and antioxidant capacity, mainly due to higher levels of cyanidin 3-O-glucoside. The phenolic profile varied between whole and polished grains, while mineral composition was influenced by location and irrigation regime. In turn, the environment influenced grain quality in terms of industrial and nutritional characteristics, with significant differences in quality between whole and polished grains. This study provides valuable information on the genotype-environment relationship in rice and its effect on grain quality, which could contribute to selecting genotypes for an appropriate environment.
Collapse
Affiliation(s)
- Aloysha Brunet-Loredo
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez, 595, Chillán 3780000, Chile; (A.B.-L.); (M.D.L.-B.); (F.N.); (S.F.); (P.C.)
| | - María Dolores López-Belchí
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez, 595, Chillán 3780000, Chile; (A.B.-L.); (M.D.L.-B.); (F.N.); (S.F.); (P.C.)
| | - Karla Cordero-Lara
- Institute of Agricultural Research, Regional Research Center Quilamapu, Avenida Vicente Mendez, 515, Chillán 3780000, Chile;
| | - Felipe Noriega
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez, 595, Chillán 3780000, Chile; (A.B.-L.); (M.D.L.-B.); (F.N.); (S.F.); (P.C.)
| | - Ricardo A. Cabeza
- Plant Nutrition Laboratory, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Talca, Avenida Lircay s/n, Talca 3460000, Chile;
| | - Susana Fischer
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez, 595, Chillán 3780000, Chile; (A.B.-L.); (M.D.L.-B.); (F.N.); (S.F.); (P.C.)
| | - Paula Careaga
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez, 595, Chillán 3780000, Chile; (A.B.-L.); (M.D.L.-B.); (F.N.); (S.F.); (P.C.)
| | - Miguel Garriga
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez, 595, Chillán 3780000, Chile; (A.B.-L.); (M.D.L.-B.); (F.N.); (S.F.); (P.C.)
| |
Collapse
|
8
|
Guo X, Wang L, Zhu G, Xu Y, Meng T, Zhang W, Li G, Zhou G. Impacts of Inherent Components and Nitrogen Fertilizer on Eating and Cooking Quality of Rice: A Review. Foods 2023; 12:2495. [PMID: 37444233 DOI: 10.3390/foods12132495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
With the continuous improvement of living standards, the preferences of consumers are shifting to rice varieties with high eating and cooking quality (ECQ). Milled rice is mainly composed of starch, protein, and oil, which constitute the physicochemical basis of rice taste quality. This review summarizes the relationship between rice ECQ and its intrinsic ingredients, and also briefly introduces the effects of nitrogen fertilizer management on rice ECQ. Rice varieties with higher AC usually have more long branches of amylopectin, which leach less when cooking, leading to higher hardness, lower stickinesss, and less panelist preference. High PC impedes starch pasting, and it may be hard for heat and moisture to enter the rice interior, ultimately resulting in worse rice eating quality. Rice with higher lipid content had a brighter luster and better eating quality, and starch lipids in rice have a greater impact on rice eating quality than non-starch lipids. The application of nitrogen fertilizer can enhance rice yield, but it also decreases the ECQ of rice. CRNF has been widely used in cereal crops such as maize, wheat, and rice as a novel, environmentally friendly, and effective fertilizer, and could increase rice quality to a certain extent compared with conventional urea. This review shows a benefit to finding more reasonable nitrogen fertilizer management that can be used to regulate the physical and chemical indicators of rice grains in production and to improve the taste quality of rice without affecting yield.
Collapse
Affiliation(s)
- Xiaoqian Guo
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
- China-Sudan Joint Laboratory of Crop Salinity and Drought Stress Physiology, The Ministry of Education of China, Yangzhou 225000, China
| | - Luqi Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanglong Zhu
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Yunji Xu
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Tianyao Meng
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Weiyang Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225000, China
| | - Guohui Li
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225000, China
| | - Guisheng Zhou
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
- China-Sudan Joint Laboratory of Crop Salinity and Drought Stress Physiology, The Ministry of Education of China, Yangzhou 225000, China
- College for Overseas Education, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
9
|
Jang YH, Park JR, Kim EG, Jan R, Asif S, Farooq M, Zhao DD, Kim KM. Efficient identification of palatability-related genes using QTL mapping in rice breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:39. [PMID: 37312747 PMCID: PMC10248614 DOI: 10.1007/s11032-023-01392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/02/2023] [Indexed: 06/15/2023]
Abstract
The gelatinization temperature of rice is an important factor in determining the eating and cooking quality, and it affects consumer preference. The alkali digestion value (ADV) is one of the main methods used to test the quality of rice and has a high correlation with the gelatinization temperature. For the development of high-quality rice, it is important to understand the genetic basis of palatability-related traits, and QTL analysis is a statistical method linking phenotypic data and genotype data and is an effective method to explain the genetic basis of variation in complex traits. QTL mapping related to the ADV of brown and milled rice was performed using the 120 Cheongcheong/Nagdong double haploid (CNDH) line. As a result, 12 QTLs related to ADV were detected, and 20 candidate genes were selected from the RM588-RM1163 region of chromosome 6 through screening by gene function analysis. The comparison of the relative expression level of candidate genes showed that OsSS1q6 is highly expressed in CNDH lines with high ADV in both brown rice and milled rice. In addition, OsSS1q6 has high homology with the starch synthase 1 protein and interacts with various starch biosynthesis-related proteins, such as GBSSII, SBE, and APL. Therefore, we suggest that OsSS1q6 identified through QTL mapping could be one of the various genes involved in the gelatinization temperature of rice by regulating starch biosynthesis. This study can be used as basic data for breeding high-quality rice and provides a new genetic resource that can increase the palatability of rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01392-2.
Collapse
Affiliation(s)
- Yoon-Hee Jang
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566 Korea
| | - Jae-Ryoung Park
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566 Korea
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, 55365 Korea
| | - Eun-Gyeong Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566 Korea
| | - Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566 Korea
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - Muhammad Farooq
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - Dan-Dan Zhao
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju, 55365 Korea
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566 Korea
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| |
Collapse
|
10
|
Cheng B, Shi S, Pan K, Nie J, Xing J, Wang X, Li L, Tang J, Liu J, Cao C, Jiang Y. Untargeted metabolomics based on UHPLC-Q-Exactive-MS reveals metabolite and taste quality differences between Koshihikari rice from China and Japan. Int J Gastron Food Sci 2023. [DOI: 10.1016/j.ijgfs.2023.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
11
|
Chen G, Hou J, Liu C. A Scientometric Review of Grain Storage Technology in the Past 15 Years (2007-2022) Based on Knowledge Graph and Visualization. Foods 2022; 11:foods11233836. [PMID: 36496644 PMCID: PMC9740888 DOI: 10.3390/foods11233836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Food storage helps to ensure the food consumption needs of non-agricultural populations and to respond to major natural disasters or other emergencies, and the application of food storage technology can reduce post-harvest food losses. However, there are still obvious shortcomings in coping with large grain losses. Therefore, quantitative analysis of the research hotspots and evolutionary trends of grain storage technology is important to help the development of grain storage technology. This article uses the Web of Science database from 2007 to 2022 as a data sample with the help of CiteSpace software to analyze the basic situation, research hotspots, and evolutionary trends to draw a series of relevant knowledge maps. Visual analysis revealed that the number of publications had grown rapidly since 2015. First, the Journal of Stored Products Research, Journal of Economic Entomology, and Journal of Agricultural and Food Chemistry, with citation frequencies of 929, 536, and 453, should be focused on in order to keep up with the latest research developments in this field. The United States, China, and Brazil occupy dominant positions in relation to grain storage technology studies in general. Purdue University, Kansas State University, and Agricultural Research Institute ranked the top three in terms of the number and centrality of publications. In terms of research hotspots, the centrality of temperature, insects, carbon dioxide, and quality were 0.16, 0.09, 0.08, and 0.08. It shows that the field of grain storage technology in recent years has focused on grain storage temperature, pest control, and grain storage quality research. From the perspective of the evolution trend, the life cycle of emergent words lasts for several years, after which the strength of emergent words slowly decreases and is replaced by new emergent words. Mortality was the first keyword to appear and remained from 2007 to 2011, indicating that research on fumigants and their toxicity, as well as pest mortality under air fumigation and chemical fumigation conditions, became more popular during this period. In recent years, new terms have emerged that had never been used before, such as "grain quality" (2019-2022) and "stability" (2020-2022). We can find that people pursue food quality more with the improvement of people's living standards. In this context, future research should seek more efficient, safe, economical, and environmentally friendly methods of grain storage and continuously improve the level of scientific grain storage.
Collapse
Affiliation(s)
- Guixiang Chen
- College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Storage Facility and Safety, Zhengzhou 450001, China
- Henan International Joint Laboratory of Modern Green Ecological Storage System, Zhengzhou 450001, China
- Correspondence:
| | - Jia Hou
- College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chaosai Liu
- College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
12
|
Li H, Liu B, Bess K, Wang Z, Liang M, Zhang Y, Wu Q, Yang L. Impact of Low-Temperature Storage on the Microstructure, Digestibility, and Absorption Capacity of Cooked Rice. Foods 2022; 11:foods11111642. [PMID: 35681392 PMCID: PMC9180724 DOI: 10.3390/foods11111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
This study examined the effects of low-temperature storage on the microstructural, absorptive, and digestive properties of cooked rice. Cooked rice was refrigerated and stored at 4 °C for 0.5, 1, 3, 5, and 7 days, as well as frozen and preserved at −20, −40, and −80 °C for 0.5, 1, 3, 5, 7, 14, 21, and 28 days. The results indicated that the stored rice samples generally exhibited a higher absorption capacity for oil, cholesterol, and glucose than the freshly cooked rice. In addition, after storage, the digestibility of the cooked rice declined, namely, the rapidly digestible starch (RDS) content and estimated glycemic index (eGI) decreased, whereas the slowly digestible starch (SDS) and resistant starch (RS) content increased. Moreover, the increment of the storage temperatures or the extension of storage periods led to a lower amylolysis efficiency. Scanning electron microscopy (SEM) analysis indicated that storage temperature and duration could effectively modify the micromorphology of the stored rice samples and their digestion. Moreover, microstructural differences after storage and during simulated intestinal digestion could be correlated to the variations in the absorption capacity and digestibility. The findings from this study will be useful in providing alternative storage procedures to prepare rice products with improved nutritional qualities and functional properties.
Collapse
Affiliation(s)
- Hui Li
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin 150001, China; (H.L.); (Y.Z.); (Q.W.)
| | - Bingxiao Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (B.L.); (Z.W.); (M.L.)
| | - Kezia Bess
- Department of Chemistry, Faculty of Natural Sciences, University of Guyana, Turkeyen 999073, Guyana;
| | - Zhengxuan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (B.L.); (Z.W.); (M.L.)
| | - Mingcai Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (B.L.); (Z.W.); (M.L.)
| | - Yan Zhang
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin 150001, China; (H.L.); (Y.Z.); (Q.W.)
| | - Qiong Wu
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin 150001, China; (H.L.); (Y.Z.); (Q.W.)
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (B.L.); (Z.W.); (M.L.)
- Correspondence:
| |
Collapse
|
13
|
Radha B, Sunitha NC, Sah RP, T P MA, Krishna GK, Umesh DK, Thomas S, Anilkumar C, Upadhyay S, Kumar A, Ch L N M, S B, Marndi BC, Siddique KHM. Physiological and molecular implications of multiple abiotic stresses on yield and quality of rice. FRONTIERS IN PLANT SCIENCE 2022; 13:996514. [PMID: 36714754 PMCID: PMC9874338 DOI: 10.3389/fpls.2022.996514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/05/2022] [Indexed: 05/12/2023]
Abstract
Abiotic stresses adversely affect rice yield and productivity, especially under the changing climatic scenario. Exposure to multiple abiotic stresses acting together aggravates these effects. The projected increase in global temperatures, rainfall variability, and salinity will increase the frequency and intensity of multiple abiotic stresses. These abiotic stresses affect paddy physiology and deteriorate grain quality, especially milling quality and cooking characteristics. Understanding the molecular and physiological mechanisms behind grain quality reduction under multiple abiotic stresses is needed to breed cultivars that can tolerate multiple abiotic stresses. This review summarizes the combined effect of various stresses on rice physiology, focusing on grain quality parameters and yield traits, and discusses strategies for improving grain quality parameters using high-throughput phenotyping with omics approaches.
Collapse
Affiliation(s)
- Beena Radha
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, Vellayani, Thiruvananthapuram, Kerala, India
| | | | - Rameswar P Sah
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Md Azharudheen T P
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - G K Krishna
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, Thrissur, Kerala, India
| | - Deepika Kumar Umesh
- Mulberry Breeding & Genetics Section, Central Sericultural Research and Training Institute-Berhampore, Central Silk Board, Murshidabad, West Bengal, India
| | - Sini Thomas
- Department of Plant Physiology, Kerala Agricultural University-Regional Agricultural Research Station, Kumarakom, Kerala, India
| | - Chandrappa Anilkumar
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Sameer Upadhyay
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Awadhesh Kumar
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Manikanta Ch L N
- Department of Plant Physiology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Behera S
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Bishnu Charan Marndi
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Kadambot H M Siddique
- The University of Western Australia Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|