1
|
Liu S, Zhou Y, Chen Y, Qiao Y, Bai L, Zhang S, Men D, Zhang H, Pan F, Gao Y, Wang J, Wang Y. Isocitrate dehydrogenases 2-mediated dysfunctional metabolic reprogramming promotes intestinal cancer progression via regulating HIF-1A signaling pathway. Int Immunopharmacol 2024; 140:112828. [PMID: 39094359 DOI: 10.1016/j.intimp.2024.112828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Changes in isocitrate dehydrogenases (IDH) lead to the production of the cancer-causing metabolite 2-hydroxyglutarate, making them a cause of cancer. However, the specific role of IDH in the progression of colon cancer is still not well understood. Our current study provides evidence that IDH2 is significantly increased in colorectal cancer (CRC) cells and actively promotes cell growth in vitro and the development of tumors in vivo. Inhibiting the activity of IDH2, either through genetic silencing or pharmacological inhibition, results in a significant increase in α-ketoglutarate (α-KG), indicating a decrease in the reductive citric acid cycle. The excessive accumulation of α-KG caused by the inactivation of IDH2 obstructs the generation of ATP in mitochondria and promotes the downregulation of HIF-1A, eventually inhibiting glycolysis. This dual metabolic impact results in a reduction in ATP levels and the suppression of tumor growth. Our study reveals a metabolic trait of colorectal cancer cells, which involves the active utilization of glutamine through reductive citric acid cycle metabolism. The data suggests that IDH2 plays a crucial role in this metabolic process and has the potential to be a valuable target for the advancement of treatments for colorectal cancer.
Collapse
Affiliation(s)
- Shixiong Liu
- Department of Geriatrics, The First Hospital of Lanzhou University, Lanzhou 730000, China; Center of Hyperbaric Oxygen Therapy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yun Zhou
- Department of Geriatrics, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yarong Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Yuqin Qiao
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Lumucao Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Shenhua Zhang
- Center of R&D for New Drug Discovery and Innovation, Nanjing BioMed Institute, Nanjing 25000, China
| | - Dongfang Men
- Center of R&D for New Drug Discovery and Innovation, Nanjing BioMed Institute, Nanjing 25000, China
| | - Haibu Zhang
- Center of R&D for New Drug Discovery and Innovation, Nanjing BioMed Institute, Nanjing 25000, China
| | - Fen Pan
- Center of R&D for New Drug Discovery and Innovation, Nanjing BioMed Institute, Nanjing 25000, China
| | - Yongshen Gao
- Center of R&D for New Drug Discovery and Innovation, Nanjing BioMed Institute, Nanjing 25000, China
| | - Jijing Wang
- Center of R&D for New Drug Discovery and Innovation, Nanjing BioMed Institute, Nanjing 25000, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Ziemons J, Hillege LE, Aarnoutse R, de Vos-Geelen J, Valkenburg-van Iersel L, Mastenbroek J, van Geel R, Barnett DJM, Rensen SS, van Helvoort A, Dopheide LHJ, Roeselers G, Penders J, Smidt ML, Venema K. Prebiotic fibre mixtures counteract the manifestation of gut microbial dysbiosis induced by the chemotherapeutic 5-Fluorouracil (5-FU) in a validated in vitro model of the colon. BMC Microbiol 2024; 24:222. [PMID: 38918717 PMCID: PMC11200995 DOI: 10.1186/s12866-024-03384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU) is used as an antineoplastic agent in distinct cancer types. Increasing evidence suggests that the gut microbiota might modulate 5-FU efficacy and toxicity, potentially affecting the patient's prognosis. The current experimental study investigated 5-FU-induced microbiota alterations, as well as the potential of prebiotic fibre mixtures (M1-M4) to counteract these shifts. METHODS A pooled microbial consortium was derived from ten healthy donors, inoculated in an in vitro model of the colon, and treated with 5-FU, with or without prebiotic fibre mixtures for 72 h. Four different prebiotic fibre mixtures were tested: M1 containing short-chain galacto-oligosaccharides (sc GOS), long-chain fructo-oligosaccharides (lcFOS), and low viscosity pectin (lvPect), M2 consisting of arabinoxylan, beta-glucan, pectin, and resistant starch, M3 which was a mixture of scGOS and lcFOS, and M4 containing arabinoxylan, beta-glucan, pectin, resistant starch, and inulin. RESULTS We identified 5-FU-induced changes in gut microbiota composition, but not in microbial diversity. Administration of prebiotic fibre mixtures during 5-FU influenced gut microbiota composition and taxa abundance. Amongst others, prebiotic fibre mixtures successfully stimulated potentially beneficial bacteria (Bifidobacterium, Lactobacillus, Anaerostipes, Weissella, Olsenella, Senegalimassilia) and suppressed the growth of potentially pathogenic bacteria (Klebsiella, Enterobacter) in the presence of 5-FU. The short-chain fatty acid (SCFA) acetate increased slightly during 5-FU, but even more during 5-FU with prebiotic fibre mixtures, while propionate was lower due to 5-FU with or without prebiotic fibre mixtures, compared to control. The SCFA butyrate and valerate did not show differences among all conditions. The branched-chain fatty acids (BCFA) iso-butyrate and iso-valerate were higher in 5-FU, but lower in 5-FU + prebiotics, compared to control. CONCLUSIONS These data suggest that prebiotic fibre mixtures represent a promising strategy to modulate 5-FU-induced microbial dysbiosis towards a more favourable microbiota, thereby possibly improving 5-FU efficacy and reducing toxicity, which should be evaluated further in clinical studies.
Collapse
Affiliation(s)
- Janine Ziemons
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
- Department of Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands.
| | - Lars E Hillege
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Romy Aarnoutse
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Judith de Vos-Geelen
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Liselot Valkenburg-van Iersel
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jasper Mastenbroek
- Department of Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Robin van Geel
- CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - David J M Barnett
- Department of Medical Microbiology, Infectious Diseases, and Infection Prevention, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Sander S Rensen
- Department of Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
- NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ardy van Helvoort
- NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Danone Nutricia Research, Utrecht, The Netherlands
| | | | | | - John Penders
- Department of Medical Microbiology, Infectious Diseases, and Infection Prevention, Maastricht University Medical Center+, Maastricht, The Netherlands
- NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Euregional Microbiome Center, Maastricht, The Netherlands
| | - Marjolein L Smidt
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Koen Venema
- Euregional Microbiome Center, Maastricht, The Netherlands
- Centre for Healthy Eating & Food Innovation, Maastricht University - Campus Venlo, Venlo, The Netherlands
| |
Collapse
|
3
|
Ahmed R, Zaitone SA, Abdelmaogood AKK, Atef HM, Soliman MFM, Badawy AM, Ali HS, Zaid A, Mokhtar HI, Elabbasy LM, Kandil E, Yosef AM, Mahran RI. Chemotherapeutic potential of betanin/capecitabine combination targeting colon cancer: experimental and bioinformatic studies exploring NFκB and cyclin D1 interplay. Front Pharmacol 2024; 15:1362739. [PMID: 38645563 PMCID: PMC11026609 DOI: 10.3389/fphar.2024.1362739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/13/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction: Betanin (C₂₄H₂₆N₂O₁₃) is safe to use as food additives approved by the FDA with anti-inflammatory and anticancer effects in many types of cancer cell lines. The current experiment was designed to test the chemotherapeutic effect of the combination of betanin with the standard chemotherapeutic agent, capecitabine, against chemically induced colon cancer in mice. Methods: Bioinformatic approach was designed to get information about the possible mechanisms through which the drugs may control cancer development. Five groups of mice were assigned as, (i) saline, (ii) colon cancer, (iii) betanin, (iv) capecitabine and (v) betanin/capecitabine. Drugs were given orally for a period of six weeks. Colon tissues were separated and used for biological assays and histopathology. Results: In addition, the mRNA expression of TNF-α (4.58-fold), NFκB (5.33-fold), IL-1β (4.99-fold), cyclin D1 (4.07-fold), and IL-6 (3.55-fold) and protein levels showed several folds increases versus the saline group. Tumor histopathology scores in the colon cancer group (including cryptic distortion and hyperplasia) and immunostaining for NFκB (2.94-fold) were high while periodic-acid Schiff staining demonstrated poor mucin content (33% of the saline group). These pathologic manifestations were reduced remarkably in betanin/capecitabine group. Conclusion: Collectively, our findings demonstrated the usefulness of betanin/capecitabine combination in targeting colon cancer and highlighted that betanin is a promising adjuvant therapy to capecitabine in treating colon cancer patients.
Collapse
Affiliation(s)
- Rehab Ahmed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Sawsan A. Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | | | - Huda M. Atef
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona F. M. Soliman
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Horus University, New Damiettta, Egypt
| | - Alaa M. Badawy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Howaida S. Ali
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - AbdelNaser Zaid
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
- Department of General Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hatem I. Mokhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| | - Lamiaa M. Elabbasy
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Emad Kandil
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Asmaa Mokhtar Yosef
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Rama I. Mahran
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
4
|
Xu X, Li Z, Yao X, Sun N, Chang J. Advanced prodrug strategies in nucleoside analogues targeting the treatment of gastrointestinal malignancies. Front Cell Dev Biol 2023; 11:1173432. [PMID: 37143892 PMCID: PMC10151537 DOI: 10.3389/fcell.2023.1173432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/07/2023] [Indexed: 05/06/2023] Open
Abstract
Gastrointestinal malignancies are common digestive system tumor worldwide. Nucleoside analogues have been widely used as anticancer drugs for the treatment of a variety of conditions, including gastrointestinal malignancies. However, low permeability, enzymatic deamination, inefficiently phosphorylation, the emergence of chemoresistance and some other issues have limited its efficacy. The prodrug strategies have been widely applied in drug design to improve pharmacokinetic properties and address safety and drug-resistance issues. This review will provide an overview of the recent developments of prodrug strategies in nucleoside analogues for the treatment of gastrointestinal malignancies.
Collapse
Affiliation(s)
| | | | | | - Nannan Sun
- *Correspondence: Nannan Sun, ; Junbiao Chang,
| | | |
Collapse
|
5
|
Shan W, Dai C, Zhang H, Han D, Yi Q, Xia B. ACY1 Downregulation Enhances the Radiosensitivity of Cetuximab-Resistant Colorectal Cancer by Inactivating the Wnt/β-Catenin Signaling Pathway. Cancers (Basel) 2022; 14:cancers14225704. [PMID: 36428796 PMCID: PMC9688869 DOI: 10.3390/cancers14225704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Treatment of cetuximab-resistant colorectal cancer (CRC) is a global healthcare problem. This study aimed to assess the effects of radiotherapy on cetuximab-resistant CRC and explore the underlying mechanism. We established a cetuximab-resistant HCT116 cell line (HCT116-R) by extracorporeal shock. Differentially expressed mRNAs were screened from cells treated with different radiation doses using second-generation high-throughput sequencing. Sequence data showed that ACY1 was significantly downregulated in HCT116-R cells after irradiation. Analysis of the GEO and TCGA datasets revealed that high ACY1 expression was associated with lymph node metastasis and a poor prognosis in CRC patients. In addition, immunohistochemistry results from CRC patients revealed that ACY1 protein expression was related to cetuximab resistance and lymph node metastasis. These findings suggested that ACY1 may function as an oncogene to promote CRC progression and regulate the radiosensitivity of cetuximab-resistant CRC. As expected, ACY1 silencing weakened the proliferation, migration, and invasion abilities of HCT116-R cells after radiotherapy. Mechanistically, TCGA data demonstrated that ACY1 expression was closely related to the Wnt/β-catenin pathway in CRC. We validated that radiotherapy first reduced β-catenin levels, followed by decreased expression of the metastasis-related protein E-cadherin. Silencing ACY1 dramatically enhanced these changes in β-catenin and E-cadherin after radiotherapy. In conclusion, ACY1 downregulation could enhance the radiosensitivity of cetuximab-resistant CRC by inactivating Wnt/β-catenin signaling, implying that ACY1 may serve as a radiotherapy target for cetuximab-resistant CRC.
Collapse
Affiliation(s)
- Wulin Shan
- Department of Laboratory Diagnostics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Chunyang Dai
- Department of Laboratory Diagnostics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Huanhuan Zhang
- Department of Cancer Epigenetics Program, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Dan Han
- Department of Cancer Epigenetics Program, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Qiyi Yi
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Correspondence: (Q.Y.); (B.X.)
| | - Bairong Xia
- Department of Gynecology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
- Correspondence: (Q.Y.); (B.X.)
| |
Collapse
|
6
|
Raoul JL, Edeline J, Simmet V, Moreau-Bachelard C, Gilabert M, Frénel JS. Long-Term Use of Proton Pump Inhibitors in Cancer Patients: An Opinion Paper. Cancers (Basel) 2022; 14:cancers14051156. [PMID: 35267464 PMCID: PMC8909698 DOI: 10.3390/cancers14051156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Proton pump inhibitors are frequently used in cancer patients to alleviate some symptoms, epigastric pain or heartburn. However, acid suppression decreases the absorption of some oral-targeted anticancer treatments (tyrosine kinase inhibitors, CDK4/6 inhibitors) and induces changes in the gut microbiome. Recent data are showing that these interactions have important clinical impacts and medical oncologists and patients must be aware of these possible interactions. Abstract Multikinase inhibitors (MKIs), and particularly tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (CPIs), are currently some of the major breakthroughs in cancer treatment. Proton pump inhibitors (PPIs) revolutionised the treatment of acid-related diseases, but are frequently overused for epigastric pain or heartburn. However, long-term acid suppression from using PPIs may lead to safety concerns, and could have a greater impact in cancer patients undergoing therapy, like bone fractures, renal toxicities, enteric infections, and micronutrient deficiencies (iron and magnesium). Moreover, acid suppression may also affect the pharmacokinetics of drugs (at least during acid suppression) and decrease the absorption of many molecularly-targeted anticancer therapies, which are mostly weak bases with pH-dependent absorption. This type of drug-drug interaction may have detrimental effects on efficacy, with major clinical impacts described for some orally administrated targeted therapies (erlotinib, gefitinib, pazopanib, palbociclib), and conflicting results with many others, including capecitabine. Furthermore, the long-term use of PPIs results in severe alterations to the gut microbiome and recent retrospective analyses have shown that the benefit of using CPIs was suppressed in patients treated with PPIs. These very expensive drugs are of great importance because of their efficacy. As the use of PPIs is not essential, we must apply the precautionary principle. All these data should encourage medical oncologists to refrain from prescribing PPIs, explaining to patients the risks of interaction in order to prevent inappropriate prescription by another physician.
Collapse
Affiliation(s)
- Jean-Luc Raoul
- Department of Medical Oncology, Institut de Cancérologie de l’Ouest, 44805 Saint-Herblain, France; (C.M.-B.); (J.-S.F.)
- Correspondence:
| | - Julien Edeline
- Department of Medical Oncology, Centre E Marquis, 35000 Rennes, France;
| | - Victor Simmet
- Department of Medical Oncology, Institut de Cancérologie de l’Ouest, 49055 Angers, France;
- Department of Medical Oncology, Centre Hospitalier de Cholet, 49300 Cholet, France
| | - Camille Moreau-Bachelard
- Department of Medical Oncology, Institut de Cancérologie de l’Ouest, 44805 Saint-Herblain, France; (C.M.-B.); (J.-S.F.)
| | - Marine Gilabert
- Department of Medical Oncology, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland;
| | - Jean-Sébastien Frénel
- Department of Medical Oncology, Institut de Cancérologie de l’Ouest, 44805 Saint-Herblain, France; (C.M.-B.); (J.-S.F.)
| |
Collapse
|
7
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|