1
|
Ivanković M, Brand JN, Pandolfini L, Brown T, Pippel M, Rozanski A, Schubert T, Grohme MA, Winkler S, Robledillo L, Zhang M, Codino A, Gustincich S, Vila-Farré M, Zhang S, Papantonis A, Marques A, Rink JC. A comparative analysis of planarian genomes reveals regulatory conservation in the face of rapid structural divergence. Nat Commun 2024; 15:8215. [PMID: 39294119 PMCID: PMC11410931 DOI: 10.1038/s41467-024-52380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
The planarian Schmidtea mediterranea is being studied as a model species for regeneration, but the assembly of planarian genomes remains challenging. Here, we report a high-quality haplotype-phased, chromosome-scale genome assembly of the sexual S2 strain of S. mediterranea and high-quality chromosome-scale assemblies of its three close relatives, S. polychroa, S. nova, and S. lugubris. Using hybrid gene annotations and optimized ATAC-seq and ChIP-seq protocols for regulatory element annotation, we provide valuable genome resources for the planarian research community and a first comparative perspective on planarian genome evolution. Our analyses reveal substantial divergence in protein-coding sequences and regulatory regions but considerable conservation within promoter and enhancer annotations. We also find frequent retrotransposon-associated chromosomal inversions and interchromosomal translocations within the genus Schmidtea and, remarkably, independent and nearly complete losses of ancestral metazoan synteny in Schmidtea and two other flatworm groups. Overall, our results suggest that platyhelminth genomes can evolve without syntenic constraints.
Collapse
Affiliation(s)
- Mario Ivanković
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jeremias N Brand
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Luca Pandolfini
- Center for Human Technologies, Non-coding RNA and RNA-based therapeutics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrei Rozanski
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Til Schubert
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Markus A Grohme
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Laura Robledillo
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Meng Zhang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Azzurra Codino
- Center for Human Technologies, Non-coding RNA and RNA-based therapeutics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Gustincich
- Center for Human Technologies, Non-coding RNA and RNA-based therapeutics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Miquel Vila-Farré
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shu Zhang
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jochen C Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Faculty of Biology und Psychology, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
2
|
Howe J, Cornwallis CK, Griffin AS. Conflict-reducing innovations in development enable increased multicellular complexity. Proc Biol Sci 2024; 291:20232466. [PMID: 38196363 PMCID: PMC10777161 DOI: 10.1098/rspb.2023.2466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
Obligately multicellular organisms, where cells can only reproduce as part of the group, have evolved multiple times across the tree of life. Obligate multicellularity has only evolved when clonal groups form by cell division, rather than by cells aggregating, as clonality prevents internal conflict. Yet obligately multicellular organisms still vary greatly in 'multicellular complexity' (the number of cells and cell types): some comprise a few cells and cell types, while others have billions of cells and thousands of types. Here, we test whether variation in multicellular complexity is explained by two conflict-suppressing mechanisms, namely a single-cell bottleneck at the start of development, and a strict separation of germline and somatic cells. Examining the life cycles of 129 lineages of plants, animals, fungi and algae, we show using phylogenetic comparative analyses that an early segregation of the germline stem-cell lineage is key to the evolution of more cell types, driven by a strong correlation in the Metazoa. By contrast, the presence of a strict single-cell bottleneck was not related to either the number of cells or the number of cell types, but was associated with early germline segregation. Our results suggest that segregating the germline earlier in development enabled greater evolutionary innovation, although whether this is a consequence of conflict reduction or other non-conflict effects, such as developmental flexibility, is unclear.
Collapse
Affiliation(s)
- Jack Howe
- Center for Evolutionary Hologenomics, Globe Institute, Copenhagen University, 1350 Copenhagen, Denmark
| | | | | |
Collapse
|
3
|
Phylotranscriptomics interrogation uncovers a complex evolutionary history for the planarian genus Dugesia (Platyhelminthes, Tricladida) in the Western Mediterranean. Mol Phylogenet Evol 2023; 178:107649. [PMID: 36280167 DOI: 10.1016/j.ympev.2022.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
Abstract
The Mediterranean is one of the most biodiverse areas of the Paleartic region. Here, basing on large data sets of single copy orthologs obtained from transcriptomic data, we investigated the evolutionary history of the genus Dugesia in the Western Mediterranean area. The results corroborated that the complex paleogeological history of the region was an important driver of diversification for the genus, speciating as microplates and islands were forming. These processes led to the differentiation of three main biogeographic clades: Iberia-Apennines-Alps, Corsica-Sardinia, and Iberia-Africa. The internal relationships of these major clades were analysed with several representative samples per species. The use of large data sets regarding the number of loci and samples, as well as state-of-the-art phylogenomic inference methods allowed us to answer different unresolved questions about the evolution of particular groups, such as the diversification path of D. subtentaculata in the Iberian Peninsula and its colonization of Africa. Additionally, our results support the differentiation of D. benazzii in two lineages which could represent two species. Finally, we analysed here for the first time a comprehensive number of samples from several asexual Iberian populations whose assignment at the species level has been an enigma through the years. The phylogenies obtained with different inference methods showed a branching topology of asexual individuals at the base of sexual clades. We hypothesize that this unexpected topology is related to long-term asexuality. This work represents the first phylotranscriptomic analysis of Tricladida, laying the first stone of the genomic era in phylogenetic studies on this taxonomic group.
Collapse
|
4
|
Abstract
Metazoans function as individual organisms but also as “colonies” of cells whose single-celled ancestors lived and reproduced independently. Insights from evolutionary biology about multicellular group formation help us understand the behavior of cells: why they cooperate, and why cooperation sometimes breaks down. Current explanations for multicellularity focus on two aspects of development which promote cooperation and limit conflict among cells: a single-cell bottleneck, which creates organisms composed of clones, and a separation of somatic and germ cell lineages, which reduces the selective advantage of cheating. However, many obligately multicellular organisms thrive with neither, creating the potential for within-organism conflict. Here, we argue that the prevalence of such organisms throughout the Metazoa requires us to refine our preconceptions of conflict-free multicellularity. Evolutionary theory must incorporate developmental mechanisms across a broad range of organisms—such as unusual reproductive strategies, totipotency, and cell competition—while developmental biology must incorporate evolutionary principles. To facilitate this cross-disciplinary approach, we provide a conceptual overview from evolutionary biology for developmental biologists, using analogous examples in the well-studied social insects.
Collapse
|
5
|
Chen GW, Wang L, Wu F, Sun XJ, Dong ZM, Sluys R, Yu F, Yu-wen YQ, Liu DZ. Two new species of Dugesia (Platyhelminthes, Tricladida, Dugesiidae) from the subtropical monsoon region in Southern China, with a discussion on reproductive modalities. BMC ZOOL 2022; 7:25. [PMID: 37170346 PMCID: PMC10126995 DOI: 10.1186/s40850-022-00127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Freshwater planarians of the genus Dugesia (Platyhelminthes, Tricladida, Dugesiidae) are distributed in a major part of the Old World and Australia, although until recently only very few species were known from China.
Results
Two new species of Dugesia from Southern China are described on the basis of an integrative taxonomic approach. BI and ML phylogenetic trees based on the independent genes and on the concatenated dataset had similar topologies, only differing in some nodes that were weakly supported. Phylogenetic trees based on the concatenated dataset revealed that D. adunca Chen & Sluys, sp. nov. and D. tumida Chen & Sluys, sp. nov. are not closely related and belong to different clades. The two new species occupy separate long branches with high support values and, thus, are well-differentiated from their congeners. Separate species status of D. adunca and D. tumida is supported also by the genetic distances between the species included in our analysis, albeit that COI distances varied greatly among species. Dugesia adunca from Guangxi Province is characterized by the following features: living mature animals rather small; asymmetrical openings of the oviducts into the bursal canal; penis papilla with shape of an aquiline bill, albeit with a blunt tip; asymmetrical penis papilla, with a large antero-dorsal lip and a much smaller ventro-posterior lip; very large seminal vesicle, provided with trabeculae; small diaphragm; mixoploid karyotype with diploid complements of 2n = 2x = 16 and triploid complements of 2n = 3x = 24, with all chromosomes being metacentric. Dugesia tumida from Guangdong Province is characterized by a penis papilla provided with a large, symmetrical penial valve from the middle of which arises the small, distal section of the papilla; a duct intercalated between the seminal vesicle and the small diaphragm; ventrally displaced ejaculatory duct curving upwards before opening to the exterior; penis papilla highly asymmetrical, having a slim and long ventral portion and a short and stubby dorsal part; vasa deferentia separately opening into antero-dorsal portion of seminal vesicle; oviducts openings symmetrically into ventral portion of the bursal canal, near its opening into the atrium; mixoploid karyotype, with diploid chromosome portraits of 2n = 2x = 16, and triploid complements of 2n = 3x = 24, with all chromosomes being metacentric. In the context of the various kinds of mixoploidy and the sexualization of specimens, reproductive modalities within the genus Dugesia are shortly discussed.
Conclusion
Molecular, morphological, and karyological markers show that the two populations examined represent members of the genus Dugesia and constitute two new, distinct species.
Collapse
|
6
|
Schmidtea happens: Re-establishing the planarian as a model for studying the mechanisms of regeneration. Curr Top Dev Biol 2022; 147:307-344. [PMID: 35337453 DOI: 10.1016/bs.ctdb.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Understanding the remarkable regenerative abilities of freshwater planarians was a classic problem of developmental biology. These animals were widely studied until the late 1960s, when their use as experimental subjects declined precipitously after some infamous experiments on memory transfer. By the mid-1990s, only a handful of laboratories worldwide were investigating the mechanisms of planarian regeneration. Here, we provide the personal stories behind our work to reinvigorate studies of these fascinating animals. We recount many of the challenges that had to be overcome and reflect on some of the fortuitous events that helped launch the planarian Schmidtea mediterranea as a model organism for studying the molecular basis of regeneration.
Collapse
|
7
|
Wang L, Chen JZ, Dong ZM, Chen GW, Sluys R, Liu DZ. Two new species of Dugesia (Platyhelminthes, Tricladida, Dugesiidae) from the tropical monsoon forest in southern China. Zookeys 2021; 1059:89-116. [PMID: 34594150 PMCID: PMC8443540 DOI: 10.3897/zookeys.1059.65633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022] Open
Abstract
Two new species of the genus Dugesia (Platyhelminthes, Tricladida, Dugesiidae) from the tropical monsoon forest in southern China are described on the basis of an integrative taxonomic study involving morphology, karyology, histology, and molecular analyses. The new species Dugesiacircumcisa Chen & Dong, sp. nov. is characterised by asymmetrical openings of the oviducts; right vas deferens opening at anterior portion of the seminal vesicle and the left one opening at mid-lateral portion of the seminal vesicle; two diaphragms in ejaculatory duct, the latter being ventrally displaced and opening at the tip of the penis papilla, which is provided with a nozzle; wide duct connecting male atrium and common atrium; chromosome complement triploid with 24 metacentric chromosomes. The other new species, Dugesiaverrucula Chen & Dong, sp. nov., is characterised by the large size of the living worm, usually exceeding 3.5 cm in length; asymmetrical openings of the oviducts; subterminal opening of ventrally displaced ejaculatory duct; vasa deferentia symmetrically opening into the postero-lateral portion of the seminal vesicle; well-developed duct between the seminal vesicle and diaphragm; single dorsal bump near the root of the penis papilla; bursal canal with pleated wall and spacious posterior section; unstalked cocoons; chromosome complement diploid with 16 metacentric chromosomes. Inter-specific molecular distances and their positions in the phylogenetic tree reveal that D.circumcisa and D.verrucula are clearly separated from their congeners.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China Henan Normal University Xinxiang China.,Medical College, Xinxiang University, Xinxiang 453003, China Naturalis Biodiversity Center Leiden Netherlands
| | - Jin-Zi Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China Henan Normal University Xinxiang China
| | - Zi-Mei Dong
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China Henan Normal University Xinxiang China
| | - Guang-Wen Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China Henan Normal University Xinxiang China
| | - Ronald Sluys
- Naturalis Biodiversity Center, Leiden, The Netherlands Xinxiang University Xinxiang China
| | - De-Zeng Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China Henan Normal University Xinxiang China
| |
Collapse
|
8
|
Scheel A, Stevens A, Tenbrock C. Signaling gradients in surface dynamics as basis for planarian regeneration. J Math Biol 2021; 83:6. [PMID: 34173885 DOI: 10.1007/s00285-021-01627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 06/01/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Based on experimental data, we introduce and analyze a system of reaction-diffusion equations for the regeneration of planarian flatworms. We model dynamics of head and tail cells expressing positional control genes that translate into localized signals which in turn guide stem cell differentiation. Tissue orientation and positional information are encoded in a long range wnt-related signaling gradient. Our system correctly reproduces typical cut and graft experiments, and improves on previous models by preserving polarity in regeneration over orders of magnitude in body size during growth phases. Key to polarity preservation in our model flatworm is the sensitivity of cell differentiation to gradients of wnt-related signals relative to the tissue surface. This process is particularly relevant in small tissue layers close to cuts during their healing, and modeled in a robust fashion through dynamic boundary conditions.
Collapse
Affiliation(s)
- Arnd Scheel
- School of Mathematics, University of Minnesota, 206 Church St. S.E., Minneapolis, MN, 55455, USA.
| | - Angela Stevens
- Applied Mathematics, University of Münster (WWU), Einsteinstr. 62, D-48149, Münster, Germany
| | - Christoph Tenbrock
- Applied Mathematics, University of Münster (WWU), Einsteinstr. 62, D-48149, Münster, Germany
| |
Collapse
|
9
|
Miklós M, Laczkó L, Sramkó G, Sebestyén F, Barta Z, Tökölyi J. Phenotypic plasticity rather than genotype drives reproductive choices in Hydra populations. Mol Ecol 2021; 30:1206-1222. [PMID: 33465828 DOI: 10.1111/mec.15810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
Facultative clonality is associated with complex life cycles where sexual and asexual forms can be exposed to contrasting selection pressures. Facultatively clonal animals often have distinct developmental capabilities that depend on reproductive mode (e.g., negligible senescence and exceptional regeneration ability in asexual individuals, which are lacking in sexual individuals). Understanding how these differences in life history strategies evolved is hampered by limited knowledge of the population structure underlying sexual and asexual forms in nature. Here we studied genetic differentiation of coexisting sexual and asexual Hydra oligactis polyps, a freshwater cnidarian where reproductive mode-dependent life history patterns are observed. We collected asexual and sexual polyps from 13 Central European water bodies and used restriction-site associated DNA sequencing to infer population structure. We detected high relatedness among populations and signs that hydras might spread with resting eggs through zoochory. We found no genetic structure with respect to mode of reproduction (asexual vs. sexual). On the other hand, clear evidence was found for phenotypic plasticity in mode of reproduction, as polyps inferred to be clones differed in reproductive mode. Moreover, we detected two cases of apparent sex change (males and females found within the same clonal lineages) in this species with supposedly stable sexes. Our study describes population genetic structure in Hydra for the first time, highlights the role of phenotypic plasticity in generating patterns of life history variation, and contributes to understanding the evolution of reproductive mode-dependent life history variation in coexisting asexual and sexual forms.
Collapse
Affiliation(s)
- Máté Miklós
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.,Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - Levente Laczkó
- Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary.,MTA-DE "Lendület" Evolutionary Phylogenomics Research Group, Debrecen, Hungary.,Department of Botany, University of Debrecen, Debrecen, Hungary
| | - Gábor Sramkó
- MTA-DE "Lendület" Evolutionary Phylogenomics Research Group, Debrecen, Hungary.,Department of Botany, University of Debrecen, Debrecen, Hungary
| | - Flóra Sebestyén
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.,Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - Zoltán Barta
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| | - Jácint Tökölyi
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Dugesia hepta and Dugesia benazzii (Platyhelminthes: Tricladida): two sympatric species with occasional sex? ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-020-00438-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Sekii K, Yorimoto S, Okamoto H, Nagao N, Maezawa T, Matsui Y, Yamaguchi K, Furukawa R, Shigenobu S, Kobayashi K. Transcriptomic analysis reveals differences in the regulation of amino acid metabolism in asexual and sexual planarians. Sci Rep 2019; 9:6132. [PMID: 30992461 PMCID: PMC6467871 DOI: 10.1038/s41598-019-42025-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/22/2019] [Indexed: 12/25/2022] Open
Abstract
Many flatworms can alternate between asexual and sexual reproduction. This is a powerful reproductive strategy enabling them to benefit from the features of the two reproductive modes, namely, rapid multiplication and genetic shuffling. The two reproductive modes are enabled by the presence of pluripotent adult stem cells (neoblasts), by generating any type of tissue in the asexual mode, and producing and maintaining germ cells in the sexual mode. In the current study, RNA sequencing (RNA-seq) was used to compare the transcriptomes of two phenotypes of the planarian Dugesia ryukyuensis: an asexual OH strain and an experimentally sexualized OH strain. Pathway enrichment analysis revealed striking differences in amino acid metabolism in the two worm types. Further, the analysis identified serotonin as a new bioactive substance that induced the planarian ovary de novo in a postembryonic manner. These findings suggest that different metabolic states and physiological conditions evoked by sex-inducing substances likely modulate stem cell behavior, depending on their different function in the asexual and sexual reproductive modes. The combination of RNA-seq and a feeding assay in D. ryukyuensis is a powerful tool for studying the alternation of reproductive modes, disentangling the relationship between gene expression and chemical signaling molecules.
Collapse
Affiliation(s)
- Kiyono Sekii
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Shunta Yorimoto
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Hikaru Okamoto
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Nanna Nagao
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Takanobu Maezawa
- Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College, 624-1 Numa, Tsuyama, Okayama, 708-8509, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai, 980-8575, Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, 444-8585, Japan
| | - Ryohei Furukawa
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 2-1-1 Nishitokuda, Yanaba-cho, Shiwa-gun, Iwate, 028-3694, Japan. .,Department of Biology, Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8521, Japan.
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, 444-8585, Japan. .,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka Myodaiji, Okazaki, 444-8585, Japan.
| | - Kazuya Kobayashi
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| |
Collapse
|
12
|
Leria L, Sluys R, Riutort M. Diversification and biogeographic history of the Western Palearctic freshwater flatworm genusSchmidtea(Tricladida: Dugesiidae), with a redescription ofSchmidtea nova. J ZOOL SYST EVOL RES 2018. [DOI: 10.1111/jzs.12214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Laia Leria
- Departament de Genètica, Microbiologia i Estadística; Facultat de Biologia; Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona Spain
| | - Ronald Sluys
- Naturalis Biodiversity Center; Leiden The Netherlands
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística; Facultat de Biologia; Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona Spain
| |
Collapse
|
13
|
Almazan EMP, Lesko SL, Markey MP, Rouhana L. Girardia dorotocephala transcriptome sequence, assembly, and validation through characterization of piwi homologs and stem cell progeny markers. Dev Biol 2018; 433:433-447. [PMID: 28774726 PMCID: PMC5750089 DOI: 10.1016/j.ydbio.2017.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/05/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022]
Abstract
Planarian flatworms are popular models for the study of regeneration and stem cell biology in vivo. Technical advances and increased availability of genetic information have fueled the discovery of molecules responsible for stem cell pluripotency and regeneration in flatworms. Unfortunately, most of the planarian research performed worldwide utilizes species that are not natural habitants of North America, which limits their availability to newcomer laboratories and impedes their distribution for educational activities. In order to circumvent these limitations and increase the genetic information available for comparative studies, we sequenced the transcriptome of Girardia dorotocephala, a planarian species pandemic and commercially available in North America. A total of 254,802,670 paired sequence reads were obtained from RNA extracted from intact individuals, regenerating fragments, as well as freshly excised auricles of a clonal line of G. dorotocephala (MA-C2), and used for de novo assembly of its transcriptome. The resulting transcriptome draft was validated through functional analysis of genetic markers of stem cells and their progeny in G. dorotocephala. Akin to orthologs in other planarian species, G. dorotocephala Piwi1 (GdPiwi1) was found to be a robust marker of the planarian stem cell population and GdPiwi2 an essential component for stem cell-driven regeneration. Identification of G. dorotocephala homologs of the early stem cell descendent marker PROG-1 revealed a family of lysine-rich proteins expressed during epithelial cell differentiation. Sequences from the MA-C2 transcriptome were found to be 98-99% identical to nucleotide sequences from G. dorotocephala populations with different chromosomal number, demonstrating strong conservation regardless of karyotype evolution. Altogether, this work establishes G. dorotocephala as a viable and accessible option for analysis of gene function in North America.
Collapse
Affiliation(s)
- Eugene Matthew P Almazan
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States
| | - Sydney L Lesko
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States
| | - Michael P Markey
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States
| | - Labib Rouhana
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States.
| |
Collapse
|
14
|
Stocchino GA, Sluys R, Riutort M, Solà E, Manconi R. Freshwater planarian diversity (Platyhelminthes: Tricladida: Dugesiidae) in Madagascar: new species, cryptic species, with a redefinition of character states. Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlx017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Harrath AH, Semlali A, Mansour L, Aldahmash W, Omar SYA, Anazi MSA, Nyengaard JR, Alwasel S. Dynamics of Cytokine-like Activity in the Hyperplasic Ovary of Ex-fissiparous Planarians. THE BIOLOGICAL BULLETIN 2017; 232:12-18. [PMID: 28445093 DOI: 10.1086/691408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The origin of infertility in the hyperplasic ovary of ex-fissiparous planarians remains poorly understood. In a previous study we demonstrated that a complex process of early autophagy, followed by apoptotic processes, occurs in the hyperplasic ovary of the freshwater planarian Dugesia arabica. The present study aimed to investigate whether the mRNA expression levels of selected mRNA-like genes are altered in the hyperplasic ovary of the ex-fissiparous freshwater planarian D. arabica compared to the normal ovary. Using human cytokine-specific primers including interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), we have successfully amplified by real-time polymerase chain reaction some transcripts that could be similar to those amplified in human. The transcript levels of the human-like transcript (IL-1-like and TNF-α-like) were significantly higher, 4.89- and 3.41-fold, respectively, in the hyperplasic ovary compared to the normal ovary (P < 0.05). However, although IL-6-like levels were higher in the hyperplasic ovary than the normal ovary (2.57-fold), this difference was not significant (P > 0.05). Immunohistochemical labeling supported the quantitative real-time PCR, showing that, like their respective mRNA expression levels, IL-1, IL-6, and TNF-α-like proteins are more highly expressed in the hyperplasic ovary than in the normal ovary.
Collapse
|
16
|
Ramm SA. Exploring the sexual diversity of flatworms: Ecology, evolution, and the molecular biology of reproduction. Mol Reprod Dev 2016; 84:120-131. [PMID: 27292123 DOI: 10.1002/mrd.22669] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
Flatworms exhibit huge diversity in their reproductive biology, making this group an excellent model system for exploring how differences among species in reproductive ecology are reflected in the physiological and molecular details of how reproduction is achieved. In this review, I consider five key "lifestyle choices" (i.e., alternative evolutionary/developmental outcomes) that collectively encompass much of flatworm sexual diversity, beginning with the decisions: (i) whether to be free-living or parasitic; (ii) whether to reproduce asexually or sexually; and (iii) whether to be gonochoristic (separate-sexed) or hermaphroditic. I then examine two further decisions involving hermaphroditism: (iv) outcrossing versus selfing and (v) the balance of investment into the male versus the female sex function (sex allocation). Collectively, these lifestyle choices set the basic rules for how reproduction occurs, but as I emphasize in the second part of the review, the reproductive biology of flatworms is also greatly impacted by the near-pervasive and powerful pressure of sexual selection, together with the related phenomena of sperm competition and sexual conflict. Exactly how this plays out, however, is strongly affected by the particular combination of reproductive strategies adopted by each species. Mol. Reprod. Dev. 84: 120-131, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steven A Ramm
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
17
|
Petralia RS, Mattson MP, Yao PJ. Aging and longevity in the simplest animals and the quest for immortality. Ageing Res Rev 2014; 16:66-82. [PMID: 24910306 DOI: 10.1016/j.arr.2014.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/08/2014] [Accepted: 05/22/2014] [Indexed: 12/12/2022]
Abstract
Here we review the examples of great longevity and potential immortality in the earliest animal types and contrast and compare these to humans and other higher animals. We start by discussing aging in single-celled organisms such as yeast and ciliates, and the idea of the immortal cell clone. Then we describe how these cell clones could become organized into colonies of different cell types that lead to multicellular animal life. We survey aging and longevity in all of the basal metazoan groups including ctenophores (comb jellies), sponges, placozoans, cnidarians (hydras, jellyfish, corals and sea anemones) and myxozoans. Then we move to the simplest bilaterian animals (with a head, three body cell layers, and bilateral symmetry), the two phyla of flatworms. A key determinant of longevity and immortality in most of these simple animals is the large numbers of pluripotent stem cells that underlie the remarkable abilities of these animals to regenerate and rejuvenate themselves. Finally, we discuss briefly the evolution of the higher bilaterians and how longevity was reduced and immortality lost due to attainment of greater body complexity and cell cycle strategies that protect these complex organisms from developing tumors. We also briefly consider how the evolution of multiple aging-related mechanisms/pathways hinders our ability to understand and modify the aging process in higher organisms.
Collapse
|
18
|
Planarian (Platyhelminthes, Tricladida) Diversity and Molecular Markers: A New View of an Old Group. DIVERSITY-BASEL 2014. [DOI: 10.3390/d6020323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Lemos VS, Cauduro GP, Valiati VH, Leal-Zanchet AM. Phylogenetic relationships within the flatworm genus Choeradoplana Graff (Platyhelminthes : Tricladida) inferred from molecular data with the description of two new sympatric species from Araucaria moist forests. INVERTEBR SYST 2014. [DOI: 10.1071/is14003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The genus Choeradoplana encompasses 11 species, nine of which have a restricted distribution and are only known from their type localities. Herein we describe two new species of Choeradoplana from Araucaria moist forests, C. minima, sp. nov. Lemos & Leal-Zanchet and C. benyai, sp. nov. Lemos & Leal-Zanchet, based on morphological and molecular data, and use two molecular markers to investigate their phylogenetic relationships with other species in the genus, including its type species. Both morphological and molecular analyses clearly distinguish C. minima, sp. nov., C. benyai, sp. nov. and C. iheringi. The analyses of the ITS-1, COI and sequence divergence data also indicated that C. benyai, sp. nov. is more closely related to the type species of the genus, C. iheringi, than to C. minima, sp. nov. The three species are sympatric in Araucaria moist forest areas of the São Francisco de Paula National Forest; C. minima, sp. nov. and C. benyai, sp. nov. seem to be endemic to their type localities. Regarding external morphology, C. benyai, sp. nov. and C. iheringi could be considered cryptic species, only distinguishable on the basis of the copulatory apparatus. However, immature specimens of C. benyai, sp. nov. and C. iheringi could only be identified based on molecular data. Our results demonstrate that COI should be used with caution for reconstructing phylogenies, and other slower-evolving nuclear genes are a feasible alternative for resolving some of the phylogenetic relationships.
Collapse
|
20
|
Sluys R, Solà E, Gritzalis K, Vila-Farré M, Mateos E, Riutort M. Integrative delineation of species of Mediterranean freshwater planarians (Platyhelminthes: Tricladida: Dugesiidae). Zool J Linn Soc 2013. [DOI: 10.1111/zoj.12077] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ronald Sluys
- Naturalis Biodiversity Center; PO Box 9514 2300 RA Leiden The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics; University of Amsterdam; The Netherlands
| | - Eduard Solà
- Departament de Genètica; Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona Catalonia Spain
| | | | - Miquel Vila-Farré
- Departament de Genètica; Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona Catalonia Spain
- Max Planck Institute of Molecular Cell Biology and Genetics; Dresden Germany
| | - Eduardo Mateos
- Departament de Genètica; Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona Catalonia Spain
| | - Marta Riutort
- Departament de Genètica; Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona Catalonia Spain
| |
Collapse
|
21
|
Solà E, Sluys R, Gritzalis K, Riutort M. Fluvial basin history in the northeastern Mediterranean region underlies dispersal and speciation patterns in the genus Dugesia (Platyhelminthes, Tricladida, Dugesiidae). Mol Phylogenet Evol 2012. [PMID: 23182762 DOI: 10.1016/j.ympev.2012.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study we analyzed the phylogenetic relationships of eastern Mediterranean freshwater planarians of the genus Dugesia, estimated divergence times for the various clades, and correlated their phylogeographic patterns with geological and paleoclimatic events, in order to discover which evolutionary processes have shaped the present-day distribution of these animals. Specimens were collected from freshwater courses and lakes in continental and insular Greece. Genetic divergences and phylogenetic relationships were inferred by using the mitochondrial gene subunit I of cytochrome oxidase (COI) and the nuclear ribosomal internal transcribed spacer-1 (ITS-1) from 74 newly collected individuals from Greece. Divergence time estimates were obtained under a Bayesian framework, using the COI sequences. Two alternative geological dates for the isolation of Crete from the mainland were tested as calibration points. A clear phylogeographic pattern was present for Dugesia lineages in the Eastern Mediterranean. Morphological data, combined with information on genetic divergences, revealed that eight out of the nine known species were represented in the samples, while additional new, and still undescribed species were detected. Divergence time analyses suggested that Dugesia species became isolated in Crete after the first geological isolation of the island, and that their present distribution in the Eastern Mediterranean has been shaped mainly by vicariant events but also by dispersal. During the Messinian salinity crisis these freshwater planarians apparently were not able to cross the sea barrier between Crete and the mainland, while they probably did disperse between islands in the Aegean Sea. Their dependence on freshwater to survive suggests the presence of contiguous freshwater bodies in those regions. Our results also suggest a major extinction of freshwater planarians on the Peloponnese at the end of the Pliocene, while about 2Mya ago, when the current Mediterranean climate was established, these Peloponnese populations probably began to disperse again. At the end of the Pliocene or during the Pleistocene, mainland populations of Dugesia colonized the western coast, including the Ionian Islands, which were then part of the continent.
Collapse
Affiliation(s)
- Eduard Solà
- Departament de Genètica, Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | | | | |
Collapse
|
22
|
Simakov O, Larsson TA, Arendt D. Linking micro- and macro-evolution at the cell type level: a view from the lophotrochozoan Platynereis dumerilii. Brief Funct Genomics 2012; 12:430-9. [DOI: 10.1093/bfgp/els049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
23
|
Álvarez-Presas M, Mateos E, Vila-Farré M, Sluys R, Riutort M. Evidence for the persistence of the land planarian species Microplana terrestris (Müller, 1774) (Platyhelminthes, Tricladida) in microrefugia during the Last Glacial Maximum in the northern section of the Iberian Peninsula. Mol Phylogenet Evol 2012; 64:491-9. [DOI: 10.1016/j.ympev.2012.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/26/2012] [Accepted: 05/02/2012] [Indexed: 11/29/2022]
|
24
|
Chong T, Stary JM, Wang Y, Newmark PA. Molecular markers to characterize the hermaphroditic reproductive system of the planarian Schmidtea mediterranea. BMC DEVELOPMENTAL BIOLOGY 2011; 11:69. [PMID: 22074376 PMCID: PMC3224759 DOI: 10.1186/1471-213x-11-69] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 11/10/2011] [Indexed: 12/05/2022]
Abstract
Background The freshwater planarian Schmidtea mediterranea exhibits two distinct reproductive modes. Individuals of the sexual strain are cross-fertilizing hermaphrodites with reproductive organs that develop post-embryonically. By contrast, individuals of the asexual strain reproduce exclusively by transverse fission and fail to develop reproductive organs. These different reproductive strains are associated with distinct karyotypes, making S. mediterranea a useful model for studying germline development and sexual differentiation. Results To identify genes expressed differentially between these strains, we performed microarray analyses and identified >800 genes that were upregulated in the sexual planarian. From these, we characterized 24 genes by fluorescent in situ hybridization (FISH), revealing their expression in male germ cells or accessory reproductive organs. To identify additional markers of the planarian reproductive system, we also used immuno- and fluorescent lectin staining, identifying several antibodies and lectins that labeled structures associated with reproductive organs. Conclusions Collectively, these cell-type specific markers will enable future efforts to characterize genes that are important for reproductive development in the planarian.
Collapse
Affiliation(s)
- Tracy Chong
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
25
|
Lázaro EM, Harrath AH, Stocchino GA, Pala M, Baguñà J, Riutort M. Schmidtea mediterranea phylogeography: an old species surviving on a few Mediterranean islands? BMC Evol Biol 2011; 11:274. [PMID: 21943163 PMCID: PMC3203090 DOI: 10.1186/1471-2148-11-274] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/26/2011] [Indexed: 11/25/2022] Open
Abstract
Background Schmidtea mediterranea (Platyhelminthes, Tricladida, Continenticola) is found in scattered localities on a few islands and in coastal areas of the western Mediterranean. Although S. mediterranea is the object of many regeneration studies, little is known about its evolutionary history. Its present distribution has been proposed to stem from the fragmentation and migration of the Corsica-Sardinia microplate during the formation of the western Mediterranean basin, which implies an ancient origin for the species. To test this hypothesis, we obtained a large number of samples from across its distribution area. Using known and new molecular markers and, for the first time in planarians, a molecular clock, we analysed the genetic variability and demographic parameters within the species and between its sexual and asexual populations to estimate when they diverged. Results A total of 2 kb from three markers (COI, CYB and a nuclear intron N13) was amplified from ~200 specimens. Molecular data clustered the studied populations into three groups that correspond to the west, central and southeastern geographical locations of the current distribution of S. mediterranea. Mitochondrial genes show low haplotype and nucleotide diversity within populations but demonstrate higher values when all individuals are considered. The nuclear marker shows higher values of genetic diversity than the mitochondrial genes at the population level, but asexual populations present lower variability than the sexual ones. Neutrality tests are significant for some populations. Phylogenetic and dating analyses show the three groups to be monophyletic, with the west group being the basal group. The time when the diversification of the species occurred is between ~20 and ~4 mya, although the asexual nature of the western populations could have affected the dating analyses. Conclusions S. mediterranea is an old species that is sparsely distributed in a harsh habitat, which is probably the consequence of the migration of the Corsica-Sardinia block. This species probably adapted to temperate climates in the middle of a changing Mediterranean climate that eventually became dry and hot. These data also suggest that in the mainland localities of Europe and Africa, sexual individuals of S. mediterranea are being replaced by asexual individuals that are either conspecific or are from other species that are better adapted to the Mediterranean climate.
Collapse
Affiliation(s)
- Eva M Lázaro
- Institut de Recerca de la Biodiversitat and Dept, Genètica, Facultat de Biologia, Universitat de Barcelona, Av Diagonal, 645, Barcelona 08028, Spain
| | | | | | | | | | | |
Collapse
|
26
|
ÁLVAREZ-PRESAS M, CARBAYO F, ROZAS J, RIUTORT M. Land planarians (Platyhelminthes) as a model organism for fine-scale phylogeographic studies: understanding patterns of biodiversity in the Brazilian Atlantic Forest hotspot. J Evol Biol 2011; 24:887-96. [DOI: 10.1111/j.1420-9101.2010.02220.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Collins JJ, Hou X, Romanova EV, Lambrus BG, Miller CM, Saberi A, Sweedler JV, Newmark PA. Genome-wide analyses reveal a role for peptide hormones in planarian germline development. PLoS Biol 2010; 8:e1000509. [PMID: 20967238 PMCID: PMC2953531 DOI: 10.1371/journal.pbio.1000509] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/25/2010] [Indexed: 12/02/2022] Open
Abstract
Genomic/peptidomic analyses of the planarian Schmidtea mediterranea identifies >200 neuropeptides and uncovers a conserved neuropeptide required for proper maturation and maintenance of the reproductive system. Bioactive peptides (i.e., neuropeptides or peptide hormones) represent the largest class of cell-cell signaling molecules in metazoans and are potent regulators of neural and physiological function. In vertebrates, peptide hormones play an integral role in endocrine signaling between the brain and the gonads that controls reproductive development, yet few of these molecules have been shown to influence reproductive development in invertebrates. Here, we define a role for peptide hormones in controlling reproductive physiology of the model flatworm, the planarian Schmidtea mediterranea. Based on our observation that defective neuropeptide processing results in defects in reproductive system development, we employed peptidomic and functional genomic approaches to characterize the planarian peptide hormone complement, identifying 51 prohormone genes and validating 142 peptides biochemically. Comprehensive in situ hybridization analyses of prohormone gene expression revealed the unanticipated complexity of the flatworm nervous system and identified a prohormone specifically expressed in the nervous system of sexually reproducing planarians. We show that this member of the neuropeptide Y superfamily is required for the maintenance of mature reproductive organs and differentiated germ cells in the testes. Additionally, comparative analyses of our biochemically validated prohormones with the genomes of the parasitic flatworms Schistosoma mansoni and Schistosoma japonicum identified new schistosome prohormones and validated half of all predicted peptide-encoding genes in these parasites. These studies describe the peptide hormone complement of a flatworm on a genome-wide scale and reveal a previously uncharacterized role for peptide hormones in flatworm reproduction. Furthermore, they suggest new opportunities for using planarians as free-living models for understanding the reproductive biology of flatworm parasites. Flatworms cause diseases affecting hundreds of millions of people, so understanding what influences their reproductive activity is of fundamental importance. Neurally derived signals have been suggested to coordinate sexual reproduction in free-living flatworms, yet the neuroendocrine signaling repertoire has not been characterized comprehensively for any flatworm. Neuropeptides are a large diverse group of cell-cell signaling molecules and play many roles in vertebrate reproductive development; however, little is known about their function in reproductive development among invertebrates. Here we use biochemical and bioinformatic techniques to identify bioactive peptides in the genome of the planarian flatworm Schmidtea mediterranea and identify 51 genes encoding >200 peptides. Analysis of these genes in both sexual and asexual strains of S. mediterranea identified a neuropeptide Y superfamily member as important for the normal development and maintenance of the planarian reproductive system. We suggest that understanding peptide hormone function in planarian reproduction could have practical implications in the treatment of parasitic flatworms.
Collapse
Affiliation(s)
- James J. Collins
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Xiaowen Hou
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Elena V. Romanova
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Bramwell G. Lambrus
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Claire M. Miller
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Amir Saberi
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jonathan V. Sweedler
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Phillip A. Newmark
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
28
|
KOBAYASHI K, ARIOKA S, HOSHI M, MATSUMOTO M. Production of asexual and sexual offspring in the triploid sexual planarianDugesia ryukyuensis. Integr Zool 2009; 4:265-71. [DOI: 10.1111/j.1749-4877.2009.00164.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Molecular barcoding and phylogeography of sexual and asexual freshwater planarians of the genus Dugesia in the Western Mediterranean (Platyhelminthes, Tricladida, Dugesiidae). Mol Phylogenet Evol 2009; 52:835-45. [DOI: 10.1016/j.ympev.2009.04.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 04/18/2009] [Accepted: 04/25/2009] [Indexed: 11/19/2022]
|
30
|
Lu YC, Smielewska M, Palakodeti D, Lovci MT, Aigner S, Yeo GW, Graveley BR. Deep sequencing identifies new and regulated microRNAs in Schmidtea mediterranea. RNA (NEW YORK, N.Y.) 2009; 15:1483-1491. [PMID: 19553344 PMCID: PMC2714757 DOI: 10.1261/rna.1702009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 04/29/2009] [Indexed: 05/28/2023]
Abstract
MicroRNAs (miRNAs) play important roles in directing the differentiation of cells down a variety of cell lineage pathways. The planarian Schmidtea mediterranea can regenerate all lost body tissue after amputation due to a population of pluripotent somatic stem cells called neoblasts, and is therefore an excellent model organism to study the roles of miRNAs in stem cell function. Here, we use a combination of deep sequencing and bioinformatics to discover 66 new miRNAs in S. mediterranea. We also identify 21 miRNAs that are specifically expressed in either sexual or asexual animals. Finally, we identified five miRNAs whose expression is sensitive to gamma-irradiation, suggesting they are expressed in neoblasts or early neoblast progeny. Together, these results increase the known repertoire of S. mediterranea miRNAs and identify numerous regulated miRNAs that may play important roles in regeneration, homeostasis, neoblast function, and reproduction.
Collapse
Affiliation(s)
- Yi-Chien Lu
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, Connecticut 06030-3301, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Oviedo NJ, Nicolas CL, Adams DS, Levin M. Planarians: a versatile and powerful model system for molecular studies of regeneration, adult stem cell regulation, aging, and behavior. Cold Spring Harb Protoc 2008; 2008:pdb.emo101. [PMID: 21356684 PMCID: PMC10467510 DOI: 10.1101/pdb.emo101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTIONIn recent years, planarians have been increasingly recognized as an emerging model organism amenable to molecular genetic techniques aimed at understanding complex biological tasks commonly observed among metazoans. Growing evidence suggests that this model organism is uniquely poised to inform us about the mechanisms of tissue regeneration, stem cell regulation, tissue turnover, pharmacological action of diverse drugs, cancer, and aging. This article provides an overview of the planarian model system with special attention to the species Schmidtea mediterranea. Additionally, information is provided about the most popular use of this organism, together with modern genomic resources and technical approaches.
Collapse
Affiliation(s)
- Néstor J. Oviedo
- Center for Regenerative and Developmental Biology, Forsyth Institute and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Cindy L. Nicolas
- Center for Regenerative and Developmental Biology, Forsyth Institute and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Dany S. Adams
- Center for Regenerative and Developmental Biology, Forsyth Institute and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Michael Levin
- Center for Regenerative and Developmental Biology, Forsyth Institute and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA
| |
Collapse
|
32
|
Wang Y, Zayas RM, Guo T, Newmark PA. nanos function is essential for development and regeneration of planarian germ cells. Proc Natl Acad Sci U S A 2007; 104:5901-6. [PMID: 17376870 PMCID: PMC1851589 DOI: 10.1073/pnas.0609708104] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Germ cells are required for the successful propagation of sexually reproducing species. Understanding the mechanisms by which these cells are specified and how their totipotency is established and maintained has important biomedical and evolutionary implications. Freshwater planarians serve as fascinating models for studying these questions. They can regenerate germ cells from fragments of adult tissues that lack reproductive structures, suggesting that inductive signaling is involved in planarian germ cell specification. To study the development and regeneration of planarian germ cells, we have functionally characterized an ortholog of nanos, a gene required for germ cell development in diverse organisms, from Schmidtea mediterranea. In the hermaphroditic strain of this species, Smed-nanos mRNA is detected in developing, regenerating, and mature ovaries and testes. However, it is not detected in the vast majority of newly hatched planarians or in small tissue fragments that will ultimately regenerate germ cells, consistent with an epigenetic origin of germ cells. We show that Smed-nanos RNA interference (RNAi) results in failure to develop, regenerate, or maintain gonads in sexual planarians. Unexpectedly, Smed-nanos mRNA is also detected in presumptive testes primordia of asexual individuals that reproduce strictly by fission. These presumptive germ cells are lost after Smed-nanos RNAi, suggesting that asexual planarians specify germ cells, but their differentiation is blocked downstream of Smed-nanos function. Our results reveal a conserved function of nanos in germ cell development in planarians and suggest that these animals will serve as useful models for dissecting the molecular basis of epigenetic germ cell specification.
Collapse
Affiliation(s)
- Yuying Wang
- *Department of Cell and Developmental Biology
| | - Ricardo M. Zayas
- *Department of Cell and Developmental Biology
- Neuroscience Program, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Tingxia Guo
- *Department of Cell and Developmental Biology
| | - Phillip A. Newmark
- *Department of Cell and Developmental Biology
- Neuroscience Program, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Abstract
Asexual reproduction in the annelid Enchytraeus japonensis entails the regeneration of primordial germ cells from body parts that lack gonads. New primordial germ cells arise from piwi-expressing germline stem cells that are distinct from somatic stem cells.
Collapse
Affiliation(s)
- David A Weisblat
- Dept. of Molecular and Cell Biology, 385 LSA, University of California, Berkeley, 94720-3200, USA.
| |
Collapse
|
34
|
Zayas RM, Hernández A, Habermann B, Wang Y, Stary JM, Newmark PA. The planarian Schmidtea mediterranea as a model for epigenetic germ cell specification: analysis of ESTs from the hermaphroditic strain. Proc Natl Acad Sci U S A 2005; 102:18491-6. [PMID: 16344473 PMCID: PMC1317986 DOI: 10.1073/pnas.0509507102] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Freshwater planarians have prodigious regenerative abilities that enable them to form complete organisms from tiny body fragments. This plasticity is also exhibited by the planarian germ cell lineage. Unlike many model organisms in which germ cells are specified by localized determinants, planarian germ cells appear to be specified epigenetically, arising postembryonically from stem cells. The planarian Schmidtea mediterranea is well suited for investigating the mechanisms underlying epigenetic germ cell specification. Two strains of S. mediterranea exist: a hermaphroditic strain that reproduces sexually and an asexual strain that reproduces by means of transverse fission. To date, expressed sequence tags (ESTs) have been generated only from the asexual strain. To develop molecular reagents for studying epigenetic germ cell specification, we have sequenced 27,161 ESTs from two developmental stages of the hermaphroditic strain of S. mediterranea; this collection of ESTs represents approximately 10,000 unique transcripts. blast analysis of the assembled ESTs showed that 66% share similarity to sequences in public databases. We annotated the assembled ESTs using Gene Ontology terms as well as conserved protein domains and organized them in a relational database. To validate experimentally the Gene Ontology annotations, we used whole-mount in situ hybridization to examine the expression patterns of transcripts assigned to the biological process "reproduction." Of the 53 genes in this category, 87% were expressed in the reproductive organs. In addition to its utility for studying germ cell development, this EST collection will be an important resource for annotating the planarian genome and studying this animal's amazing regenerative abilities.
Collapse
Affiliation(s)
- Ricardo M Zayas
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
35
|
Stocchino GA, Corso G, Manconi R, Casu S, Pala M. Endemic freshwater planarians of Sardinia: Redescription ofDugesia hepta(Platyhelminthes, Tricladida) with a comparison of the Mediterranean species of the genus. J NAT HIST 2005. [DOI: 10.1080/00222930500060025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Abstract
The phylum Platyhelminthes has traditionally been considered the most basal bilaterian taxon. The main difficulty with this placement is the lack of convincing synapomorphies for all Platyhelminthes, which suggest that they are polyphyletic. Recent molecular findings based on 18S rDNA sequence data and number and type of Hox genes strongly suggest that the majority of Platyhelminthes are members of the lophotrochozoan protostomes, whereas the Acoelomorpha (Acoela + Nemertodermatida) fall outside of the Platyhelminthes as the most basal bilaterian taxon. Here we review phylum-wide analyses based on complete ribosomal and other nuclear genes addressed to answer the main issues facing systematics and phylogeny of Platyhelminthes. We present and discuss (i) new corroborative evidence for the polyphyly of the Platyhelminthes and the basal position of Acoelomorpha; (ii) a new consensus internal tree of the phylum; (iii) the nature of the sister group to the Neodermata and the hypotheses on the origin of parasitism; and (iv) the internal phylogeny of some rhabditophoran orders. Some methodological caveats are also introduced. The need to erect a new phylum, the Acoelomorpha, separate from the Platyhelminthes (now Catenulida + Rhabditophora) and based on present and new morphological and molecular characters is highlighted, and a proposal made.
Collapse
|
37
|
Harrath AH, Charni M, Sluys R, Zghal F, Tekaya S. Ecology and distribution of the freshwater planarianSchmidtea mediterraneain Tunisia. ACTA ACUST UNITED AC 2004. [DOI: 10.1080/11250000409356577] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Abstract
Freshwater planarians were a classic model for studying the problems of development and regeneration. However, as attention shifted towards animals with more rigid developmental processes, the planarians, with their notoriously plastic ontogeny, declined in significance as a model system. This trend was exacerbated with the introduction of genetic and molecular approaches, which did not work well in planarians. More recently, the heightened interest in stem-cell biology, along with the successful application of molecular, cellular and genomic approaches in planarians, is re-establishing these fascinating organisms as models for studying regeneration and developmental plasticity.
Collapse
|
39
|
Newmark PA, Sánchez Alvarado A. Not your father's planarian: a classic model enters the era of functional genomics. Nat Rev Genet 2002; 3:210-9. [PMID: 11972158 DOI: 10.1038/nrg759] [Citation(s) in RCA: 399] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Freshwater planarians were a classic model for studying the problems of development and regeneration. However, as attention shifted towards animals with more rigid developmental processes, the planarians, with their notoriously plastic ontogeny, declined in significance as a model system. This trend was exacerbated with the introduction of genetic and molecular approaches, which did not work well in planarians. More recently, the heightened interest in stem-cell biology, along with the successful application of molecular, cellular and genomic approaches in planarians, is re-establishing these fascinating organisms as models for studying regeneration and developmental plasticity.
Collapse
Affiliation(s)
- Philip A Newmark
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Avenue, Urbana, Illinois 61801, USA.
| | | |
Collapse
|