1
|
Mora AK, Murudkar S, Shivran N, Mula S, Chattopadhyay S, Nath S. Monitoring the formation of insulin oligomers using a NIR emitting glucose-conjugated BODIPY dye. Int J Biol Macromol 2020; 166:1121-1130. [PMID: 33159943 DOI: 10.1016/j.ijbiomac.2020.10.267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/17/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022]
Abstract
Protein oligomers, which are formed due to the aggregation of protein molecules under physiological stress, are neurotoxic and responsible for several neurological diseases. Early detection of protein oligomers is essential for the timely intervention in the associated diseases. Although several probes have been developed for the detection of insoluble matured protein fibrils, fluorescent probes with emission in the near infrared (NIR) region for probing protein oligomers are very rare. In the present study we have designed and synthesized a glucose-conjugated BODIPY dye with emission in the NIR spectral range. Our detailed studies show that the new probe is not only capable of detecting matured fibrils but can also probe the formation of oligomers from the native protein. The new probe shows a large increase in its emission intensity upon association with oligomers and matured fibrils. Hence, the present probe has a great potential for the in vivo imaging of protein oligomers and matured fibrils. Detailed spectroscopic properties of the new probes in molecular solvents have been performed to understand its oligomers- and fibril- sensing mechanism.
Collapse
Affiliation(s)
- Aruna K Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sushant Murudkar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Neelam Shivran
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | | | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
2
|
Sahoo BR, Bekier ME, Liu Z, Kocman V, Stoddard AK, Anantharamaiah GM, Nowick J, Fierke CA, Wang Y, Ramamoorthy A. Structural Interaction of Apolipoprotein A-I Mimetic Peptide with Amyloid-β Generates Toxic Hetero-oligomers. J Mol Biol 2019; 432:1020-1034. [PMID: 31866295 DOI: 10.1016/j.jmb.2019.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 01/21/2023]
Abstract
Apolipoproteins are involved in pathological conditions of Alzheimer's disease (AD), and it has been reported that truncated apolipoprotein fragments and β-amyloid (Aβ) peptides coexist as neurotoxic heteromers within the plaques. Therefore, it is important to investigate these complexes at the molecular level to better understand their properties and roles in the pathology of AD. Here, we present a mechanistic insight into such heteromerization using a structurally homologue apolipoprotein fragment of apoA-I (4F) complexed with Aβ(M1-42) and characterize their toxicity. The 4F peptide slows down the aggregation kinetics of Aβ(M1-42) by constraining its structural plasticity. NMR and CD experiments identified 4F-Aβ(M1-42) heteromers comprised of unstructured Aβ(M1-42) and helical 4F. A uniform two-fold reduction in 15N/1H NMR signal intensities of Aβ(M1-42) with no observable chemical shift perturbation indicated the formation of a large complex, which was further confirmed by diffusion NMR experiments. Microsecond-scale atomistic molecular dynamics simulations showed that 4F interaction with Aβ(M1-42) is electrostatically driven and induces unfolding of Aβ(M1-42). Neurotoxicity profiling of Aβ(M1-42) complexed with 4F confirms a significant reduction in cell viability and neurite growth. Thus, the molecular architecture of heteromerization between 4F and Aβ(M1-42) discovered in this study provides evidence toward our understanding of the role of apolipoproteins or their truncated fragments in exacerbating AD pathology.
Collapse
Affiliation(s)
- Bikash Ranjan Sahoo
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Michael E Bekier
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| | - Zichen Liu
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Vojc Kocman
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Andrea K Stoddard
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - G M Anantharamaiah
- Department of Medicine, University of Alabama at Birmingham Medical Center, Birmingham, AL, 35294, USA
| | - James Nowick
- Department of Chemistry, University of California-Irvine, Irvine, CA, 92697-2025, USA
| | - Carol A Fierke
- Department of Chemistry, University of Texas A&M, College Station, TX, 77843-3255, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-1055, USA.
| |
Collapse
|
3
|
Insights into Structure-Activity Relationships of 3-Arylhydrazonoindolin-2-One Derivatives for Their Multitarget Activity on β-Amyloid Aggregation and Neurotoxicity. Molecules 2018; 23:molecules23071544. [PMID: 29949947 PMCID: PMC6100259 DOI: 10.3390/molecules23071544] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/18/2018] [Accepted: 06/24/2018] [Indexed: 12/31/2022] Open
Abstract
Despite the controversial outcomes of clinical trials executed so far, the prevention of β-amyloid (Aβ) deposition and neurotoxicity by small molecule inhibitors of Aβ aggregation remains a target intensively pursued in the search of effective drugs for treating Alzheimer’s disease (AD) and related neurodegeneration syndromes. As a continuation of previous studies, a series of new 3-(2-arylhydrazono)indolin-2-one derivatives was synthesized and assayed, investigating the effects of substitutions on both the indole core and arylhydrazone moiety. Compared with the reference compound 1, we disclosed equipotent derivatives bearing alkyl substituents at the indole nitrogen, and fairly tolerated bioisosteric replacements at the arylhydrazone moiety. For most of the investigated compounds, the inhibition of Aβ40 aggregation (expressed as pIC50) was found to be correlated with lipophilicity, as assessed by a reversed-phase HPLC method, through a bilinear relationship. The N1-cyclopropyl derivative 28 was tested in cell-based assays of Aβ42 oligomer toxicity and oxidative stress induced by hydrogen peroxide, showing significant cytoprotective effects. This study confirmed the versatility of isatin in preparing multitarget small molecules affecting different biochemical pathways involved in AD.
Collapse
|
4
|
Pisani L, De Palma A, Giangregorio N, Miniero DV, Pesce P, Nicolotti O, Campagna F, Altomare CD, Catto M. Mannich base approach to 5-methoxyisatin 3-(4-isopropylphenyl)hydrazone: A water-soluble prodrug for a multitarget inhibition of cholinesterases, beta-amyloid fibrillization and oligomer-induced cytotoxicity. Eur J Pharm Sci 2017; 109:381-388. [PMID: 28801274 DOI: 10.1016/j.ejps.2017.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/13/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023]
Abstract
Targeting protein aggregation for the therapy of neurodegenerative diseases remains elusive for medicinal chemists, despite a number of small molecules known to interfere in amyloidogenesis, particularly of amyloid beta (Aβ) protein. Starting from previous findings in the antiaggregating activity of a class of indolin-2-ones inhibiting Aβ fibrillization, 5-methoxyisatin 3-(4-isopropylphenyl)hydrazone 1 was identified as a multitarget inhibitor of Aβ aggregation and cholinesterases with IC50s in the low μM range. With the aim of increasing aqueous solubility, a Mannich-base functionalization led to the synthesis of N-methylpiperazine derivative 2. At acidic pH, an outstanding solubility increase of 2 over the parent compound 1 was proved through a turbidimetric method. HPLC analysis revealed an improved stability of the Mannich base 2 at pH2 along with a rapid release of 1 in human serum as well as an outstanding hydrolytic stability of the parent hydrazone. Coincubation of Aβ1-42 with 2 resulted in the accumulation of low MW oligomers, as detected with PICUP assay. Cell assays on SH-SY5Y cells revealed that 2 exerts strong cytoprotective effects in both cell viability and radical quenching assays, mainly related to its active metabolite 1. These findings show that 2 drives the formation of non-toxic, off-pathway Aβ oligomers unable to trigger the amyloid cascade and toxicity.
Collapse
Affiliation(s)
- Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Annalisa De Palma
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, via G. Amendola 165/A, I-70126 Bari, Italy
| | - Daniela V Miniero
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Paolo Pesce
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Francesco Campagna
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Cosimo D Altomare
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|
5
|
Lin TW, Chang CF, Chang YJ, Liao YH, Yu HM, Chen YR. Alzheimer's amyloid-β A2T variant and its N-terminal peptides inhibit amyloid-β fibrillization and rescue the induced cytotoxicity. PLoS One 2017; 12:e0174561. [PMID: 28362827 PMCID: PMC5376091 DOI: 10.1371/journal.pone.0174561] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/11/2017] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common dementia affecting tens of million people worldwide. The primary neuropathological hallmark in AD is amyloid plaques composed of amyloid-β peptide (Aβ). Several familial mutations found in Aβ sequence result in early onset of AD. Previous studies showed that the mutations located at N-terminus of Aβ, such as the English (H6R) and Tottori (D7N) mutations, promote fibril formation and increase cytotoxicity. However, A2T mutant located at the very N-terminus of Aβ shows low-prevalence incidence of AD, whereas, another mutant A2V causes early onset of AD. To understand the molecular mechanism of the distinct effect and develop new potential therapeutic strategy, here, we examined the effect of full-length and N-terminal A2V/T variants to wild type (WT) Aβ40 by fibrillization assays and NMR studies. We found that full-length and N-terminal A2V accelerated WT fibrillization and induced large chemical shifts on the N-terminus of WT Aβ, whereas, full-length and N-terminal A2T retarded the fibrillization. We further examined the inhibition effect of various N-terminal fragments (NTFs) of A2T to WT Aβ. The A2T NTFs ranging from residue 1 to residue 7 to 10, but not 1 to 6 or shorter, are capable to retard WT Aβ fibrillization and rescue cytotoxicity. The results suggest that in the presence of full-length or specific N-terminal A2T can retard Aβ aggregation and the A2T NTFs can mitigate its toxicity. Our results provide a novel targeting site for future therapeutic development of AD.
Collapse
Affiliation(s)
- Tien-Wei Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Jen Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Hung Liao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hui-Ming Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
6
|
Loureiro JA, Andrade S, Duarte A, Neves AR, Queiroz JF, Nunes C, Sevin E, Fenart L, Gosselet F, Coelho MAN, Pereira MC. Resveratrol and Grape Extract-loaded Solid Lipid Nanoparticles for the Treatment of Alzheimer's Disease. Molecules 2017; 22:E277. [PMID: 28208831 PMCID: PMC6155722 DOI: 10.3390/molecules22020277] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 12/11/2022] Open
Abstract
The aggregation of amyloid-β peptide (Aβ) has been linked to the formation of neuritic plaques, which are pathological hallmarks of Alzheimer's disease (AD). Various natural compounds have been suggested as therapeutics for AD. Among these compounds, resveratrol has aroused great interest due to its neuroprotective characteristics. Here, we provide evidence that grape skin and grape seed extracts increase the inhibition effect on Aβ aggregation. However, after intravenous injection, resveratrol is rapidly metabolized into both glucuronic acid and sulfate conjugations of the phenolic groups in the liver and intestinal epithelial cells (within less than 2 h), which are then eliminated. In the present study, we show that solid lipid nanoparticles (SLNs) functionalized with an antibody, the anti-transferrin receptor monoclonal antibody (OX26 mAb), can work as a possible carrier to transport the extract to target the brain. Experiments on human brain-like endothelial cells show that the cellular uptake of the OX26 SLNs is substantially more efficient than that of normal SLNs and SLNs functionalized with an unspecific antibody. As a consequence, the transcytosis ability of these different SLNs is higher when functionalized with OX-26.
Collapse
Affiliation(s)
- Joana A Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto 4500-465, Portugal.
| | - Stephanie Andrade
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto 4500-465, Portugal.
| | - Ana Duarte
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto 4500-465, Portugal.
| | - Ana Rute Neves
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, Porto 4050-313, Portugal.
| | - Joana Fontes Queiroz
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, Porto 4050-313, Portugal.
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, Porto 4050-313, Portugal.
| | - Emmanuel Sevin
- Laboratoire de la barrière hémato-encéphalique (LBHE), University Artois, EA 2465, Lens F-62300, France.
| | - Laurence Fenart
- Laboratoire de la barrière hémato-encéphalique (LBHE), University Artois, EA 2465, Lens F-62300, France.
| | - Fabien Gosselet
- Laboratoire de la barrière hémato-encéphalique (LBHE), University Artois, EA 2465, Lens F-62300, France.
| | - Manuel A N Coelho
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto 4500-465, Portugal.
| | - Maria Carmo Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto 4500-465, Portugal.
| |
Collapse
|
7
|
Multi-target-directed therapeutic potential of 7-methoxytacrine-adamantylamine heterodimers in the Alzheimer's disease treatment. Biochim Biophys Acta Mol Basis Dis 2017; 1863:607-619. [DOI: 10.1016/j.bbadis.2016.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/04/2016] [Accepted: 11/15/2016] [Indexed: 12/30/2022]
|
8
|
Ramshini H, Mannini B, Khodayari K, Ebrahim-Habibi A, Moghaddasi AS, Tayebee R, Chiti F. Bis(indolyl)phenylmethane derivatives are effective small molecules for inhibition of amyloid fibril formation by hen lysozyme. Eur J Med Chem 2016; 124:361-371. [DOI: 10.1016/j.ejmech.2016.08.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022]
|
9
|
Taghavi F, Habibi-Rezaei M, Bohlooli M, Farhadi M, Goodarzi M, Movaghati S, Maghami P, Taghibiglou C, Amanlou M, Haertlé T, Moosavi-Movahedi A. Antiamyloidogenic Effects of Ellagic Acid on Human Serum Albumin Fibril Formation Induced by Potassium Sorbate and Glucose. J Mol Recognit 2016; 29:611-618. [DOI: 10.1002/jmr.2560] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 02/02/2023]
Affiliation(s)
- F. Taghavi
- Institute of Biochemistry and Biophysics; University of Tehran; Tehran Iran
- Faculty of Biological Science; Tarbiat Modares University; Tehran Iran
| | | | - M. Bohlooli
- Institute of Biochemistry and Biophysics; University of Tehran; Tehran Iran
- School of Science; University of Zabol; Zabol Iran
| | - M. Farhadi
- ENT-HNS Research Center; IRAN University of Medical Sciences (IUMS); Tehran Iran
| | - M. Goodarzi
- Institute of Biochemistry and Biophysics; University of Tehran; Tehran Iran
| | - S. Movaghati
- Institute of Biochemistry and Biophysics; University of Tehran; Tehran Iran
| | - P. Maghami
- Institute of Biochemistry and Biophysics; University of Tehran; Tehran Iran
| | - C. Taghibiglou
- Department of Pharmacology, College of Medicine; University of Saskatchewan; Saskatchewan Canada
| | - M. Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - T. Haertlé
- UR 1268 Biopolymères Interactions Assemblages; INRA, équipe Fonctions et Interactions des Protéines; Nantes France
- Department of Animal Nutrition and Feed Management; Poznan University of Life Sciences; Poznań Poland
| | - A.A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics; University of Tehran; Tehran Iran
- Center of Excellence in Biothermodynamics; University of Tehran; Tehran Iran
| |
Collapse
|
10
|
Mehrazma B, Petoyan A, Opare SK, Rauk A. Interaction of the N-AcAβ(13–23)NH2 segment of the beta amyloid peptide with beta-sheet-blocking peptides: site and edge specificity. CAN J CHEM 2016. [DOI: 10.1139/cjc-2016-0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The region encompassing residues 13–23 of the amyloid beta peptide (Aβ(13–23)) of Alzheimer’s disease is the self-recognition site that initiates toxic oligomerization and fibrillization and also is the site of interaction of Aβ with many other proteins. We describe herein a study by molecular dynamics of the complexes formed by R (= N-AcAβ(13–23)NH2(N-CH3C(O)HHQKLVFFAEDNH2)) with several pseudopeptides designed to form β-sheets with Aβ(1-40,42) and prevent oligomer and fibril formation. Adhesion to both edges of the R β-strand is examined by structure analysis. Umbrella sampling along a dissociation pathway reveals approximate free energies of binding in the submicromolar range. One of the three pseudopeptides binds strongly to one edge of the R β-strand and another to the opposite edge, while the third displays strong binding to both edges. It is desirable to block both edges of the self-recognition site of Aβ to prevent oligomer formation. The study reveals that this may be accomplished by a single pseudopeptide or two in combination. Thus the pseudopeptides, used singly or in pairs, may be competitive inhibitors of Aβ oligomerization at stoichiometric concentrations.
Collapse
Affiliation(s)
- Banafsheh Mehrazma
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Anahit Petoyan
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Stanley K.A. Opare
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Arvi Rauk
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
11
|
Loureiro JA, Gomes B, Fricker G, Coelho MAN, Rocha S, Pereira MC. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer's disease treatment. Colloids Surf B Biointerfaces 2016; 145:8-13. [PMID: 27131092 DOI: 10.1016/j.colsurfb.2016.04.041] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/12/2016] [Accepted: 04/19/2016] [Indexed: 12/27/2022]
Abstract
During the last few decades, relevant efforts have been reported to design nanocarriers for drug transport through the blood brain barrier (BBB). New drugs, such as peptide iAβ5, capable to inhibit the aggregates associated with Alzheimeŕs disease (AD) are being tested but the most frequent drawback is to reach the brain in the desired concentrations due to the low BBB permeability-surface area. Our approach, as a proof of concept to improve drug transport through the BBB, is based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles with surface functionalized with anti-transferrin receptor monoclonal antibody (OX26) and anti-Aβ (DE2B4) to deliver encapsulated iAβ5 into the brain. Porcine brain capillary endothelial cells (PBCECs) were used as a BBB model to evaluate the system efficacy and toxicity. The uptake of immune nanoparticles with a controlled delivery of the peptide iAβ5 was substantially increased compared to the nanoparticles (NPs) without monoclonal antibody functionalization.
Collapse
Affiliation(s)
- Joana A Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
| | - Bárbara Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
| | - Gert Fricker
- Institute for Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, 69120 Heidelberg, Germany
| | - Manuel A N Coelho
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
| | - Sandra Rocha
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| | - Maria Carmo Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| |
Collapse
|
12
|
Hernández-Rodríguez M, Correa-Basurto J, Nicolás-Vázquez MI, Miranda-Ruvalcaba R, Benítez-Cardoza CG, Reséndiz-Albor AA, Méndez-Méndez JV, Rosales-Hernández MC. Virtual and In Vitro Screens Reveal a Potential Pharmacophore that Avoids the Fibrillization of Aβ1-42. PLoS One 2015; 10:e0130263. [PMID: 26172152 PMCID: PMC4501547 DOI: 10.1371/journal.pone.0130263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/18/2015] [Indexed: 11/25/2022] Open
Abstract
Among the multiple factors that induce Alzheimer’s disease, aggregation of the amyloid β peptide (Aβ) is considered the most important due to the ability of the 42-amino acid Aβ peptides (Aβ1–42) to form oligomers and fibrils, which constitute Aβ pathological aggregates. For this reason, the development of inhibitors of Aβ1–42 pathological aggregation represents a field of research interest. Several Aβ1–42 fibrillization inhibitors possess tertiary amine and aromatic moieties. In the present study, we selected 26 compounds containing tertiary amine and aromatic moieties with or without substituents and performed theoretical studies that allowed us to select four compounds according to their free energy values for Aβ1–42 in α-helix (Aβ-α), random coil (Aβ-RC) and β-sheet (Aβ-β) conformations. Docking studies revealed that compound 5 had a higher affinity for Aβ-α and Aβ-RC than the other compounds. In vitro, this compound was able to abolish Thioflavin T fluorescence and favored an RC conformation of Aβ1–42 in circular dichroism studies, resulting in the formation of amorphous aggregates as shown by atomic force microscopy. The results obtained from quantum studies allowed us to identify a possible pharmacophore that can be used to design Aβ1–42 aggregation inhibitors. In conclusion, compounds with higher affinity for Aβ-α and Aβ-RC prevented the formation of oligomeric species.
Collapse
Affiliation(s)
- Maricarmen Hernández-Rodríguez
- Laboratorio de Modelado Molecular y Diseño de Fármacos, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/N, Delegación Miguel Hidalgo, México D.F., México
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/N, Delegación Miguel Hidalgo, México D.F., México
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular y Diseño de Fármacos, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/N, Delegación Miguel Hidalgo, México D.F., México
- * E-mail: (MCRH): (JCB)
| | - María Inés Nicolás-Vázquez
- Quimica inorgánica-orgánica del Departamento de Ciencias Químicas, de la Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo S/N, Santa María las Torres, Cuautitlán Izcalli, Estado de México, México
| | - René Miranda-Ruvalcaba
- Quimica inorgánica-orgánica del Departamento de Ciencias Químicas, de la Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo S/N, Santa María las Torres, Cuautitlán Izcalli, Estado de México, México
| | - Claudia Guadalupe Benítez-Cardoza
- Laboratorio de Investigación Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu H 239, Gustavo A. Madero, La Escalera, México D.F., México
| | - Aldo Arturo Reséndiz-Albor
- Laboratorio de Investigación en Inmunología., Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/N, Delegación Miguel Hidalgo, México D.F., México
| | - Juan Vicente Méndez-Méndez
- Centro de Nanociencias y Micro y Nanotecnología, Instituto Politécnico Nacional, Luis Enrique Erro S/N, U. Prof Adolfo López Mateos, Gustavo A. Madero, México D.F., México
| | - Martha C. Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/N, Delegación Miguel Hidalgo, México D.F., México
- * E-mail: (MCRH): (JCB)
| |
Collapse
|
13
|
Few-layer bismuth selenides exfoliated by hemin inhibit amyloid-β1-42 fibril formation. Sci Rep 2015; 5:10171. [PMID: 26018135 PMCID: PMC4446900 DOI: 10.1038/srep10171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 04/01/2015] [Indexed: 11/09/2022] Open
Abstract
Inhibiting amyloid-β (Aβ) fibril formation is the primary therapeutic strategy for Alzheimer's disease. Several small molecules and nanomaterials have been used to inhibit Aβ fibril formation. However, insufficient inhibition efficiency or poor metabolization limits their further applications. Here, we used hemin to exfoliate few-layer Bi(2)Se(3) in aqueous solution. Then we separated few-layer Bi(2)Se(3) with different sizes and thicknesses by fractional centrifugation, and used them to attempt to inhibit Aβ(1-42) aggregation. The results show that smaller and thinner few-layer Bi(2)Se(3) had the highest inhibition efficiency. We further investigated the interaction between few-layer Bi(2)Se(3) and Aβ(1-42) monomers. The results indicate that the inhibition effect may be due to the high adsorption capacity of few-layer Bi(2)Se(3) for Aβ(1-42) monomers. Few-layer Bi(2)Se(3) also decreased Aβ-mediated peroxidase-like activity and cytotoxicity according to in vitro neurotoxicity studies under physiological conditions. Therefore, our work shows the potential for applications of few-layer Bi(2)Se(3) in the biomedical field.
Collapse
|
14
|
Lee H, Lee H, Lee M. Studies of Small Molecule Dyes that Interact with Pyrene-labeled Amyloid Fragments. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.11.3369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Babu E, Muthu Mareeswaran P, Sathish V, Singaravadivel S, Rajagopal S. Sensing and inhibition of amyloid-β based on the simple luminescent aptamer-ruthenium complex system. Talanta 2014; 134:348-353. [PMID: 25618678 DOI: 10.1016/j.talanta.2014.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 12/21/2022]
Abstract
Aggregation of amyloid-β (Aβ) peptide has been known to be pathologically associated with Alzheimer and dementia diseases. Amyloid-β fibrils serve as an important target for the drugs development and diagnosis of neurodegenerative diseases. Herein, we report a new [Ru(dmbpy)(dcbpy)dppz)] complex (dmbpy; 4,4'-dimethyl-2,2'-bipyridine, dcbpy; 4,4'-dicorboxy-2,2'-bipyridine, dppz; dipyridophenazine) intercalated aptamer based recognition of amyloid-β. Interestingly, aforementioned Ru(II) complex shows weak luminescence intensity in the aqueous medium but it shows strong luminescence intensity in the presence of RNA aptamer. Upon addition of amyloid-β monomers, the luminescence intensity of Ru(II) complex is reduced due to the strong interaction of aptamer with amyloid-β monomer/small oligomers. Furthermore, present study implies that our system has ability to inhibit the formation of amyloid-β fibrils, which is confirmed from the AFM morphological structures in the absence and presence of aptamer. This work may contribute the rapid diagnosis and inhibition of amyloid-β aggregation in the clinical applications.
Collapse
Affiliation(s)
- Eththilu Babu
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India; Department of Chemistry, VV College of Engineering, Tisaiyanvilai, Tamil Nadu, India
| | - Paulpandian Muthu Mareeswaran
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India; Graduate School of EEWS, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Veerasamy Sathish
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India; Department of Physical Science, Bannari Amman Institute of Technology, Sathiyamangalam, Tamil Nadu, India
| | - Subramanian Singaravadivel
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Seenivasan Rajagopal
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India.
| |
Collapse
|
16
|
Catto M, Arnesano F, Palazzo G, De Stradis A, Calò V, Losacco M, Purgatorio R, Campagna F. Investigation on the influence of (Z)-3-(2-(3-chlorophenyl)hydrazono)-5,6-dihydroxyindolin-2-one (PT2) on β-amyloid(1-40) aggregation and toxicity. Arch Biochem Biophys 2014; 560:73-82. [PMID: 25051344 DOI: 10.1016/j.abb.2014.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/07/2014] [Accepted: 07/11/2014] [Indexed: 12/29/2022]
Abstract
In Alzheimer's disease (AD), native Aβ protein monomers aggregate through the formation of a variety of water-soluble, toxic oligomers, ultimately leading to insoluble fibrillar deposits. The inhibition of oligomers formation and/or their dissociation into non-toxic monomers, are considered an attractive strategy for the prevention and treatment of AD. A number of studies have demonstrated that small molecules, containing single or multiple (hetero)aromatic rings, can inhibit protein aggregation, being potentially effective in AD treatment. Starting from previously reported data on the antiamyloidogenic activity of a series of 3-hydrazonoindolinones, compound PT2 was selected to deeply investigate the inhibitory mechanism in the Aβ aggregation cascade. We compared data from DLS, NMR, CD, TEM and ThT fluorescence measures to ascertain the interactions with amyloidogenic species formed in vitro during the aggregation process, and confirmed this feature with cell viability tests on HeLa cultured cells. PT2 was effective in disrupting toxic oligomers and mature amyloid fibrils, stabilizing Aβ as non-toxic, β-sheet arranged, ThT-insensitive protofilaments. It also strongly reduced cellular toxicity caused by Aβ and showed good antioxidant properties in two radical scavenging tests. Taken together, these data confirmed that PT2 is a small molecule inhibitor of Aβ oligomerization and toxicity, displaying also additional activity as antioxidant.
Collapse
Affiliation(s)
- Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Fabio Arnesano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Gerardo Palazzo
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Angelo De Stradis
- Istituto di Virologia Vegetale del CNR, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, I-70126 Bari, Italy
| | - Vincenza Calò
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Maurizio Losacco
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Rosa Purgatorio
- Taub Institute of Columbia University, 630W 168th Street, Building P&S 12-502, New York, NY 10032, United States
| | - Francesco Campagna
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|
17
|
Ng OTW, Wong Y, Chan HM, Cheng J, Qi X, Chan WH, Yung KKL, Li HW. N-Acetyl-l-cysteine capped quantum dots offer neuronal cell protection by inhibiting beta (1-40) amyloid fibrillation. Biomater Sci 2013; 1:577-580. [PMID: 32481833 DOI: 10.1039/c3bm60029g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This is the first work that revealed the neuro-protective effect of functionalized quantum dots against the cytotoxicity induced by beta-amyloid peptides. This study gives insight into the future treatment of Alzheimer's disease. It opens many avenues for the development of the next generation nanotechnology for biomedical and therapeutic applications.
Collapse
Affiliation(s)
- Olivia T W Ng
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Török B, Sood A, Bag S, Tulsan R, Ghosh S, Borkin D, Kennedy AR, Melanson M, Madden R, Zhou W, Levine H, Török M. Diaryl hydrazones as multifunctional inhibitors of amyloid self-assembly. Biochemistry 2013; 52:1137-48. [PMID: 23346953 DOI: 10.1021/bi3012059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The design and application of an effective, new class of multifunctional small molecule inhibitors of amyloid self-assembly are described. Several compounds based on the diaryl hydrazone scaffold were designed. Forty-four substituted derivatives of this core structure were synthesized using a variety of benzaldehydes and phenylhydrazines and characterized. The inhibitor candidates were evaluated in multiple assays, including the inhibition of amyloid β (Aβ) fibrillogenesis and oligomer formation and the reverse processes, the disassembly of preformed fibrils and oligomers. Because the structure of the hydrazone-based inhibitors mimics the redox features of the antioxidant resveratrol, the radical scavenging effect of the compounds was evaluated by colorimetric assays against 2,2-diphenyl-1-picrylhydrazyl and superoxide radicals. The hydrazone scaffold was active in all of the different assays. The structure-activity relationship revealed that the substituents on the aromatic rings had a considerable effect on the overall activity of the compounds. The inhibitors showed strong activity in fibrillogenesis inhibition and disassembly, and even greater potency in the inhibition of oligomer formation and oligomer disassembly. Supporting the quantitative fluorometric and colorimetric assays, size exclusion chromatographic studies indicated that the best compounds practically eliminated or substantially inhibited the formation of soluble, aggregated Aβ species, as well. Atomic force microscopy was also applied to monitor the morphology of Aβ deposits. The compounds also possessed the predicted antioxidant properties; approximately 30% of the synthesized compounds showed a radical scavenging effect equal to or better than that of resveratrol or ascorbic acid.
Collapse
Affiliation(s)
- Béla Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125-3393, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang W, Du Y, Bai M, Xi Y, Li Z, Miao J. S14G-humanin inhibits Aβ1-42 fibril formation, disaggregates preformed fibrils, and protects against Aβ-induced cytotoxicity in vitro. J Pept Sci 2013; 19:159-65. [PMID: 23349038 DOI: 10.1002/psc.2484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 11/12/2012] [Accepted: 12/11/2012] [Indexed: 01/14/2023]
Abstract
The aggregation of soluble amyloid-beta (Aβ) peptide into oligomers/fibrils is one of the key pathological features in Alzheimer's disease (AD). The Aβ aggregates are considered to play a pivotal role in the pathogenesis of AD. Therefore, inhibiting Aβ aggregation and destabilizing preformed Aβ fibrils would be an attractive therapeutic target for prevention and treatment of AD. S14G-humanin (HNG), a synthetic derivative of Humanin (HN), has been shown to be a strong neuroprotective agent against various AD-related insults. Recent studies have shown that HNG can significantly improve cognitive deficits and reduce insoluble Aβ levels as well as amyloid plaque burden without affecting amyloid precursor protein processing and Aβ production in transgenic AD models. However, the potential mechanisms by which HNG reduces Aβ-related pathology in vivo remain obscure. In the present study, we found that HNG could significantly inhibit monomeric Aβ1-42 aggregation into fibrils and destabilize preformed Aβ1-42 fibrils in a concentration-dependent manner by Thioflavin T fluorescence assay. In transmission electron microscope study, we observed that HNG was effective in inhibiting Aβ1-42 fibril formation and disrupting preformed Aβ1-42 fibrils, exhibiting various types of amorphous aggregates without identifiable Aβ fibrils. Furthermore, HNG-treated monomeric or fibrillar Aβ1-42 was found to significantly reduce Aβ1-42-mediated cytotoxic effects on PC12 cells in a dose-dependent manner by MTT assay. Collectively, our results demonstrate for the first time that HNG not only inhibits Aβ1-42 fibril formation but also disaggregates preformed Aβ1-42 fibrils, which provides the novel evidence that HNG may have anti-Aβ aggregation and fibrillogenesis, and fibril-destabilizing properties. Together with previous studies, we concluded that HNG may have promising therapeutic potential as a multitarget agent for the prevention and/or treatment of AD.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province, 710038, China
| | | | | | | | | | | |
Collapse
|
20
|
Jiménez-Aligaga K, Bermejo-Bescós P, Martín-Aragón S, Csákÿ AG. Discovery of alkenylboronic acids as neuroprotective agents affecting multiple biological targets involved in Alzheimer's disease. Bioorg Med Chem Lett 2012; 23:426-9. [PMID: 23219701 DOI: 10.1016/j.bmcl.2012.11.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/15/2012] [Accepted: 11/18/2012] [Indexed: 12/30/2022]
Abstract
Alkenylboronic acids have shown important biological activities that contribute to neuroprotection. We have determined their influence on the β-amyloid (βA) aggregation process, β-secretase and acethylcholinesterase activities on cell-free systems, on the redox and lipid peroxidation status, and on the vulnerability to apoptotic death in an APPswe neuroblastoma cell line, before and after hydrogen peroxide treatment. We have discovered that 2-arylvinylboronic acids and some of their esters possess a set of properties which makes them highly useful as neuroprotective agents affecting multiple biological targets involved in AD. These properties are not paralleled by the related 2-arylboronic acids.
Collapse
Affiliation(s)
- Karim Jiménez-Aligaga
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Dorr A, Sahota B, Chinta LV, Brown ME, Lai AY, Ma K, Hawkes CA, McLaurin J, Stefanovic B. Amyloid-β-dependent compromise of microvascular structure and function in a model of Alzheimer’s disease. Brain 2012; 135:3039-50. [DOI: 10.1093/brain/aws243] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Di Santo R, Costi R, Cuzzucoli Crucitti G, Pescatori L, Rosi F, Scipione L, Celona D, Vertechy M, Ghirardi O, Piovesan P, Marzi M, Caccia S, Guiso G, Giorgi F, Minetti P. Design, Synthesis, and Structure–Activity Relationship of N-Arylnaphthylamine Derivatives as Amyloid Aggregation Inhibitors. J Med Chem 2012; 55:8538-48. [DOI: 10.1021/jm301105m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione
Cenci Bolognetti, “Sapienza” Università di Roma, P.le A. Moro 5, I-00185 Roma, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione
Cenci Bolognetti, “Sapienza” Università di Roma, P.le A. Moro 5, I-00185 Roma, Italy
| | - Giuliana Cuzzucoli Crucitti
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione
Cenci Bolognetti, “Sapienza” Università di Roma, P.le A. Moro 5, I-00185 Roma, Italy
| | - Luca Pescatori
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione
Cenci Bolognetti, “Sapienza” Università di Roma, P.le A. Moro 5, I-00185 Roma, Italy
| | - Federica Rosi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione
Cenci Bolognetti, “Sapienza” Università di Roma, P.le A. Moro 5, I-00185 Roma, Italy
| | - Luigi Scipione
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione
Cenci Bolognetti, “Sapienza” Università di Roma, P.le A. Moro 5, I-00185 Roma, Italy
| | - Diana Celona
- Sigma-Tau S.p.A., Via Pontina, Km 30.400, I-00040 Pomezia, Italy
| | - Mario Vertechy
- Sigma-Tau S.p.A., Via Pontina, Km 30.400, I-00040 Pomezia, Italy
| | - Orlando Ghirardi
- Sigma-Tau S.p.A., Via Pontina, Km 30.400, I-00040 Pomezia, Italy
| | - Paola Piovesan
- Sigma-Tau S.p.A., Via Pontina, Km 30.400, I-00040 Pomezia, Italy
| | - Mauro Marzi
- Sigma-Tau S.p.A., Via Pontina, Km 30.400, I-00040 Pomezia, Italy
| | - Silvio Caccia
- Dipartimento di Neuroscienze, Istituto di Ricerche Farmacologiche “Mario Negri”, Via La Masa, 19, I-20156 Milano, Italy
| | - Giovanna Guiso
- Dipartimento di Neuroscienze, Istituto di Ricerche Farmacologiche “Mario Negri”, Via La Masa, 19, I-20156 Milano, Italy
| | - Fabrizio Giorgi
- Sigma-Tau S.p.A., Via Pontina, Km 30.400, I-00040 Pomezia, Italy
| | - Patrizia Minetti
- Sigma-Tau S.p.A., Via Pontina, Km 30.400, I-00040 Pomezia, Italy
| |
Collapse
|
23
|
Picou RA, Schrum DP, Ku G, Cerqua RA, Kheterpal I, Gilman SD. Separation and detection of individual Aβ aggregates by capillary electrophoresis with laser-induced fluorescence detection. Anal Biochem 2012; 425:104-12. [DOI: 10.1016/j.ab.2012.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 03/08/2012] [Accepted: 03/14/2012] [Indexed: 12/28/2022]
|
24
|
Török B, Sood A, Bag S, Kulkarni A, Borkin D, Lawler E, Dasgupta S, Landge S, Abid M, Zhou W, Foster M, LeVine H, Török M. Structure-activity relationships of organofluorine inhibitors of β-amyloid self-assembly. ChemMedChem 2012; 7:910-9. [PMID: 22351619 PMCID: PMC4848461 DOI: 10.1002/cmdc.201100569] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/30/2012] [Indexed: 12/22/2022]
Abstract
A broad group of structurally diverse small organofluorine compounds were synthesized and evaluated as inhibitors of β-amyloid (Aβ) self-assembly. The main goal was to generate a diverse library of compounds with the same functional group and to observe general structural features that characterize inhibitors of Aβ oligomer and fibril formation, ultimately identifying structures for further focused inhibitor design. The common structural motifs in these compounds are CF(3) -C-OH and CF(3) -C-NH groups that were proposed to be binding units in our previous studies. A broad range of potential small-molecule inhibitors were synthesized by combining various carbocyclic and heteroaromatic rings with an array of substituents, generating a total of 106 molecules. The compounds were tested by standard methods such as thioflavin-T fluorescence spectroscopy for monitoring fibril formation, biotinyl Aβ(1-42) single-site streptavidin-based assays for observing oligomer formation, and atomic force microscopy for morphological studies. These assays revealed a number of structures that show significant inhibition against either Aβ fibril or oligomer formation. A detailed analysis of the structure-activity relationship of anti-fibril and -oligomer properties is provided. These data present further experimental evidence for the distinct nature of fibril versus oligomer formation and indicate that the interaction of the Aβ peptide with chiral small molecules is not stereospecific in nature.
Collapse
Affiliation(s)
- Béla Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125 (USA)
| | - Abha Sood
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125 (USA)
| | - Seema Bag
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125 (USA)
| | - Aditya Kulkarni
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125 (USA)
| | - Dmitry Borkin
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125 (USA)
| | - Elizabeth Lawler
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125 (USA)
| | - Sujaya Dasgupta
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125 (USA)
| | - Shainaz Landge
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125 (USA)
| | - Mohammed Abid
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125 (USA)
| | - Weihong Zhou
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125 (USA)
| | - Michelle Foster
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125 (USA)
| | - Harry LeVine
- Department of Molecular and Cellular Biochemistry, Chandler School of Medicine and Center on Aging, University of Kentucky, Lexington, KY 40536 (USA)
| | - Marianna Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125 (USA)
| |
Collapse
|
25
|
Rutin inhibits β-amyloid aggregation and cytotoxicity, attenuates oxidative stress, and decreases the production of nitric oxide and proinflammatory cytokines. Neurotoxicology 2012; 33:482-90. [PMID: 22445961 DOI: 10.1016/j.neuro.2012.03.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/15/2012] [Accepted: 03/07/2012] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD) is a complex, multi-factorial neurodegenerative disease. The aggregation of soluble β-amyloid (Aβ) into fibrillar deposits is a pathological hallmark of AD. The Aβ aggregate-induced neurotoxicity, inflammatory reactions, oxidative stress, and nitric oxide (NO) generation are strongly linked to the etiology of AD. Here, we show that the common dietary flavonoid, rutin, can dose-dependently inhibit Aβ42 fibrillization and attenuate Aβ42-induced cytotoxicity in SH-SY5Y neuroblastoma cells. Moreover, rutin decreases the formation of reactive oxygen species (ROS), NO, glutathione disulfide (GSSG), and malondialdehyde (MDA), reduces inducible nitric oxide synthase (iNOS) activity, attenuates mitochondrial damage, increases the glutathione (GSH)/GSSG ratio, enhances the activities of super oxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and modulates the production of proinflammatory cytokines by decreasing TNF-α and IL-1β generation in microglia. Taken together, the actions of rutin on multiple pathogenic factors deserves further investigation for the prevention and treatment of AD.
Collapse
|
26
|
Brandenburg E, von Berlepsch H, Gerling UIM, Böttcher C, Koksch B. Inhibition of amyloid aggregation by formation of helical assemblies. Chemistry 2012; 17:10651-61. [PMID: 22003512 DOI: 10.1002/chem.201100670] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The formation of amyloid aggregates is responsible for a wide range of diseases, including Alzheimer's and Parkinson's disease. Although the amyloid-forming proteins have different structures and sequences, all undergo a conformational change to form amyloid aggregates that have a characteristic cross-β-structure. The mechanistic details of this process are poorly understood, but different strategies for the development of inhibitors of amyloid formation have been proposed. In most cases, chemically diverse compounds bind to an elongated form of the protein in a β-strand conformation and thereby exert their therapeutic effect. However, this approach could favor the formation of prefibrillar oligomeric species, which are thought to be toxic. Herein, we report an alternative approach in which a helical coiled-coil-based inhibitor peptide has been designed to engage a coiled-coil-based amyloid-forming model peptide in a stable coiled-coil arrangement, thereby preventing rearrangement into a β-sheet conformation and the subsequent formation of amyloid-like fibrils. Moreover, we show that the helix-forming peptide is able to disassemble mature amyloid-like fibrils.
Collapse
|
27
|
Tsubuki M, Shimokawa Y, Nakakoshi M, Saito S, Suzuki H, Yokoyama Y, Ishigami A, Nishioka H. Synthesis and Evaluation of 4-Aryl-2(1H)-quinolinones as Potent Amyloid β Fibrillogenesis Inhibitors. HETEROCYCLES 2012. [DOI: 10.3987/com-12-12506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Powell LR, Dukes KD, Lammi RK. Probing the efficacy of peptide-based inhibitors against acid- and zinc-promoted oligomerization of amyloid-β peptide via single-oligomer spectroscopy. Biophys Chem 2012; 160:12-9. [PMID: 21945664 PMCID: PMC3210411 DOI: 10.1016/j.bpc.2011.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 01/18/2023]
Abstract
One avenue for prevention and treatment of Alzheimer's disease involves inhibiting the aggregation of amyloid-β peptide (Aβ). Given the deleterious effects reported for Aβ dimers and trimers, it is important to investigate inhibition of the earliest association steps. We have employed quantized photobleaching of dye-labeled Aβ peptides to characterize four peptide-based inhibitors of fibrillogenesis and/or cytotoxicity, assessing their ability to inhibit association in the smallest oligomers (n=2-5). Inhibitors were tested at acidic pH and in the presence of zinc, conditions that may promote oligomerization in vivo. Distributions of peptide species were constructed by examining dozens of surface-tethered monomers and oligomers, one at a time. Results show that all four inhibitors shift the distribution of Aβ species toward monomers; however, efficacies vary for each compound and sample environment. Collectively, these studies highlight promising design strategies for future oligomerization inhibitors, affording insight into oligomer structures and inhibition mechanisms in two physiologically significant environments.
Collapse
Affiliation(s)
- Lyndsey R Powell
- Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC 29733, USA
| | | | | |
Collapse
|
29
|
Wang M, JiJi RD. Resolution of localized small molecule–Aβ interactions by deep-ultraviolet resonance Raman spectroscopy. Biophys Chem 2011; 158:96-103. [DOI: 10.1016/j.bpc.2011.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 01/13/2023]
|
30
|
Soto-Ortega DD, Murphy BP, Gonzalez-Velasquez FJ, Wilson KA, Xie F, Wang Q, Moss MA. Inhibition of amyloid-β aggregation by coumarin analogs can be manipulated by functionalization of the aromatic center. Bioorg Med Chem 2011; 19:2596-602. [PMID: 21458277 DOI: 10.1016/j.bmc.2011.03.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/26/2011] [Accepted: 03/06/2011] [Indexed: 12/27/2022]
Abstract
Aggregation of the amyloid-β protein (Aβ) plays a pathogenic role in the progression of Alzheimer's disease, and small molecules that attenuate Aβ aggregation have been identified toward a therapeutic strategy that targets the disease's underlying cause. Compounds containing aromatic structures have been repeatedly reported as effective inhibitors of Aβ aggregation, but the functional groups that influence inhibition by these aromatic centers have been less frequently explored. The current study identifies analogs of naturally occurring coumarin as novel inhibitors of Aβ aggregation. Derivatization of the coumarin structure is shown to affect inhibitory capabilities and to influence the point at which an inhibitor intervenes within the nucleation dependent Aβ aggregation pathway. In particular, functional groups found within amyloid binding dyes, such as benzothiazole and triazole, can improve inhibition efficacy. Furthermore, inhibitor intervention at early or late stages within the amyloid aggregation pathway is shown to correlate with the ability of these functional groups to recognize and bind amyloid species that appear either early or late within the aggregation pathway. These results demonstrate that functionalization of small aromatic molecules with recognition elements can be used in the rational design of Aβ aggregation inhibitors to not only enhance inhibition but to also manipulate the inhibition mechanism.
Collapse
Affiliation(s)
- Deborah D Soto-Ortega
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Sood A, Abid M, Sauer C, Hailemichael S, Foster M, Török B, Török M. Disassembly of preformed amyloid beta fibrils by small organofluorine molecules. Bioorg Med Chem Lett 2011; 21:2044-7. [PMID: 21354796 DOI: 10.1016/j.bmcl.2011.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 12/30/2022]
Abstract
A potential therapeutic approach for Alzheimer's disease is to reduce the amount of toxic amyloid-beta oligomers and fibrillar amyloid plaques. In order to contribute to this approach the ability of small organofluorine compounds that were previously reported as successful inhibitors of fibrillogenesis to destabilize preformed fibrils of the amyloid-beta peptide was studied. These organofluorine molecules including chiral compounds were tested in vitro using standard methods based on Thioflavin-T (THT) fluorescence spectroscopy, atomic force microscopy (AFM) and Fourier-transform infrared spectroscopy (FTIR). It was observed that 5'-halogen substituted 3,3,3-trifluoromethyl-2-hydroxyl-(indol-3-yl)-propionic acid esters showed significant activity in the disassembly of the preformed fibrils. Since the same compounds were identified as strong fibrillogenesis inhibitors as well, this dual action makes them promising candidates for further drug development.
Collapse
Affiliation(s)
- Abha Sood
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125-3393, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Ozawa D, Kaji Y, Yagi H, Sakurai K, Kawakami T, Naiki H, Goto Y. Destruction of amyloid fibrils of keratoepithelin peptides by laser irradiation coupled with amyloid-specific thioflavin T. J Biol Chem 2011; 286:10856-63. [PMID: 21300800 DOI: 10.1074/jbc.m111.222901] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mutations in keratoepithelin are associated with blinding ocular diseases, including lattice corneal dystrophy type 1 and granular corneal dystrophy type 2. These diseases are characterized by deposits of amyloid fibrils and/or granular non-amyloid aggregates in the cornea. Removing the deposits in the cornea is important for treatment. Previously, we reported the destruction of amyloid fibrils of β(2)-microglobulin K3 fragments and amyloid β by laser irradiation coupled with the binding of an amyloid-specific thioflavin T. Here, we studied the effects of this combination on the amyloid fibrils of two 22-residue fragments of keratoepithelin. The direct observation of individual amyloid fibrils was performed in real time using total internal reflection fluorescence microscopy. Both types of amyloid fibrils were broken up by the laser irradiation, dependent on the laser power. The results suggest the laser-induced destruction of amyloid fibrils to be a useful strategy for the treatment of these corneal dystrophies.
Collapse
Affiliation(s)
- Daisaku Ozawa
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Saraiva AM, Cardoso I, Saraiva MJ, Tauer K, Pereira MC, Coelho MAN, Möhwald H, Brezesinski G. Randomization of amyloid-β-peptide(1-42) conformation by sulfonated and sulfated nanoparticles reduces aggregation and cytotoxicity. Macromol Biosci 2011; 10:1152-63. [PMID: 20480510 DOI: 10.1002/mabi.200900448] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The amyloid-β peptide (Aβ) plays a central role in the mechanism of Alzheimer's disease, being the main constituent of the plaque deposits found in AD brains. Aβ amyloid formation and deposition are due to a conformational switching to a β-enriched secondary structure. Our strategy to inhibit Aβ aggregation involves the re-conversion of Aβ conformation by adsorption to nanoparticles. NPs were synthesized by sulfonation and sulfation of polystyrene, leading to microgels and latexes. Both polymeric nanostructures affect the conformation of Aβ inducing an unordered state. Oligomerization was delayed and cytotoxicity reduced. The proper balance between hydrophilic moieties and hydrophobic chains seems to be an essential feature of effective NPs.
Collapse
Affiliation(s)
- Ana M Saraiva
- Max Planck Institute of Colloids and Interfaces, Wissenschaftspark Golm, Potsdam, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Campagna F, Catto M, Purgatorio R, Altomare CD, Carotti A, De Stradis A, Palazzo G. Synthesis and biophysical evaluation of arylhydrazono-1H-2-indolinones as β-amyloid aggregation inhibitors. Eur J Med Chem 2011; 46:275-84. [DOI: 10.1016/j.ejmech.2010.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/10/2010] [Accepted: 11/10/2010] [Indexed: 12/26/2022]
|
35
|
Kasturirangan S, Li L, Emadi S, Boddapati S, Schulz P, Sierks MR. Nanobody specific for oligomeric β-amyloid stabilizes nontoxic form. Neurobiol Aging 2010; 33:1320-8. [PMID: 21067847 DOI: 10.1016/j.neurobiolaging.2010.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/09/2010] [Accepted: 09/20/2010] [Indexed: 01/05/2023]
Abstract
While accumulation and deposition of beta amyloid (Aβ) is a primary pathological feature of Alzheimer's disease (AD), increasing evidence has implicated small, soluble oligomeric aggregates of Aβ as the neurotoxic species in AD. Reagents that specifically recognize oligomeric morphologies of Aβ have potential diagnostic and therapeutic value. Using a novel biopanning technique that combines phage display technology and atomic force microscopy, we isolated the nanobody E1 against oligomeric Aβ. Here we show that E1 specifically recognizes a small oligomeric Aβ aggregate species distinct from the species recognized by the A4 nanobody previously reported by our group. While E1, like A4, blocks assembly of Aβ into larger oligomeric and fibrillar forms and prevents any Aβ induced toxicity toward neuronal cells, it does so by binding a small Aβ oligomeric species, directing its assembly toward a stable nontoxic conformation. The E1 nanobody selectively recognizes naturally occurring Aβ aggregates produced in human AD brain tissue indicating that a variety of morphologically distinct Aβ aggregate forms occur naturally and that a stable low-n nontoxic Aβ form exists that does not readily aggregate into larger forms. Because E1 catalyses the formation of a stable nontoxic low-n Aβ species it has potential value as a therapeutic reagent for AD which can be used in combination with other therapeutic approaches.
Collapse
|
36
|
Zovo K, Helk E, Karafin A, Tõugu V, Palumaa P. Label-Free High-Throughput Screening Assay for Inhibitors of Alzheimer’s Amyloid-β Peptide Aggregation Based on MALDI MS. Anal Chem 2010; 82:8558-65. [DOI: 10.1021/ac101583q] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kairit Zovo
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Eneken Helk
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Ann Karafin
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Vello Tõugu
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Peep Palumaa
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| |
Collapse
|
37
|
Bartolini M, Andrisano V. Strategies for the Inhibition of Protein Aggregation in Human Diseases. Chembiochem 2010; 11:1018-35. [DOI: 10.1002/cbic.200900666] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
An enzyme-linked immunosorbent assay to compare the affinity of chemical compounds for β-amyloid peptide as a monomer. Anal Bioanal Chem 2010; 396:1745-54. [PMID: 20135308 DOI: 10.1007/s00216-009-3420-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 01/07/2023]
Abstract
Aβ(1-42) is the proteolytic cleavage product of cleavage of the amyloid precursor protein by β- and γ-secretases. The aggregation of Aβ(1-42) plays a causative role in the development of Alzheimer's disease. To lock Aβ(1-42) in a homogenous state, we embedded the Aβ(1-42) sequence in an unstructured region of Bcl-x(L). Both the N-terminus and the C-terminus of Aβ(1-42) were constrained in the disordered region, whereas the conjunction did not introduce any folding to Aβ(1-42) but maintained the sequence as a monomer in solution. With Bcl-x(L)-Aβ(42), we developed an enzyme-linked immunosorbent assay to compare the affinity of compounds for monomeric Aβ(1-42). Bcl-x(L)-Aβ(42) was coated on a microplate and this was followed by incubation with different concentrations of compounds. Compounds binding to Leu17-Val24 of Aβ(1-42) inhibited the interaction between Bcl-x(L)-Aβ(42) and antibody 4G8. The method can not only reproduce the activities of the reported Aβ(1-42) inhibitors such as dopamine, tannin, and morin but can also differentiate decoy compounds that do not bind to Aβ(1-42). Remarkably, using this method, we discovered a new inhibitor that binds to monomeric Aβ(1-42) and inhibits Aβ(1-42) fibril formation. As the structure of Bcl-x(L)-Aβ(42) monomer is stable in solution, the assay could be adapted for high-throughput screening with a series of antibodies that bind the different epitopes of Aβ(1-42). In addition, the monomeric form of the Aβ(1-42) sequence in Bcl-x(L)-Aβ(42) would also facilitate the identification of Aβ(1-42) binding partners by coimmunoprecipitation, cocrystallization, surface plasmon resonance technology, or the assay as described here.
Collapse
|
39
|
Hawkes CA, Deng LH, Shaw JE, Nitz M, McLaurin J. Small molecule beta-amyloid inhibitors that stabilize protofibrillar structures in vitro improve cognition and pathology in a mouse model of Alzheimer's disease. Eur J Neurosci 2010; 31:203-13. [PMID: 20074226 DOI: 10.1111/j.1460-9568.2009.07052.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Beta-amyloid (Abeta) peptides are thought to play a major role in the pathogenesis of Alzheimer's disease. Compounds that disrupt the kinetic pathways of Abeta aggregation may be useful in elucidating the role of oligomeric, protofibrillar and fibrillar Abeta in the etiology of the disease. We have previously reported that scyllo-inositol inhibits Abeta(42) fibril formation but the mechanism(s) by which this occurs has not been investigated in detail. Using a series of scyllo-inositol derivatives in which one or two hydroxyl groups were replaced with hydrogen, chlorine or methoxy substituents, we examined the role of hydrogen bonding and hydrophobicity in the structure-function relationship of scyllo-inositol-Abeta binding. We report here that all scyllo-inositol derivatives demonstrated reduced effectiveness in preventing Abeta(42) fibrillization compared with scyllo-inositol, suggesting that scyllo-inositol interacts with Abeta(42) via key hydrogen bonds that are formed by all hydroxyl groups. Increasing the hydrophobicity of scyllo-inositol by the addition of two methoxy groups (1,4-di-O-methyl-scyllo-inositol) produced a derivative that stabilized Abeta(42) protofibrils in vitro. Prophylactic administration of 1,4-di-O-methyl-scyllo-inositol to TgCRND8 mice attenuated spatial memory impairments and significantly decreased cerebral amyloid pathology. These results suggest that Abeta aggregation can be targeted at multiple points along the kinetic pathway for the improvement of Alzheimer's disease-like pathology.
Collapse
Affiliation(s)
- Cheryl A Hawkes
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
40
|
Hebda JA, Saraogi I, Magzoub M, Hamilton AD, Miranker AD. A peptidomimetic approach to targeting pre-amyloidogenic states in type II diabetes. ACTA ACUST UNITED AC 2010; 16:943-50. [PMID: 19778722 DOI: 10.1016/j.chembiol.2009.08.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/20/2009] [Accepted: 08/27/2009] [Indexed: 12/21/2022]
Abstract
Protein fiber formation is associated with diseases ranging from Alzheimer's to type II diabetes. For many systems, including islet amyloid polypeptide (IAPP) from type II diabetes, fibrillogenesis can be catalyzed by lipid bilayers. Paradoxically, amyloid fibers are beta sheet rich while membrane-stabilized states are alpha-helical. Here, a small molecule alpha helix mimetic, IS5, is shown to inhibit bilayer catalysis of fibrillogenesis and to rescue IAPP-induced toxicity in cell culture. Importantly, IAPP:IS5 interactions localize to the putative alpha-helical region of IAPP, revealing that alpha-helical states are on pathway to fiber formation. IAPP is not normally amyloidogenic as its cosecreted partner, insulin, prevents self-assembly. Here, we show that IS5 inhibition is synergistic with insulin. IS5 therefore represents a new approach to amyloid inhibition as the target is an assembly intermediate that may additionally restore functional IAPP expression.
Collapse
Affiliation(s)
- James A Hebda
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
41
|
Sood A, Abid M, Hailemichael S, Foster M, Török B, Török M. Effect of chirality of small molecule organofluorine inhibitors of amyloid self-assembly on inhibitor potency. Bioorg Med Chem Lett 2009; 19:6931-4. [PMID: 19880318 PMCID: PMC2785120 DOI: 10.1016/j.bmcl.2009.10.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/14/2009] [Accepted: 10/15/2009] [Indexed: 12/31/2022]
Abstract
The effect of enantiomeric trifluoromethyl-indolyl-acetic acid ethyl esters on the fibrillogenesis of Alzheimer's amyloid beta (Abeta) peptide is described. These compounds have been previously identified as effective inhibitors of the Abeta self-assembly in their racemic form. Thioflavin-T Fluorescence Spectroscopy and Atomic Force Microscopy were applied to assess the potency of the chiral target compounds. Both enantiomers showed significant inhibition in the in vitro assays. The potency of the enantiomeric inhibitors appeared to be very similar to each other suggesting the lack of the stereospecific binding interactions between these small molecule inhibitors and the Abeta peptide.
Collapse
Affiliation(s)
- Abha Sood
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd. Boston, MA 02125-3393, USA
| | | | | | | | | | | |
Collapse
|
42
|
Ouberai M, Dumy P, Chierici S, Garcia J. Synthesis and Biological Evaluation of Clicked Curcumin and Clicked KLVFFA Conjugates as Inhibitors of β-Amyloid Fibril Formation. Bioconjug Chem 2009; 20:2123-32. [DOI: 10.1021/bc900281b] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Myriam Ouberai
- Département de Chimie Moléculaire (DCM), UMR 5250, ICMG-FR, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| | - Pascal Dumy
- Département de Chimie Moléculaire (DCM), UMR 5250, ICMG-FR, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| | - Sabine Chierici
- Département de Chimie Moléculaire (DCM), UMR 5250, ICMG-FR, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| | - Julian Garcia
- Département de Chimie Moléculaire (DCM), UMR 5250, ICMG-FR, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| |
Collapse
|
43
|
LeVine H, Ding Q, Walker JA, Voss RS, Augelli-Szafran CE. Clioquinol and other hydroxyquinoline derivatives inhibit Abeta(1-42) oligomer assembly. Neurosci Lett 2009; 465:99-103. [PMID: 19664688 DOI: 10.1016/j.neulet.2009.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 07/29/2009] [Accepted: 08/03/2009] [Indexed: 11/29/2022]
Abstract
Soluble oligomeric amyloid-beta (Abeta) species are toxic to many cell types and are a putative etiological factor in Alzheimer's disease. The NINDS-Custom Collection of 1040 drugs and biologically active compounds was robotically screened for inhibitors of Abeta oligomer formation with a single-site biotinylated Abeta(1-42) oligomer assembly assay. Several quinoline-like compounds were identified with IC(50)'s <10 microM, including the antiprotozoal clioquinol that has been reported to have effects on metal ion metabolism. The 2-OH, 4-OH, and 6-OH quinolines do not block Abeta oligomer formation up to a concentration of 100 microM. Analogs of clioquinol have shown activity in reducing Abeta levels and improving behavioral deficits in mouse models of Abeta pathology. The inhibitory effects of clioquinol and other 8-OH quinoline derivatives on oligomer formation in vitro are unrelated to their chelating activity. Crosslinking studies suggest that clioquinol acts at the stage of trimer formation. These preliminary data may suggest that 8-OH quinolines have the potential for suppressing Abeta oligomer formation which should be considered when assessing the effects of these compounds in animal models and clinical trials.
Collapse
Affiliation(s)
- Harry LeVine
- Department of Cellular and Molecular Biochemistry, Center on Aging, University of Kentucky, 800 S. Limestone Street, Lexington, KY 40536-0230, USA.
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Benaki D, Stathopoulou K, Leondiadis L, Ferderigos N, Pelecanou M, Mikros E. Detection of interactions of the β-amyloid peptide with small molecules employing transferred NOEs. J Pept Sci 2009; 15:435-41. [DOI: 10.1002/psc.1138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Davis TJ, Soto-Ortega DD, Kotarek JA, Gonzalez-Velasquez FJ, Sivakumar K, Wu L, Wang Q, Moss MA. Comparative study of inhibition at multiple stages of amyloid-beta self-assembly provides mechanistic insight. Mol Pharmacol 2009; 76:405-13. [PMID: 19483107 DOI: 10.1124/mol.109.055301] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The "amyloid cascade hypothesis," linking self-assembly of the amyloid-beta protein (Abeta) to the pathogenesis of Alzheimer's disease, has led to the emergence of inhibition of Abeta self-assembly as a prime therapeutic strategy for this currently unpreventable and devastating disease. The complexity of Abeta self-assembly, which involves multiple reaction intermediates related by nonlinear and interconnected nucleation and growth mechanisms, provides multiple points for inhibitor intervention. Although a number of small-molecule inhibitors of Abeta self-assembly have been identified, little insight has been garnered concerning the point at which these inhibitors intervene within the Abeta assembly process. In the current study, a julolidine derivative is identified as an inhibitor of Abeta self-assembly. To gain insight into the mechanistic action of this inhibitor, the inhibition of fibril formation from monomeric protein is assessed quantitatively and compared with the inhibition of two distinct mechanisms of growth for soluble Abeta aggregation intermediates. This compound is observed to significantly inhibit soluble aggregate growth by lateral association while having little effect on soluble aggregate elongation via monomer addition. In addition, inhibition of soluble Abeta aggregate association exhibits an IC(50) with a somewhat lower stoichiometric ratio than the IC(50) determined for inhibition of fibril formation from monomeric Abeta. This quantitative comparison of inhibition within multiple Abeta self-assembly assays suggests that this compound binds the lateral surface of on-pathway intermediates exhibiting a range of sizes to prevent their association with other aggregates, which is required for further assembly into mature fibrils.
Collapse
Affiliation(s)
- Timothy J Davis
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Alpha-helix targeting reduces amyloid-beta peptide toxicity. Proc Natl Acad Sci U S A 2009; 106:9191-6. [PMID: 19458258 DOI: 10.1073/pnas.0810364106] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The amyloid-beta peptide (Abeta) can generate cytotoxic oligomers, and their accumulation is thought to underlie the neuropathologic changes found in Alzheimer's disease. Known inhibitors of Abeta polymerization bind to undefined structures and can work as nonspecific aggregators, and inhibitors that target conformations that also occur in larger Abeta assemblies may even increase oligomer-derived toxicity. Here we report on an alternative approach whereby ligands are designed to bind and stabilize the 13-26 region of Abeta in an alpha-helical conformation, inspired by the postulated Abeta native structure. This is achieved with 2 different classes of compounds that also reduce Abeta toxicity to cells in culture and to hippocampal slice preparations, and that do not show any nonspecific aggregatory properties. In addition, when these inhibitors are administered to Drosophila melanogaster expressing human Abeta(1-42) in the central nervous system, a prolonged lifespan, increased locomotor activity, and reduced neurodegeneration is observed. We conclude that stabilization of the central Abeta alpha-helix counteracts polymerization into toxic assemblies and provides a strategy for development of specific inhibitors of Abeta polymerization.
Collapse
|