1
|
Dowrey TW, Cranston SF, Skvir N, Lok Y, Gould B, Petrowitz B, Villar D, Shan J, James M, Dodge M, Belkina AC, Giadone RM, Milman S, Sebastiani P, Perls TT, Andersen SL, Murphy GJ. A longevity-specific bank of induced pluripotent stem cells from centenarians and their offspring. Aging Cell 2024:e14351. [PMID: 39319670 DOI: 10.1111/acel.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Centenarians provide a unique lens through which to study longevity, healthy aging, and resiliency. Moreover, models of human aging and resilience to disease that allow for the testing of potential interventions are virtually non-existent. We obtained and characterized over 96 centenarian and offspring peripheral blood samples including those connected to functional independence data highlighting resistance to disability and cognitive impairment. Targeted methylation arrays were used in molecular aging clocks to compare and contrast differences between biological and chronological age in these specialized subjects. Isolated peripheral blood mononuclear cells (PBMCs) from 20 of these subjects were then successfully reprogrammed into high-quality induced pluripotent stem cell (iPSC) lines which were functionally characterized for pluripotency, genomic stability, and the ability to undergo directed differentiation. The result of this work is a one-of-a-kind resource for studies of human longevity and resilience that can fuel the discovery and validation of novel therapeutics for aging-related disease.
Collapse
Affiliation(s)
- Todd W Dowrey
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Samuel F Cranston
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Nicholas Skvir
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Yvonne Lok
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Brian Gould
- Section of Geriatrics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Bradley Petrowitz
- Section of Geriatrics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Daniel Villar
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jidong Shan
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Marianne James
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Mark Dodge
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Anna C Belkina
- Flow Cytometry Core Facility, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Richard M Giadone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Sofiya Milman
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Paola Sebastiani
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, USA
| | - Thomas T Perls
- Section of Geriatrics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Stacy L Andersen
- Section of Geriatrics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - George J Murphy
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Ouchi K, Isono K, Ohya Y, Shiraki N, Tasaki M, Inomata Y, Ueda M, Era T, Kume S, Ando Y, Jono H. Characterization of heterozygous ATTR Tyr114Cys amyloidosis-specific induced pluripotent stem cells. Heliyon 2024; 10:e24590. [PMID: 38312695 PMCID: PMC10835262 DOI: 10.1016/j.heliyon.2024.e24590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Hereditary transthyretin (TTR) amyloidosis (ATTRv amyloidosis) is autosomal dominant and caused by mutation of TTR gene. Heterozygous ATTR Tyr114Cys (p.Tyr134Cys) amyloidosis is a lethal disease with a life expectancy of about 10 years after onset of the disease. However, the molecular pathogenesis of ATTR Tyr114Cys amyloidosis is still largely unknown. In this study, we took advantage of disease-specific induced pluripotent stem (iPS) cells and generated & characterized the heterozygous ATTR Tyr114Cys amyloidosis-specific iPS cells (Y114C iPS cells), to determine whether Y114C iPS cells could be useful for elucidating the pathogenesis of ATTR Tyr114Cys amyloidosis. We successfully differentiated heterozygous Y114C iPS cells into hepatocyte like cells (HLCs) mainly producing TTR protein. On day 27 after differentiation, the expression of hepatocyte maker albumin was detected, and TTR expression was significantly increased in HLCs differentiated from Y114C iPS cells. LC-MS/MS analysis showed that both WT TTR & ATTR Y114C protein were indeed expressed in the HLCs differentiated from Y114C iPS cells. Notably, the number of detected peptides derived from ATTR Y114C protein was lower than that of WT TTR protein, indeed indicating the clinical phenotype of ATTR Tyr114Cys amyloidosis. Taken together, we first reported the heterozygous Y114C iPS cells generated from patient with ATTR Tyr114Cys amyloidosis, and suggested that Y114C iPS cells could be a potential pathological tool, which may contribute to elucidating the molecular pathogenesis of heterozygous ATTR Tyr114Cys amyloidosis.
Collapse
Affiliation(s)
- Kenta Ouchi
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo Ward, Kumamoto City, Kumamoto Prefecture, 860-8556, Japan
| | - Kaori Isono
- Department of Transplantation and Paediatric Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo Ward, Kumamoto City, Kumamoto Prefecture, 860-8556, Japan
| | - Yuki Ohya
- Department of Transplantation and Paediatric Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo Ward, Kumamoto City, Kumamoto Prefecture, 860-8556, Japan
- Department of Pediatric Surgery, Kumamoto Rosai Hospital, 1670 Takehara-cho, Yatsushiro City, Kumamoto Prefecture, 866-0826, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori Ward, Yokohama City, Kanagawa Prefecture, 226-8501, Japan
| | - Masayoshi Tasaki
- Department of Biomedical Laboratory Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, 1-1-1 Honjo, Chuo Ward, Kumamoto City, Kumamoto Prefecture, 860-8556, Japan
- Department of Neurology, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo Ward, Kumamoto City, Kumamoto Prefecture, 860-8556, Japan
| | - Yukihiro Inomata
- Department of Pediatric Surgery, Kumamoto Rosai Hospital, 1670 Takehara-cho, Yatsushiro City, Kumamoto Prefecture, 866-0826, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo Ward, Kumamoto City, Kumamoto Prefecture, 860-8556, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo Ward, Kumamoto City, Kumamoto Prefecture, 860-8556, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori Ward, Yokohama City, Kanagawa Prefecture, 226-8501, Japan
| | - Yukio Ando
- Department of Amyloidosis Research, Nagasaki International University, 2825-7 Huis Ten Bosch Cho, Sasebo City, Nagasaki Prefecture, 859-3298, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo Ward, Kumamoto City, Kumamoto Prefecture, 860-8556, Japan
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo Ward, Kumamoto City, Kumamoto Prefecture, 860-8556, Japan
| |
Collapse
|
3
|
Ghosh S, Villacorta-Martin C, Lindstrom-Vautrin J, Kenney D, Golden CS, Edwards CV, Sanchorawala V, Connors LH, Giadone RM, Murphy GJ. Mapping cellular response to destabilized transthyretin reveals cell- and amyloidogenic protein-specific signatures. Amyloid 2023; 30:379-393. [PMID: 37439769 DOI: 10.1080/13506129.2023.2224494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/04/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND In ATTR amyloidosis, transthyretin (TTR) protein is secreted from the liver and deposited as toxic aggregates at downstream target tissues. Despite recent advancements in treatments for ATTR amyloidosis, the mechanisms underlying misfolded TTR-mediated cellular damage remain elusive. METHODS In an effort to define early events of TTR-associated stress, we exposed neuronal (SH-SY5Y) and cardiac (AC16) cells to wild-type and destabilized TTR variants (TTRV122I (p.V142I) and TTRL55P (p.L70P)) and performed transcriptional (RNAseq) and epigenetic (ATACseq) profiling. We subsequently compared TTR-responsive signatures to cells exposed to destabilized antibody light chain protein associated with AL amyloidosis as well as ER stressors (thapsigargin, heat shock). RESULTS In doing so, we observed overlapping, yet distinct cell type- and amyloidogenic protein-specific signatures, suggesting unique responses to each amyloidogenic variant. Moreover, we identified chromatin level changes in AC16 cells exposed to mutant TTR that resolved upon pre-incubation with kinetic stabilizer tafamidis. CONCLUSIONS Collectively, these data provide insight into the mechanisms underlying destabilized protein-mediated cellular damage and provide a robust resource representing cellular responses to aggregation-prone proteins and ER stress.
Collapse
Affiliation(s)
- Sabrina Ghosh
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Section of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
| | | | | | - Devin Kenney
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Carly S Golden
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Camille V Edwards
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Section of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
- Amyloidosis Center, Alan and Sandra Gerry Amyloid Research Laboratory, Boston University School of Medicine, Boston, MA, USA
| | - Vaishali Sanchorawala
- Department of Medicine, Section of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
- Amyloidosis Center, Alan and Sandra Gerry Amyloid Research Laboratory, Boston University School of Medicine, Boston, MA, USA
| | - Lawreen H Connors
- Amyloidosis Center, Alan and Sandra Gerry Amyloid Research Laboratory, Boston University School of Medicine, Boston, MA, USA
| | - Richard M Giadone
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Section of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
| | - George J Murphy
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Section of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Bonilauri B, Shin HS, Htet M, Yan CD, Witteles RM, Sallam K, Wu JC. Generation of two induced pluripotent stem cell lines from patients with cardiac amyloidosis carrying heterozygous transthyretin (TTR) mutation. Stem Cell Res 2023; 72:103215. [PMID: 37788558 PMCID: PMC10821799 DOI: 10.1016/j.scr.2023.103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/03/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
Specific mutations in the TTR gene are responsible for the development of variant (hereditary) ATTR amyloidosis. Here, we generated two human induced pluripotent stem cell (iPSC) lines from patients diagnosed with Transthyretin Cardiac Amyloidosis (ATTR-CM) carrying heterozygous mutation in the TTR gene (i.e., p.Val30Met). The patient-derived iPSC lines showed expression of high levels of pluripotency markers, trilineage differentiation capacity, and normal karyotype. The generation of these iPSC lines represents a great tool for modeling patient-specific amyloidosis in vitro, allowing the investigation of the pathological mechanisms related to the disease in different cell types and tissues.
Collapse
Affiliation(s)
- Bernardo Bonilauri
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hye Sook Shin
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Min Htet
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher D Yan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Greenstone Biosciences, Palo Alto, CA 94305, USA
| | - Ronald M Witteles
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karim Sallam
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Abstract
Purpose of Review The advent of induced pluripotent stem cells (iPSC) has paved the way for new in vitro models of human cardiomyopathy. Herein, we will review existing models of disease as well as strengths and limitations of the system. Recent Findings Preclinical studies have now demonstrated that iPSCs generated from patients with both acquired or heritable genetic diseases retain properties of the disease in vitro and can be used as a model to study novel therapeutics. iPSCs can be differentiated in vitro into the cardiomyocyte lineage into cells resembling adult ventricular myocytes that retain properties of cardiovascular disease from their respective donor. iPSC pluripotency allows for them to be frozen, stored, and continually used to generate iPSC-derived myocytes for future experiments without need for invasive procedures or repeat myocyte isolations to obtain animal or human cardiac tissues. Summary While not without their limitations, iPSC models offer new ways for studying patient-specific cardiomyopathies. iPSCs offer a high-throughput avenue for drug development, modeling of disease pathophysiology in vitro, and enabling experimental repair strategies without need for invasive procedures to obtain cardiac tissues.
Collapse
|
6
|
Blaszkiewicz J, Duncan SA. Advancements in Disease Modeling and Drug Discovery Using iPSC-Derived Hepatocyte-like Cells. Genes (Basel) 2022; 13:573. [PMID: 35456379 PMCID: PMC9030659 DOI: 10.3390/genes13040573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Serving as the metabolic hub of the human body, the liver is a vital organ that performs a variety of important physiological functions. Although known for its regenerative potential, it remains vulnerable to a variety of diseases. Despite decades of research, liver disease remains a leading cause of mortality in the United States with a multibillion-dollar-per-year economic burden. Prior research with model systems, such as primary hepatocytes and murine models, has provided many important discoveries. However, progress has been impaired by numerous obstacles associated with these models. In recent years, induced pluripotent stem cell (iPSC)-based systems have emerged as advantageous platforms for studying liver disease. Benefits, including preserved differentiation and physiological function, amenability to genetic manipulation via tools such as CRISPR/Cas9, and availability for high-throughput screening, make these systems increasingly attractive for both mechanistic studies of disease and the identification of novel therapeutics. Although limitations exist, recent studies have made progress in ameliorating these issues. In this review, we discuss recent advancements in iPSC-based models of liver disease, including improvements in model system construction as well as the use of high-throughput screens for genetic studies and drug discovery.
Collapse
Affiliation(s)
| | - Stephen A. Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
7
|
Posabella A, Alber AB, Undeutsch HJ, Droeser RA, Hollenberg AN, Ikonomou L, Kotton DN. Derivation of Thyroid Follicular Cells From Pluripotent Stem Cells: Insights From Development and Implications for Regenerative Medicine. Front Endocrinol (Lausanne) 2021; 12:666565. [PMID: 33959101 PMCID: PMC8095374 DOI: 10.3389/fendo.2021.666565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Stem cell-based therapies to reconstitute in vivo organ function hold great promise for future clinical applications to a variety of diseases. Hypothyroidism resulting from congenital lack of functional thyrocytes, surgical tissue removal, or gland ablation, represents a particularly attractive endocrine disease target that may be conceivably cured by transplantation of long-lived functional thyroid progenitors or mature follicular epithelial cells, provided a source of autologous cells can be generated and a variety of technical and biological challenges can be surmounted. Here we review the emerging literature indicating that thyroid follicular epithelial cells can now be engineered in vitro from the pluripotent stem cells (PSCs) of mice, normal humans, or patients with congenital hypothyroidism. We review the in vivo embryonic development of the thyroid gland and explain how emerging discoveries in developmental biology have been utilized as a roadmap for driving PSCs, which resemble cells of the early embryo, into mature functional thyroid follicles in vitro. Finally, we discuss the bioengineering, biological, and clinical hurdles that now need to be addressed if the goals of life-long cure of hypothyroidism through cell- and/or gene-based therapies are to be attained.
Collapse
Affiliation(s)
- Alberto Posabella
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, United States
- University Center of Gastrointestinal and Liver Diseases—Clarunis, University of Basel, Basel, Switzerland
| | - Andrea B. Alber
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, United States
| | - Hendrik J. Undeutsch
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Raoul A. Droeser
- University Center of Gastrointestinal and Liver Diseases—Clarunis, University of Basel, Basel, Switzerland
| | - Anthony N. Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Laertis Ikonomou
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, United States
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, United States
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, United States
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Darrell N. Kotton,
| |
Collapse
|
8
|
Giadone RM, Liberti DC, Matte TM, Rosarda JD, Torres-Arancivia C, Ghosh S, Diedrich JK, Pankow S, Skvir N, Jean JC, Yates JR, Wilson AA, Connors LH, Kotton DN, Wiseman RL, Murphy GJ. Expression of Amyloidogenic Transthyretin Drives Hepatic Proteostasis Remodeling in an Induced Pluripotent Stem Cell Model of Systemic Amyloid Disease. Stem Cell Reports 2020; 15:515-528. [PMID: 32735824 PMCID: PMC7419739 DOI: 10.1016/j.stemcr.2020.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
The systemic amyloidoses are diverse disorders in which misfolded proteins are secreted by effector organs and deposited as proteotoxic aggregates at downstream tissues. Although well described clinically, the contribution of synthesizing organs to amyloid disease pathogenesis is unknown. Here, we utilize hereditary transthyretin amyloidosis (ATTR amyloidosis) induced pluripotent stem cells (iPSCs) to define the contribution of hepatocyte-like cells (HLCs) to the proteotoxicity of secreted transthyretin (TTR). To this end, we generated isogenic, patient-specific iPSCs expressing either amyloidogenic or wild-type TTR. We combined this tool with single-cell RNA sequencing to identify hepatic proteostasis factors correlating with destabilized TTR production in iPSC-derived HLCs. By generating an ATF6 inducible patient-specific iPSC line, we demonstrated that enhancing hepatic ER proteostasis preferentially reduces the secretion of amyloidogenic TTR. These data highlight the liver's capacity to chaperone misfolded TTR prior to deposition, and moreover suggest the potential for unfolded protein response modulating therapeutics in the treatment of diverse systemic amyloidoses.
Collapse
Affiliation(s)
- Richard M Giadone
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, 2nd Floor, Boston, MA 02118, USA
| | - Derek C Liberti
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, 2nd Floor, Boston, MA 02118, USA
| | - Taylor M Matte
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, 2nd Floor, Boston, MA 02118, USA
| | - Jessica D Rosarda
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Celia Torres-Arancivia
- Alan and Sandra Gerry Amyloid Research Laboratory, Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
| | - Sabrina Ghosh
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, 2nd Floor, Boston, MA 02118, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sandra Pankow
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicholas Skvir
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, 2nd Floor, Boston, MA 02118, USA
| | - J C Jean
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, 2nd Floor, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, 2nd Floor, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Lawreen H Connors
- Alan and Sandra Gerry Amyloid Research Laboratory, Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, 2nd Floor, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - George J Murphy
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, 2nd Floor, Boston, MA 02118, USA; Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
9
|
Kaserman JE, Hurley K, Dodge M, Villacorta-Martin C, Vedaie M, Jean JC, Liberti DC, James MF, Higgins MI, Lee NJ, Washko GR, San Jose Estepar R, Teckman J, Kotton DN, Wilson AA. A Highly Phenotyped Open Access Repository of Alpha-1 Antitrypsin Deficiency Pluripotent Stem Cells. Stem Cell Reports 2020; 15:242-255. [PMID: 32619491 PMCID: PMC7363960 DOI: 10.1016/j.stemcr.2020.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Individuals with the genetic disorder alpha-1 antitrypsin deficiency (AATD) are at risk of developing lung and liver disease. Patient induced pluripotent stem cells (iPSCs) have been found to model features of AATD pathogenesis but only a handful of AATD patient iPSC lines have been published. To capture the significant phenotypic diversity of the patient population, we describe here the establishment and characterization of a curated repository of AATD iPSCs with associated disease-relevant clinical data. To highlight the utility of the repository, we selected a subset of iPSC lines for functional characterization. Selected lines were differentiated to generate both hepatic and lung cell lineages and analyzed by RNA sequencing. In addition, two iPSC lines were targeted using CRISPR/Cas9 editing to accomplish scarless repair. Repository iPSCs are available to investigators for studies of disease pathogenesis and therapeutic discovery.
Collapse
Affiliation(s)
- Joseph E Kaserman
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Killian Hurley
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mark Dodge
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Marall Vedaie
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jyh-Chang Jean
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Derek C Liberti
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Marianne F James
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Michelle I Higgins
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Nora J Lee
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | | | | | | | - Darrell N Kotton
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
10
|
Ibrahim RB, Liu YT, Yeh SY, Tsai JW. Contributions of Animal Models to the Mechanisms and Therapies of Transthyretin Amyloidosis. Front Physiol 2019; 10:338. [PMID: 31001136 PMCID: PMC6454033 DOI: 10.3389/fphys.2019.00338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/13/2019] [Indexed: 01/01/2023] Open
Abstract
Transthyretin amyloidosis (ATTR amyloidosis) is a fatal systemic disease caused by amyloid deposits of misfolded transthyretin, leading to familial amyloid polyneuropathy and/or cardiomyopathy, or a rare oculoleptomeningeal amyloidosis. A good model system that mimic the disease phenotype is crucial for the development of drugs and treatments for this devastating degenerative disorder. The present models using fruit flies, worms, rodents, non-human primates and induced pluripotent stem cells have helped researchers understand important disease-related mechanisms and test potential therapeutic options. However, the challenge of creating an ideal model still looms, for these models did not recapitulates all symptoms, particularly neurological presentation, of ATTR amyloidosis. Recently, knock-in techniques was used to generate two humanized ATTR mouse models, leading to amyloid deposition in the nerves and neuropathic manifestation in these models. This review gives a recent update on the milestone, progress, and challenges in developing different models for ATTR amyloidosis research.
Collapse
Affiliation(s)
- Ridwan Babatunde Ibrahim
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Yo-Tsen Liu
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center and Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ssu-Yu Yeh
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center and Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|