1
|
Wang H, Fan X, Han F, Hao H, Xu X, Hao Y, Sun Z, Li Z, Liu Q. Metabolomics study of Shenling Baizhu Powder in the treatment of multiple organ dysfunction syndrome in the elderly (MODSE) with malnutrition. J Pharm Biomed Anal 2024; 251:116423. [PMID: 39208651 DOI: 10.1016/j.jpba.2024.116423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Malnutrition is an important risk factor for multiple organ dysfunction syndrome in the elderly (MODSE) and seriously affects the occurrence, progression and prognosis of MODSE. Shenling Baizhu Power (SBP), a classic formula from traditional Chinese medicine (TCM), when integrated with enteral nutrition, has been proven to be an effective clinical strategy for treating the patients of MODSE with malnutrition. This study aimed to investigate the metabolic changes during disease occurrence and SBP treatment, and to discover potential metabolic biomarkers for the diagnosis and efficacy evaluation. An untargeted metabolomics strategy based on UHPLC-Q-Orbitrap-HRMS was performed to reveal the differential serum metabolites between MODSE patients with malnutrition (n=59) and healthy controls (n=33), and those between patients treated with enteral nutrition (n=31) and SBP combined with enteral nutrition (n=28). Significantly different metabolites were identified and mapped onto the network of metabolic pathways to explore the metabolic disorders caused by the disease and the metabolic regulatory mechanism of SBP. Additionally, the area under the curve (AUC) of the potential biomarkers was investigated for predicting the disease and the efficacy of SBP. Sixty differential metabolites were identified between the disease and control groups, which were mainly related to amino acid metabolism, energy metabolism and carbohydrate metabolism. In the same way, 50 differential metabolites associated with SBP treatment were identified, which improved metabolic abnormalities in vivo mainly by regulating the above-mentioned metabolic pathways. Finally, 13 differential metabolites in common were selected as the potential biomarkers and the AUC value of each biomarker was within the range of 0.8-1.0, indicating that these biomarkers had high prediction accuracy for the diagnosis and efficacy evaluation of MODSE with malnutrition. This study demonstrates that serum metabolomics approaches based on the UHPLC-Q-Orbitrap-HRMS platform can be applied as a tool to reveal the metabolic changes induced by MODSE with malnutrition and SBP can play an important role in the clinical application.
Collapse
Affiliation(s)
- Hui Wang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong 266033, China
| | - Xuemei Fan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Fuguo Han
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Haiyan Hao
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong 266033, China
| | - Xiaowen Xu
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong 266033, China
| | - Yanli Hao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Zhiguang Sun
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Zhengguang Li
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong 266033, China.
| | - Qingfei Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Zivkovic A, Jotic A, Dozic I, Randjelovic S, Cirkovic I, Medic B, Milovanovic J, Trivić A, Korugic A, Vukasinović I, Savic Vujovic K. Role of Oxidative Stress and Inflammation in Postoperative Complications and Quality of Life After Laryngeal Cancer Surgery. Cells 2024; 13:1951. [PMID: 39682700 DOI: 10.3390/cells13231951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
(1) Background: Laryngeal surgery due to carcinoma leads to significant tissue disruption, cellular injury, and inflammation. This leads to increased levels of reactive oxygen species (ROS), causing oxidative damage that can influence quality of life (QOL) and recovery and complicate the postoperative course. The aim of this study was to compare how postoperative quality of life and surgical complication occurrence interacted with the biomarker levels of oxidative stress (malondialdehyde, MDA; superoxide dismutase, SOD; glutathione peroxidase 1, GPX1; and catalase, CAT) and inflammation (interleukin 1, IL-1; interleukin 6, IL-6; C-reactive protein, CRP) in patients treated with conservative and radical laryngeal surgery. (2) Methods: The study included 56 patients who underwent surgical treatment for laryngeal cancer. Blood samples were collected to analyze oxidative stress and inflammation parameters before surgery and on the first and seventh days postoperatively. Serum concentrations of MDA, SOD, GPX, CAT, IL-1, IL-6, and CRP were measured using coated enzyme-linked immunosorbent assay (ELISA) kits. EORTC QLQ-H&H43 questionnaire was used to measure the QOL of patients. (3) Results and Conclusions: T stage, pain intensity, and the extent of the surgical procedure were established as significant predictive factors for QOL in multivariate analysis. There was a significant positive correlation between surgical complication occurrence and preoperative values of GPX and MDA, but significant predictors of surgical complication occurrence on the 7th postoperative day were SOD and MDA values (p < 0.05).
Collapse
Affiliation(s)
- Andjela Zivkovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 1, P.O. Box 38, 11129 Belgrade, Serbia
| | - Ana Jotic
- Faculty of Medicine, University of Belgrade, Dr Subotica 1, P.O. Box 38, 11129 Belgrade, Serbia
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center, Serbia Pasterova 2, 11129 Belgrade, Serbia
| | - Ivan Dozic
- General and Oral Biochemistry, School of Dental Medicine, University of Belgrade, Dr Subotica-Starijeg 1, 11000 Belgrade, Serbia
| | - Simona Randjelovic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center, Serbia Pasterova 2, 11129 Belgrade, Serbia
| | - Ivana Cirkovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 1, P.O. Box 38, 11129 Belgrade, Serbia
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotića 1, 11000 Belgrade, Serbia
| | - Branislava Medic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, P.O. Box 38, 11129 Belgrade, Serbia
| | - Jovica Milovanovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 1, P.O. Box 38, 11129 Belgrade, Serbia
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center, Serbia Pasterova 2, 11129 Belgrade, Serbia
| | - Aleksandar Trivić
- Faculty of Medicine, University of Belgrade, Dr Subotica 1, P.O. Box 38, 11129 Belgrade, Serbia
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center, Serbia Pasterova 2, 11129 Belgrade, Serbia
| | - Aleksa Korugic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center, Serbia Pasterova 2, 11129 Belgrade, Serbia
| | - Ivan Vukasinović
- Department of Neuroradiology, University Clinical Center, Serbia, Pasterova 2, 11129 Belgrade, Serbia
| | - Katarina Savic Vujovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, P.O. Box 38, 11129 Belgrade, Serbia
| |
Collapse
|
3
|
Mohamed AR, Fares NH, Mahmoud YI. Morin Ameliorates Lipopolysaccharides-Induced Sepsis-Associated Encephalopathy and Cognitive Impairment in Albino Mice. Neurochem Res 2024; 50:14. [PMID: 39549093 PMCID: PMC11568986 DOI: 10.1007/s11064-024-04269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/18/2024]
Abstract
Sepsis-associated encephalopathy is a common neurological complication of sepsis that is characterized by neuroinflammation, oxidative stress and apoptosis, which results in cognitive impairments in septic survivors. Despite numerous treatment options for this condition, none of them are definite. Therefore, this study aimed to investigate the impact of morin, a flavone known for its neuroprotective and anti-inflammatory effects, against lipopolysaccharides-induced sepsis-associated encephalopathy in albino mice for 7 days. Mice were divided into 4 groups: Negative control, morin, septic, and septic morin-treated mice. Sepsis was induced by a single injection of lipopolysaccharides (5 mg/kg, intraperitoneally), morin (50 mg/kg b. wt.) was given orally, starting from 5 h after sepsis induction, then daily for 4 other days. Morin ameliorated septic structural and functional alternations as manifested by improving the survival rate, the behavioral functions, in addition to preserving and protecting the brain tissue. This was accompanied with the augmentation of the total antioxidant capacity, as well as the suppression of tissue levels of the lipid peroxidation marker malondialdehyde, apoptosis (cleaved-caspase-3), glial fibrillary acidic protein, and the proinflammatory cytokine tumor necrosis factor. In conclusion, morin has a promising ameliorative effect to counteract the sepsis-associated encephalopathy via its anti-inflammatory and antioxidant effects and to prevent the associated cognitive impairments.
Collapse
Affiliation(s)
- Asmaa R Mohamed
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Nagui H Fares
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Yomna I Mahmoud
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Galvis-Pedraza M, Beumeler LFE, van der Slikke EC, Boerma EC, van Zutphen T. Mitochondrial DNA in plasma and long-term physical recovery of critically ill patients: an observational study. Intensive Care Med Exp 2024; 12:99. [PMID: 39505786 PMCID: PMC11541963 DOI: 10.1186/s40635-024-00690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Post-intensive care syndrome (PICS) poses a notable public health concern, with survivors of critical illness experiencing long-term physical, psychological, and cognitive challenges. Mitochondrial dysfunction has gained attention for its potential involvement in PICS. However, the long-term impact of mitochondrial status on patient recovery remains uncertain. A single-centre retrospective analysis was conducted in Leeuwarden, the Netherlands, between May and November 2019, within a mixed ICU survivor cohort. Patients were assessed for mitochondrial markers (mtDNA damage represented by the presence of mtDNA fragmentation and mitochondrial DNA levels evaluated by the ratio of mtDNA and nuclear DNA), clinical factors, and long-term outcomes measured by the physical functioning (PF) domain of health-related quality of life. RESULTS A total of 43 patients were included in this study divided into recovery and non-recovery groups based on age-adjusted PF scores at 12 months post-ICU. Nineteen patients scored below these thresholds. No significant differences in mitochondrial markers between groups were identified. Furthermore, no significant correlations were found between mtDNA levels and mtDNA damage at baseline and 12 months with PF scores. However, mtDNA levels decreased over time in the recovery (p-value < < 0.01) and non-recovery groups (p-value < 0.01). CONCLUSION No significant correlation was found between mitochondrial markers and physical functioning scores. This study underscores the multifactorial nature of PICS and the need for a comprehensive understanding of its metabolic and cellular components. While mitochondrial markers may play a role in PICS, they operate within a framework influenced by various factors. This exploratory study serves as a foundation for future investigations aimed at developing targeted interventions to enhance the quality of life for ICU survivors grappling with PICS.
Collapse
Affiliation(s)
- Maryory Galvis-Pedraza
- Department of Sustainable Health, Faculty Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands.
- Department of Intensive Care, Medical Centre Leeuwarden, Leeuwarden, The Netherlands.
| | - Lise F E Beumeler
- Department of Sustainable Health, Faculty Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands
- Department of Intensive Care, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
- Research Group Digital Innovation in Healthcare and Social Work, NHL Stenden University of Applied Sciences, Leeuwarden, The Netherlands
| | - Elisabeth C van der Slikke
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - E Christiaan Boerma
- Department of Sustainable Health, Faculty Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands
- Department of Intensive Care, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Tim van Zutphen
- Department of Sustainable Health, Faculty Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands
| |
Collapse
|
5
|
Oh TK, Song IA. Association of Preoperative Opioid and Glucocorticoid Use With Mortality and Complication After Total Knee or Hip Arthroplasty. J Korean Med Sci 2024; 39:e265. [PMID: 39468946 PMCID: PMC11519059 DOI: 10.3346/jkms.2024.39.e265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/29/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The association between preoperative opioid or glucocorticoid (GC) use and clinical outcomes, such as postoperative mortality after total joint arthroplasty (TJA), is unclear. METHODS A population-based retrospective cohort study was conducted. Data were obtained from the National Health Insurance Service of South Korea. Patients who underwent TJA (total knee or total hip arthroplasty) between January 1, 2016, and December 31, 2021, were included. We examined whether the patients had been prescribed opioids or oral GC for > 90 days prior to TJA. RESULTS In total, 664,598 patients who underwent TJA were included, among whom 245,260 (52.4%), 23,076 (3.5%), and 47,777 (7.2%) were classified into the opioid, GC, and opioid and GC groups, respectively. Compared to the non-user group, the opioid and GC user groups showed 53% (odds ratio [OR], 1.53; 95% confidence interval [CI], 1.12-2.30; P = 0.010) higher odds of in-hospital mortality. Compared to non-users, GC users (hazard ratio [HR], 1.24; 95% CI, 1.15-1.34; P < 0.001) and opioid and GC users (HR, 1.24; 95% CI, 1.14-1.35; P < 0.001) showed a higher risk of 1-year all-cause mortality. Compared to the non-user group, GC users (OR, 1.09; 95% CI, 1.04-1.15; P < 0.001) and opioid and GC users (OR, 1.06; 95% CI, 1.01-1.11; P = 0.014) showed higher odds of postoperative complications. CONCLUSION Preoperative GC use and concomitant use of opioid analgesics with GC were associated with increased postoperative mortality and morbidity after TJA. However, preoperative chronic opioid analgesic use alone did not affect postoperative mortality or morbidity.
Collapse
MESH Headings
- Humans
- Analgesics, Opioid/therapeutic use
- Analgesics, Opioid/adverse effects
- Arthroplasty, Replacement, Hip/mortality
- Arthroplasty, Replacement, Hip/adverse effects
- Male
- Female
- Arthroplasty, Replacement, Knee/mortality
- Arthroplasty, Replacement, Knee/adverse effects
- Retrospective Studies
- Middle Aged
- Aged
- Glucocorticoids/therapeutic use
- Glucocorticoids/adverse effects
- Republic of Korea/epidemiology
- Odds Ratio
- Hospital Mortality
- Postoperative Complications/mortality
- Proportional Hazards Models
- Databases, Factual
- Adult
Collapse
Affiliation(s)
- Tak Kyu Oh
- Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - In-Ae Song
- Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
6
|
Ćurko-Cofek B, Jenko M, Taleska Stupica G, Batičić L, Krsek A, Batinac T, Ljubačev A, Zdravković M, Knežević D, Šoštarič M, Sotošek V. The Crucial Triad: Endothelial Glycocalyx, Oxidative Stress, and Inflammation in Cardiac Surgery-Exploring the Molecular Connections. Int J Mol Sci 2024; 25:10891. [PMID: 39456673 PMCID: PMC11508174 DOI: 10.3390/ijms252010891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Since its introduction, the number of heart surgeries has risen continuously. It is a high-risk procedure, usually involving cardiopulmonary bypass, which is associated with an inflammatory reaction that can lead to perioperative and postoperative organ dysfunction. The extent of complications following cardiac surgery has been the focus of interest for several years because of their impact on patient outcomes. Recently, numerous scientific efforts have been made to uncover the complex mechanisms of interaction between inflammation, oxidative stress, and endothelial dysfunction that occur after cardiac surgery. Numerous factors, such as surgical and anesthetic techniques, hypervolemia and hypovolemia, hypothermia, and various drugs used during cardiac surgery trigger the development of systemic inflammatory response and the release of oxidative species. They affect the endothelium, especially endothelial glycocalyx (EG), a thin surface endothelial layer responsible for vascular hemostasis, its permeability and the interaction between leukocytes and endothelium. This review highlights the current knowledge of the molecular mechanisms involved in endothelial dysfunction, particularly in the degradation of EG. In addition, the major inflammatory events and oxidative stress responses that occur in cardiac surgery, their interaction with EG, and the clinical implications of these events have been summarized and discussed in detail. A better understanding of the complex molecular mechanisms underlying cardiac surgery, leading to endothelial dysfunction, is needed to improve patient management during and after surgery and to develop effective strategies to prevent adverse outcomes that complicate recovery.
Collapse
Affiliation(s)
- Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Matej Jenko
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
- Medical Faculty, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Gordana Taleska Stupica
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Antea Krsek
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
| | - Aleksandra Ljubačev
- Department of Surgery, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Marko Zdravković
- Department of Anaesthesiology, Intensive Care and Pain Management, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia;
| | - Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Maja Šoštarič
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
- Medical Faculty, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| |
Collapse
|
7
|
Ott S, Lee ZY, Müller-Wirtz LM, Cangut B, Roessler J, Patterson W, Thomas CM, Bekele BM, Windpassinger M, Lobdell K, Grant MC, Arora RC, Engelman DT, Fremes S, Velten M, O'Brien B, Ruetzler K, Heyland DK, Stoppe C. The effect of a selenium-based anti-inflammatory strategy on postoperative functional recovery in high-risk cardiac surgery patients - A nested sub-study of the sustain CSX trial. Life Sci 2024; 351:122841. [PMID: 38897349 DOI: 10.1016/j.lfs.2024.122841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
AIM The cardiac surgery-related ischemia-reperfusion-related oxidative stress triggers the release of cytotoxic reactive oxygen and nitrogen species, contributing to organ failure and ultimately influencing patients' short- and long-term outcomes. Selenium is an essential co-factor for various antioxidant enzymes, thereby contributing to the patients' endogenous antioxidant and anti-inflammatory defense mechanisms. Given these selenium's pleiotropic functions, we investigated the effect of a high-dose selenium-based anti-inflammatory perioperative strategy on functional recovery after cardiac surgery. MATERIALS AND METHODS This prospective study constituted a nested sub-study of the SUSTAIN CSX trial, a double-blinded, randomized, placebo-controlled multicenter trial to investigate the impact of high-dose selenium supplementation on high-risk cardiac surgery patients' postoperative recovery. Functional recovery was assessed by 6-min walk distance, Short Form-36 (SF-36) and Barthel Index questionnaires. KEY FINDINGS 174 patients were included in this sub-study. The mean age (SD) was 67.3 (8.9) years, and 78.7 % of the patients were male. The mean (SD) predicted 30-day mortality by the European System for Cardiac Operative Risk Evaluation II score was 12.6 % (9.4 %). There was no difference at hospital discharge and after three months in the 6-min walk distance between the selenium and placebo groups (131 m [IQR: not performed - 269] vs. 160 m [IQR: not performed - 252], p = 0.80 and 400 m [IQR: 299-461] vs. 375 m [IQR: 65-441], p = 0.48). The SF-36 and Barthel Index assessments also revealed no clinically meaningful differences between the selenium and placebo groups. SIGNIFICANCE A perioperative anti-inflammatory strategy with high-dose selenium supplementation did not improve functional recovery in high-risk cardiac surgery patients.
Collapse
Affiliation(s)
- Sascha Ott
- Deutsches Herzzentrum der Charité, Department of Cardiac Anaesthesiology and Intensive Care Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Outcomes Research Consortium, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Zheng-Yii Lee
- Deutsches Herzzentrum der Charité, Department of Cardiac Anaesthesiology and Intensive Care Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Anaesthesiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lukas M Müller-Wirtz
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, 66424 Homburg, Saarland, Germany; Outcomes Research Consortium, Department of Anesthesiology, Cleveland Clinic, OH, USA.
| | - Busra Cangut
- Department of Cardiovascular Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Julian Roessler
- Outcomes Research Consortium, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Institute of Anaesthesiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - William Patterson
- Outcomes Research Consortium, Department of Anesthesiology, Cleveland Clinic, OH, USA.
| | - Christian M Thomas
- Deutsches Herzzentrum der Charité, Department of Cardiac Anaesthesiology and Intensive Care Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany.
| | - Biniam M Bekele
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Marita Windpassinger
- Department of Anesthesia, Critical Care and Pain Medicine, Division of General Anesthesia and Intensive Care Medicine, Medical University Vienna, Vienna, Austria.
| | - Kevin Lobdell
- Department of Thoracic and Cardiovascular Surgery, Sanger Heart and Vascular Institute, Carolinas Medical Center, Charlotte, NC 28203, USA.
| | - Michael C Grant
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, USA; Armstrong Institute for Patient Safety and Quality, The Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | - Rakesh C Arora
- Division of Cardiac Surgery, Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH, USA
| | - Daniel T Engelman
- Heart and Vascular Program, Baystate Health and University of Massachusetts Chan Medical School-Baystate, 759 Chestnut Street, Springfield, MA 01199, USA
| | - Stephen Fremes
- Division of Cardiac Surgery, Schulich Heart Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, M4N 3M5, Department of Surgery, University of Toronto, Toronto, Canada.
| | - Markus Velten
- Department of Anesthesiology and Pain Management, Division of Cardiovascular and Thoracic Anesthesiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Benjamin O'Brien
- Deutsches Herzzentrum der Charité, Department of Cardiac Anaesthesiology and Intensive Care Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; St Bartholomew's Hospital and Barts Heart Centre, Department of Perioperative Medicine, London EC1A 7BE, UK.
| | - Kurt Ruetzler
- Outcomes Research Consortium, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of General Anesthesia, Anesthesiology Institute, Cleveland Clinic, Cleveland, USA.
| | - Daren K Heyland
- Clinical Evaluation Research Unit, Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada.
| | - Christian Stoppe
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital, Würzburg, Würzburg, Germany; Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Nguyen Van Q, Akiba Y, Eguchi K, Akiba N, Uoshima K. Controlling redox state by edaravone at transplantation site enhances bone regeneration. Biomed Pharmacother 2024; 177:117032. [PMID: 38941894 DOI: 10.1016/j.biopha.2024.117032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
In cell-based bone augmentation, transplanted cell dysfunction and apoptosis can occur due to oxidative stress caused by the overproduction of reactive oxygen species (ROS). Edaravone (EDA) is a potent free radical scavenger with potential medical applications. This study aimed to investigate the effect of controlling oxidative stress on bone regeneration using EDA. Bone marrow-derived cells were collected from 4-week-old rats, and EDA effects on cell viability and osteogenic differentiation were evaluated. Collagen gels containing PKH26-prelabeled cells were implanted into the calvarial defects of 12-week-old rats, followed by daily subcutaneous injections of normal saline or 500 μM EDA for 4 d. Bone formation was examined using micro-computed tomography and histological staining. Immunofluorescence staining was performed for markers of oxidative stress, macrophages, osteogenesis, and angiogenesis. EDA suppressed ROS production and hydrogen peroxide-induced apoptosis, recovering cell viability and osteoblast differentiation. EDA treatment in vivo increased new bone formation. EDA induced the transition of the macrophage population toward the M2 phenotype. The EDA group also exhibited stronger immunofluorescence for vascular endothelial growth factor and CD31. In addition, more PKH26-positive and PKH26-osteocalcin-double-positive cells were observed in the EDA group, indicating that transplanted cell survival was prolonged, and they differentiated into bone-forming cells. This could be attributed to oxidative stress suppression at the transplantation site by EDA. Collectively, local administration using EDA facilitates bone regeneration by improving the local environment and angiogenesis, prolonging survival, and enhancing the osteogenic capabilities of transplanted cells.
Collapse
Affiliation(s)
- Quang Nguyen Van
- Division of Bio-Prosthodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Yosuke Akiba
- Division of Bio-Prosthodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Kaori Eguchi
- Division of Bio-Prosthodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Nami Akiba
- Division of Bio-Prosthodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Katsumi Uoshima
- Division of Bio-Prosthodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| |
Collapse
|
9
|
Moyal A, Nazemian R, Colon EP, Zhu L, Benzar R, Palmer NR, Craycroft M, Hausladen A, Premont RT, Stamler JS, Klick J, Reynolds JD. Renal dysfunction in adults following cardiopulmonary bypass is linked to declines in S-nitroso hemoglobin: a case series. Ann Med Surg (Lond) 2024; 86:2425-2431. [PMID: 38694342 PMCID: PMC11060257 DOI: 10.1097/ms9.0000000000001880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/21/2024] [Indexed: 05/04/2024] Open
Abstract
Background Impaired kidney function is frequently observed in patients following cardiopulmonary bypass (CPB). Our group has previously linked blood transfusion to acute declines in S-nitroso haemoglobin (SNO-Hb; the main regulator of tissue oxygen delivery), reductions in intraoperative renal blood flow, and postoperative kidney dysfunction. While not all CPB patients receive blood, kidney injury is still common. We hypothesized that the CPB procedure itself may negatively impact SNO-Hb levels leading to renal dysfunction. Materials and methods After obtaining written informed consent, blood samples were procured immediately before and after CPB, and on postoperative day (POD) 1. SNO-Hb levels, renal function (estimated glomerular filtration rate; eGFR), and plasma erythropoietin (EPO) concentrations were quantified. Additional outcome data were extracted from the patients' medical records. Results Twenty-seven patients were enroled, three withdrew consent, and one was excluded after developing bacteremia. SNO-Hb levels declined after surgery and were directly correlated with declines in eGFR (R=0.48). Conversely, plasma EPO concentrations were elevated and inversely correlated with SNO-Hb (R=-0.53) and eGFR (R=-0.55). Finally, ICU stay negatively correlated with SNO-Hb concentration (R=-0.32). Conclusion SNO-Hb levels are reduced following CPB in the absence of allogenic blood transfusion and are predictive of decreased renal function and prolonged ICU stay. Thus, therapies directed at maintaining or increasing SNO-Hb levels may improve outcomes in adult patients undergoing cardiac surgery.
Collapse
Affiliation(s)
| | - Ryan Nazemian
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | - Edwin Pacheco Colon
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | - Lin Zhu
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | - Ruth Benzar
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | | | | | - Alfred Hausladen
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | - Richard T. Premont
- Institute for Transformative Molecular Medicine
- Cardiology, School of Medicine Case Western Reserve University
- Harrington Discovery Institute, University Hospitals-Cleveland Medical Center, Cleveland, OH
| | - Jonathan S. Stamler
- Institute for Transformative Molecular Medicine
- Cardiology, School of Medicine Case Western Reserve University
- Harrington Discovery Institute, University Hospitals-Cleveland Medical Center, Cleveland, OH
| | - John Klick
- Departments ofAnesthesiology & Perioperative Medicine
| | - James D. Reynolds
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
- Harrington Discovery Institute, University Hospitals-Cleveland Medical Center, Cleveland, OH
| |
Collapse
|
10
|
Jing J, Fang S, Li Y, Liu W, Wang C, Lan Y, Wang Y, Yang C. An enhanced cardio-protective effect of nanoparticles loaded with active components from Polygonum orientale L. against isoproterenol-induced myocardial ischemia in rats. Int J Pharm 2024; 655:124047. [PMID: 38531434 DOI: 10.1016/j.ijpharm.2024.124047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
In this study, nanoparticles loaded with active components from Polygonum orientale L. (PO), a traditional Chinese herb known for its anti-myocardial ischemic properties, were investigated for cardio-protective properties. Specifically, OVQ-Nanoparticles (OVQ-NPs) with Orientin (Ori), Vitexin (Vit), and Quercetin (Que) was obtained by double emulsion-solvent evaporation method. The OVQ-NPs exhibited a spherical shape, with a uniform size distribution of 136.77 ± 3.88 nm and a stable ζ-potential of -13.40 ± 2.24 mV. Notably, these nanoparticles exhibited a favorable sustained-release characteristic, resulting in an extended circulation time within the living organism. Consequently, the administration of these nanoparticles resulted in significant improvements in electrocardiograms and heart mass index of myocardial ischemic rats induced by isoproterenol, as well as decreased serum levels of CK, LDH, and AST. Furthermore, the results of histopathological examination, such as H&E staining and TUNEL staining, confirmed a reduced level of cardiac tissue pathology and apoptosis. Moreover, the quantification of biochemical indicators (SOD, MDA, GSH, NO, TNF-α, and IL-6) demonstrated that OVQ-NPs effectively mitigated myocardial ischemia by regulating oxidative stress and inflammatory pathways. In conclusion, OVQ-NPs demonstrate promising therapeutic potential as an intervention for myocardial ischemia, providing a new perspective on traditional Chinese medicine treatment in this area.
Collapse
Affiliation(s)
- Jincheng Jing
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shumei Fang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wenting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Cong Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yanyu Lan
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yonglin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Chang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
11
|
Bae G, Berezhnoy G, Flores A, Cannet C, Schäfer H, Dahlke MH, Michl P, Löffler MW, Königsrainer A, Trautwein C. Quantitative Metabolomics and Lipoprotein Analysis of PDAC Patients Suggests Serum Marker Categories for Pancreatic Function, Pancreatectomy, Cancer Metabolism, and Systemic Disturbances. J Proteome Res 2024; 23:1249-1262. [PMID: 38407039 PMCID: PMC11003419 DOI: 10.1021/acs.jproteome.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/29/2023] [Accepted: 02/03/2024] [Indexed: 02/27/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is difficult to diagnose in the early stages and lacks reliable biomarkers. The scope of this project was to establish quantitative nuclear magnetic resonance (NMR) spectroscopy to comprehensively study blood serum alterations in PDAC patients. Serum samples from 34 PDAC patients obtained before and after pancreatectomy as well as 83 age- and sex-matched control samples from healthy donors were analyzed with in vitro diagnostics research (IVDr) proton NMR spectroscopy at 600 MHz. Uni- and multivariate statistics were applied to identify significant biofluid alterations. We identified 29 significantly changed metabolites and 98 lipoproteins when comparing serum from healthy controls with those of PDAC patients. The most prominent features were assigned to (i) markers of pancreatic function (e.g., glucose and blood triglycerides), (ii) markers related to surgery (e.g., ketone bodies and blood cholesterols), (iii) PDAC-associated markers (e.g., amino acids and creatine), and (iv) markers for systemic disturbances in PDAC (e.g., gut metabolites DMG, TMAO, DMSO2, and liver lipoproteins). Quantitative serum NMR spectroscopy is suited as a diagnostic tool to investigate PDAC. Remarkably, 2-hydroxybutyrate (2-HB) as a previously suggested marker for insulin resistance was found in extraordinarily high levels only after pancreatectomy, suggesting this metabolite is the strongest marker for pancreatic loss of function.
Collapse
Affiliation(s)
- Gyuntae Bae
- Werner
Siemens Imaging Center, Department of Preclinical
Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally
Instructed Tumor Therapies’, University
of Tübingen, Tübingen 72076, Germany
| | - Georgy Berezhnoy
- Werner
Siemens Imaging Center, Department of Preclinical
Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen 72076, Germany
| | - Alejandra Flores
- Werner
Siemens Imaging Center, Department of Preclinical
Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen 72076, Germany
| | - Claire Cannet
- Bruker
BioSpin GmbH & Co. KG, BioPharma and Applied Division, Ettlingen 76275, Germany
| | - Hartmut Schäfer
- Bruker
BioSpin GmbH & Co. KG, BioPharma and Applied Division, Ettlingen 76275, Germany
| | - Marc H. Dahlke
- Department
of General and Visceral Surgery, Robert-Bosch-Krankenhaus, Stuttgart 70376, Germany
| | - Patrick Michl
- Dept
of Internal Medicine IV, University Hospital
Heidelberg, Heidelberg 69120, Germany
| | - Markus W. Löffler
- Department
of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen 72076, Germany
- German Cancer
Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner
Site Tübingen, University of Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally
Instructed Tumor Therapies’, University
of Tübingen, Tübingen 72076, Germany
- Department
of Immunology, University of Tübingen, Tübingen 72076, Germany
- Department
of Clinical Pharmacology, University Hospital
Tübingen, Tübingen 72076, Germany
| | - Alfred Königsrainer
- Department
of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen 72076, Germany
- German Cancer
Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner
Site Tübingen, University of Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally
Instructed Tumor Therapies’, University
of Tübingen, Tübingen 72076, Germany
| | - Christoph Trautwein
- Werner
Siemens Imaging Center, Department of Preclinical
Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally
Instructed Tumor Therapies’, University
of Tübingen, Tübingen 72076, Germany
- M3
Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine University Tübingen, Tübingen 72076, Germany
| |
Collapse
|
12
|
Sahoo DK, Wong D, Patani A, Paital B, Yadav VK, Patel A, Jergens AE. Exploring the role of antioxidants in sepsis-associated oxidative stress: a comprehensive review. Front Cell Infect Microbiol 2024; 14:1348713. [PMID: 38510969 PMCID: PMC10952105 DOI: 10.3389/fcimb.2024.1348713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Sepsis is a potentially fatal condition characterized by organ dysfunction caused by an imbalanced immune response to infection. Although an increased inflammatory response significantly contributes to the pathogenesis of sepsis, several molecular mechanisms underlying the progression of sepsis are associated with increased cellular reactive oxygen species (ROS) generation and exhausted antioxidant pathways. This review article provides a comprehensive overview of the involvement of ROS in the pathophysiology of sepsis and the potential application of antioxidants with antimicrobial properties as an adjunct to primary therapies (fluid and antibiotic therapies) against sepsis. This article delves into the advantages and disadvantages associated with the utilization of antioxidants in the therapeutic approach to sepsis, which has been explored in a variety of animal models and clinical trials. While the application of antioxidants has been suggested as a potential therapy to suppress the immune response in cases where an intensified inflammatory reaction occurs, the use of multiple antioxidant agents can be beneficial as they can act additively or synergistically on different pathways, thereby enhancing the antioxidant defense. Furthermore, the utilization of immunoadjuvant therapy, specifically in septic patients displaying immunosuppressive tendencies, represents a promising advancement in sepsis therapy.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - David Wong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Anil Patani
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Gujarat, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
13
|
Beyersdorf F. Innovation and disruptive science determine the future of cardiothoracic surgery. Eur J Cardiothorac Surg 2024; 65:ezae022. [PMID: 38243711 DOI: 10.1093/ejcts/ezae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
One of the currently most asked questions in the field of medicine is how any specialty in the future will evolve to ensure better health for the patients by using current, unparalleled developments in all areas of science. This article will give an overview of new and evolving strategies for cardiothoracic (CT) surgery that are available today and will become available in the future in order to achieve this goal. In the founding era of CT surgery in the 1950s and 1960s, there was tremendous excitement about innovation and disruptive science, which eventually resulted in a completely new medical specialty, i.e. CT surgery. Entirely new treatment strategies were introduced for many cardiovascular diseases that had been considered incurable until then. As expected, alternative techniques have evolved in all fields of science during the last few decades, allowing great improvements in diagnostics and treatment in all medical specialties. The future of CT surgery will be determined by an unrestricted and unconditional investment in innovation, disruptive science and our own transformation using current achievements from many other fields. From the multitude of current and future possibilities, I will highlight 4 in this review: improvements in our current techniques, bringing CT surgery to low- and middle-income countries, revolutionizing the perioperative period and treating as yet untreatable diseases. These developments will allow us a continuation of the previously unheard-of treatment possibilities provided by ingenious innovations based on the fundamentals of CT surgery.
Collapse
Affiliation(s)
- Friedhelm Beyersdorf
- Department of Cardiovascular Surgery, University Hospital Freiburg, Freiburg, Germany
- Medical Faculty of the Albert-Ludwigs-University Freiburg, Germany
| |
Collapse
|
14
|
Rasmi Y, Shokati A, Hatamkhani S, Farnamian Y, Naderi R, Jalali L. Assessment of the relationship between the dopaminergic pathway and severe acute respiratory syndrome coronavirus 2 infection, with related neuropathological features, and potential therapeutic approaches in COVID-19 infection. Rev Med Virol 2024; 34:e2506. [PMID: 38282395 DOI: 10.1002/rmv.2506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 07/06/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Dopamine is a known catecholamine neurotransmitter involved in several physiological processes, including motor control, motivation, reward, cognition, and immune function. Dopamine receptors are widely distributed throughout the nervous system and in immune cells. Several viruses, including human immunodeficiency virus and Japanese encephalitis virus, can use dopaminergic receptors to replicate in the nervous system and are involved in viral neuropathogenesis. In addition, studies suggest that dopaminergic receptors may play a role in the progression and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. When SARS-CoV-2 binds to angiotensin-converting enzyme 2 receptors on the surface of neuronal cells, the spike protein of the virus can bind to dopaminergic receptors on neighbouring cells to accelerate its life cycle and exacerbate neurological symptoms. In addition, recent research has shown that dopamine is an important regulator of the immune-neuroendocrine system. Most immune cells express dopamine receptors and other dopamine-related proteins, indicating the importance of dopaminergic immune regulation. The increase in dopamine concentration during SARS-CoV2 infection may reduce immunity (innate and adaptive) that promotes viral spread, which could lead to neuronal damage. In addition, dopaminergic signalling in the nervous system may be affected by SARS-CoV-2 infection. COVID -19 can cause various neurological symptoms as it interacts with the immune system. One possible treatment strategy for COVID -19 patients could be the use of dopamine antagonists. To fully understand how to protect the neurological system and immune cells from the virus, we need to study the pathophysiology of the dopamine system in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Yeganeh Farnamian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ladan Jalali
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
15
|
Wang Y, Shen M, Li Y, Shao J, Zhang F, Guo M, Zhang Z, Zheng S. COVID-19-associated liver injury: Adding fuel to the flame. Cell Biochem Funct 2023; 41:1076-1092. [PMID: 37947373 DOI: 10.1002/cbf.3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
COVID-19 is mainly characterized by respiratory disorders and progresses to multiple organ involvement in severe cases. With expansion of COVID-19 and SARS-CoV-2 research, correlative liver injury has been revealed. It is speculated that COVID-19 patients exhibited abnormal liver function, as previously observed in the SARS and MERS pandemics. Furthermore, patients with underlying diseases such as chronic liver disease are more susceptible to SARS-CoV-2 and indicate a poor prognosis accompanied by respiratory symptoms, systemic inflammation, or metabolic diseases. Therefore, COVID-19 has the potential to impair liver function, while individuals with preexisting liver disease suffer from much worse infected conditions. COVID-19 related liver injury may be owing to direct cytopathic effect, immune dysfunction, gut-liver axis interaction, and inappropriate medication use. However, discussions on these issues are infancy. Expanding research have revealed that angiotensin converting enzyme 2 (ACE2) expression mediated the combination of virus and target cells, iron metabolism participated in the virus life cycle and the fate of target cells, and amino acid metabolism regulated immune response in the host cells, which are all closely related to liver health. Further exploration holds great significance in elucidating the pathogenesis, facilitating drug development, and advancing clinical treatment of COVID-19-related liver injury. This article provides a review of the clinical and laboratory hepatic characteristics in COVID-19 patients, describes the etiology and impact of liver injury, and discusses potential pathophysiological mechanisms.
Collapse
Affiliation(s)
- Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Fukada M, Murase K, Higashi T, Yasufuku I, Sato Y, Tajima JY, Kiyama S, Tanaka Y, Okumura N, Matsuhashi N. Perioperative predictive factors of failure to rescue following highly advanced hepatobiliary-pancreatic surgery: a single-institution retrospective study. World J Surg Oncol 2023; 21:365. [PMID: 37996865 PMCID: PMC10668400 DOI: 10.1186/s12957-023-03257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Failure to rescue (FTR), defined as a postoperative complication leading to death, is a recently described outcome metric used to evaluate treatment quality. However, the predictive factors for FTR, particularly following highly advanced hepatobiliary-pancreatic surgery (HBPS), have not been adequately investigated. This study aimed to identify perioperative predictive factors for FTR following highly advanced HBPS. METHODS This single-institution retrospective study involved 177 patients at Gifu University Hospital, Japan, who developed severe postoperative complications (Clavien-Dindo classification grades ≥ III) between 2010 and 2022 following highly advanced HBPS. Univariate analysis was used to identify pre-, intra-, and postoperative risks of FTR. RESULTS Nine postoperative mortalities occurred during the study period (overall mortality rate, 1.3% [9/686]; FTR rate, 5.1% [9/177]). Univariate analysis indicated that comorbid liver disease, intraoperative blood loss, intraoperative blood transfusion, postoperative liver failure, postoperative respiratory failure, and postoperative bleeding significantly correlated with FTR. CONCLUSIONS FTR was found to be associated with perioperative factors. Well-coordinated surgical procedures to avoid intra- and postoperative bleeding and unnecessary blood transfusions, as well as postoperative team management with attention to the occurrence of organ failure, may decrease FTR rates.
Collapse
Affiliation(s)
- Masahiro Fukada
- Department of Gastroenterological Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| | - Katsutoshi Murase
- Department of Gastroenterological Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| | - Toshiya Higashi
- Department of Gastroenterological Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| | - Itaru Yasufuku
- Department of Gastroenterological Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| | - Yuta Sato
- Department of Gastroenterological Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| | - Jesse Yu Tajima
- Department of Gastroenterological Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| | - Shigeru Kiyama
- Department of Gastroenterological Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| | - Yoshihiro Tanaka
- Department of Gastroenterological Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| | - Naoki Okumura
- Department of Gastroenterological Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan.
| |
Collapse
|
17
|
Iwara IA, Mboso EO, Ibor OR, Elot K, Igajah C, Bassey AA, Eteng OE, Mgbeje BI, Igile GO, Eteng MU, Arukwe A. Modulatory effects of extract of Heinsia crinita against fructose/streptozotocin-induced oxidative stress in diabetic rat models. Heliyon 2023; 9:e21308. [PMID: 38027751 PMCID: PMC10665683 DOI: 10.1016/j.heliyon.2023.e21308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Oxidative stress plays a crucial role in the development of type 2 diabetes and the associated microvascular and cardiovascular complications. In the study, we have investigated the effects of Heinsia crinita (H. crinita) extracts on lipid peroxidation and oxidative stress responses using diabetic rats. Type 2 diabetes was induced with 10 % fructose/40 mg/kg body weight streptozotocin (STZ). H. crinita extract was administered at 200 and 400 mg/kg body weight twice daily for 21 days, in addition to metformin (MET: 500 mg/kg body weight) control. Molecular docking analysis was performed to determine the binding affinity of H. crinita extracts to the DNA binding domains of peroxisome proliferator-activated receptor (Ppar) and retinoid x receptor (Rxr) protein crystal structures, showing different binding affinities for putative active compounds from the plant. Fasting blood glucose (FBG), body and organ weight changes were determined showing that H. crinita extract induced an anti-hyperglycemic effect in the treated animals, with changes (either decrease or increase) in liver and kidney weights. A decrease in mRNA expression of peroxisome proliferator-activated receptors (ppar), sterol regulatory element-binding protein 1 (srebp-1c), liver x-receptor (lxr), retinoid x receptors (rxr), cytochrome p45041 (cyp4a1) and acyl-CoA oxidase (acox1) in diabetic animals were observed, compared to the control. A dose-specific decrease or increase in antioxidant enzymes (superoxide dismutase: SOD, catalase: CAT, reduced glutathione: GSH, glutathione peroxidase: GPx) transcripts and activity levels were also observed. We also observed exposure-specific decrease or increase of malondialdehyde (MDA) levels. Our data suggested that H. crinita extract possesses protective effects against diabetes-induced oxidative stress. These effects might be attributed to their binding and activation of nuclear receptors, indicating their cellular mode of action that is comparable to MET.
Collapse
Affiliation(s)
- Iwara A. Iwara
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, P.M.B 1115, Calabar, Nigeria
| | - Eve O. Mboso
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, P.M.B 1115, Calabar, Nigeria
| | - Oju R. Ibor
- Department of Zoology and Environmental Biology, University of Calabar, P.M.B 1115, Calabar, Nigeria
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491, Trondheim, Norway
| | - Kelvin Elot
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, P.M.B 1115, Calabar, Nigeria
| | - Collin Igajah
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, P.M.B 1115, Calabar, Nigeria
| | - Andem A. Bassey
- Department of Zoology and Environmental Biology, University of Calabar, P.M.B 1115, Calabar, Nigeria
| | - Ofem E. Eteng
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, P.M.B 1115, Calabar, Nigeria
| | - Bob I.A. Mgbeje
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, P.M.B 1115, Calabar, Nigeria
| | - Godwin O. Igile
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, P.M.B 1115, Calabar, Nigeria
| | - Mbeh U. Eteng
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, P.M.B 1115, Calabar, Nigeria
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491, Trondheim, Norway
| |
Collapse
|
18
|
Mansour NA, Mahmeed AA, Bindayna K. Effect of HMGB1 and HBD-3 levels in the diagnosis of sepsis- A comparative descriptive study. Biochem Biophys Rep 2023; 35:101511. [PMID: 37601451 PMCID: PMC10439382 DOI: 10.1016/j.bbrep.2023.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
Sepsis is a life-threatening condition characterized by a dysregulated host response to infection. Early and accurate diagnosis of sepsis is crucial for timely intervention and improved patient outcomes. In recent years, there has been growing interest in identifying reliable biomarkers to aid in the diagnosis of sepsis. This study aims to evaluate the levels of two potential biomarkers, high-mobility group box 1 (HMGB1) and human β-defensin 3 (HBD-3), and compare their diagnostic efficacy in sepsis. We aimed to assess HMGB-1 and HBD-3 levels in sepsis and assess the combined diagnostic validity of HMGB-1 and HBD-3. In this case-control study, the plasma concentration of HMGB-1 and HBD-3 was measured using an enzyme-linked immunosorbent assay (ELISA). Two groups, totaling 144 people, were formed; 66 patients treated in the ICU for sepsis were included in the patient group. 78 Blood donors from the Salmaniya Medical Complex Blood Bank who had no prior infection or inflammatory disease made up the Control group. The statistical computations were performed using the STATA 8® statistical software tool (StataCorp LP, College Station, TX, USA). In patients' mean HMGB-1 levels were 2.1442 ng/ml, compared to 0.62141 ng/ml in the control group. The mean HBD-3 level was 1068.453 ng/ml in sepsis patients versus 589.935 ng/ml in controls. A significant difference between the two groups has been observed in both biomarkers (P < 0.05). The sensitivity of HMGB-1 was 75.8% and 41.3%, respectively. The sensitivity and specificity of HBD-3 were 63.6% and 93.5%, respectively. The levels of HMGB-1 and HBD-3 between healthy and septic subjects varied significantly. HMGB-1 and HBD-3 levels in the blood tested together might accurately identify sepsis. These findings contribute to the growing body of evidence supporting the utility of biomarkers in sepsis diagnosis, and may ultimately aid in the development of more effective diagnostic strategies for sepsis management.
Collapse
Affiliation(s)
- Nourah Al Mansour
- Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| | - Ali Al Mahmeed
- Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| | - Khalid Bindayna
- Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| |
Collapse
|
19
|
Chen J, Fu T, Liu L, Xie Y, Li Y. Effect of acupuncture inclusion in the enhanced recovery after surgery protocol on tumor patient gastrointestinal function: a systematic review and meta-analysis of randomized controlled studies. Front Oncol 2023; 13:1232754. [PMID: 37655096 PMCID: PMC10465796 DOI: 10.3389/fonc.2023.1232754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Introduction Acupuncture has been shown to be effective in restoring gastrointestinal function in tumor patients receiving the enhanced recovery after surgery (ERAS) protocol. The present systematic review and meta-analysis aimed to evaluate the rationality and efficacy of integrating acupuncture in the ERAS strategy to recuperate gastrointestinal function. Methods We searched eleven databases for relevant randomized clinical trials (RCTs) of acupuncture for the treatment of gastrointestinal dysfunction in tumor patients treated with the ERAS protocol. The quality of each article was assessed using the Cochrane Collaboration risk of bias criteria and the modified Jadad Scale. As individual symptoms, the primary outcomes were time to postoperative oral food intake, time to first flatus, time to first distension and peristaltic sound recovery time (PSRT). Pain control, adverse events, and acupoint names reported in the included studies were also investigated. Results Of the 211 reviewed abstracts, 9 studies (702 patients) met eligibility criteria and were included in the present systematic review and meta‑analysis. Compared to control groups, acupuncture groups showed a significant reduction in time to postoperative oral food intake [standardized mean difference (SMD) = -0.77, 95% confidence interval (CI) -1.18 to -0.35], time to first flatus (SMD=-0.81, 95% CI -1.13 to -0.48), time to first defecation (SMD=-0.91, 95% CI -1.41 to -0.41, PSRT (SMD=-0.92, 95% CI -1.93 to 0.08), and pain intensity (SMD=-0.60, 95% CI -0.83 to -0.37).The Zusanli (ST36) and Shangjuxu (ST37) acupoints were used in eight of the nine included studies. Adverse events related to acupuncture were observed in two studies, and only one case of bruising was reported. Discussion The present systematic review and meta‑analysis suggested that acupuncture significantly improves recovery of gastrointestinal function and pain control in tumor patients receiving the ERAS protocol compared to the control group. Moreover, ST36 and ST37 were the most frequently used acupoints. Although the safety of acupuncture was poorly described in the included studies, the available data suggested that acupuncture is a safe treatment with only mild side effects. These findings provide evidence-based recommendations for the inclusion of acupuncture in the ERAS protocol for tumor patients. Systematic review registration https://www.crd.york.ac.uk/prospero/ PROSPERO, identifier CRD42023430211.
Collapse
Affiliation(s)
- Jiu Chen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianxiao Fu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Liu
- Department of Library, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yirui Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Youdi Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Savic Vujovic K, Zivkovic A, Dozic I, Cirkovic A, Medic B, Srebro D, Vuckovic S, Milovanovic J, Jotic A. Oxidative Stress and Inflammation Biomarkers in Postoperative Pain Modulation in Surgically Treated Patients with Laryngeal Cancer-Pilot Study. Cells 2023; 12:1391. [PMID: 37408225 DOI: 10.3390/cells12101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
(1) Background: Surgical treatment of laryngeal carcinoma includes different types of laryngectomies with neck dissection. Surgical tissue damage triggers an inflammatory response, leading to the release of pro-inflammatory molecules. This increases reactive oxygen species production and decreases antioxidant defense mechanisms, leading to postoperative oxidative stress. The aim of this study was to assess the correlation between oxidative stress (malondialdehyde, MDA; glutathione peroxidase, GPX; superoxide dismutase, SOD) and inflammation (interleukin 1, IL-1; interleukin-6, IL-6; C-reactive protein, CRP) parameters and postoperative pain management in patients surgically treated with laryngeal cancer. (2) Methods: This prospective study included 28 patients with surgically treated laryngeal cancer. Blood samples were taken for the analysis of oxidative stress and inflammation parameters before the operative treatment and after the operative treatment (1st postoperative day and 7th postoperative day). The concentrations of MDA, SOD, GPX, IL-1, IL-6, and CRP in the serum were determined by coated enzyme-linked immunosorbent assay (ELISA). The visual analog scale (VAS) was used for pain assessment. (3) Results and conclusion: There was a correlation between oxidative stress and inflammation biomarkers and postoperative pain modulation in surgically treated patients with laryngeal cancer. Age, more extensive surgery, CRP values, and use of tramadol were predictors for oxidative stress parameters.
Collapse
Affiliation(s)
- Katarina Savic Vujovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11129 Belgrade, Serbia
| | - Andjela Zivkovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 1, P.O. Box 38, 11129 Belgrade, Serbia
| | - Ivan Dozic
- Department of Pathology, School of Dental Medicine, University of Belgrade, Dr Subotica-Starijeg 1, 11000 Belgrade, Serbia
| | - Andja Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia
| | - Branislava Medic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11129 Belgrade, Serbia
| | - Dragana Srebro
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11129 Belgrade, Serbia
| | - Sonja Vuckovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11129 Belgrade, Serbia
| | - Jovica Milovanovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 1, P.O. Box 38, 11129 Belgrade, Serbia
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| | - Ana Jotic
- Faculty of Medicine, University of Belgrade, Dr Subotica 1, P.O. Box 38, 11129 Belgrade, Serbia
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| |
Collapse
|
21
|
El-Sayed SM, Nossier MI, Nossier AI. Faba beans with enhanced antioxidant activity ameliorate acetic acid-induced colitis in experimental rats. Food Funct 2022; 13:11865-11878. [PMID: 36317688 DOI: 10.1039/d2fo02782h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Faba beans are among the legumes that are of the greatest importance due to their high nutritional value. In addition to the essential nutrients that faba beans contain, they also contain bioactive compounds such as phenolics and flavonoids that are considered as potent natural antioxidants. Ulcerative colitis (UC) is an inflammatory bowel disease in which oxidative stress plays an essential role in the pathophysiology. The aim of the current study was to evaluate the antioxidant activity of faba bean seeds harvested from plants grown from seeds pre-treated with selenium, garlic husk extract and/or lemon peel extract and to evaluate their in vivo effects in a rat model of UC. 54 female rats were divided randomly into nine groups (n = 9). All groups were given the different tested treatments 14 days prior to UC induction using acetic acid (intra-rectal injection of 2 ml, 4% v/v in saline). Our results revealed that the treatment of faba bean seeds with a mixture of selenium, garlic husk extract and lemon peel extract before planting led to a significant increase in selenium, nitrogen, potassium, total protein, phenolic and flavonoid content in the harvested faba bean seeds with a subsequent enhancement of their antioxidant capacity. Consumption of such faba beans showed potential protective and therapeutic effects during experimental colitis by reducing colonic oxidative stress and increasing colonic antioxidant defense mechanisms. Further research is required to understand the mechanisms by which faba beans influence colitis, their effects on various inflammatory biomarkers and their impact on the severity of colitis in humans.
Collapse
Affiliation(s)
- Salwa M El-Sayed
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Shoubra El-kheima, P.O. Box 68, Hadayek Shoubra 11241, Cairo, Egypt
| | - Mona I Nossier
- Soil and Water Department, Faculty of Agriculture, Ain Shams University, Shoubra El-kheima, P.O. Box 68, Hadayek Shoubra 11241, Cairo, Egypt
| | - Ahmed Ibrahim Nossier
- Department of Biochemistry, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Postal, code: 77, Giza, Egypt.
| |
Collapse
|
22
|
Senousy SR, Ahmed ASF, Abdelhafeez DA, Khalifa MMA, Abourehab MAS, El-Daly M. Alpha-Chymotrypsin Protects Against Acute Lung, Kidney, and Liver Injuries and Increases Survival in CLP-Induced Sepsis in Rats Through Inhibition of TLR4/NF-κB Pathway. Drug Des Devel Ther 2022; 16:3023-3039. [PMID: 36105322 PMCID: PMC9467300 DOI: 10.2147/dddt.s370460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Abstract Inflammation and oxidative stress play a major role in the development of sepsis and its associated complications, leading to multiple organ failure and death. The lungs, liver, and kidneys are among the early affected organs correlated with mortality in sepsis. Alpha-chymotrypsin (α-ch) is a serine protease that exerts anti-inflammatory, anti-edematous, and anti-oxidant properties. Purpose This study was undertaken to elucidate if the anti-inflammatory and anti-oxidant effects of α-ch observed in previous studies can alleviate lung, liver, and kidney injuries in a cecal ligation and puncture (CLP)-induced sepsis model, and thus decrease mortality. Materials and Methods Septic animals were given α-ch 2 h post CLP procedure. Sepsis outcomes were assessed in the lungs, liver, and kidneys. Separate animal groups were investigated for a survival study. Results CLP resulted in 0% survival, while α-chymotrypsin post-treatment led to 50% survival at the end of the study. Administration of α-chymotrypsin resulted in a significant attenuation of sepsis-induced elevated malonaldehyde (MDA) and total nitrite/nitrate (NOx) levels. In addition, there was a significant increase in reduced glutathione (GSH) content and superoxide dismutase (SOD) activity in the lungs, liver, and kidneys. Administration of α-ch reduced elevated tissue expression of toll-like receptor-4 (TLR4), nuclear factor kappa-B (NF-κB), myeloperoxidase (MPO), and inducible nitric oxide synthase (iNOS). Alpha-chymotrypsin resulted in a significant reduction in serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6). Alpha-chymotrypsin attenuated the rise in serum creatinine, cystatin C, blood urea nitrogen (BUN), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels that was observed in the septic group. In addition, α-ch significantly reduced the lung wet/dry weight ratio, total protein content, and leukocytic counts in bronchoalveolar lavage fluid (BALF). Histopathological examination of the lungs, liver, and kidneys confirmed the protective effects of α-ch on those organs. Conclusion α-ch has protective potential against sepsis through lowering tissue expression of TLR4, NF-κB, MPO, and iNOS leading to decreased oxidative stress and inflammatory signals induced by sepsis. This effect appeared to alleviate the damage to the lungs, liver, and kidneys and increase survival in rats subjected to sepsis.
Collapse
Affiliation(s)
- Shaymaa Ramzy Senousy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Correspondence: Al-Shaimaa F Ahmed, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt, Tel +20 1020018842, Email
| | - Dalia A Abdelhafeez
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | | | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| |
Collapse
|
23
|
Zhang Y, Zhu Y, Li Y, Ji F, Ge G, Xu H. Midazolam Ameliorates Acute Liver Injury Induced by Carbon Tetrachloride via Enhancing Nrf2 Signaling Pathway. Front Pharmacol 2022; 13:940137. [PMID: 35873576 PMCID: PMC9304748 DOI: 10.3389/fphar.2022.940137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress contributes greatly to initiation and progression of liver injury. Activation of nuclear-factor erythroid 2-related factor 2 (Nrf2) has been considered as an attractive strategy for preventing and treating the oxidative damage related to liver injury. This study aimed to find an efficacious agent to activate Nrf2/HO-1 signaling pathway from clinically used therapeutic agents and to characterize the usefulness for preventing and treating CCl4-induced acute liver injury. For this purpose, a series of clinically used therapeutic agents were collected and their activation potentials on Nrf2 were assayed by using 293T-Nrf2-luc cell line. Among all tested therapeutic agents, midazolam was found with good Nrf2 activation effect and this agent could significantly ameliorate CCl4-induced damage to HepG2 cells. In vivo animal tests showed that pretreatment with midazolam reduced the liver pathological tissue damage and the serum levels of ALT and AST in CCl4-induced liver injury mice. Further investigations showed that midazolam could strongly up-regulate the expression of both Nrf2 and HO-1 in the mice liver, accompanied by increasing of the levels of antioxidant enzyme SOD and reducing the production of MDA, as well as reducing the pro-inflammatory cytokines (IL-6, TNF-α) secretion. Collectively, our results clearly demonstrate that midazolam can ameliorate CCl4-induced acute liver injury and oxidative stress via activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yongyan Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yadi Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Ji
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guangbo Ge, ; Hua Xu,
| | - Hua Xu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guangbo Ge, ; Hua Xu,
| |
Collapse
|
24
|
Senousy SR, El-Daly M, Ibrahim ARN, Khalifa MMA, Ahmed ASF. Effect of Celecoxib and Infliximab against Multiple Organ Damage Induced by Sepsis in Rats: A Comparative Study. Biomedicines 2022; 10:biomedicines10071613. [PMID: 35884918 PMCID: PMC9312943 DOI: 10.3390/biomedicines10071613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 12/30/2022] Open
Abstract
In cases of sepsis, the immune system responds with an uncontrolled release of proinflammatory cytokines and reactive oxygen species. The lungs, kidneys, and liver are among the early impacted organs during sepsis and are a direct cause of mortality. The aim of this study was to compare the effects of infliximab (IFX) and celecoxib (CLX) on septic rats that went through a cecal ligation and puncture (CLP) surgery to induce sepsis. This study included four groups: sham, CLP (untreated), and CLP-treated with CLX or IFX. The administration of “low dose” CLX or IFX was performed after 2 h following the induction of sepsis. Twenty-four hours following the induction of sepsis, the rats were sacrificed and blood samples were collected to evaluate kidney, liver, and lung injuries. MDA and NOx content, in addition to SOD activity and GSH levels, were evaluated in the tissue homogenates of each group. Tissue samples were also investigated histopathologically. In a separate experiment, the same groups were employed to evaluate the survival of septic rats in a 7-day observation period. The results of this study showed that treatment with either CLX or IFX ameliorated the three organs’ damage compared to septic-untreated rats, decreased oxidative stress, enhanced the antioxidant defense, and reduced serum cytokines. As a result, a higher survival rate resulted: 62.5% and 37.5% after the administration of CLX and IFX, respectively, compared to 0% in the CLP group after 7 days. No significant differences were observed between the two agents in all measured parameters. Histopathological examination confirmed the observed results. In conclusion, CLX and IFX ameliorated lung, kidney, and liver injuries associated with sepsis through anti-inflammatory and antioxidant actions, which correlated to the increase in survival observed with both of them.
Collapse
Affiliation(s)
- Shaymaa Ramzy Senousy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61511, Egypt; (S.R.S.); (M.E.-D.); (M.M.A.K.); (A.-S.F.A.)
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61511, Egypt; (S.R.S.); (M.E.-D.); (M.M.A.K.); (A.-S.F.A.)
| | - Ahmed R. N. Ibrahim
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61511, Egypt
- Correspondence: ; Tel.: +96-65-5408-8979
| | - Mohamed Montaser A. Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61511, Egypt; (S.R.S.); (M.E.-D.); (M.M.A.K.); (A.-S.F.A.)
| | - Al-Shaimaa F. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61511, Egypt; (S.R.S.); (M.E.-D.); (M.M.A.K.); (A.-S.F.A.)
| |
Collapse
|
25
|
Asche-Godin SL, Graham ZA, Israel A, Harlow LM, Huang W, Wang Z, Brotto M, Mobbs C, Cardozo CP, Ko FC. RNA-sequencing Reveals a Gene Expression Signature in Skeletal Muscle of a Mouse Model of Age-associated Postoperative Functional Decline. J Gerontol A Biol Sci Med Sci 2022; 77:1939-1950. [PMID: 35172336 PMCID: PMC9536457 DOI: 10.1093/gerona/glac043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
This study aimed to characterize the effects of laparotomy on postoperative physical function and skeletal muscle gene expression in male C57BL/6N mice at 3, 20, and 24 months of age to investigate late-life vulnerability and resiliency to acute surgical stress. Pre and postoperative physical functioning was assessed by forelimb grip strength on postoperative day (POD) 1 and 3 and motor coordination on POD 2 and 4. Laparotomy-induced an age-associated postoperative decline in forelimb grip strength that was the greatest in the oldest mice. While motor coordination declined with increasing age at baseline, it was unaffected by laparotomy. Baseline physical function as stratified by motor coordination performance (low functioning vs high functioning) in 24-month-old mice did not differentially affect postlaparotomy reduction in grip strength. RNA sequencing of soleus muscles showed that laparotomy-induced age-associated differential gene expression and canonical pathway activation with the greatest effects in the youngest mice. Examples of such age-associated, metabolically important pathways that were only activated in the youngest mice after laparotomy included oxidative phosphorylation and NRF2-mediated oxidative stress response. Analysis of lipid mediators in serum and gastrocnemius muscle showed alterations in profiles during aging and confirmed an association between such changes and functional status in gastrocnemius muscle. These findings demonstrate a mouse model of laparotomy which recapitulated some features of postoperative skeletal muscle decline in older adults, and identified age-associated, laparotomy-induced molecular signatures in skeletal muscles. Future research can build upon this model to study molecular mechanisms of late-life vulnerability and resiliency to acute surgical stress.
Collapse
Affiliation(s)
- Samantha L Asche-Godin
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zachary A Graham
- Research Service, Birmingham VA Medical Center, Birmingham, Alabama, USA,Department of Cell, Developmental, and Integrative Biology, University of Alabama-Birmingham, Birmingham, USA
| | - Adina Israel
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| | - Lauren M Harlow
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| | - Weihua Huang
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, USA
| | - Charles Mobbs
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA,Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Fred C Ko
- Address correspondence to: Fred C. Ko, MD, Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1070, New York, NY 10029, USA. E-mail:
| |
Collapse
|
26
|
Zhao W, Li H, Li J, Xu B, Xu J. The mechanism of multiple organ dyfunction syndrome in patients with COVID-19. J Med Virol 2022; 94:1886-1892. [PMID: 35088424 PMCID: PMC9015222 DOI: 10.1002/jmv.27627] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/07/2022] [Accepted: 01/22/2022] [Indexed: 01/06/2023]
Abstract
In late 2019, an outbreak of coronavirus disease 2019 (COVID‐19) arose, caused by severe acute respiratory syndrome coronavirus type 2 (SARS‐CoV‐2). This disease rapidly became a public health event of international concern. In addition to the most typical symptoms of dyspnea, numerous patients with COVID‐19 exhibited systemic symptoms, such as cardiovascular disease, liver and kidney failure, and disorders in coagulation. At present, clinical data indicates that numerous patients who are critically ill die from multiple organ dysfunction syndromes (MODS). Moreover, the entry of SARS‐CoV‐2 into cells causing severe pathology and progressive organ failure is precisely mediated by the human angiotensin‐converting enzyme 2 protein. This plays a role in maintaining both fluid and electrolyte homeostasis, ensuring the stability of the internal environment. Therefore, the present review aimed to investigate the pathogenesis of MODS caused by SARS‐CoV‐2 infection based on the current clinical data and previous studies. Inflammatory factor storm, oxidative stress, and disseminated intravascular coagulation cause multiple organ dysfunction syndromes (MODS) in coronavirus disease 2019 patients. Angiotensin‐converting enzyme 2 (ACE2) protein, closely related to viral infection, mediates organ damage and causes MODS. Aging, underlying disease, and obesity downregulate ACE2 and may exacerbate MODS.
Collapse
Affiliation(s)
- Wenbin Zhao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hanmeng Li
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China.,Cixi Maternity&Child Health Care Hospital, Ningbo, 315300, China
| | - Jianghua Li
- The First Afiliated Hospital of Shihezi University School of Medicine Xinjiang Shihezi
| | - Bin Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jian Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
27
|
Oxidant/Antioxidant Status Is Impaired in Sepsis and Is Related to Anti-Apoptotic, Inflammatory, and Innate Immunity Alterations. Antioxidants (Basel) 2022; 11:antiox11020231. [PMID: 35204114 PMCID: PMC8868413 DOI: 10.3390/antiox11020231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress is considered pivotal in the pathophysiology of sepsis. Oxidants modulate heat shock proteins (Hsp), interleukins (IL), and cell death pathways, including apoptosis. This multicenter prospective observational study was designed to ascertain whether an oxidant/antioxidant imbalance is an independent sepsis discriminator and mortality predictor in intensive care unit (ICU) patients with sepsis (n = 145), compared to non-infectious critically ill patients (n = 112) and healthy individuals (n = 89). Serum total oxidative status (TOS) and total antioxidant capacity (TAC) were measured by photometric testing. IL-6, -8, -10, -27, Hsp72/90 (ELISA), and selected antioxidant biomolecules (Ζn, glutathione) were correlated with apoptotic mediators (caspase-3, capsase-9) and the central anti-apoptotic survivin protein (ELISA, real-time PCR). A wide scattering of TOS, TAC, and TOS/TAC in all three groups was demonstrated. Septic patients had an elevated TOS/TAC, compared to non-infectious critically ill patients and healthy individuals (p = 0.001). TOS/TAC was associated with severity scores, procalcitonin, IL-6, -10, -27, IFN-γ, Hsp72, Hsp90, survivin protein, and survivin isoforms -2B, -ΔΕx3, -WT (p < 0.001). In a propensity probability (age-sex-adjusted) logistic regression model, only sepsis was independently associated with TOS/TAC (Exp(B) 25.4, p < 0.001). The AUCTOS/TAC (0.96 (95% CI = 0.93–0.99)) was higher than AUCTAC (z = 20, p < 0.001) or AUCTOS (z = 3.1, p = 0.002) in distinguishing sepsis. TOS/TAC, TOS, survivin isoforms -WT and -2B, Hsp90, IL-6, survivin protein, and repressed TAC were strong predictors of mortality (p < 0.01). Oxidant/antioxidant status is impaired in septic compared to critically ill patients with trauma or surgery and is related to anti-apoptotic, inflammatory, and innate immunity alterations. The unpredicted TOS/TAC imbalance might be related to undefined phenotypes in patients and healthy individuals.
Collapse
|
28
|
Melatonin and Pathological Cell Interactions: Mitochondrial Glucose Processing in Cancer Cells. Int J Mol Sci 2021; 22:ijms222212494. [PMID: 34830375 PMCID: PMC8621753 DOI: 10.3390/ijms222212494] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/06/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
Melatonin is synthesized in the pineal gland at night. Since melatonin is produced in the mitochondria of all other cells in a non-circadian manner, the amount synthesized by the pineal gland is less than 5% of the total. Melatonin produced in mitochondria influences glucose metabolism in all cells. Many pathological cells adopt aerobic glycolysis (Warburg effect) in which pyruvate is excluded from the mitochondria and remains in the cytosol where it is metabolized to lactate. The entrance of pyruvate into the mitochondria of healthy cells allows it to be irreversibly decarboxylated by pyruvate dehydrogenase (PDH) to acetyl coenzyme A (acetyl-CoA). The exclusion of pyruvate from the mitochondria in pathological cells prevents the generation of acetyl-CoA from pyruvate. This is relevant to mitochondrial melatonin production, as acetyl-CoA is a required co-substrate/co-factor for melatonin synthesis. When PDH is inhibited during aerobic glycolysis or during intracellular hypoxia, the deficiency of acetyl-CoA likely prevents mitochondrial melatonin synthesis. When cells experiencing aerobic glycolysis or hypoxia with a diminished level of acetyl-CoA are supplemented with melatonin or receive it from another endogenous source (pineal-derived), pathological cells convert to a more normal phenotype and support the transport of pyruvate into the mitochondria, thereby re-establishing a healthier mitochondrial metabolic physiology.
Collapse
|