1
|
Listro R, Marra A, Cavalloro V, Rossino G, Linciano P, Rossi D, Casali E, De Amici M, Mazzeo G, Longhi G, Fusè M, Dondio G, Pellavio G, Laforenza U, Schepmann D, Wünsch B, Collina S. Sigma receptor and aquaporin modulators: chiral resolution, configurational assignment, and preliminary biological profile of RC752 enantiomers. J Pharm Biomed Anal 2024; 239:115902. [PMID: 38101238 DOI: 10.1016/j.jpba.2023.115902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
The key role of chiral small molecules in drug discovery programs has been deeply investigated throughout last decades. In this context, our previous studies highlighted the influence of the absolute configuration of different stereocenters on the pharmacokinetic, pharmacodynamic and functional properties of promising Sigma receptor (SR) modulators. Thus, starting from the racemic SR ligand RC752, we report herein the isolation of the enantiomers via enantioselective separation with both HPLC and SFC. After optimization of the eco-sustainable chiral SFC method, both enantiomers were obtained in sufficient amount (tens of mg) and purity (ee up to 95%) to allow their characterization and initial biological investigation. Both enantiomers a) displayed a high affinity for the S1R subtype (Ki = 15.0 ± 1.7 and 6.0 ± 1.2 nM for the (S)- and (R)-enantiomer, respectively), but only negligible affinity toward the S2R (> 350 nM), and b) were rapidly metabolized when incubated with mouse and human hepatic microsomes. Furthermore, the activity on AQP-mediated water permeability indicated a different functional profile for the enantiomers in terms of modulatory effect on the peroxiporins gating.
Collapse
Affiliation(s)
- Roberta Listro
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Annamaria Marra
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Valeria Cavalloro
- Department of Earth and Environmental Sciences, University of Pavia, Via Sant 'Epifanio 14, 27100 Pavia, Italy
| | - Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Pasquale Linciano
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Emanuele Casali
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marco De Amici
- Department of Pharmaceutical Sciences, University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Giuseppe Mazzeo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanna Longhi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Marco Fusè
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giulio Dondio
- Aphad SrL, Via della Resistenza, 65, Buccinasco 20090, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | - Dirk Schepmann
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, Münster D-48149, Germany
| | - Bernhard Wünsch
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, Münster D-48149, Germany; Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
2
|
Pagano K, Listro R, Linciano P, Rossi D, Longhi E, Taraboletti G, Molinari H, Collina S, Ragona L. Identification of a novel extracellular inhibitor of FGF2/FGFR signaling axis by combined virtual screening and NMR spectroscopy approach. Bioorg Chem 2023; 136:106529. [PMID: 37084585 DOI: 10.1016/j.bioorg.2023.106529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
The aberrant activation of the fibroblast growth factor 2 (FGF2)/fibroblast growth factor receptor (FGFR) signalling pathway drives severe pathologies, including cancer development and angiogenesis-driven pathologies. The perturbation of the FGF2/FGFR axis via extracellular allosteric small inhibitors is a promising strategy for developing FGFR inhibitors with improved safety and efficacy for cancer treatment. We have previously investigated the role of new extracellular inhibitors, such as rosmarinic acid (RA), which bind the FGFR-D2 domain and directly compete with FGF2 for the same binding site, enabling the disruption of the functional FGF2/FGFR interaction. To select ligands for the previously identified FGF2/FGFR RA binding site, NMR data-driven virtual screening has been performed on an in-house library of non-commercial small molecules and metabolites. A novel drug-like compound, a resorcinol derivative named RBA4 has been identified. NMR interaction studies demonstrate that RBA4 binds the FGF2/FGFR complex, in agreement with docking prediction. Residue-level NMR perturbations analysis highlights that the mode of action of RBA4 is similar to RA in terms of its ability to target the FGF2/FGFR-D2 complex, inducing perturbations on both proteins and triggering complex dissociation. Biological assays proved that RBA4 inhibited FGF2 proliferative activity at a level comparable to the previously reported natural product, RA. Identification of RBA4 chemical groups involved in direct interactions represents a starting point for further optimization of drug-like extracellular inhibitors with improved activity.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, via Corti 12, 20133 Milano, Italy
| | - Roberta Listro
- University of Pavia, Department of Drug Sciences, Via Taramelli 12, 27100 Pavia, Italy
| | - Pasquale Linciano
- University of Pavia, Department of Drug Sciences, Via Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- University of Pavia, Department of Drug Sciences, Via Taramelli 12, 27100 Pavia, Italy.
| | - Elisa Longhi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche, Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche, Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Henriette Molinari
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, via Corti 12, 20133 Milano, Italy
| | - Simona Collina
- University of Pavia, Department of Drug Sciences, Via Taramelli 12, 27100 Pavia, Italy
| | - Laura Ragona
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, via Corti 12, 20133 Milano, Italy.
| |
Collapse
|
3
|
Fallica AN, Pittalà V, Modica MN, Salerno L, Romeo G, Marrazzo A, Helal MA, Intagliata S. Recent Advances in the Development of Sigma Receptor Ligands as Cytotoxic Agents: A Medicinal Chemistry Perspective. J Med Chem 2021; 64:7926-7962. [PMID: 34076441 PMCID: PMC8279423 DOI: 10.1021/acs.jmedchem.0c02265] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Since their discovery
as distinct receptor proteins, the specific
physiopathological role of sigma receptors (σRs) has been deeply
investigated. It has been reported that these proteins, classified
into two subtypes indicated as σ1 and σ2, might play a pivotal role in cancer growth, cell proliferation,
and tumor aggressiveness. As a result, the development of selective
σR ligands with potential antitumor properties attracted significant
attention as an emerging theme in cancer research. This perspective
deals with the recent advances of σR ligands as novel cytotoxic
agents, covering articles published between 2010 and 2020. An up-to-date
description of the medicinal chemistry of selective σ1R and σ2R ligands with antiproliferative and cytotoxic
activities has been provided, including major pharmacophore models
and comprehensive structure–activity relationships for each
main class of σR ligands.
Collapse
Affiliation(s)
- Antonino N Fallica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria N Modica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Romeo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Mohamed A Helal
- University of Science and Technology, Biomedical Sciences Program, Zewail City of Science and Technology, October Gardens, sixth of October, Giza 12578, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
4
|
Cortesi M, Zamagni A, Pignatta S, Zanoni M, Arienti C, Rossi D, Collina S, Tesei A. Pan-Sigma Receptor Modulator RC-106 Induces Terminal Unfolded Protein Response In In Vitro Pancreatic Cancer Model. Int J Mol Sci 2020; 21:ijms21239012. [PMID: 33260926 PMCID: PMC7734580 DOI: 10.3390/ijms21239012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) remains one of the most lethal cancers worldwide. Sigma receptors (SRs) have been proposed as cancer therapeutic targets. Their main localization suggests they play a potential role in ER stress and in the triggering of the unfolded protein response (UPR). Here, we investigated the mechanisms of action of RC-106, a novel pan-SR modulator, to characterize therapeutically exploitable role of SRs in tumors. Two PC cell lines were used in all the experiments. Terminal UPR activation was evaluated by quantifying BiP, ATF4 and CHOP by Real-Time qRT-PCR, Western Blot, immunofluorescence and confocal microscopy. Cell death was studied by flow cytometry. Post-transcriptional gene silencing was performed to study the interactions between SRs and UPR key proteins. RC-106 activated ER stress sensors in a dose- and time-dependent manner. It also induced ROS production accordingly with ATF4 upregulation at the same time reducing cell viability of both cell lines tested. Moreover, RC-106 exerted its effect through the induction of the terminal UPR, as shown by the activation of some of the main transducers of this pathway. Post-transcriptional silencing studies confirmed the connection between SRs and these key proteins. Overall, our data highlighted a key role of SRs in the activation of the terminal UPR pathway, thus indicating pan-SR ligands as candidates for targeting the UPR in pancreatic cancer.
Collapse
Affiliation(s)
- Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
- Correspondence: (M.C.); (A.T.)
| | - Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
| | - Sara Pignatta
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
| | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
| | - Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy; (D.R.); (S.C.)
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy; (D.R.); (S.C.)
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
- Correspondence: (M.C.); (A.T.)
| |
Collapse
|
5
|
Listro R, Stotani S, Rossino G, Rui M, Malacrida A, Cavaletti G, Cortesi M, Arienti C, Tesei A, Rossi D, Giacomo MD, Miloso M, Collina S. Exploring the RC-106 Chemical Space: Design and Synthesis of Novel ( E)-1-(3-Arylbut-2-en-1-yl)-4-(Substituted) Piperazine Derivatives as Potential Anticancer Agents. Front Chem 2020; 8:495. [PMID: 32695745 PMCID: PMC7338850 DOI: 10.3389/fchem.2020.00495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023] Open
Abstract
Despite the fact that significant advances in treatment of common cancers have been achieved over the years, orphan tumors still represent an important unmet medical need. Due to their complex multifactorial origin and limited number of cases, such pathologies often have very limited treatment options and poor prognosis. In the search for new anticancer agents, our group recently identified RC-106, a Sigma receptor modulator endowed with proteasome inhibition activity. This compound showed antiproliferative activity toward different cancer cell lines, among them glioblastoma (GB) and multiple myeloma (MM), two currently unmet medical conditions. In this work, we directed our efforts toward the exploration of chemical space around RC-106 to identify new active compounds potentially useful in cancer treatment. Thanks to a combinatorial approach, we prepared 41 derivatives of the compound and evaluated their cytotoxic potential against MM and GB. Three novel potential anticancer agents have been identified.
Collapse
Affiliation(s)
- Roberta Listro
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Silvia Stotani
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy.,Medicinal Chemistry, Taros Chemicals GmbH and Co. KG, Dortmund, Germany
| | - Giacomo Rossino
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marta Rui
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Alessio Malacrida
- Experimental Neurology Unit, School of Medicine and Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Monza, Italy
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Daniela Rossi
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marcello Di Giacomo
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Mariarosaria Miloso
- Experimental Neurology Unit, School of Medicine and Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Monza, Italy
| | - Simona Collina
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Linciano P, Rossino G, Listro R, Rossi D, Collina S. Sigma-1 receptor antagonists: promising players in fighting neuropathic pain. Pharm Pat Anal 2020; 9:77-85. [PMID: 32539668 DOI: 10.4155/ppa-2020-0007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sigma-1 receptors (S1Rs) are strongly correlated to neuropathic pain (NP), since their inactivation may decrease allodynia or dysesthesia, promoting analgesic effects. In the recent patent landscape, S1R antagonists endowed with nanomolar S1Rs affinity emerged as potent antinociceptive agents. So far, three patented compounds have been proposed for counteracting NP. Particularly PV-752 and AV1066, disclosed by the University of Pavia (Italy) and Anavex, respectively, showed good analgesic activity in preclinical studies. Moreover, E-52862 developed by Esteve (Spain) has been proved to be effective, both in preclinical and Phase II clinical trials, against several symptoms of NP. These patents ascertain S1R antagonists as potential drugs, alone or in combination with other analgesic drugs, for managing NP in humans.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Roberta Listro
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
7
|
Bunse P, Schlepphorst C, Glorius F, Kitamura M, Wünsch B. Short and Atom-Economic Enantioselective Synthesis of the σ 1-Receptor Ligands ( S)- and ( R)-Fluspidine-Important Tools for Positron Emission Tomography Studies. J Org Chem 2019; 84:13744-13754. [PMID: 31523971 DOI: 10.1021/acs.joc.9b01882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aryl bromides 2a and 2b bearing an alkynyl substituent in the o-position reacted with n-butyllithium and 1-benzylpiperidin-4-one in a one-pot Domino reaction to form ester 3 and aldehyde 5, respectively. Enantiomeric alcohols (R)-8 and (S)-8 were obtained by conjugate NaBH4 reduction of α,β-unsaturated ester 3 in the presence of chiral cocomplexes (R,R)-10 and (S,S)-10. Starting from orthoester 2a, the precursors (R)-8 and (S)-8 for the synthesis of fluspidine enantiomers (R)-1/[18F](R)-1 and (S)-1/[18F](S)-1 were obtained in only two reaction steps without additional steps for N-protection in an atom-economic manner in 95.6% ee and 97.2% ee, respectively.
Collapse
Affiliation(s)
- Paul Bunse
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Christoph Schlepphorst
- Organisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster , Corrensstraße 40 , D-48149 Münster , Germany
| | - Frank Glorius
- Organisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster , Corrensstraße 40 , D-48149 Münster , Germany
| | - Masato Kitamura
- Graduate School of Pharmaceutical Sciences and Research Center for Materials Science , Nagoya University , Chikusa, Nagoya 464-8601 , Japan
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM) , Westfälische Wilhelms-Universität Münster , D-48149 Münster , Germany
| |
Collapse
|
8
|
Thum S, Schepmann D, Ayet E, Pujol M, Nieto FR, Ametamey SM, Wünsch B. Tetrahydro-3-benzazepines with fluorinated side chains as NMDA and σ 1 receptor antagonists: Synthesis, receptor affinity, selectivity and antiallodynic activity. Eur J Med Chem 2019; 177:47-62. [PMID: 31129453 DOI: 10.1016/j.ejmech.2019.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/23/2019] [Accepted: 05/12/2019] [Indexed: 11/24/2022]
Abstract
The class of tetrahydro-1H-3-benzazepines was systematically modified in 1-, 3- and 7-position. In particular, a F-atom was introduced in β- or γ-position of the 4-phenylbutyl side chain in 3-position. Ligands with the F-atom in γ-position possess higher GluN2B affinity than analogs bearing the F-atom in β-position. This effect was attributed to the reduced basicity of β-fluoro amines. 3-Benzazepines with a benzylic OH moiety show moderate GluN2B affinity, but considerable selectivity over the σ2 receptor. However, removal of the benzylic OH moiety led to increased GluN2B affinity, but reduced GluN2B/σ2 selectivity. With respect to GluN2B affinity the phenol 17b with a γ-fluorophenylbutyl moiety in 3-position represents the most interesting fluorinated ligand (Ki(GluN2B) = 16 nM). Most of the synthesized ligands reveal either similar GluN2B and σ1 affinity or higher σ1 affinity than GluN2B affinity. The methyl ether 16b shows high σ1 affinity (Ki(σ1) = 6.6 nM) and high selectivity over a broad panel of receptors and transporters. The high antiallodynic activity in the mouse capsaicin assay proved the σ1 antagonistic activity of 16b.
Collapse
Affiliation(s)
- Simone Thum
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Eva Ayet
- Esteve Pharmaceuticals S.A, Baldiri Reixach 4-8, 08028 Barcelona, Spain
| | - Marta Pujol
- Esteve Pharmaceuticals S.A, Baldiri Reixach 4-8, 08028 Barcelona, Spain
| | - Francisco R Nieto
- Department of Pharmacology and Institute of Neuroscience, School of Medicine and Biomedical Research Center, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms-Universität Münster, Germany.
| |
Collapse
|
9
|
Velázquez-Libera JL, Rossino G, Navarro-Retamal C, Collina S, Caballero J. Docking, Interaction Fingerprint, and Three-Dimensional Quantitative Structure-Activity Relationship (3D-QSAR) of Sigma1 Receptor Ligands, Analogs of the Neuroprotective Agent RC-33. Front Chem 2019; 7:496. [PMID: 31355187 PMCID: PMC6637851 DOI: 10.3389/fchem.2019.00496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/27/2019] [Indexed: 01/25/2023] Open
Abstract
The human Sigma1 receptor (S1R), which has been identified as a target with an important role in neuropsychological disorders, was first crystallized 3 years ago. Since S1R structure has no relation with another previous crystallized structures, the presence of the new crystal is an important hallmark for the design of agonists and antagonists against this important target. Some years ago, our group identified RC-33, a potent and selective S1R agonist, endowed with neuroprotective properties. In this work, drawing on new structural information, we studied the interactions of RC-33 and its analogs with the S1R binding site by using computational methods such as docking, interaction fingerprints, and receptor-guided alignment three dimensional quantitative structure–activity relationship (3D-QSAR). We found that RC-33 and its analogs adopted similar orientations within S1R binding site, with high similitude with orientations of the crystallized ligands; such information was used for identifying the residues involved in chemical interactions with ligands. Furthermore, the structure-activity relationship of the studied ligands was adequately described considering classical QSAR tests. All relevant aspects of the interactions between the studied compounds and S1R were covered here, through descriptions of orientations, binding interactions, and features that influence differential affinities. In this sense, the present results could be useful in the future design of novel S1R modulators.
Collapse
Affiliation(s)
- José Luis Velázquez-Libera
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Giacomo Rossino
- Pharmaceutical and Medicinal Chemistry Section, Drug Sciences Department, Università di Pavia, Pavia, Italy
| | - Carlos Navarro-Retamal
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Simona Collina
- Pharmaceutical and Medicinal Chemistry Section, Drug Sciences Department, Università di Pavia, Pavia, Italy
| | - Julio Caballero
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| |
Collapse
|
10
|
Tesei A, Cortesi M, Pignatta S, Arienti C, Dondio GM, Bigogno C, Malacrida A, Miloso M, Meregalli C, Chiorazzi A, Carozzi V, Cavaletti G, Rui M, Marra A, Rossi D, Collina S. Anti-tumor Efficacy Assessment of the Sigma Receptor Pan Modulator RC-106. A Promising Therapeutic Tool for Pancreatic Cancer. Front Pharmacol 2019; 10:490. [PMID: 31156430 PMCID: PMC6530361 DOI: 10.3389/fphar.2019.00490] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction: Pancreatic cancer (PC) is one of the most lethal tumor worldwide, with no prognosis improvement over the past 20-years. The silent progressive nature of this neoplasia hampers the early diagnosis, and the surgical resection of the tumor, thus chemotherapy remains the only available therapeutic option. Sigma receptors (SRs) are a class of receptors proposed as new cancer therapeutic targets due to their over-expression in tumor cells and their involvement in cancer biology. The main localization of these receptors strongly suggests their potential role in ER unfolded protein response (ER-UPR), a condition frequently occurring in several pathological settings, including cancer. Our group has recently identified RC-106, a novel pan-SR modulator with good in vitro antiproliferative activities toward a panel of different cancer cell lines. In the present study, we investigated the in vitro properties and pharmacological profile of RC-106 in PC cell lines with the aim to identify a potential lead candidate for the treatment of this tumor. Methods: Pancreatic cancer cell lines Panc-1, Capan-1, and Capan-2 have been used in all experiments. S1R and TMEM97/S2R expression in PC cell lines was quantified by Real-Time qRT-PCR and Western Blot experiments. MTS assay was used to assess the antiproliferative effect of RC-106. The apoptotic properties of RC-106 was evaluated by TUNEL and caspase activation assays. GRP78/BiP, ATF4, and CHOP was quantified to evaluate ER-UPR. Proteasome activity was investigated by a specific fluorescent-based assay. Scratch wound healing assay was used to asses RC-106 effect on cell migration. In addition, we delineated the in vivo pharmacokinetic profile and pancreas distribution of RC-106 in male CD-1 mice. Results: Panc-1, Capan-1, and Capan-2 express both SRs. RC-106 exerts an antiproliferative and pro-apoptotic effect in all examined cell lines. Cells exposure to RC-106 induces the increase of the expression of ER-UPR related proteins, and the inhibition of proteasome activity. Moreover, RC-106 is able to decrease PC cell lines motility. The in vivo results show that RC-106 is more concentrated in pancreas than plasma. Conclusion: Overall, our data evidenced that the pan-SR modulator RC-106 is an optimal candidate for in vivo studies in animal models of PC.
Collapse
Affiliation(s)
- Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Sara Pignatta
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | | | | | - Alessio Malacrida
- Experimental Neurology Unit, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Mariarosaria Miloso
- Experimental Neurology Unit, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Valentina Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Marta Rui
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Annamaria Marra
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Kronenberg E, Weber F, Brune S, Schepmann D, Almansa C, Friedland K, Laurini E, Pricl S, Wünsch B. Synthesis and Structure-Affinity Relationships of Spirocyclic Benzopyrans with Exocyclic Amino Moiety. J Med Chem 2019; 62:4204-4217. [PMID: 30939014 DOI: 10.1021/acs.jmedchem.9b00449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
σ1 and/or σ2 receptors play a crucial role in pathological conditions such as pain, neurodegenerative disorders, and cancer. A set of spirocyclic cyclohexanes with diverse O-heterocycles and amino moieties (general structure III) was prepared and pharmacologically evaluated. In structure-activity relationships studies, the σ1 receptor affinity and σ1:σ2 selectivity were correlated with the stereochemistry, the kind and substitution pattern of the O-heterocycle, and the substituents at the exocyclic amino moiety. cis-configured 2-benzopyran cis-11b bearing a methoxy group and a tertiary cyclohexylmethylamino moiety showed the highest σ1 affinity ( Ki = 1.9 nM) of this series of compounds. In a Ca2+ influx assay, cis-11b behaved as a σ1 antagonist. cis-11b reveals high selectivity over σ2 and opioid receptors. The interactions of the novel σ1 ligands were analyzed on the molecular level using the recently reported X-ray crystal structure of the σ1 receptor protein. The protonated amino moiety forms a persistent salt bridge with E172. The spiro[benzopyran-1,1'-cyclohexane] scaffold and the cyclohexylmethyl moiety occupy two hydrophobic pockets. Exchange of the N-cyclohexylmethyl moiety by a benzyl group led unexpectedly to potent and selective μ-opioid receptor ligands.
Collapse
Affiliation(s)
- Elisabeth Kronenberg
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Frauke Weber
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Stefanie Brune
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Carmen Almansa
- Esteve Pharmaceuticals S.A. , Baldiri Reixach 4-8 , 08028 Barcelona , Spain
| | - Kristina Friedland
- Pharmakologie und Toxikologie, Institut für Pharmazie und Biochemie , Universität Mainz , Staudinger Weg 5 , D-55128 Mainz , Germany
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA , University of Trieste , 34127 Trieste , Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA , University of Trieste , 34127 Trieste , Italy
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
- Cells-in-motion Cluster of Excellence (EXC 1003-CiM) , University of Münster , D-48149 Münster , Germany
| |
Collapse
|
12
|
Tesei A, Cortesi M, Zamagni A, Arienti C, Pignatta S, Zanoni M, Paolillo M, Curti D, Rui M, Rossi D, Collina S. Sigma Receptors as Endoplasmic Reticulum Stress "Gatekeepers" and their Modulators as Emerging New Weapons in the Fight Against Cancer. Front Pharmacol 2018; 9:711. [PMID: 30042674 PMCID: PMC6048940 DOI: 10.3389/fphar.2018.00711] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Despite the interest aroused by sigma receptors (SRs) in the area of oncology, their role in tumor biology remains enigmatic. The predominant subcellular localization and main site of activity of SRs are the endoplasmic reticulum (ER). Current literature data, including recent findings on the sigma 2 receptor subtype (S2R) identity, suggest that SRs may play a role as ER stress gatekeepers. Although SR endogenous ligands are still unknown, a wide series of structurally unrelated compounds able to bind SRs have been identified. Currently, the identification of novel antiproliferative molecules acting via SR interaction is a challenging task for both academia and industry, as shown by the fact that novel anticancer drugs targeting SRs are in the preclinical-stage pipeline of pharmaceutical companies (i.e., Anavex Corp. and Accuronix). So far, no clinically available anticancer drugs targeting SRs are still available. The present review focuses literature advancements and provides a state-of-the-art overview of SRs, with emphasis on their involvement in cancer biology and on the role of SR modulators as anticancer agents. Findings from preclinical studies on novel anticancer drugs targeting SRs are presented in brief.
Collapse
Affiliation(s)
- Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Sara Pignatta
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Mayra Paolillo
- Pharmacology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Daniela Curti
- Laboratory of Cellular and Molecular Neuropharmacology, Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | - Marta Rui
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Daniela Rossi
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Simona Collina
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
13
|
Collina S, Rui M, Stotani S, Bignardi E, Rossi D, Curti D, Giordanetto F, Malacrida A, Scuteri A, Cavaletti G. Are sigma receptor modulators a weapon against multiple sclerosis disease? Future Med Chem 2017; 9:2029-2051. [PMID: 29076758 DOI: 10.4155/fmc-2017-0122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Effective therapies for multiple sclerosis (MS) are still missing. This neurological disease affects more than 2.5 million people worldwide. To date, biological immunomodulatory drugs are effective and safe during short-term treatment, but they are suitable only for parenteral administration and they are expensive. Accordingly, academic and industrial environments are still focusing their efforts toward the development of new MS drugs. Considering that neurodegeneration is a contributory factor in the onset of MS, herein we will focus on the crucial role played by sigma 1 receptors (S1Rs) in MS. A pilot study was performed, evaluating the effect of the S1R agonist (R)-RC33 on rat dorsal root ganglia experimental model. The encouraging results support the potential of S1R agonists for MS treatment.
Collapse
Affiliation(s)
- Simona Collina
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Marta Rui
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Silvia Stotani
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, Dortmund 44227, Germany
| | - Emanuele Bignardi
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Daniela Curti
- Department of Biology & Biotechnology 'L. Spallanzani', Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Via Ferrata 9, Pavia 27100, Italy
| | | | - Alessio Malacrida
- Experimental Neurology Unit, Department of Medicine & Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Arianna Scuteri
- Experimental Neurology Unit, Department of Medicine & Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, Department of Medicine & Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Via Cadore 48, Monza 20900, Italy
| |
Collapse
|
14
|
Fanter L, Müller C, Schepmann D, Bracher F, Wünsch B. Chiral-pool synthesis of 1,2,4-trisubstituted 1,4-diazepanes as novel σ1 receptor ligands. Bioorg Med Chem 2017; 25:4778-4799. [DOI: 10.1016/j.bmc.2017.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 01/11/2023]
|
15
|
Cancer nanotheranostics: A review of the role of conjugated ligands for overexpressed receptors. Eur J Pharm Sci 2017; 104:273-292. [DOI: 10.1016/j.ejps.2017.04.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
|