1
|
Sabzian-Molaei F, Ahmadi MA, Nikfarjam Z, Sabzian-Molaei M. Inactivation of cell-free HIV-1 by designing potent peptides based on mutations in the CD4 binding site. Med Biol Eng Comput 2024; 62:423-436. [PMID: 37889430 DOI: 10.1007/s11517-023-02950-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is a major global health problem, with over 38 million people infected worldwide. Current anti-HIV-1 drugs are limited in their ability to prevent the virus from replicating inside host cells, making them less effective as preventive measures. In contrast, viral inhibitors that inactivate the virus before it can bind to a host cell have great potential as drugs. In this study, we aimed to design mutant peptides that could block the interaction between gp120 and the CD4 receptor on host cells, thus preventing HIV-1 infection. We designed a 20-amino-acid peptide that mimicked the amino acids of the CD4 binding site and docked it to gp120. Molecular dynamics simulations were performed to calculate the energy of MMPBSA (Poisson-Boltzmann Surface Area) for each residue of the peptide, and unfavorable energy residues were identified as potential mutation points. Using MAESTRO (Multi AgEnt STability pRedictiOn), we measured ΔΔG (change in the change in Gibbs free energy) for mutations and generated a library of 240 mutated peptides using OSPREY software. The peptides were then screened for allergenicity and binding affinity. Finally, molecular dynamics simulations (via GROMACS 2020.2) and control docking (via HADDOCK 2.4) were used to evaluate the ability of four selected peptides to inhibit HIV-1 infection. Three peptides, P3 (AHRQIRQWFLTRGPNRSLWQ), P4 (VHRQIRQWFLTRGPNRSLWQ), and P9 (AHRQIRQMFLTRGPNRSLWQ), showed practical and potential as HIV inhibitors, based on their binding affinity and ability to inhibit infection. These peptides have the ability to inactivate the virus before it can bind to a host cell, thus representing a promising approach to HIV-1 prevention. Our findings suggest that mutant peptides designed to block the interaction between gp120 and the CD4 receptor have potential as HIV-1 inhibitors. These peptides could be used as preventive measures against HIV-1 transmission, and further research is needed to evaluate their safety and efficacy in clinical settings.
Collapse
Affiliation(s)
| | - Mohammad Amin Ahmadi
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zahra Nikfarjam
- Department of Biology, Oberlin College, Oberlin, OH, 44074, USA
| | - Mohammad Sabzian-Molaei
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
2
|
Alshorman A, Al-Hosainat N, Jackson T. Analysis of HIV latent infection model with multiple infection stages and different drug classes. JOURNAL OF BIOLOGICAL DYNAMICS 2022; 16:713-732. [PMID: 36264087 DOI: 10.1080/17513758.2022.2113828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
Latently infected CD4+ T cells represent one of the major obstacles to HIV eradication even after receiving prolonged highly active anti-retroviral therapy (HAART). Long-term use of HAART causes the emergence of drug-resistant virus which is then involved in HIV transmission. In this paper, we develop mathematical HIV models with staged disease progression by incorporating entry inhibitor and latently infected cells. We find that entry inhibitor has the same effect as protease inhibitor on the model dynamics and therefore would benefit HIV patients who developed resistance to many of current anti-HIV medications. Numerical simulations illustrate the theoretical results and show that the virus and latently infected cells reach an infected steady state in the absence of treatment and are eliminated under treatment whereas the model including homeostatic proliferation of latently infected cells maintains the virus at low level during suppressive treatment. Therefore, complete cure of HIV needs complete eradication of latent reservoirs.
Collapse
Affiliation(s)
- Areej Alshorman
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| | | | - Trachette Jackson
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Jiang S, Tuzikov A, Andrianov A. Small-molecule HIV-1 entry inhibitors targeting the epitopes of broadly neutralizing antibodies. Cell Chem Biol 2022; 29:757-773. [PMID: 35353988 DOI: 10.1016/j.chembiol.2022.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
Highly active antiretroviral therapy currently used for HIV/AIDS has significantly increased the life expectancy of HIV-infected individuals. It has also improved the quality of life, reduced mortality, and decreased the incidence of AIDS and HIV-related conditions. Currently, however, affected individuals are typically on a lifetime course of several therapeutic drugs, all with the potential for associated toxicity and emergence of resistance. This calls for development of novel, potent, and broad anti-HIV agents able to stop the spread of HIV/AIDS. Significant progress has been made toward identification of anti-HIV-1 broadly neutralizing antibodies (bNAbs). However, antibody-based drugs are costly to produce and store. Administration (by injection only) and other obstacles limit clinical use. In recent years, several highly promising small-molecule HIV-1 entry inhibitors targeting the epitopes of bNAbs have been developed. These newly developed compounds are the focus of the present article.
Collapse
Affiliation(s)
- Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China.
| | - Alexander Tuzikov
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Republic of Belarus
| | - Alexander Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Republic of Belarus.
| |
Collapse
|
4
|
Chandra I, Prabhu SV, Nayak C, Singh SK. E-pharmacophore based screening to identify potential HIV-1 gp120 and CD4 interaction blockers for wild and mutant types. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:353-377. [PMID: 33832362 DOI: 10.1080/1062936x.2021.1901310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
HIV-1 gp120 provides a multistage viral entry process through the conserved CD4 binding site. Hunting of potential blockers can diminish the interaction of gp120 with the CD4 host receptor leading to the suppression of HIV-1 infection. Structure-based pharmacophore virtual screening followed by binding free energy calculation, molecular dynamics (MD) simulation and density functional theory (DFT) calculation is applied to discriminate the potential blockers from six small molecule databases. Five compounds from six databases exhibited vital interactions with key residues ASP368, GLU370, ASN425, MET426, TRP427 and GLY473 of gp120, involved in the binding with CD4, host receptor. Most importantly, compound NCI-254200 displayed strong communication with key residues of wild type and drug resistance single mutant gp120 (M426L and W427V) even in the dynamic condition, evidenced from MD simulation. This investigation provided a potential compound NCI-254200 which may show inhibitory activity against HIV-1 gp120 variant interactions with CD4 host cell receptors.
Collapse
Affiliation(s)
- I Chandra
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - S V Prabhu
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - C Nayak
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - S K Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| |
Collapse
|
5
|
Andrianov AM, Nikolaev GI, Shuldov NA, Bosko IP, Anischenko AI, Tuzikov AV. Application of deep learning and molecular modeling to identify small drug-like compounds as potential HIV-1 entry inhibitors. J Biomol Struct Dyn 2021; 40:7555-7573. [PMID: 33855929 DOI: 10.1080/07391102.2021.1905559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A generative adversarial autoencoder for the rational design of potential HIV-1 entry inhibitors able to block CD4-binding site of the viral envelope protein gp120 was developed. To do this, the following studies were carried out: (i) an autoencoder architecture was constructed; (ii) a virtual compound library of potential anti-HIV-1 agents for training the neural network was formed by the concept of click chemistry allowing one to generate a large number of drug candidates by their assembly from small modular units; (iii) molecular docking of all compounds from this library with gp120 was made and calculations of the values of binding free energy were performed; (iv) molecular fingerprints of chemical compounds from the training dataset were generated; (v) training of the developed autoencoder was implemented followed by the validation of this neural network using more than 21 million molecules from the ZINC15 database. As a result, three small drug-like compounds that exhibited the high-affinity binding to gp120 were identified. According to the data from molecular docking, machine learning, quantum chemical calculations, and molecular dynamics simulations, these compounds show the low values of binding free energy in the complexes with gp120 similar to those calculated using the same computational protocols for the HIV-1 entry inhibitors NBD-11021 and NBD-14010, highly potent and broad anti-HIV-1 agents presenting a new generation of the viral CD4 antagonists. The identified CD4-mimetic candidates are suggested to present good scaffolds for the design of novel antiviral drugs inhibiting the early stages of HIV-1 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alexander M Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Grigory I Nikolaev
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Nikita A Shuldov
- Faculty of Applied Mathematics & Computer Science, Belarusian State University, Minsk, Republic of Belarus
| | - Ivan P Bosko
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Arseny I Anischenko
- Faculty of Applied Mathematics & Computer Science, Belarusian State University, Minsk, Republic of Belarus
| | - Alexander V Tuzikov
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| |
Collapse
|
6
|
Xiong W, Zhou C, Yin S, Chai J, Zeng B, Wu J, Li Y, Li L, Xu X. Fejerlectin, a Lectin-like Peptide from the Skin of Fejervarya limnocharis, Inhibits HIV-1 Entry by Targeting Gp41. ACS OMEGA 2021; 6:6414-6423. [PMID: 33718732 PMCID: PMC7948434 DOI: 10.1021/acsomega.1c00033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is mainly transmitted by sexual intercourse, and effective microbicides preventing HIV-1 transmission are still required. Amphibian skin is a rich source of defense peptides with antiviral activity. Here, we characterized a lectin-like peptide, fejerlectin (RLCYMVLPCP), isolated from the skin of the frog Fejervarya limnocharis. Fejerlectin showed significant hemagglutination and d-(+)-galacturonic acid-binding activities. Furthermore, fejerlectin suppressed the early entry of HIV-1 into target cells by binding to the N-terminal heptad repeat of HIV-1 gp41 and preventing 6-HB formation and Env-mediated membrane fusion. Fejerlectin is the smallest lectin-like peptide identified to date and represents a new and promising platform for anti-HIV-1 drug development.
Collapse
Affiliation(s)
- Weichen Xiong
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Chenliang Zhou
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Shuwen Yin
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
- Department
of Pharmacy, Sun Yat-sen University Cancer
Center, State Key Laboratory of Oncology in South China, Collaborative
Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jinwei Chai
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Baishuang Zeng
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Jiena Wu
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Yibin Li
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Lin Li
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Xueqing Xu
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| |
Collapse
|
7
|
Bruxelle JF, Trattnig N, Mureithi MW, Landais E, Pantophlet R. HIV-1 Entry and Prospects for Protecting against Infection. Microorganisms 2021; 9:microorganisms9020228. [PMID: 33499233 PMCID: PMC7911371 DOI: 10.3390/microorganisms9020228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Human Immunodeficiency Virus type-1 (HIV-1) establishes a latent viral reservoir soon after infection, which poses a major challenge for drug treatment and curative strategies. Many efforts are therefore focused on blocking infection. To this end, both viral and host factors relevant to the onset of infection need to be considered. Given that HIV-1 is most often transmitted mucosally, strategies designed to protect against infection need to be effective at mucosal portals of entry. These strategies need to contend also with cell-free and cell-associated transmitted/founder (T/F) virus forms; both can initiate and establish infection. This review will discuss how insight from the current model of HIV-1 mucosal transmission and cell entry has highlighted challenges in developing effective strategies to prevent infection. First, we examine key viral and host factors that play a role in transmission and infection. We then discuss preventive strategies based on antibody-mediated protection, with emphasis on targeting T/F viruses and mucosal immunity. Lastly, we review treatment strategies targeting viral entry, with focus on the most clinically advanced entry inhibitors.
Collapse
Affiliation(s)
- Jean-François Bruxelle
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence: (J.-F.B.); (R.P.)
| | - Nino Trattnig
- Chemical Biology and Drug Discovery, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Marianne W. Mureithi
- KAVI—Institute of Clinical Research, College of Health Sciences, University of Nairobi, P.O. Box, Nairobi 19676–00202, Kenya;
| | - Elise Landais
- IAVI Neutralizing Antibody Center, La Jolla, CA 92037, USA;
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Ralph Pantophlet
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence: (J.-F.B.); (R.P.)
| |
Collapse
|
8
|
Liang T, Qiu J, Niu X, Ma Q, Zhou C, Chen P, Zhang Q, Chen M, Yang Z, Liu S, Li L. 3-Hydroxyphthalic Anhydride-Modified Chicken Ovalbumin as a Potential Candidate Inhibits SARS-CoV-2 Infection by Disrupting the Interaction of Spike Protein With Host ACE2 Receptor. Front Pharmacol 2021; 11:603830. [PMID: 33519467 PMCID: PMC7840605 DOI: 10.3389/fphar.2020.603830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
The global spread of the novel coronavirus SARS-CoV-2 urgently requires discovery of effective therapeutics for the treatment of COVID-19. The spike (S) protein of SARS-CoV-2 plays a key role in receptor recognition, virus-cell membrane fusion and virus entry. Our previous studies have reported that 3-hydroxyphthalic anhydride-modified chicken ovalbumin (HP-OVA) serves as a viral entry inhibitor to prevent several kinds of virus infection. Here, our results reveal that HP-OVA can effectively inhibit SARS-CoV-2 replication and S protein-mediated cell-cell fusion in a dose-dependent manner without obvious cytopathic effects. Further analysis suggests that HP-OVA can bind to both the S protein of SARS-CoV-2 and host angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV-2, and disrupt the S protein-ACE2 interaction, thereby exhibiting inhibitory activity against SARS-CoV-2 infection. In summary, our findings suggest that HP-OVA can serve as a potential therapeutic agent for the treatment of deadly COVID-19.
Collapse
Affiliation(s)
- Taizhen Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiayin Qiu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoge Niu
- Department of Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Chenliang Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Pei Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qiao Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Meiyun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Yadav S, Pandey V, Kumar Tiwari R, Ojha RP, Dubey KD. Does Antibody Stabilize the Ligand Binding in GP120 of HIV-1 Envelope Protein? Evidence from MD Simulation. Molecules 2021; 26:E239. [PMID: 33466381 PMCID: PMC7796314 DOI: 10.3390/molecules26010239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
CD4-mimetic HIV-1 entry inhibitors are small sized molecules which imitate similar conformational flexibility, in gp120, to the CD4 receptor. However, the mechanism of the conformational flexibility instigated by these small sized inhibitors is little known. Likewise, the effect of the antibody on the function of these inhibitors is also less studied. In this study, we present a thorough inspection of the mechanism of the conformational flexibility induced by a CD4-mimetic inhibitor, NBD-557, using Molecular Dynamics Simulations and free energy calculations. Our result shows the functional importance of Asn425 in substrate induced conformational dynamics in gp120. The MD simulations of Asn425Gly mutant provide a less dynamic gp120 in the presence of NBD-557 without incapacitating the binding enthalpy of NBD-557. The MD simulations of complexes with the antibody clearly show the enhanced affinity of NBD-557 due to the presence of the antibody, which is in good agreement with experimental Isothermal Titration Calorimetry results (Biochemistry2006, 45, 10973-10980).
Collapse
Affiliation(s)
- Shalini Yadav
- Center of Informatics and Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 201314, India;
| | - Vishnudatt Pandey
- Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Uttar Pradesh 273009, India; (V.P.); (R.K.T.); (R.P.O.)
| | - Rakesh Kumar Tiwari
- Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Uttar Pradesh 273009, India; (V.P.); (R.K.T.); (R.P.O.)
| | - Rajendra Prasad Ojha
- Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Uttar Pradesh 273009, India; (V.P.); (R.K.T.); (R.P.O.)
| | - Kshatresh Dutta Dubey
- Center of Informatics and Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 201314, India;
| |
Collapse
|
10
|
Nikolaev GI, Shuldov NA, Anishenko, AI, Tuzikov AV, Andrianov AM. Development of a generative adversarial neural network for identification of potential HIV-1 inhibitors by deep learning methods. INFORMATICS 2020. [DOI: 10.37661/1816-0301-2020-17-1-7-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A generative adversarial autoencoder for the rational design of potential HIV-1 entry inhibitors able to block the region of the viral envelope protein gp120 critical for the virus binding to cellular receptor CD4 was developed using deep learning methods. The research were carried out to create the architecture of the neural network, to form virtual compound library of potential anti-HIV-1 agents for training the neural network, to make molecular docking of all compounds from this library with gp120, to calculate the values of binding free energy, to generate molecular fingerprints for chemical compounds from the training dataset. The training the neural network was implemented followed by estimation of the learning outcomes and work of the autoencoder. The validation of the neural network on a wide range of compounds from the ZINC database was carried out. The use of the neural network in combination with virtual screening of chemical databases was shown to form a productive platform for identifying the basic structures promising for the design of novel antiviral drugs that inhibit the early stages of HIV infection.
Collapse
Affiliation(s)
- G. I. Nikolaev
- The United Institute of Informatics Problems of the National Academy of Sciences of Belarus
| | | | | | - A. V. Tuzikov
- The United Institute of Informatics Problems of the National Academy of Sciences of Belarus
| | - A. M. Andrianov
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
| |
Collapse
|
11
|
Vangala R, Sivan SK, Peddi SR, Manga V. Computational design, synthesis and evaluation of new sulphonamide derivatives targeting HIV-1 gp120. J Comput Aided Mol Des 2019; 34:39-54. [PMID: 31792886 DOI: 10.1007/s10822-019-00258-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 11/29/2022]
Abstract
Attachment of envelope glycoprotein gp120 to the host cell receptor CD4 is the first step during the human immunodeficiency virus-1 (HIV-1) entry into the host cells that makes it a promising target for drug design. To elucidate the crucial three dimensional (3D) structural features of reported HIV-1 gp120 CD4 binding inhibitors, 3D pharmacophores were generated and receptor based approach was employed to quantify these structural features. A four-partial least square factor model with good statistics and predictive ability was generated for the dataset of 100 molecules. To further ascertain the structural requirement for gp120-CD4 binding inhibition, molecular interaction studies of inhibitors with gp120 was carried out by performing molecular docking using Glide 5.6. Based on these studies, structural requirements were drawn and new molecules were designed accordingly to yield new sulphonamides derivatives. A water based green synthetic approach was adopted to obtain these compounds which were evaluated for their HIV-1 gp120 CD4 binding inhibition. The newly synthesized compounds exhibited remarkable activity (10-fold increase) when compared with the standard BMS 806. Further the stability of newly synthesized derivatives with HIV-1 gp120 was also investigated through molecular dynamics simulation studies. This provides a proof of concept for molecular modeling based design of new inhibitors for inhibition of HIV-1 gp120 CD4 interaction.
Collapse
Affiliation(s)
- Radhika Vangala
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Sree Kanth Sivan
- Department of Chemistry, Nizam College, Osmania University, Hyderabad, 500 001, India
| | - Saikiran Reddy Peddi
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Vijjulatha Manga
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, 500 007, India.
| |
Collapse
|
12
|
Motati DR, Uredi D, Watkins EB. The Discovery and Development of Oxalamide and Pyrrole Small Molecule Inhibitors of gp120 and HIV Entry - A Review. Curr Top Med Chem 2019; 19:1650-1675. [PMID: 31424369 DOI: 10.2174/1568026619666190717163959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type-1 (HIV-1) is the causative agent responsible for the acquired immunodeficiency syndrome (AIDS) pandemic. More than 60 million infections and 25 million deaths have occurred since AIDS was first identified in the early 1980s. Advances in available therapeutics, in particular combination antiretroviral therapy, have significantly improved the treatment of HIV infection and have facilitated the shift from high mortality and morbidity to that of a manageable chronic disease. Unfortunately, none of the currently available drugs are curative of HIV. To deal with the rapid emergence of drug resistance, off-target effects, and the overall difficulty of eradicating the virus, an urgent need exists to develop new drugs, especially against targets critically important for the HIV-1 life cycle. Viral entry, which involves the interaction of the surface envelope glycoprotein, gp120, with the cellular receptor, CD4, is the first step of HIV-1 infection. Gp120 has been validated as an attractive target for anti-HIV-1 drug design or novel HIV detection tools. Several small molecule gp120 antagonists are currently under investigation as potential entry inhibitors. Pyrrole, piperazine, triazole, pyrazolinone, oxalamide, and piperidine derivatives, among others, have been investigated as gp120 antagonist candidates. Herein, we discuss the current state of research with respect to the design, synthesis and biological evaluation of oxalamide derivatives and five-membered heterocycles, namely, the pyrrole-containing small molecule as inhibitors of gp120 and HIV entry.
Collapse
Affiliation(s)
- Damoder Reddy Motati
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - Dilipkumar Uredi
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - E Blake Watkins
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| |
Collapse
|
13
|
Wang C, Cheng S, Zhang Y, Ding Y, Chong H, Xing H, Jiang S, Li X, Ma L. Long-Acting HIV-1 Fusion Inhibitory Peptides and their Mechanisms of Action. Viruses 2019; 11:v11090811. [PMID: 31480738 PMCID: PMC6784077 DOI: 10.3390/v11090811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
The clinical application of HIV fusion inhibitor, enfuvirtide (T20), was limited mainly because of its short half-life. Here we designed and synthesized two PEGylated C34 peptides, PEG2kC34 and PEG5kC34, with the PEG chain length of 2 and 5 kDa, respectively, and evaluated their anti-HIV-1 activity and mechanisms of action. We found that these two PEGylated peptides could bind to the HIV-1 peptide N36 to form high affinity complexes with high α-helicity. The peptides PEG2kC34 and PEG5kC34 effectively inhibited HIV-1 Env-mediated cell-cell fusion with an effective concentration for 50% inhibition (EC50) of about 36 nM. They also inhibited infection of the laboratory-adapted HIV-1 strain NL4-3 with EC50 of about 4-5 nM, and against 47 HIV-1 clinical isolates circulating in China with mean EC50 of PEG2kC34 and PEG5kC34 of about 26 nM and 32 nM, respectively. The plasma half-life (t1/2) of PEG2kC34 and PEG5kC34 was 2.6 h and 5.1 h, respectively, and the t1/2 of PEGylated C34 was about 2.4-fold and 4.6-fold longer than C34 (~1.1 h), respectively. These findings suggest that PEGylated C34 with broad-spectrum anti-HIV-1 activity and prolonged half-life can be further developed as a peptide fusion inhibitor-based long-acting anti-HIV drug for clinical use to treat HIV-infected patients who have failed to respond to current anti-retrovirus drugs.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shuihong Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yibo Ding
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Huihui Chong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hui Xing
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Liying Ma
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
14
|
Andrianov AM, Nikolaev GI, Kornoushenko YV, Xu W, Jiang S, Tuzikov AV. In Silico Identification of Novel Aromatic Compounds as Potential HIV-1 Entry Inhibitors Mimicking Cellular Receptor CD4. Viruses 2019; 11:v11080746. [PMID: 31412617 PMCID: PMC6723994 DOI: 10.3390/v11080746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Despite recent progress in the development of novel potent HIV-1 entry/fusion inhibitors, there are currently no licensed antiviral drugs based on inhibiting the critical interactions of the HIV-1 envelope gp120 protein with cellular receptor CD4. In this connection, studies on the design of new small-molecule compounds able to block the gp120-CD4 binding are still of great value. In this work, in silico design of drug-like compounds containing the moieties that make the ligand active towards gp120 was performed within the concept of click chemistry. Complexes of the designed molecules bound to gp120 were then generated by molecular docking and optimized using semiempirical quantum chemical method PM7. Finally, the binding affinity analysis of these ligand/gp120 complexes was performed by molecular dynamic simulations and binding free energy calculations. As a result, five top-ranking compounds that mimic the key interactions of CD4 with gp120 and show the high binding affinity were identified as the most promising CD4-mimemic candidates. Taken together, the data obtained suggest that these compounds may serve as promising scaffolds for the development of novel, highly potent and broad anti-HIV-1 therapeutics.
Collapse
Affiliation(s)
- Alexander M Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus.
| | - Grigory I Nikolaev
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Belarus
| | - Yuri V Kornoushenko
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Fuxing Building, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Fuxing Building, Shanghai 200032, China.
| | - Alexander V Tuzikov
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Belarus.
| |
Collapse
|
15
|
A survey of core replacements in indole-based HIV-1 attachment inhibitors. Bioorg Med Chem Lett 2019; 29:1423-1429. [DOI: 10.1016/j.bmcl.2019.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/31/2019] [Accepted: 03/13/2019] [Indexed: 11/18/2022]
|
16
|
Meuser ME, Rashad AA, Ozorowski G, Dick A, Ward AB, Cocklin S. Field-Based Affinity Optimization of a Novel Azabicyclohexane Scaffold HIV-1 Entry Inhibitor. Molecules 2019; 24:molecules24081581. [PMID: 31013646 PMCID: PMC6514670 DOI: 10.3390/molecules24081581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 12/22/2022] Open
Abstract
Small-molecule HIV-1 entry inhibitors are an extremely attractive therapeutic modality. We have previously demonstrated that the entry inhibitor class can be optimized by using computational means to identify and extend the chemotypes available. Here we demonstrate unique and differential effects of previously published antiviral compounds on the gross structure of the HIV-1 Env complex, with an azabicyclohexane scaffolded inhibitor having a positive effect on glycoprotein thermostability. We demonstrate that modification of the methyltriazole-azaindole headgroup of these entry inhibitors directly effects the potency of the compounds, and substitution of the methyltriazole with an amine-oxadiazole increases the affinity of the compound 1000-fold over parental by improving the on-rate kinetic parameter. These findings support the continuing exploration of compounds that shift the conformational equilibrium of HIV-1 Env as a novel strategy to improve future inhibitor and vaccine design efforts.
Collapse
Affiliation(s)
- Megan E Meuser
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Rooms 10307, 10309, and 10315, 245 North 15th Street, Philadelphia, PA 19102, USA.
| | - Adel A Rashad
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Rooms 10307, 10309, and 10315, 245 North 15th Street, Philadelphia, PA 19102, USA.
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Rooms 10307, 10309, and 10315, 245 North 15th Street, Philadelphia, PA 19102, USA.
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Simon Cocklin
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Rooms 10307, 10309, and 10315, 245 North 15th Street, Philadelphia, PA 19102, USA.
| |
Collapse
|
17
|
Bolarinwa O, Zhang M, Mulry E, Lu M, Cai J. Sulfono-γ-AA modified peptides that inhibit HIV-1 fusion. Org Biomol Chem 2018; 16:7878-7882. [PMID: 30306175 PMCID: PMC6209519 DOI: 10.1039/c8ob02159g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The utilization of bioactive peptides in the development of highly selective and potent pharmacological agents for the disruption of protein-protein interactions is appealing for drug discovery. It is known that HIV-1 entry into a host cell is through a fusion process that is mediated by the trimeric viral glycoprotein gp120/41, which is derived from gp160 through proteolytic processing. Peptides derived from the HIV gp41 C-terminus have proven to be potent in inhibiting the fusion process. These peptides bind tightly to the hydrophobic pocket on the gp-41 N-terminus, which was previously identified as a potential inhibitor binding site. In this study, we introduce modified 23-residue C-peptides, 3 and 4, bearing a sulfono-γ-AA residue substitution and hydrocarbon stapling, respectively, which were developed for HIV-1 gp-41 N-terminus binding. Intriguingly, both 3 and 4 were capable of inhibiting envelope-mediated membrane fusion in cell-cell fusion assays at nanomolar potency. Our study reveals that sulfono-γ-AA modified peptides could be used for the development of more potent anti-HIV agents.
Collapse
Affiliation(s)
- Olapeju Bolarinwa
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, USA.
| | | | | | | | | |
Collapse
|
18
|
Mostashari Rad T, Saghaie L, Fassihi A. HIV-1 Entry Inhibitors: A Review of Experimental and Computational Studies. Chem Biodivers 2018; 15:e1800159. [PMID: 30027572 DOI: 10.1002/cbdv.201800159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/18/2018] [Indexed: 12/18/2022]
Abstract
The HIV-1 life cycle consists of different events, such as cell entry and fusion, virus replication, assembly and release of the newly formed virions. The more logical way to inhibit HIV transmission among individuals is to inhibit its entry into the immune host cells rather than targeting the intracellular viral enzymes. Both viral and host cell surface receptors and co-receptors are regarded as potential targets in anti-HIV-1 drug design process. Because of the importance of this topic it was decided to summarize recent reports on small-molecule HIV-1 entry inhibitors that have not been considered in the latest released reviews. All the computational studies reported in the literature regarding HIV-1 entry inhibitors since 2014 was also considered in this review.
Collapse
Affiliation(s)
- Tahereh Mostashari Rad
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.,Bioinformatics and Systems Biology Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| |
Collapse
|
19
|
Han D, Tan J, Zhou Z, Li C, Zhang X, Wang C. Combined topomer CoMFA and hologram QSAR studies of a series of pyrrole derivatives as potential HIV fusion inhibitors. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2190-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Wang X, Wang J, Zhang W, Li B, Zhu Y, Hu Q, Yang Y, Zhang X, Yan H, Zeng Y. Inhibition of Human Immunodeficiency Virus Type 1 Entry by a Keggin Polyoxometalate. Viruses 2018; 10:v10050265. [PMID: 29772712 PMCID: PMC5977258 DOI: 10.3390/v10050265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Here, we report the anti-human immunodeficiency virus (HIV) potency and underlying mechanisms of a Keggin polyoxometalate (PT-1, K6HPTi2W10O40). Our findings showed that PT-1 exhibited highly potent effects against a diverse group of HIV type 1 (HIV-1) strains and displayed low cytotoxicity and genotoxicity. The time-addition assay revealed that PT-1 acted at an early stage of infection, and these findings were supported by the observation that PT-1 had more potency against Env-pseudotyped virus than vesicular stomatitis virus glycoprotein (VSVG) pseudotyped virus. Surface plasmon resonance binding assays and flow cytometry analysis showed that PT-1 blocked the gp120 binding site in the CD4 receptor. Moreover, PT-1 bound directly to gp41 NHR (N36 peptide), thereby interrupting the core bundle formation of gp41. In conclusion, our data suggested that PT-1 may be developed as a new anti-HIV-1 agent through its effects on entry inhibition.
Collapse
Affiliation(s)
- Xiaoli Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Jiao Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Wenmei Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Boye Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Ying Zhu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Qin Hu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yishu Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Xiaoguang Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Hong Yan
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yi Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
21
|
Andrianov AM, Kashyn IA, Tuzikov AV. Potential HIV-1 fusion inhibitors mimicking gp41-specific broadly neutralizing antibody 10E8: In silico discovery and prediction of antiviral potency. J Bioinform Comput Biol 2018; 16:1840007. [PMID: 29439644 DOI: 10.1142/s0219720018400073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An integrated computational approach to in silico drug design was used to identify novel HIV-1 fusion inhibitor scaffolds mimicking broadly neutralizing antibody (bNab) 10E8 targeting the membrane proximal external region (MPER) of the HIV-1 gp41 protein. This computer-based approach included (i) generation of pharmacophore models representing 3D-arrangements of chemical functionalities that make bNAb 10E8 active towards the gp41 MPER segment, (ii) shape and pharmacophore-based identification of the 10E8-mimetic candidates by a web-oriented virtual screening platform pepMMsMIMIC, (iii) high-throughput docking of the identified compounds with the gp41 MPER peptide, and (iv) molecular dynamics simulations of the docked structures followed by binding free energy calculations. As a result, eight hits-able to mimic pharmacophore properties of bNAb 10E8 by specific and effective interactions with the MPER region of the HIV-1 protein gp41 were selected as the most probable 10E8-mimetic candidates. Similar to 10E8, the predicted compounds target the critically important residues of a highly conserved hinge region of the MPER peptide that provides a conformational flexibility necessary for its functioning in cell-virus membrane fusion process. In light of the data obtained, the identified small molecules may present promising HIV-1 fusion inhibitor scaffolds for the design of novel potent antiviral drugs.
Collapse
Affiliation(s)
- Alexander M Andrianov
- * Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Street 5/2 220141 Minsk, Republic of Belarus
| | - Ivan A Kashyn
- † United Institute of Informatics Problems, National Academy of Sciences of Belarus, Surganov Street 6, 220012 Minsk, Republic of Belarus
| | - Alexander V Tuzikov
- † United Institute of Informatics Problems, National Academy of Sciences of Belarus, Surganov Street 6, 220012 Minsk, Republic of Belarus
| |
Collapse
|