1
|
Tram NDT, Xu J, Chan KH, Rajamani L, Ee PLR. Bacterial clustering biomaterials as anti-infective therapies. Biomaterials 2025; 316:123017. [PMID: 39708775 DOI: 10.1016/j.biomaterials.2024.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
In Nature, bacterial clustering by host-released peptides or nucleic acids is an evolutionarily conserved immune defense strategy employed to prevent adhesion of pathogenic microbes, which is prerequisite for most infections. Synthetic anti-adhesion strategies present as non-lethal means of targeting bacteria and may potentially be used to avoid resistance against antimicrobial therapies. From bacteria-agglutinating biomolecules discovered in nature to synthetic designs involving peptides, cationic polymers and nanoparticles, the modes of actions appear broad and unconsolidated. Herein, we present a critical review and update of the state-of-the-art in synthetic bacteria-clustering designs with proposition of a more streamlined nomenclature and classification. Overall, this review aims to consolidate the conceptual framework in the field of bacterial clustering and highlight its potentials as an avenue for discovering novel antibacterial biomaterials.
Collapse
Affiliation(s)
- Nhan Dai Thien Tram
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Jian Xu
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore; NUS College, National University of Singapore, 18 College Avenue East, Singapore, 138593, Singapore
| | - Lakshminarayanan Rajamani
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore; Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, 169856, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore.
| |
Collapse
|
2
|
Mitra A. Combatting biofilm-mediated infections in clinical settings by targeting quorum sensing. Cell Surf 2024; 12:100133. [PMID: 39634722 PMCID: PMC11615143 DOI: 10.1016/j.tcsw.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Biofilm-associated infections constitute a significant challenge in managing infectious diseases due to their high resistance to antibiotics and host immune responses. Biofilms are responsible for various infections, including urinary tract infections, cystic fibrosis, dental plaque, bone infections, and chronic wounds. Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to coordinate gene expression in response to cell density, which is crucial for biofilm formation and maintenance.. Its disruption has been proposed as a potential strategy to prevent or treat biofilm-associated infections leading to improved treatment outcomes for infectious diseases. This review article aims to provide a comprehensive overview of the literature on QS-mediated disruption of biofilms for treating infectious diseases. It will discuss the mechanisms of QS disruption and the various approaches that have been developed to disrupt QS in reference to multiple clinical pathogens. In particular, numerous studies have demonstrated the efficacy of QS disruption in reducing biofilm formation in various pathogens, including Pseudomonas aeruginosa and Staphylococcus aureus. Finally, the review will discuss the challenges and future directions for developing QS disruption as a clinical therapy for biofilm-associated infections. This includes the development of effective delivery systems and the identification of suitable targets for QS disruption. Overall, the literature suggests that QS disruption is a promising alternative to traditional antibiotic treatment for biofilm-associated infections and warrants further investigation.
Collapse
Affiliation(s)
- Arindam Mitra
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Han D, Yang Y, Guo Z, Dai S, Jiang M, Zhu Y, Wang Y, Yu Z, Wang K, Rong C, Yu Y. A Review on the Interaction of Acetic Acid Bacteria and Microbes in Food Fermentation: A Microbial Ecology Perspective. Foods 2024; 13:2534. [PMID: 39200461 PMCID: PMC11353490 DOI: 10.3390/foods13162534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
In fermented foods, acetic acid bacteria (AAB), kinds of bacteria with a long history of utilization, contribute to safety, nutritional, and sensory properties primarily through acetic acid fermentation. AAB are commonly found in various fermented foods such as vinegar, sour beer, fermented cocoa and coffee beans, kefir beverages, kombucha, and sourdough. They interact and cooperate with a variety of microorganisms, resulting in the formation of diverse metabolites and the production of fermented foods with distinct flavors. Understanding the interactions between AAB and other microbes is crucial for effectively controlling and utilizing AAB in fermentation processes. However, these microbial interactions are influenced by factors such as strain type, nutritional conditions, ecological niches, and fermentation duration. In this review, we examine the relationships and research methodologies of microbial interactions and interaction studies between AAB and yeasts, lactic acid bacteria (LAB), and bacilli in different food fermentation processes involving these microorganisms. The objective of this review is to identify key interaction models involving AAB and other microorganisms. The insights gained will provide scientific guidance for the effective utilization of AAB as functional microorganisms in food fermentation processes.
Collapse
Affiliation(s)
- Dong Han
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yunsong Yang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Zhantong Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Shuwen Dai
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Mingchao Jiang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Chunchi Rong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| |
Collapse
|
4
|
de la Fuente I, Manzano-Morales S, Sanz D, Prieto A, Barriuso J. Quorum sensing in bacteria: in silico protein analysis, ecophysiology, and reconstruction of their evolutionary history. BMC Genomics 2024; 25:441. [PMID: 38702600 PMCID: PMC11069264 DOI: 10.1186/s12864-024-10355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Quorum sensing (QS) is a sophisticated cell-to-cell signalling mechanism that allows the coordination of important processes in microbial populations. The AI-1 and AI-2 autoinducer systems are among the best characterized bacterial QS systems at the genetic level. RESULTS In this study, we present data derived from in silico screening of QS proteins from bacterial genomes available in public databases. Sequence analyses allowed identifying candidate sequences of known QS systems that were used to build phylogenetic trees. Eight categories were established according to the number of genes from the two major QS systems present in each genome, revealing a correlation with specific taxa, lifestyles or metabolic traits. Many species had incomplete QS systems, encoding the receptor protein but not the biosynthesis of the quorum sensing molecule (QSMs). Reconstruction of the evolutionary history of the LuxR family and prediction of the 3D structure of the ancestral protein suggested their monomeric configuration in the absence of the signal molecule and the presence of a cavity for its binding. CONCLUSIONS Here we correlate the taxonomic affiliation and lifestyle of bacteria from different genera with the QS systems encoded in their genomes. Moreover, we present the first ancestral reconstruction of the LuxR QS receptors, providing further insight in their evolutionary history.
Collapse
Affiliation(s)
- Iñigo de la Fuente
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Saioa Manzano-Morales
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - David Sanz
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Alicia Prieto
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain.
| |
Collapse
|
5
|
Torres MA, Valdez AL, de Lourdes Olea C, Figueroa MF, Nieto-Peñalver CG. Multi-focused laboratory experiments based on Quorum Sensing and Quorum Quenching for acquiring Microbial Physiology concepts. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 52:359-368. [PMID: 38217452 DOI: 10.1002/bmb.21815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/13/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024]
Abstract
After a time away from the classrooms and laboratories due to the global pandemic, the return to teaching activities during the semester represented a challenge to both teachers and students. Our particular situation in a Microbial Physiology course was the necessity of imparting in shorter time, laboratory practices that usually take longer. This article describes a 2-week-long laboratory exercise that covers several concepts in an interrelated way: conjugation as a gene transfer mechanism, regulation of microbial physiology, production of secondary metabolites, degradation of macromolecules, and biofilm formation. Utilizing a Quorum Quenching (QQ) strategy, the Quorum Sensing (QS) system of Pseudomonas aeruginosa is first attenuated. Then, phenotypes regulated by QS are evidenced. QS is a regulatory mechanism of microbial physiology that relies on signal molecules. QS is related in P. aeruginosa to several virulence factors, some of which are exploited in the laboratory practices presented in this work. QQ is a phenomenon by which QS is interrupted or attenuated. We utilized a QQ approach based on the enzymatic degradation of the P. aeruginosa QS signals to evidence QS-regulated traits that are relevant to our Microbial Physiology course. Results obtained with the same test performed by a random group of students before and after the activities show the positive effectiveness of the approach presented in this work.
Collapse
Affiliation(s)
- Mariela Analía Torres
- PROIMI, CONICET (Planta Piloto de Procesos Industriales Microbiológicos), Tucumán, Argentina
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Alejandra Leonor Valdez
- PROIMI, CONICET (Planta Piloto de Procesos Industriales Microbiológicos), Tucumán, Argentina
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | | | - María Fernanda Figueroa
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Carlos Gabriel Nieto-Peñalver
- PROIMI, CONICET (Planta Piloto de Procesos Industriales Microbiológicos), Tucumán, Argentina
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
6
|
Wang Q, Wei J, Wan B, An Q, Gao J, Zhuang G. The regulation effect of preventing soil nitrogen loss using microbial quorum sensing inhibitors. ENVIRONMENTAL RESEARCH 2024; 246:118136. [PMID: 38191039 DOI: 10.1016/j.envres.2024.118136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Preventing soil nitrogen (N) losses driven by microbial nitrification and denitrification contributes to improving global environmental concerns caused by NO3--N leaching and N2O emission. Quorum sensing (QS) signals regulate nitrification and denitrification of N-cycling bacteria in pure culture and water treatment systems, and mediate the composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in activated sludge. However, whether disrupting QS could prevent soil N losses remains unclear. This study explored the feasibility of applying quorum sensing inhibitors (QSIs) as an innovative strategy to reduce N losses from agricultural soils. The two QSIs, penicillic acid and 4-iodo-N-[(3S)-tetrahydro-2-oxo-3-furanyl]-benzeneacetamide (4-iodo PHL), were more effective in reducing N losses than traditional inhibitors, including N-(n-butyl) thiophosphoric triamide and 3,4-dimethylpyrazole phosphate. After 36 days of aerobic incubation, penicillic acid and 4-iodo PHL inhibited nitrification by 39% and 68%, respectively. The inhibitory effects are attributed to the fact that 4-iodo PHL decreased the abundance of archaeal and bacterial amoA genes, as well as the relative abundance of Candidatus Nitrocosmicus (AOA), Candidatus Nitrososphaera (AOA), and Nitrospira (nitrite-oxidizing bacteria/comammox), while penicillic acid reduced archaeal amoA abundance and the relative abundance of Nitrosospira (AOB) and the microbes listed above. Penicillic acid also strongly inhibited denitrification (33%) and N2O emissions (61%) at the peak of N2O production (day 4 of anaerobic incubation) via decreasing nitrate reductase gene (narG) abundance and increasing N2O reductase gene (nosZ) abundance, respectively. Furthermore, the environmental risks of QSIs to microbial community structure and network stability, CO2 emissions, and soil animals were acceptable. Overall, QSIs have application potential in agriculture to reduce soil N losses and the associated effect on climate change. This study established a new method to mitigate N losses from the perspective of QS, and can serve as important basis of decreasing the environmental risks of agricultural non-point source pollution.
Collapse
Affiliation(s)
- Qiuying Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Biosciences and Centre for Biogeochemistry in the Anthropocene, University of Oslo, Oslo, 0316, Norway
| | - Bin Wan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong An
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Maha Swetha BR, Saravanan M, Piruthivraj P. Emerging trends in the inhibition of bacterial molecular communication: An overview. Microb Pathog 2024; 186:106495. [PMID: 38070626 DOI: 10.1016/j.micpath.2023.106495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/02/2024]
Abstract
Quorum sensing (QS) is a molecular cell-cell communication utilized by several bacteria and some fungi. It involves cell density dependent gene expression that includes extra polymeric substance production, sporulation, antibiotic production, motility, competence, symbiosis and conjugation. These expressions were carried out by different signaling molecules like acyl homo-serine lactone (AHL) and auto-inducing peptides (AIPs) which was effluxed by gram negative and gram positive bacteria. Pathogenic bacteria and biofilms often exhibit high resistance to antibiotics, attributed to the presence of antibiotic efflux pumps, reduced membrane permeability, and enzymes that deactivate quorum sensing (QS) inhibitors. To counteract virulence and multi-drug resistance (MDR), novel strategies such as employing quorum sensing (QS) inhibitors and quorum quenchers are employed. It targets signaling molecules with synthesis and prevents the signal from binding to receptors. In this present review, the mechanisms of QS along with inhibitors from different sources are described. These strategies potentially interfere with QS and it can be applied in different fields, mainly in hospitals and marine environments where the pathogenic infections and biofilm formation are highly involved.
Collapse
Affiliation(s)
- B R Maha Swetha
- Department of Biotechnoloy, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - M Saravanan
- Department of Physics, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirapalli, 620 024, Tamil Nadu, India
| | - Prakash Piruthivraj
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha Univerisy, Chennai, 600 077, Tamil Nadu, India; Department of Biotechnoloy, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
8
|
Yin L, Wang Y, Xiang S, Xu K, Wang B, Jia AQ. Tyramine, one quorum sensing inhibitor, reduces pathogenicity and restores tetracycline susceptibility in Burkholderia cenocepacia. Biochem Pharmacol 2023; 218:115906. [PMID: 37951366 DOI: 10.1016/j.bcp.2023.115906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Burkholderia cenocepacia is an opportunistic respiratory pathogen of particular relevance to patients with cystic fibrosis (CF), primarily regulating its biological functions and virulence factors through two quorum sensing (QS) systems (CepI/R and CciI/R). The highly persistent incidence of multidrug resistant Burkholderia cenocepacia poses a global threat to public health. In this study, we investigated the effects of tyramine, one biogenic amine, on the QS systems of Burkholderia cenocepacia. Genetic and biochemical analyses revealed that tyramine inhibited the production of N-hexanoyl-homoserine (AHL) signaling molecules (C8-HSL and C6-HSL) by blocking the CepI/R and CciI/R systems. As a result, the inhibition of QS systems leads to reduced production of various virulence factors, such as biofilm formation, extracellular polysaccharides, lipase, and swarming motility. Notably, as a potential quorum sensing inhibitor, tyramine exhibits low toxicity in vivo in Galleria mellonella larvae and is well characterized by Lipinski's five rules. It also shows high gastrointestinal absorption and the ability to cross the blood-brain barrier according to SwissADME database and ProTox-II server. Additionally, tyramine was found to enhance the efficacy of tetracycline in reducing the infectivity of Burkholderia cenocepacia in Galleria mellonella larvae infection model. Therefore, tyramine could be a promising candidate for combination therapy with traditional antimicrobials to improve their effectiveness against Burkholderia cenocepacia.
Collapse
Affiliation(s)
- Lujun Yin
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yingjie Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Shiliang Xiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Kaizhong Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
9
|
Zeng X, Yue H, Zhang L, Chen G, Zheng Q, Hu Q, Du X, Tian Q, Zhao X, Liang L, Yang Z, Bai H, Liu Y, Zhao M, Fu X. Gut microbiota-derived autoinducer-2 regulates lung inflammation through the gut-lung axis. Int Immunopharmacol 2023; 124:110971. [PMID: 37748222 DOI: 10.1016/j.intimp.2023.110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE This study aimed to determine whether autoinducer-2 (AI-2), a crucial bacterial metabolite and quorum sensing molecule, is involved in lung immunity through the gut-lung axis. METHODS The level of AI-2 and the gut microbiome composition were analysed in the stools from pneumonic patients and the mouse model of acute lung injury. The effect of AI-2 on lung inflammation was further investigated in the mouse model. RESULTS The diversity of the faecal microbiota was reduced in pneumonic patients treated with antibiotics compared with healthy volunteers. The AI-2 level in the stool was positively correlated with inflammatory molecules in the serum of pneumonic patients. Intraperitoneal injection of AI-2 reinforced lung inflammation in the acute lung injury mouse model, characterized by increased secretion of inflammatory molecules, including IL-6, IL-1β, C-C chemokines, and CXCL chemokines, which were alleviated by the AI-2 inhibitor D-ribose. CONCLUSIONS Our results suggested that gut microbiota-derived AI-2 could modulate lung inflammation through the gut-lung axis.
Collapse
Affiliation(s)
- Xianghao Zeng
- Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan Province 637000, China; Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Huawen Yue
- Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan Province 637000, China
| | - Ling Zhang
- Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan Province 637000, China
| | - Guimei Chen
- Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan Province 637000, China
| | - Qiao Zheng
- Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan Province 637000, China
| | - Qing Hu
- Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan Province 637000, China
| | - Xinhao Du
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Qian Tian
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Xinyu Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Lanfan Liang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Ziyi Yang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Hang Bai
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Yanqin Liu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China.
| |
Collapse
|
10
|
Sethi S, Gupta R, Bharshankh A, Sahu R, Biswas R. Celebrating 50 years of microbial granulation technologies: From canonical wastewater management to bio-product recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162213. [PMID: 36796691 DOI: 10.1016/j.scitotenv.2023.162213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Microbial granulation technologies (MGT) in wastewater management are widely practised for more than fifty years. MGT can be considered a fine example of human innovativeness-driven nature wherein the manmade forces applied during operational controls in the biological process of wastewater treatment drive the microbial communities to modify their biofilms into granules. Mankind, over the past half a century, has been refining the knowledge of triggering biofilm into granules with some definite success. This review captures the journey of MGT from inception to maturation providing meaningful insights into the process development of MGT-based wastewater management. The full-scale application of MGT-based wastewater management is discussed with an understanding of functional microbial interactions within the granule. The molecular mechanism of granulation through the secretion of extracellular polymeric substances (EPS) and signal molecules is also highlighted in detail. The recent research interest in the recovery of useful bioproducts from the granular EPS is also emphasized.
Collapse
Affiliation(s)
- Shradhanjali Sethi
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rohan Gupta
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Ankita Bharshankh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rojalin Sahu
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rima Biswas
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India.
| |
Collapse
|
11
|
Xu YQ, Li K, Wang ZJ, Huang P, Liu SS. Transfer pattern of hormesis into personal care product mixtures from typical hormesis-inducing compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158981. [PMID: 36155044 DOI: 10.1016/j.scitotenv.2022.158981] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Some personal care products (PCPs) and their chemical components showed a hormetic effect in the freshwater photobacterium Vibrio qinghaiensis sp. -Q67 (Q67) after long-term exposure. However, how hormesis transfers between chemical components and PCP mixture, and which chemical component plays a major role remain unknown. To this end, according to the seven compounds detected in one skin lotion (SK5) and their concentration ratios, many mixture rays were constructed to simulate the SK5. Of these seven compounds, three presented monotonic concentration-response curves (CRC) to Q67 at 0.25 and 12 h (called a S-shaped compound). The other four compounds showed hormetic CRCs after 12 h and monotonic CRCs at 0.25 h (called a J-shaped compound). Based on their mixture ratios, we designed one ternary mixture ray of all S-shaped compounds, one quaternary mixture ray of all J-shaped compounds, and four quaternary mixture rays of one J-shaped and three S-shaped compounds. It was shown that SK5 could be approximately simulated by the mixture ray of the seven compounds detected in SK5 and only the mixture rays containing at least one hormesis-inducing compound produced hormesis to Q67 at 12 h. Based on the concentration ratios of various compounds and comparison of four hormetic characteristic parameters to those of various mixture rays, it was found that the compound betaine (BET) is a key compound affecting the hormesis of mixtures. Additionally, we studied the hormesis mechanism of BET on Q67 via quorum sensing (QS). This preliminarily indicated that the autoinducer-2 triggered the QS pathway. This study elucidated the transfer pattern of hormesis into mixtures, which would be an efficient method to identifying the potential components that affect hormesis transfer in mixtures. We expect that this study will provide new insights into hormesis and its mixtures.
Collapse
Affiliation(s)
- Ya-Qian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kai Li
- Institute of Ecological Environment, Yangtze Delta Region Research Institute of Tsinghua University, Jiaxing 314006, China
| | - Ze-Jun Wang
- Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Peng Huang
- Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
12
|
Rafiq MA, Shahid M, Jilani K, Aslam MA. Antibacterial, Antibiofilm, and Anti-Quorum Sensing Potential of Novel Synthetic Compounds Against Pathogenic Bacteria Isolated From Chronic Sinusitis Patients. Dose Response 2022; 20:15593258221135731. [PMID: 36311176 PMCID: PMC9597054 DOI: 10.1177/15593258221135731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing (QS) is a major controller of virulence and biofilm formation in
pathogenic bacteria. The aim of the research was to screen novel synthetic
compounds (18) from 2 series (Pyrazole and Diene dione) for quorum sensing and
biofilm inhibitory potential against resistant pathogens isolated from patients
with chronic sinusitis. Most of the compounds have documented zone of inhibition
against Gram positive strains Staphylococcus aureus,
Enterococcus faecalis and moderate activity against Gram
negative Klebseilla pneumoniae and Proteus
mirabilis in comparison with standard antibiotic. Compounds Q1 and
Q7 have given the maximum zone of inhibition 18 and 20 mm with MICs 0.312 mg/mL
and .156 mg/mL against S aureus and E
faecalis, respectively. Some compounds were equally potent at
inhibiting the formation of biofilm which later established by phase contrast
microscopy. Regarding quorum sensing inhibition, the tested concentration of
synthetic compound UA3 0.313 mg/mL inhibited violacein production without
decreasing Chromobacterium pseudoviolaceum count which was
significantly lower than determined MIC’s. It was depicted from the results that
selected compounds exhibited low level of cytotoxicity toward human red blood
cells. Hence, these findings revealed that most novel compounds were effective
antibacterial, whereas compound UA3 has shared significant anti-quorum sensing
potential against Chromobacterium pseudoviolaceum.
Collapse
Affiliation(s)
| | - Muhammad Shahid
- Department of Biochemistry, University of
Agriculture, Faisalabad, Pakistan,Muhammad Shahid, Department of
Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Kashif Jilani
- Department of Biochemistry, University of
Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
13
|
Zinc(II) Complexes with Dimethyl 2,2′-Bipyridine-4,5-dicarboxylate: Structure, Antimicrobial Activity and DNA/BSA Binding Study. INORGANICS 2022. [DOI: 10.3390/inorganics10060071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Two zinc(II) complexes with dimethyl 2,2′-bipyridine-4,5-dicarboxylate (py-2py) of the general formula [Zn(py-2py)X2], X = Cl− (1) and Br− (2) were synthesized and characterized by NMR, IR and UV-Vis spectroscopy and single-crystal X-ray diffraction analysis. Complexes 1 and 2 are isostructural and adopt a slightly distorted tetrahedral geometry with values of tetrahedral indices τ4 and τ’4 in the range of 0.80–0.85. The complexes were evaluated for their in vitro antimicrobial activity against two bacterial (Pseudomonas aeruginosa and Staphylococcus aureus) and two fungal strains (Candida albicans and Candida parapsilosis), while their cytotoxicity was tested on the normal human lung fibroblast cell line (MRC-5) and the model organism Caenorhabditis elegans. Complex 1 showed moderate activity against both Candida strains. However, this complex was twofold more cytotoxic compared to complex 2. The complexes tested had no effect on the survival rate of C. elegans. Complex 2 showed the ability to inhibit filamentation of C. albicans, while complex 1 was more effective than complex 2 in inhibiting biofilm formation. The interactions of complexes 1 and 2 with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) were studied to evaluate their binding affinity toward these biomolecules.
Collapse
|
14
|
Li Y, Feng T, Wang Y. The role of bacterial signaling networks in antibiotics response and resistance regulation. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:163-178. [PMID: 37073223 PMCID: PMC10077285 DOI: 10.1007/s42995-022-00126-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/07/2022] [Indexed: 05/03/2023]
Abstract
Excessive use of antibiotics poses a threat to public health and the environment. In ecosystems, such as the marine environment, antibiotic contamination has led to an increase in bacterial resistance. Therefore, the study of bacterial response to antibiotics and the regulation of resistance formation have become an important research field. Traditionally, the processes related to antibiotic responses and resistance regulation have mainly included the activation of efflux pumps, mutation of antibiotic targets, production of biofilms, and production of inactivated or passivation enzymes. In recent years, studies have shown that bacterial signaling networks can affect antibiotic responses and resistance regulation. Signaling systems mostly alter resistance by regulating biofilms, efflux pumps, and mobile genetic elements. Here we provide an overview of how bacterial intraspecific and interspecific signaling networks affect the response to environmental antibiotics. In doing so, this review provides theoretical support for inhibiting bacterial antibiotic resistance and alleviating health and ecological problems caused by antibiotic contamination.
Collapse
Affiliation(s)
- Yuying Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Tao Feng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| |
Collapse
|
15
|
Stevanović NL, Kljun J, Aleksic I, Bogojevic SS, Milivojevic D, Veselinovic A, Turel I, Djuran MI, Nikodinovic-Runic J, Glišić BĐ. Clinically used antifungal azoles as ligands for gold(III) complexes: the influence of the Au(III) ion on the antimicrobial activity of the complex. Dalton Trans 2022; 51:5322-5334. [PMID: 35293926 DOI: 10.1039/d2dt00411a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a search for novel antimicrobial metal-based therapeutic agents, mononuclear gold(III) complexes 1-7 of the general formula [AuCl3(azole)], where azole stands for imidazole (im, 1), 1-isopropylimidazole (ipim, 2), 1-phenylimidazole (phim, 3), clotrimazole (ctz, 4), econazole (ecz, 5), tioconazole (tcz, 6) and voriconazole (vcz, 7) were synthesized, characterized and biologically evaluated. In all complexes, the corresponding azole ligand is monodentately coordinated to the Au(III) via the imidazole or triazole nitrogen atom, while the remaining coordination sites are occupied by chloride anions leading to the square-planar arrangement. In vitro antimicrobial assays showed that the complexation of inactive azoles, imidazole, 1-isopropylimidazole and 1-phenylimidazole, to the Au(III) ion led to complexes 1-3, respectively, with moderate activity against the investigated strains and low cytotoxicity on the human normal lung fibroblast cell line (MRC-5). Moreover, gold(III) complexes 4-7 with clinically used antifungal agents clotrimazole, econazole, tioconazole and voriconazole, respectively, have, in most cases, enhanced antimicrobial effectiveness relative to the corresponding azoles, with the best improvement achieved after complexation of tioconazole (6) and voriconazole (7). The complexes 4-7 and the corresponding antifungal azoles inhibited the growth of dermatophyte Microsporum canis at 50 and 25 μg mL-1. Gold(III) complexes 1-3 significantly reduced the amount of ergosterol in the cell membrane of Candida albicans at the subinhibitory concentration of 0.5 × MIC (minimal inhibitory concentration), while the corresponding imidazole ligands did not significantly affect the ergosterol content, indicating that the mechanism of action of the gold(III)-azole complexes is associated with inhibition of ergosterol biosynthesis. Finally, complexes 5 and 6 significantly reduced the production of pyocyanin, a virulence factor in Pseudomonas aeruginosa controlled by quorum sensing, and increased cell survival after exposure to this bacterium. These findings could be of importance for the development of novel gold(III)-based antivirulence therapeutic agents that attenuate virulence without pronounced effect on the growth of the pathogens, offering a lower risk for resistance development.
Collapse
Affiliation(s)
- Nevena Lj Stevanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Sanja Skaro Bogojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Aleksandar Veselinovic
- University of Niš, Faculty of Medicine, Department of Chemistry, Blvd. Dr Zorana Đinđića 81, 18108 Niš, Serbia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Miloš I Djuran
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia.
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Biljana Đ Glišić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
16
|
Inhibitory effect of d-arabinose on oral bacteria biofilm formation on titanium discs. Anaerobe 2022; 75:102533. [PMID: 35143955 DOI: 10.1016/j.anaerobe.2022.102533] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/05/2021] [Accepted: 02/05/2022] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Biofilm formation on dental implant surfaces can cause peri-implant mucositis and peri-implantitis. Lectins are involved in interactions between bacteria or between bacteria and their hosts. Disrupting these interactions via specific sugars can result in reduced adhesion and biofilm formation. The purpose of this study was to identify sugars that function as antiadhesion or antibiofilm agents on titanium discs. METHODS Of the sugars tested, the sugars that did not affect the planktonic growth of Streptococcus oralis, Fusobacterium nucleatum, and Porphyromonas gingivalis were selected. The selected sugars were assessed for their ability to inhibit biofilm formation of bacteria in single and consortium species by crystal violet staining, confocal laser scanning microscopy after live/dead staining, and scanning electron microscopy. The sugars were evaluated for their ability to inhibit activity of the quorum sensing molecule autoinducer 2 (AI-2) by bioluminescence assay. RESULTS Biofilm formation of single bacteria or consortia of S. oralis, F. nucleatum, and P. gingivalis on titanium discs was significantly inhibited in the presence of d-arabinose. Pretreating titanium discs with d-arabinose for 3 min inhibited biofilm formation at a level comparable to that observed when d-arabinose was present over the entire period, suggesting that d-arabinose had initial anti-adhesive activity. In addition, d-arabinose inhibited the activity of AI-2. CONCLUSIONS d-Arabinose may be a good candidate for application as an antibiofilm agent and AI-2 inhibitor.
Collapse
|
17
|
RNA-seq-based transcriptomic analysis of AHL-induced biofilm and pyocyanin inhibition in Pseudomonas aeruginosa by Lactobacillus brevis. Int Microbiol 2022; 25:447-456. [DOI: 10.1007/s10123-021-00228-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/28/2021] [Accepted: 12/12/2021] [Indexed: 11/26/2022]
|
18
|
Lamin A, Kaksonen AH, Cole IS, Chen XB. Quorum sensing inhibitors applications: a new prospect for mitigation of microbiologically influenced corrosion. Bioelectrochemistry 2022; 145:108050. [DOI: 10.1016/j.bioelechem.2022.108050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/21/2022]
|
19
|
Lizarme-Salas Y, Yu TT, de Bruin-Dickason C, Kumar N, Hunter L. Fluorinated quorum sensing inhibitors: enhancement of potency through conformational control. Org Biomol Chem 2021; 19:9629-9636. [PMID: 34709279 DOI: 10.1039/d1ob01649k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bacterial quorum sensing (QS) system is a target for non-lethal antibacterial agents that do not encourage the development of resistance. QS inhibitors commonly contain a polar "head" moiety and a lipidic "tail" moiety. In this work, we synthesised novel QS inhibitor candidates in which the lipidic "tail" is decorated with stereospecifically positioned fluorine atoms. The presence of fluorine is shown to bias the molecules into distinctive conformations that are pre-organised for binding to the QS receptor. This translates into significant increases in QS inhibitory potency.
Collapse
Affiliation(s)
- Yuvixza Lizarme-Salas
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia.
| | - Tsz Tin Yu
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia.
| | | | - Naresh Kumar
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia.
| | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia.
| |
Collapse
|
20
|
Guo N, Bai X, Shen Y, Zhang T. Target-based screening for natural products against Staphylococcus aureus biofilms. Crit Rev Food Sci Nutr 2021; 63:2216-2230. [PMID: 34491124 DOI: 10.1080/10408398.2021.1972280] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a notorious food-borne pathogen, Staphylococcus aureus can readily cause diseases in humans via contaminated food. Biofilm formation on various surfaces can increase the capacity of viable S. aureus cells for self-protection due to the stubborn structure of the biofilm matrix. Increased disease risk and economic losses caused by biofilm contamination in the food industry necessitate the urgent development of effective strategies for the inhibition and removal of S. aureus biofilms. Natural products have been extensively used as important sources of "eco-friendly" antibiofilm agents to avoid the side effects of conventional strategies on human health and the environment. This review discusses biofilm formation of S. aureus in food industries and focuses on providing an overview of potential promising target-oriented natural products and their mechanisms of S. aureus biofilm inhibition or removal. Hoping to provide valuable information of attractive research targets or potential undeveloped targets to screen potent natural anti-biofilm agents in food industries.
Collapse
Affiliation(s)
- Na Guo
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xue Bai
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yong Shen
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
21
|
Xu W, Zhang X, Wang L, Zeng W, Sun Y, Zhou C, Zhou T, Shen M. Effect of chlorogenic acid on the quorum-sensing system of clinically isolated multidrug-resistant Pseudomonas aeruginosa. J Appl Microbiol 2021; 132:1008-1017. [PMID: 34464994 DOI: 10.1111/jam.15275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/27/2022]
Abstract
AIMS Quorum sensing (QS) is the intercellular communication used by bacteria to regulate collective behaviour. QS regulates the production of virulence factors in many bacterial species and is considered to be an attractive target for reducing bacterial pathogenicity. Chlorogenic acid (CA) is abundant in vegetables, fruits, and traditional Chinese medicine, and has multiple activities. This study aimed to investigate the QS quenching activity of CA against clinically isolated multidrug-resistant Pseudomonas aeruginosa. METHODS AND RESULTS The results showed that CA inhibited the mobility of bacteria, reduced the production of pyocyanin, and inhibited the activity of elastase. Furthermore, crystal violet staining and scanning electron microscope experiments showed that CA inhibited the formation of multidrug-resistant P. aeruginosa biofilm. CA at or below the concentration of 2560 µg/mL exerted negligible cytotoxicity to RAW264.7 cells. The study also examined the expression of QS-related genes, including lasI, lasR, rhlI, rhlR, pqsA, and pqsR in P. aeruginosa and found that the expression of these genes was down-regulated under CA treatment. CONCLUSIONS The study showed that CA could be used as an anti-virulence factor for treating clinical P. aeruginosa infection. SIGNIFICANCE AND IMPACT OF STUDY For the first time, this study took clinically isolated multidrug-resistant P. aeruginosa as the experimental object, and suggested that CA might be an effective antimicrobial compound targeting QS in treating P. aeruginosa infection, thus providing a new therapeutic direction for treating bacterial infection and effectively alleviating bacterial resistance.
Collapse
Affiliation(s)
- Wenya Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiucai Zhang
- Department of Clinical Laboratory, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiliang Zeng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mo Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
22
|
Trebino MA, Shingare RD, MacMillan JB, Yildiz FH. Strategies and Approaches for Discovery of Small Molecule Disruptors of Biofilm Physiology. Molecules 2021; 26:molecules26154582. [PMID: 34361735 PMCID: PMC8348372 DOI: 10.3390/molecules26154582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/02/2022] Open
Abstract
Biofilms, the predominant growth mode of microorganisms, pose a significant risk to human health. The protective biofilm matrix, typically composed of exopolysaccharides, proteins, nucleic acids, and lipids, combined with biofilm-grown bacteria’s heterogenous physiology, leads to enhanced fitness and tolerance to traditional methods for treatment. There is a need to identify biofilm inhibitors using diverse approaches and targeting different stages of biofilm formation. This review discusses discovery strategies that successfully identified a wide range of inhibitors and the processes used to characterize their inhibition mechanism and further improvement. Additionally, we examine the structure–activity relationship (SAR) for some of these inhibitors to optimize inhibitor activity.
Collapse
Affiliation(s)
- Michael A. Trebino
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA;
| | - Rahul D. Shingare
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA;
| | - John B. MacMillan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA;
- Correspondence: (J.B.M.); (F.H.Y.)
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA;
- Correspondence: (J.B.M.); (F.H.Y.)
| |
Collapse
|
23
|
Wang ZJ, Chen F, Xu YQ, Huang P, Liu SS. Protein Model and Function Analysis in Quorum-Sensing Pathway of Vibrio qinghaiensis sp.-Q67. BIOLOGY 2021; 10:638. [PMID: 34356493 PMCID: PMC8301110 DOI: 10.3390/biology10070638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023]
Abstract
Bioluminescent bacteria are mainly found in marine habitats. Vibrio qinghaiensis sp.-Q67 (Q67), a nonpathogenic freshwater bacterium, has been a focus due to its wide use in the monitoring of environmental pollution and the assessment of toxicity. However, the lack of available crystal structures limits the elucidation of the structures of the functional proteins of the quorum-sensing (QS) system that regulates bacterial luminescence in Q67. In this study, 19 functional proteins were built through monomer and oligomer modeling based on their coding proteins in the QS system of Q67 using MODELLER. Except for the failure to construct LuxM due to the lack of a suitable template, 18 functional proteins were successfully constructed. Furthermore, the relationships between the function and predicted structures of 19 functional proteins were explored one by one according to the three functional classifications: autoinducer synthases and receptors, signal transmission proteins (phosphotransferases, an RNA chaperone, and a transcriptional regulator), and enzymes involved in bacterial bioluminescence reactions. This is the first analysis of the whole process of bioluminescence regulation from the perspective of nonpathogenic freshwater bacteria at the molecular level. It provides a theoretical basis for the explanation of applications of Q67 in which luminescent inhibition is used as the endpoint.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (Z.-J.W.); (Y.-Q.X.)
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
| | - Fu Chen
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China;
| | - Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (Z.-J.W.); (Y.-Q.X.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Peng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China;
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (Z.-J.W.); (Y.-Q.X.)
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
24
|
Tung TT, Quoc TN. Discovery of novel β-turn mimetic-based peptides as novel quorum sensing inhibitors of gram-negative bacteria. Bioorg Med Chem Lett 2021; 46:128170. [PMID: 34091042 DOI: 10.1016/j.bmcl.2021.128170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 12/28/2022]
Abstract
To date, a very limited number of peptides reported as quorum sensing inhibitors. Herein, we report the synthesis and evaluation of a series of β-turn mimetic-based peptides as potent quorum sensing inhibitors and antibiofilm formation. In this series, peptides P1, P4, and P5 showed very promising anti-quorum sensing activity on lasB-gfp reporter strain of Pseudomonas aeruginosa without affecting bacterial growth. Under our condition, these compounds also showed good anti-violacein production of Chromobacterium violaceum. In terms of antibiofilm formation, except P5, two β-turn mimetic-based peptides P1 and P4 showed maximum inhibition of 80% total biomass of Pseudomonas aeruginosa. This report provides the first β-turn mimetic-based scaffold for future drug development.
Collapse
Affiliation(s)
- Truong Thanh Tung
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Viet Nam; PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Viet Nam.
| | - Thang Nguyen Quoc
- Nuclear Medicine Unit, Vinmec International Hospital, Hanoi 10000, Viet Nam
| |
Collapse
|
25
|
Abstract
Bacteriophages are the most diverse and abundant biological entities on the Earth and require host bacteria to replicate. Because of this obligate relationship, in addition to the challenging conditions of surrounding environments, phages must integrate information about extrinsic and intrinsic factors when infecting their host. This integration helps to determine whether the infection becomes lytic or lysogenic, which likely influences phage spreading and long-term survival. Although a variety of environmental and physiological clues are known to modulate lysis-lysogeny decisions, the social interplay among phages and host populations has been overlooked until recently. A growing body of evidence indicates that cell-cell communication in bacteria and, more recently, peptide-based communication among phage-phage populations, affect phage-host interactions by controlling phage lysis-lysogeny decisions and phage counter-defensive strategies in bacteria. Here, we explore and discuss the role of signal molecules as well as quorum sensing and quenching factors that mediate phage-host interactions. Our aim is to provide an overview of population-dependent mechanisms that influence phage replication, and how social communication may affect the dynamics and evolution of microbial communities, including their implications in phage therapy.
Collapse
|
26
|
Molecular Mechanisms of Campylobacter Biofilm Formation and Quorum Sensing. Curr Top Microbiol Immunol 2021. [PMID: 33620656 DOI: 10.1007/978-3-030-65481-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Even though Campylobacter spp. are known to be fastidious organisms, they can survive within the natural environment. One mechanism to withstand unfavourable conditions is the formation of biofilms, a multicellular structure composed of different bacterial and other microbial species which are embedded in an extracellular matrix. High oxygen levels, low substrate concentrations and the presence of external DNA stimulate the biofilm formation by C. jejuni. These external factors trigger internal adaptation processes, e.g. via regulating the expression of genes encoding proteins required for surface structure formation, as well as motility, stress response and antimicrobial resistance. Known genes impacting biofilm formation will be summarized in this review. The formation of biofilms as well as the expression of virulence genes is often regulated in a cell density depending manner by quorum sensing, which is mediated via small signalling molecules termed autoinducers. Even though quorum sensing mechanisms of other bacteria are well understood, knowledge on the role of these mechanisms in C. jejuni biofilm formation is still scarce. The LuxS enzyme involved in generation of autoinducer-2 is present in C. jejuni, but autoinducer receptors have not been identified so far. Phenotypes of C. jejuni strains lacking a functional luxS like reduced growth, motility, oxygen stress tolerance, biofilm formation, adhesion, invasion and colonization are also summarized within this chapter. However, these phenotypes are highly variable in distinct C. jejuni strains and depend on the culture conditions applied.
Collapse
|
27
|
Yin W, Xu S, Wang Y, Zhang Y, Chou SH, Galperin MY, He J. Ways to control harmful biofilms: prevention, inhibition, and eradication. Crit Rev Microbiol 2020; 47:57-78. [PMID: 33356690 DOI: 10.1080/1040841x.2020.1842325] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biofilms are complex microbial architectures that encase microbial cells in a matrix comprising self-produced extracellular polymeric substances. Microorganisms living in biofilms are much more resistant to hostile environments than their planktonic counterparts and exhibit enhanced resistance against the microbicides. From the human perspective, biofilms can be classified into beneficial, neutral, and harmful. Harmful biofilms impact food safety, cause plant and animal diseases, and threaten medical fields, making it urgent to develop effective and robust strategies to control harmful biofilms. In this review, we discuss various strategies to control biofilm formation on infected tissues, implants, and medical devices. We classify the current strategies into three main categories: (i) changing the properties of susceptible surfaces to prevent biofilm formation; (ii) regulating signalling pathways to inhibit biofilm formation; (iii) applying external forces to eradicate the biofilm. We hope this review would motivate the development of innovative and effective strategies for controlling harmful biofilms.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yuling Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
28
|
Linciano P, Cavalloro V, Martino E, Kirchmair J, Listro R, Rossi D, Collina S. Tackling Antimicrobial Resistance with Small Molecules Targeting LsrK: Challenges and Opportunities. J Med Chem 2020; 63:15243-15257. [PMID: 33152241 PMCID: PMC8016206 DOI: 10.1021/acs.jmedchem.0c01282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance (AMR) is a growing threat with severe health and economic consequences. The available antibiotics are losing efficacy, and the hunt for alternative strategies is a priority. Quorum sensing (QS) controls biofilm and virulence factors production. Thus, the quenching of QS to prevent pathogenicity and to increase bacterial susceptibility to antibiotics is an appealing therapeutic strategy. The phosphorylation of autoinducer-2 (a mediator in QS) by LsrK is a crucial step in triggering the QS cascade. Thus, LsrK represents a valuable target in fighting AMR. Few LsrK inhibitors have been reported so far, allowing ample room for further exploration. This perspective aims to provide a comprehensive analysis of the current knowledge about the structural and biological properties of LsrK and the state-of-the-art technology for LsrK inhibitor design. We elaborate on the challenges in developing novel LsrK inhibitors and point out promising avenues for further research.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Valeria Cavalloro
- Department
of Earth and Environmental Science, University
of Pavia, Via Sant’Epifanio 14, 27100 Pavia, Italy
| | - Emanuela Martino
- Department
of Earth and Environmental Science, University
of Pavia, Via Sant’Epifanio 14, 27100 Pavia, Italy
| | - Johannes Kirchmair
- Department
of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Roberta Listro
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Simona Collina
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
29
|
Deryabin DG, Galadzhieva AA, Duskaev GK. Screening of N-Hexanamide and 2H-1,3-Benzodioxol Derivatives for Quorum Sensing Modulation in Chromobacterium violaceum. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720050069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Molecular evaluation of quorum quenching potential of vanillic acid against Yersinia enterocolitica through transcriptomic and in silico analysis. J Med Microbiol 2020; 69:1319-1331. [DOI: 10.1099/jmm.0.001261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Introduction.
Yersinia enterocolitica
is one of the leading food-borne entero-pathogens causing various illnesses ranging from gastroenteritis to systemic infections. Quorum sensing (QS) is one of the prime mechanisms that control the virulence in
Y. enterocolitica
.
Hypothesis/Gap Statement. Vanillic acid inhibits the quorum sensing and other virulence factors related to
Y. enterocolitica
. It has been evaluated by transcriptomic and Insilico analysis. Therefore, it can be a prospective agent to develop a therapeutic combination against
Y. enterocolitica
.
Aim. The present study is focused on screening natural anti-quorum-sensing agents against
Y. enterocolitica
. The effect of selected active principle on various virulence factors was evaluated.
Methodology. In total, 12 phytochemicals were screened by swarming assay. MATH assay, EPS and surfactant production assay, SEM analysis, antibiotic and blood sensitivity assay were performed to demonstrate the anti-virulence activity. Further, RNA sequencing and molecular docking studies were carried out to substantiate the anti-QS activity.
Results. Vanillic acid (VA) has exhibited significant motility inhibition, thus indicating the anti-QS activity with MQIC of 400 µg ml−1 without altering the cell viability. It has also inhibited the violacein production in
Chromobacterium violaceum
ATCC 12472, which further confirms the anti-QS activity. VA has inhibited 16 % of cell-surface hydrophobicity (CSH), 52 % of EPS production and 60 % of surfactant production. Moreover, it has increased the sensitivity of
Y. enterocolitica
towards antibiotics. It has also made the cells upto 91 % more vulnerable towards human immune cells. The transcriptomic analysis by RNA sequencing revealed the down regulation of genes related to motility, virulence, chemotaxis, siderophores and drug resistance. VA treatment has also positively regulated the expression of several stress response genes. In furtherance, the anti-QS potential of VA has been validated with QS regulatory protein YenR by in silico molecular simulation and docking study.
Conclusion. The present study is possibly the first attempt to demonstrate the anti-QS and anti-pathogenic potential of VA against
Y. enterocolitica
by transcriptomic and in silico analysis. It also deciphers that VA can be a promising lead to develop biopreservative and therapeutic regimens to treat
Y. enterocolitica
infections.
Collapse
|
31
|
Majik MS, Gawas UB, Mandrekar VK. Next generation quorum sensing inhibitors: Accounts on structure activity relationship studies and biological activities. Bioorg Med Chem 2020; 28:115728. [PMID: 33065436 DOI: 10.1016/j.bmc.2020.115728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/09/2020] [Accepted: 08/19/2020] [Indexed: 11/18/2022]
Abstract
Bacterial resistance is a growing threat which represents major scourge throughout the world. The suitable way to control the present critical situation of antimicrobial resistance would be to develop entirely novel strategies to fight antibiotic resistant pathogens such as quorum sensing (QS) inhibitors or its combination with antibiotics. Anti QS agents can eliminate the QS signals and put the barrier in bio-film formation, consequently, bacterial virulence will be reduced without causing drug-resistance to the pathogens. Among the various anti QS agents identified, especially those of natural origin, furanones or acylatedhomoserine lactones (AHLs) are most popular. Semi-synthetic and synthetic inhibitors have shown greatest potential and have inspired chemists to design synthetically modified QS inhibitors with lactone moiety. This review focuses on anti QS agents (bio-film inhibitors) of both natural and synthetic origins. Further, the synthesis, structure activity relationship and anti QS activity covering literature from 2015 till March 2020 has been discussed.
Collapse
Affiliation(s)
- Mahesh S Majik
- Department of Chemistry, Dnyanprassarak Mandal's College and Research Centre, Assagao, Goa 403 507, India; Department of Chemistry, Government College of Arts, Science and Commerce, Khandola, Marcela, Goa 403 107, India
| | - Umesh B Gawas
- Department of Chemistry, Dnyanprassarak Mandal's College and Research Centre, Assagao, Goa 403 507, India
| | - Vinod K Mandrekar
- Department of Chemistry, St. Xavier's College, Mapusa, Goa 403 507, India.
| |
Collapse
|
32
|
Liu Z, Zhang P, Qin Y, Zhang N, Teng Y, Venter H, Ma S. Design and synthesis of aryl-substituted pyrrolidone derivatives as quorum sensing inhibitors. Bioorg Chem 2020; 105:104376. [PMID: 33099165 DOI: 10.1016/j.bioorg.2020.104376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 09/04/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
Quorum sensing, a common cell-to-cell communication system, is considered to have promising application in antibacterial therapy since they are expected to induce lower bacterial resistance than conventional antibiotics. However, most of present quorum sensing inhibitors have potent cell toxicity, which limits their application. In this study we evaluated the diverse quorum sensing inhibition activities of different biaromatic furanones and brominated pyrrolones. On this basis, we further designed and synthesized a new series of aryl-substituted pyrrolones 12a-12f. In the quorum sensing inhibition assay, compound 12a showed improved characteristics and low toxicity against human hepatocellular carcinoma cell. In particular, it can inhibit the pyocyanin production and protease activity of Pseudomonas aeruginosa by 80.6 and 78.5%, respectively. Besides, in this series, some compounds exerted moderate biofilm inhibition activity. To sum up, all the findings indicate that aryl-substituted pyrrolidone derivatives are worth further investigation as quorum sensing inhibitors.
Collapse
Affiliation(s)
- Zhiyang Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Panpan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Yinhui Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Nan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Yuetai Teng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Henrietta Venter
- School of Pharmacy and Medical Sciences, University of South Australia, SA 5000, Australia
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China.
| |
Collapse
|
33
|
Carradori S, Di Giacomo N, Lobefalo M, Luisi G, Campestre C, Sisto F. Biofilm and Quorum Sensing inhibitors: the road so far. Expert Opin Ther Pat 2020; 30:917-930. [PMID: 32985271 DOI: 10.1080/13543776.2020.1830059] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Biofilm is a complex aggregation of microorganisms characterized by the presence of a dynamic, adhesive and protective extracellular matrix composed of polysaccharides, proteins and nucleic acids. It is estimated that the vast majority of human infections are related to the biofilm in which the microorganisms reside and communicate with each other (Quorum Sensing), surviving in hostile environmental conditions. AREAS COVERED This review provides a comprehensive focus on the development state of promising strategies against biofilm production and eradication describing chemical structures, results, administration routes, pharmaceutical compositions, and SARs as well as their shortcomings within the 2019-2020 range. EXPERT OPINION New pharmacological targets have been explored in the past years, allowing a broader therapeutic arsenal against biofilm-related pathologies. The Quorum Sensing system was targeted as well in order to avoid the development of intrinsically antibiotic-resistant bacteria and to enhance a proper host defense.
Collapse
Affiliation(s)
- Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti, Italy
| | - Noemi Di Giacomo
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti, Italy
| | - Martina Lobefalo
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti, Italy
| | - Grazia Luisi
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti, Italy
| | - Francesca Sisto
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, University of Milan , Milan, Italy
| |
Collapse
|
34
|
Sabir S, Subramoni S, Das T, Black DS, Rice SA, Kumar N. Design, Synthesis and Biological Evaluation of Novel Anthraniloyl-AMP Mimics as PQS Biosynthesis Inhibitors Against Pseudomonas aeruginosa Resistance. Molecules 2020; 25:molecules25133103. [PMID: 32646050 PMCID: PMC7412332 DOI: 10.3390/molecules25133103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/10/2023] Open
Abstract
The Pseudomonas quinolone system (PQS) is one of the three major interconnected quorum sensing signaling systems in Pseudomonas aeruginosa. The virulence factors PQS and HHQ activate the transcription regulator PqsR (MvfR), which controls several activities in bacteria, including biofilm formation and upregulation of PQS biosynthesis. The enzyme anthraniloyl-CoA synthetase (PqsA) catalyzes the first and critical step in the biosynthesis of quinolones; therefore, it is an attractive target for the development of anti-virulence therapeutics against Pseudomonas resistance. Herein, we report the design and synthesis of novel triazole nucleoside-based anthraniloyl- adenosine monophosphate (AMP) mimics. These analogues had a major impact on the morphology of bacterial biofilms and caused significant reduction in bacterial aggregation and population density. However, the compounds showed only limited inhibition of PQS and did not exhibit any effect on pyocyanin production.
Collapse
Affiliation(s)
- Shekh Sabir
- School of Chemistry, Faculty of Science, The University of New South Wales, Sydney, NSW 2052, Australia; (S.S.); (D.S.B.)
| | - Sujatha Subramoni
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore; (S.S.); (S.A.R.)
| | - Theerthankar Das
- Department of Infectious Diseases and Immunology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - David StC. Black
- School of Chemistry, Faculty of Science, The University of New South Wales, Sydney, NSW 2052, Australia; (S.S.); (D.S.B.)
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore; (S.S.); (S.A.R.)
| | - Naresh Kumar
- School of Chemistry, Faculty of Science, The University of New South Wales, Sydney, NSW 2052, Australia; (S.S.); (D.S.B.)
- Correspondence: ; Tel.: +61-2-9385-4698; Fax: +61-2-9385-6141
| |
Collapse
|
35
|
Abstract
Despite efforts to develop new antibiotics, antibacterial resistance still develops too fast for drug discovery to keep pace. Often, resistance against a new drug develops even before it reaches the market. This continued resistance crisis has demonstrated that resistance to antibiotics with single protein targets develops too rapidly to be sustainable. Most successful long-established antibiotics target more than one molecule or possess targets, which are encoded by multiple genes. This realization has motivated a change in antibiotic development toward drug candidates with multiple targets. Some mechanisms of action presuppose multiple targets or at least multiple effects, such as targeting the cytoplasmic membrane or the carrier molecule bactoprenol phosphate and are therefore particularly promising. Moreover, combination therapy approaches are being developed to break antibiotic resistance or to sensitize bacteria to antibiotic action. In this Review, we provide an overview of antibacterial multitarget approaches and the mechanisms behind them.
Collapse
Affiliation(s)
- Declan Alan Gray
- Newcastle University
Biosciences Institute, Newcastle University, NE2 4HH Newcastle
upon Tyne, United Kingdom
| | - Michaela Wenzel
- Division of Chemical
Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
36
|
Froes TQ, Nicastro GG, de Oliveira Pereira T, de Oliveira Carneiro K, Alves Reis IM, Conceição RS, Branco A, Ifa DR, Baldini RL, Castilho MS. Calycopterin, a major flavonoid from Marcetia latifolia, modulates virulence-related traits in Pseudomonas aeruginosa. Microb Pathog 2020; 144:104142. [PMID: 32173496 DOI: 10.1016/j.micpath.2020.104142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/31/2020] [Accepted: 03/10/2020] [Indexed: 01/30/2023]
Abstract
Although bacterial resistance is a worldwide growing concern, the development of bacteriostatic and bactericidal drugs has been decreasing in the last decade. Compounds that modulate the microorganism virulence, without killing it, have been considered promising alternatives to combat bacterial infections. However, most signaling pathways that regulate virulence are complex and not completely understood. The rich chemical diversity of natural products offers a good starting point to identify key compounds that shed some light on this matter. Therefore, we investigated the role of Marcetia latifolia ethanolic extract, as well as its major constituent, calycopterin (5,4'-dihydroxy-3,6,7,8-tetramethoxylflavone), in the regulation of virulence-related phenotypes of Pseudomonas aeruginosa. Our results show that calycopterin inhibits pyocyanin production (EC50 = 32 μM), reduces motility and increases biofilm formation in a dose-dependent manner. Such biological profile suggests that calycopterin modulates targets that may act upstream the quorum sensing regulators and points to its utility as a chemical probe to further investigate P. aeruginosa transition from planktonic to sessile lifestyle.
Collapse
Affiliation(s)
- Thamires Quadros Froes
- Programa de Pós-graduação Em Biotecnologia, Universidade Estadual de Feira de Santana, Bahia, Brazil
| | | | | | - Kelli de Oliveira Carneiro
- Departmento de Saúde, Laboratorio de Fotoquímica, Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Isabella Mary Alves Reis
- Departmento de Saúde, Laboratorio de Fotoquímica, Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Rodrigo Souza Conceição
- Departmento de Saúde, Laboratorio de Fotoquímica, Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Alexsandro Branco
- Departmento de Saúde, Laboratorio de Fotoquímica, Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Demian Rocha Ifa
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, ON, Canada
| | - Regina Lúcia Baldini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Santos Castilho
- Programa de Pós-graduação Em Biotecnologia, Universidade Estadual de Feira de Santana, Bahia, Brazil; Faculdade de Farmácia, Universidade Federal da Bahia, Bahia, Brazil.
| |
Collapse
|
37
|
Krzyżek P. Challenges and Limitations of Anti-quorum Sensing Therapies. Front Microbiol 2019; 10:2473. [PMID: 31736912 PMCID: PMC6834643 DOI: 10.3389/fmicb.2019.02473] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing (QS) is a mechanism allowing microorganisms to sense population density and synchronously control genes expression. It has been shown that QS supervises the activity of many processes important for microbial pathogenicity, e.g., sporulation, biofilm formation, and secretion of enzymes or membrane vesicles. This contributed to the concept of anti-QS therapy [also called quorum quenching (QQ)] and the opportunity of its application in fighting against various types of pathogens. In recent years, many published articles reported promising results indicating the possibility of reducing pathogenicity of tested microorganisms and their easier eradication when co-treated with antibiotics. The aim of the present article is to point to the opposite, negative side of the QQ therapy, with particular emphasis on three fundamental properties attributed to anti-QS substances: the selectivity, virulence reduction, and lack of resistance against QQ. This point of view may highlight new directions of research, which should be taken into account in the future before the widespread introduction of QQ therapies in the treatment of people.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
38
|
Yu H, Sun H, Yin C, Lin Z. Combination of sulfonamides, silver antimicrobial agents and quorum sensing inhibitors as a preferred approach for improving antimicrobial efficacy against Bacillus subtilis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:43-48. [PMID: 31158722 DOI: 10.1016/j.ecoenv.2019.05.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
More and more antibacterial agents are used together to treat bacterial infections in diverse fields, but the overuse of antibacterial agents may cause the environmental pollution of antibiotic resistance genes (ARGs). In order to reduce the use of antimicrobial agents, the potential joint effects of quorum-sensing inhibitors (QSIs) and traditional antimicrobial agents have been proposed to be effective. In this study, the joint effects of traditional antimicrobial agents, represented by sulfonamides (SAs) and silver antibacterial agents (silver nitrate (AgNO3) and nanosilver (AgNP, 5 nm)), and five potential QSIs, were investigated using B. subtilis. It was found that AgNP showed higher toxicity than AgNO3, whereas the joint effects on B. subtilis showed no difference between AgNO3 and AgNP when they combined with SAs or QSIs, respectively. In general, AgNO3 and AgNP presented synergetic and additive effects with QSIs, but additive and antagonistic effects with SAs; SAs exhibited synergetic, additive and antagonistic effects with different QSIs whether in binary or ternary mixed system. Moreover, it was found that the use of antimicrobials was reduced and the synergistic combined toxicity of antimicrobial agents on B. subtilis was increased through the addition of the QSIs. This study can offer a valuable reference for the combined medication of the different antimicrobial agents, which will benefit the environmental and human health.
Collapse
Affiliation(s)
- Haiyan Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Haoyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, 200092, China; Post-doctoral Research Station, College of Civil Engineering, Tongji University, Shanghai, 200092, China
| | - Chunsheng Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, 200092, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
39
|
Ding T, Li T, Li J. Discovery of quorum sensing inhibitors of Pseudomonas fluorescens P07 by using a receptor-based pharmacophore model and virtual screening. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Torres M, Dessaux Y, Llamas I. Saline Environments as a Source of Potential Quorum Sensing Disruptors to Control Bacterial Infections: A Review. Mar Drugs 2019; 17:md17030191. [PMID: 30934619 PMCID: PMC6471967 DOI: 10.3390/md17030191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Saline environments, such as marine and hypersaline habitats, are widely distributed around the world. They include sea waters, saline lakes, solar salterns, or hypersaline soils. The bacteria that live in these habitats produce and develop unique bioactive molecules and physiological pathways to cope with the stress conditions generated by these environments. They have been described to produce compounds with properties that differ from those found in non-saline habitats. In the last decades, the ability to disrupt quorum-sensing (QS) intercellular communication systems has been identified in many marine organisms, including bacteria. The two main mechanisms of QS interference, i.e., quorum sensing inhibition (QSI) and quorum quenching (QQ), appear to be a more frequent phenomenon in marine aquatic environments than in soils. However, data concerning bacteria from hypersaline habitats is scarce. Salt-tolerant QSI compounds and QQ enzymes may be of interest to interfere with QS-regulated bacterial functions, including virulence, in sectors such as aquaculture or agriculture where salinity is a serious environmental issue. This review provides a global overview of the main works related to QS interruption in saline environments as well as the derived biotechnological applications.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
| |
Collapse
|
41
|
Shah MD, Kharkar PS, Sahu NU, Peerzada Z, Desai KB. Potassium 2-methoxy-4-vinylphenolate: a novel hit exhibiting quorum-sensing inhibition in Pseudomonas aeruginosa viaLasIR/RhlIR circuitry. RSC Adv 2019; 9:40228-40239. [PMID: 35542690 PMCID: PMC9076179 DOI: 10.1039/c9ra06612h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/18/2019] [Accepted: 11/19/2019] [Indexed: 02/05/2023] Open
Abstract
Effect of potassium 2-methoxy-4-vinylphenolate on quorum sensing inPseudomonas aeruginosa.
Collapse
Affiliation(s)
- Mayank D. Shah
- Sunandan Divatia School of Science
- SVKM's NMIMS (Deemed to be University)
- Mumbai
- India
| | - Prashant S. Kharkar
- Institute of Chemical Technology
- Category I Deemed to be University (MHRD/UGC)
- Mumbai-400019
- India
| | - Niteshkumar U. Sahu
- Institute of Chemical Technology
- Category I Deemed to be University (MHRD/UGC)
- Mumbai-400019
- India
| | - Zoya Peerzada
- Sunandan Divatia School of Science
- SVKM's NMIMS (Deemed to be University)
- Mumbai
- India
| | - Krutika B. Desai
- Mithibai College of Arts & Science & Amrutben Jivanlal College of Commerce & Economics
- Mumbai
- India
| |
Collapse
|