1
|
Shu C, Sun X, Cao J, Droby S, Jiang W. Antifungal efficiency and mechanisms of ethyl ferulate against postharvest pathogens. Int J Food Microbiol 2024; 417:110710. [PMID: 38643598 DOI: 10.1016/j.ijfoodmicro.2024.110710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Postharvest loss caused by a range of pathogens necessitates exploring novel antifungal compounds that are safe and efficient in managing the pathogens. This study evaluated the antifungal activity of ethyl ferulate (EF) and explored its mechanisms of action against Alternaria alternata, Aspergillus niger, Botrytis cinerea, Penicillium expansum, Penicillium digitatum, Geotrichum candidum and evaluated its potential to inhibit postharvest decay. The results demonstrated that EF exerts potent antifungal activity against a wide board of postharvest pathogens. Results also revealed that its antifungal mechanism is multifaceted: EF may be involved in binding to and disturbing the integrity of the fungal plasma membrane, causing leakage of intracellular content and losing normal morphology and ultrastructure. EF also induced oxidative stress in the pathogen, causing membrane lipid peroxidation and malondialdehyde accumulation. EF inhibited the critical gene expression of the pathogen, affecting its metabolic regulation, antioxidant metabolism, and cell wall degrading enzymes. EF exhibited antifungal inhibitory activity when applied directly into peel wounds or after incorporation with chitosan coating. Due to its wide board and efficient antifungal activity, EF has the potential to provide a promising alternative to manage postharvest decay.
Collapse
Affiliation(s)
- Chang Shu
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing 100083, China; United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA; Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - Xiuxiu Sun
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing 100083, China
| | - Samir Droby
- Department of Postharvest Science, Agricultural Research Organization, the Volcani Center, 68 Ha Maccabim Road, Rishon LeZion 7505101, Israel
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing 100083, China.
| |
Collapse
|
2
|
Dugan D, Bell RJ, Brkljača R, Rix C, Urban S. A Review of the Ethnobotanical Use, Chemistry and Pharmacological Activities of Constituents Derived from the Plant Genus Geijera ( Rutaceae). Metabolites 2024; 14:81. [PMID: 38392973 PMCID: PMC11154539 DOI: 10.3390/metabo14020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Geijera Schott is a plant genus of the Rutaceae Juss. (rue and citrus) family, comprising six species which are all native to Oceania. Of the plants belonging to this genus, the most significant species that has a customary use is Geijera parviflora, which was used by Indigenous Australians, primarily as a pain reliever. Herein, a comprehensive review of the literature published on the genus Geijera from 1930 to 2023 was conducted. This is the first review for this plant genus, and it highlights the chemical constituents reported to date, together with the range of pharmacological properties described from the various species and different parts of the plant. These properties include anti-inflammatory, anti-microbial, anti-parasitic, insect repellent, analgesic, neuroactive, and anti-cancer activities. Finally, a reflection on some of the important areas for future focused studies of this plant genus is provided.
Collapse
Affiliation(s)
- Deepika Dugan
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| | - Rachael J. Bell
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| | - Robert Brkljača
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia;
| | - Colin Rix
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| | - Sylvia Urban
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| |
Collapse
|
3
|
Fu DN, Kong ZY, Sun W, Bai CM, Wu Y, Bian M, Ma QQ. Synthesis and cytotoxic activity of ethyl ferulate derivatives as potent anti-inflammatory agents. Nat Prod Res 2024; 38:261-269. [PMID: 36054816 DOI: 10.1080/14786419.2022.2118739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
While a range of pharmacological agents are currently used to alleviate inflammation, the clinical administration of many of these anti-inflammatory drugs is associated with high rates of adverse side effects that make them poorly suited to long-term use. Therefore, there is a critical need for the development of novel anti-inflammatory agents. Natural compounds and derivatives like ethyl ferulate have risen to prominence as a foundation for many drug discovery efforts owing to their structural diversity and wide-ranging biological activities. In the present study, 24 ethyl ferulate derivatives were synthesized. Their anti-inflammatory activity was evaluated in vitro using RAW264.7 cells and CCK-8, ELISA, and Western blotting assays. These analyses revealed that most of the synthesized compounds exhibited moderate to high anti-inflammatory activities. In particular, c10 and c23 exerted more pronounced activity than ethyl ferulate or dexamethasone with respect to the suppression of tumour necrosis factor-α production by RAW264.7 cells through the targeting of the NF-κB and MAPK signalling pathways, suggesting that these compounds warrant further investigation.
Collapse
Affiliation(s)
- Dan-Ni Fu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Zi-Yi Kong
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Wen Sun
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Chun-Mei Bai
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Yun Wu
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
| | - Ming Bian
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Qian-Qian Ma
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| |
Collapse
|
4
|
Patil AS, Ibrahim MK, Sathaye S, Degani MS, Pal D, Checker R, Sharma D, Sandur SK. Mitochondriotropic Derivative of Ethyl Ferulate, a Dietary Phenylpropanoid, Exhibits Enhanced Cytotoxicity in Cancer Cells via Mitochondrial Superoxide-Mediated Activation of JNK and AKT Signalling. Appl Biochem Biotechnol 2023; 195:2057-2076. [PMID: 36409426 DOI: 10.1007/s12010-022-04252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
Specific targeting of anti-cancer drugs to mitochondria is an emerging strategy to enhance cancer cell killing whilst simultaneously overcoming the problem of drug resistance, low bioavailability and limited clinical success of natural products. We have synthesized a mitochondria targeted derivative of Ethyl Ferulate (EF, a naturally occurring ester of ferulic acid), by conjugating it with triphenylphosphonium ion and compared its cytotoxicity with the parent molecule. Mito-Ethyl Ferulate (M-EF) was found to be more potent than EF (~ 400-fold) in inhibiting the growth of A549 and MCF-7 cells and suppressing the clonogenic potential of A549 cells. Notably, M-EF did not induce any cytotoxicity in normal cells (mouse normal fibroblast cells) up to a concentration of 25 μM. Furthermore, M-EF treatment induced significantly higher cell death in MCF-7 and A549 cells, as compared to EF via induction of apoptosis. M-EF treatment increased mitochondrial superoxide production and induced mitochondrial DNA damage and phosphorylation of JNK and AKT in A549 cells. Furthermore, M-EF induced increase in mitochondrial superoxide production and cytotoxicity was attenuated on pre-treatment with mitochondria-targeted antioxidant (mitoTEMPO) indicating the involvement of mitochondrial ROS in the cytotoxic effects of M-EF. Finally, in silico prediction revealed putative mitochondrial targets of M-EF which are known to regulate mitochondrial ROS and cell viability. In conclusion, the improved cytotoxic efficacy of M-EF exemplifies the use of mitochondria-specific drug delivery in future development of natural product based mitochondrial pharmacology.
Collapse
Affiliation(s)
- Ashwani S Patil
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India.,Department of Pharmacology, Dr D Y Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | - Mahin K Ibrahim
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India.
| | - Mariam S Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India.
| | - Debojyoti Pal
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
5
|
Ma S, Jia R, Li X, Wang W, Jin L, Zhang X, Yu H, Yang J, Dong L, Zhang L, Dong J. Herbicidal Active Compound Ferulic Acid Ethyl Ester Affects Fatty Acid Synthesis by Targeting the 3-Ketoacyl-Acyl Carrier Protein Synthase I (KAS I). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:276-287. [PMID: 36588523 DOI: 10.1021/acs.jafc.2c07214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring new herbicide targets based on natural product derivatives is an important research aspect for the generation of innovative pesticides. Ferulic acid ethyl ester (FAEE), a natural product derivative from ferulic acid, has significant herbicidal activity mainly by inhibiting the normal growth of weed seedling roots. However, the FAEE target protein underlying its herbicidal activity has not been identified. In this study, we synthesized an FAEE probe to locate its site of action. We discovered that FAEE entry point was via the root tips. Fourteen major binding proteins were identified using Drug affinity responsive target stability (DARTS) combined with LC-MS/MS, which included 3-ketoacyl-acyl carrier protein synthase I (KAS I) and phenylalanine ammonia-lyase I (PAL I). The KAS I and PAL I proteins/genes expression was changed significantly after exposure to FAEE, as evidenced by combined transcriptomic and proteomic analysis. A molecular docking assay indicated that KAS I and FAEE had a strong binding ability. Combined with previous studies on FAEE mechanism of action, and based on our results, we conclude that FAEE targeting KAS I lead to the blockage of the fatty acid synthesis pathway and result in plant death.
Collapse
Affiliation(s)
- Shujie Ma
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Ran Jia
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xin Li
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Wen Wang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Liyu Jin
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xinxin Zhang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Hualong Yu
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Juan Yang
- College of Agronomy and Biotechnology, Hebei Normal University of Science & Technology, Qinhuangdao 066000, China
| | - Lili Dong
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Lihui Zhang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Jingao Dong
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
6
|
Zou X, Gao S, Li J, Li C, Wu C, Cao X, Xia S, Shao P, Bao X, Yang H, Liu P, Xu Y. A monoamine oxidase B inhibitor ethyl ferulate suppresses microglia-mediated neuroinflammation and alleviates ischemic brain injury. Front Pharmacol 2022; 13:1004215. [PMID: 36313349 PMCID: PMC9608666 DOI: 10.3389/fphar.2022.1004215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Microglia are the resident macrophages in the brain, which play a critical role in post-stroke neuroinflammation. Accordingly, targeting neuroinflammation could be a promising strategy to improve ischemic stroke outcomes. Ethyl ferulate (EF) has been confirmed to possess anti-inflammatory properties in several disease models, including acute lung injury, retinal damage and diabetes-associated renal injury. However, the effects of EF on microglial activation and the resolution of post-stroke neuroinflammation remains unknown. Here, we found that EF suppressed pro-inflammatory response triggered by lipopolysaccharide (LPS) stimulation in primary microglia and BV2 cell lines, as well as post-stroke neuroinflammation in an in vivo transient middle cerebral artery occlusion (tMCAO) stroke model in C57BL/6 mice, consequently ameliorating ischemic brain injury. Furthermore, EF could directly bind and inhibit the activity of monoamine oxidase B (MAO-B) to reduce pro-inflammatory response. Taken together, our study identified a MAO-B inhibitor, Ethyl ferulate, as an active compound with promising potentials for suppressing post-stroke neuroinflammation.
Collapse
Affiliation(s)
- Xinxin Zou
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China
| | - Shenghan Gao
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Jiangnan Li
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Chenggang Li
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Chuyu Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Shengnan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Pengfei Shao
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Haiyan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- *Correspondence: Pinyi Liu, ; Yun Xu,
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, China
- Nanjing Neurology Medical Center, Nanjing, China
- *Correspondence: Pinyi Liu, ; Yun Xu,
| |
Collapse
|
7
|
Su Y, Guo C, Chen Q, Guo H, Wang J, Mu K, Chen D. Construction of bionanoparticles based on Angelica polysaccharides for the treatment of stroke. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102570. [PMID: 35623564 DOI: 10.1016/j.nano.2022.102570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Ischemic stroke is an acute and severe neurological disease, resulting in disability and death. The poor drug delivery to cerebral ischemic regions is a key challenge of ischemic stroke treatment. Inspired by the ability of Macrophage membranes to cross the blood-brain barrier, We prepared amphiphilic nanoparticles (AOE@TMP) by linking Angelica polysaccharide (APS) and Ethyl ferulate (EF) using oxalate bond (OL) as the linker arm, with an inner core encapsulated with Tetramethylpyrazine (TMP), and finally using macrophage membrane camouflage (MAOE@TMP). The experimental results show that MAOE@TMP can successfully deliver drugs to the site of brain injury and specifically release it in the microenvironment of the brain injury site, and the three active ingredients in the herb pair could potentiate and significantly reduce the cerebral infarction size.
Collapse
Affiliation(s)
- Yanguo Su
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005,PR China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003,PR China
| | - Qiang Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005,PR China; Weifang Institute of Chinese Medical Sciences and Industrial Technology, Weifang 261100, PR China; Weifang Institute of Technology, Weifang 262500, PR China
| | - Huimin Guo
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005,PR China; Weifang Institute of Chinese Medical Sciences and Industrial Technology, Weifang 261100, PR China; Weifang Institute of Technology, Weifang 262500, PR China
| | - Jinqiu Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005,PR China
| | - Kaihang Mu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005,PR China
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005,PR China.
| |
Collapse
|
8
|
Liu L, Cai F, Lu Y, Xie Y, Li H, Long C. Comparative Lipidomic and Metabolomic Analyses Reveal the Mystery of Lacquer Oil from Toxicodendron vernicifluum for the Treatment of “Yuezi” Disease in Nujiang, China: From Anti-Inflammation and Anti-Postpartum Depression Perspective. Front Pharmacol 2022; 13:914951. [PMID: 35770099 PMCID: PMC9234167 DOI: 10.3389/fphar.2022.914951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: In southwest China, especially in Nujiang, lacquer oil from the drupes of Toxicodendron vernicifluum (Stokes) F. A. Barkley, including black lacquer oil (BLO) and white lacquer oil (WLO), is one of the most important edible oils for the local people. Through the field investigation, the locals believe that lacquer oil has benefits for parturient women and for the treatment of “Yuezi” disease. However, studies on bioactivities and the chemical compositions of lacquer oil are limited.Purpose: This study was designed to reveal the mystery of lacquer oil for the treatment of “Yuezi” disease by testing its anti-inflammatory and anti-postpartum depressant activities and related bioactive compounds.Methods: The anti-inflammatory effects of lacquer oil were examined by establishing a lipopolysaccharide (LPS)-induced RAW264.7 cell inflammation model and detecting the level of pro-inflammatory factors such as NO, IL-6 and TNF-α. The antidepressant effects of lacquer oil were studied by building a mouse model of postpartum depression (PPD), and the animal behavior changes of PPD model mice were assessed by open field test (OFT), forced swimming test (FST) and tail suspension test (TST). The chemical profiles of BLO and WLO were detected by lipidomic and the untargeted metabolomic research methods based on UPLC-MS/MS.Results: The results showed that BLO and WLO exerted anti-inflammatory effects by reducing the release of pro-inflammatory factors and BLO had better anti-inflammatory effects than WLO. While only BLO had anti-postpartum depressant activities, as evidenced by the significantly reduced the immobility time of the BLO-treated PPD mice in TST and FST compared to the PPD model mice. The comparative lipidomic analysis revealed that BLO contained high levels of Diacylglycerols (DAG) and Diacylglyceryl trimethylhomoserines (DGTS) but low level of ceramides (Cer), sphingomyelines (SM), phosphatidylcholines (PC) and phosphatidylethanolamines (PE) compared with WLO. Metabolomics analysis showed that there were 57 chemical markers between BLO and WLO, of which 17 potential biomarkers have been declared to possess anti-inflammatory and/or antidepressant activities.Conclusion: The findings of this study furnish a scientific support for the traditional uses of lacquer oil for the treatment of “Yuezi” disease from anti-inflammation and anti-postpartum depression perspective.
Collapse
Affiliation(s)
- Liya Liu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Fei Cai
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Yitong Lu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yuting Xie
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Hao Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
- *Correspondence: Chunlin Long, ,
| |
Collapse
|
9
|
Pang M, Xie X, Zhang Y, Laster KV, Liu K, Kim DJ. Ethyl Ferulate Suppresses Esophageal Squamous Cell Carcinoma Tumor Growth Through Inhibiting the mTOR Signaling Pathway. Front Oncol 2022; 11:780011. [PMID: 35155187 PMCID: PMC8833257 DOI: 10.3389/fonc.2021.780011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Ethyl ferulate is a phenylpropanoid compound isolated from the medicinal herb Ferula. Although ethyl ferulate has anti-inflammatory, antioxidant, and neuroprotective activities with potential use in the nutraceutical and pharmaceutical industry, its anticancer effects and underlying molecular mechanisms against esophageal squamous cell carcinoma (ESCC) have not been investigated. This study investigates the anticancer activity and molecular mechanism of ethyl ferulate in ESCC. MTT, focus formation, soft agar, and cell cycle analysis were used to determine the effect of ethyl ferulate on cell proliferation and cell cycle. Potential candidate proteins were screened and verified via Western blotting, in vitro kinase assay, and in vitro pull-down assay. Mammalian target of rapamycin (mTOR) knockdown cell lines were established by lentiviral infection with shmTOR. The effect of ethyl ferulate on tumor growth was assessed using ESCC patient-derived xenograft models. Ethyl ferulate significantly inhibited cell growth and induced G1 phase cell cycle arrest in ESCC cells. Ethyl ferulate reduced the activity of mTOR in vitro. The inhibition of ESCC cell growth by ethyl ferulate is dependent on mTOR expression. In addition, ethyl ferulate strongly reduced ESCC patient-derived xenograft tumor growth in an in vivo mouse model. Ethyl ferulate is an mTOR inhibitor that can suppress ESCC progression and may be a novel candidate compound for esophageal cancer chemoprevention.
Collapse
Affiliation(s)
- Mengjun Pang
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xiaomeng Xie
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yuanyuan Zhang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | | | - Kangdong Liu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,International Joint Research Center of Cancer Chemoprevention, Zhengzhou, China
| | - Dong Joon Kim
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
10
|
Wu YX, Wang YY, Gao ZQ, Chen D, Liu G, Wan BB, Jiang FJ, Wei MX, Zuo J, Zhu J, Chen YQ, Qian F, Pang QF. Ethyl ferulate protects against lipopolysaccharide-induced acute lung injury by activating AMPK/Nrf2 signaling pathway. Acta Pharmacol Sin 2021; 42:2069-2081. [PMID: 34417573 DOI: 10.1038/s41401-021-00742-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Ethyl ferulate (EF) is abundant in Rhizoma Chuanxiong and grains (e.g., rice and maize) and possesses antioxidative, antiapoptotic, antirheumatic, and anti-inflammatory properties. However, its effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) is still unknown. In the present study, we found that EF significantly alleviated LPS-induced pathological damage and neutrophil infiltration and inhibited the gene expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) in murine lung tissues. Moreover, EF reduced the gene expression of TNF-α, IL-1β, IL-6, and iNOS and decreased the production of NO in LPS-stimulated RAW264.7 cells and BMDMs. Mechanistic experiments revealed that EF prominently activated the AMPK/Nrf2 pathway and promoted Nrf2 nuclear translocation. AMPK inhibition (Compound C) and Nrf2 inhibition (ML385) abolished the beneficial effect of EF on the inflammatory response. Furthermore, the protective effect of EF on LPS-induced ALI was not observed in Nrf2 knockout mice. Taken together, the results of our study suggest that EF ameliorates LPS-induced ALI in an AMPK/Nrf2-dependent manner. These findings provide a foundation for developing EF as a new anti-inflammatory agent for LPS-induced ALI/ARDS therapy.
Collapse
|
11
|
Di Lena G, Sanchez del Pulgar J, Lucarini M, Durazzo A, Ondrejíčková P, Oancea F, Frincu RM, Aguzzi A, Ferrari Nicoli S, Casini I, Gabrielli P, Caproni R, Červeň I, Lombardi-Boccia G. Valorization Potentials of Rapeseed Meal in a Biorefinery Perspective: Focus on Nutritional and Bioactive Components. Molecules 2021; 26:6787. [PMID: 34833884 PMCID: PMC8618708 DOI: 10.3390/molecules26226787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
Rapeseed meal (RSM), a by-product of oilseed extraction connected to the agri-food and biofuel sectors, is currently used as animal feed and for other low-value purposes. With a biorefinery approach, RSM could be valorized as a source of bio-based molecules for high-value applications. This study provides a chemical characterization of RSM in the perspective of its valorization. A qualitative study of main functional groups by fourier transform infrared (FTIR) spectroscopy was integrated with a chemical characterization of macronutrients, minerals by inductively coupled plasma optical emission spectrometry (ICP-OES), phenolic acids and lipid components by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), HPLC-diode-array detector (HPLC-DAD) and gas chromatography-mass spectrometry/flame ionization detector (GC-MS/FID). The study, conducted on different lots of RSM collected over a one-year period from an oil pressing factory serving a biofuel biorefinery, highlighted a constant quality over time of RSM, characterized by high protein (31-34%), fiber (33-40%) and mineral (5.5-6.8%) contents. Polyphenol extracts showed a significant antioxidant activity and a prevalence of sinapic acid, accounting for more than 85% of total phenolic acids (395-437 mg kg-1 RSM). Results highlight the potentialities of RSM for further valorization strategies that may lead to the creation of new cross-sector interconnections and bio-based value chains with improvement of the economics and sustainability of the bioeconomy sectors involved.
Collapse
Affiliation(s)
- Gabriella Di Lena
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Jose Sanchez del Pulgar
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Massimo Lucarini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Alessandra Durazzo
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | | | - Florin Oancea
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (F.O.); (R.-M.F.)
| | - Rodica-Mihaela Frincu
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (F.O.); (R.-M.F.)
| | - Altero Aguzzi
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Stefano Ferrari Nicoli
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Irene Casini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Paolo Gabrielli
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Roberto Caproni
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Igor Červeň
- Poľnoservis a.s., Trnavská Cesta, 920 41 Leopoldov, Slovakia;
| | - Ginevra Lombardi-Boccia
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| |
Collapse
|
12
|
Bomfim de Sá C, Brito Lira A, Filho AADO, de Oliveira KM, Rolim da Paz A, Castro de Morais M, de Sousa DP, Tafaela Dias G, Rodrigues Melo C, Pessôa HDLF, Maria Bezerra Luna Lima C, de Fátima Formiga Melo Diniz M. In silico, in vitro, and in vivo investigation of antioxidant potential and toxicity of ethyl ferulate. Drug Chem Toxicol 2021; 45:1769-1779. [PMID: 33632037 DOI: 10.1080/01480545.2021.1878207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
By submitting this manuscript, each author certifies that they have made a direct and substantial contribution to the work reported in the manuscript. In this manuscript the conception, design, investigation, acquisition of data and analysis, interpretation of data and writing of the article were conducted by author Camila Bomfim de Sá under the guidance of professors Margareth de Fátima Formiga Melo Diniz, Hilzeth de Luna Freire Pessôa and Caliandra Maria Bezerra Luna Lima, who also approved the final version of the manuscript. Professor Damião Pergentino de Sousa and his student Mayara Castro de Morais performed the production, synthesis and chemical characterization of ethyl ferulate (EF). Professor Abrahão Alves de Oliveira Filho assessed the in silico tests. PhD student Andressa Brito Lira participated in the critical review of the text for important intellectual content and assisted in the in vitro antioxidant activity and cytotoxicity tests. Kardilandia Mendes de Oliveira participated in acute oral toxicity tests evaluating the biochemical parameters. Students, Tafaela Dias and Cinthia Rodrigues Melo also assisted in the acute oral toxicity testing and preparing of slides for histopathological analysis. Pathologist Alexandre Rolim da Paz analyzed the histopathology results. EF, a phenolic compound of the large class of phenylpropanoids, is derived from ferulic acid and is produced both naturally and synthetically. Its principal pharmacological activities are: anti-inflammatory and antioxidant activity. This study aimed to investigate the in silico, in vitro and in vivo toxicity and antioxidant activity of EF. The in silico prediction showed more than 20 biological activities as well as good absorption at the biological membranes and no theoretical toxicity. However, EF presented high environmental toxicity. EF presented low hemolytic potential and exerted protective activity for the erythrocyte membrane for only blood type O. EF presented antioxidant activity against H2O2 at all concentrations and all blood types, but no effect against phenylhydrazine, being unable to prevent its oxidative effects. In the acute nonclinical toxicological trial, the treated animals presented behavioral changes (e.g., sedation). Feed intake was higher for the 2000 mg/kg group, but with no significant difference in weight change. The biochemical parameters presented no differences between treated and control animals, and the organs remained intact with no change. Thus, EF presents a low toxic profile and this study provides important information about the toxicity of this compound, suggesting future safe use.
Collapse
Affiliation(s)
- Camila Bomfim de Sá
- Program of Postgraduate Studies in Natural Products and Synthetic Bioactive, Federal University of Paraíba, João Pessoa, Brazil
| | - Andressa Brito Lira
- Program of Postgraduate Studies in Natural Products and Synthetic Bioactive, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Kardilandia Mendes de Oliveira
- Program of Postgraduate Studies in Development and Technological Innovation in Medicine, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Mayara Castro de Morais
- Program of Postgraduate Studies in Natural Products and Synthetic Bioactive, Federal University of Paraíba, João Pessoa, Brazil
| | - Damião Pergentino de Sousa
- Program of Postgraduate Studies in Natural Products and Synthetic Bioactive, Federal University of Paraíba, João Pessoa, Brazil.,Program of Postgraduate Studies in Development and Technological Innovation in Medicine, Federal University of Paraíba, João Pessoa, Brazil.,Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Gabriela Tafaela Dias
- Program of Postgraduate Studies in Natural Products and Synthetic Bioactive, Federal University of Paraíba, João Pessoa, Brazil
| | - Cinthia Rodrigues Melo
- Program of Postgraduate Studies in Natural Products and Synthetic Bioactive, Federal University of Paraíba, João Pessoa, Brazil
| | - Hilzeth de Luna Freire Pessôa
- Program of Postgraduate Studies in Development and Technological Innovation in Medicine, Federal University of Paraíba, João Pessoa, Brazil.,Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Margareth de Fátima Formiga Melo Diniz
- Program of Postgraduate Studies in Natural Products and Synthetic Bioactive, Federal University of Paraíba, João Pessoa, Brazil.,Program of Postgraduate Studies in Development and Technological Innovation in Medicine, Federal University of Paraíba, João Pessoa, Brazil.,Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
13
|
Kaikini AA, Muke S, Peshattiwar V, Bagle S, Dighe V, Sathaye S. Ethyl ferulate, a lipophilic phenylpropanoid, prevents diabetes-associated renal injury in rats by amelioration of hyperglycemia-induced oxidative stress via activation of nuclear factor erythroid 2-related factor 2. J Food Biochem 2021; 45:e13607. [PMID: 33587296 DOI: 10.1111/jfbc.13607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022]
Abstract
Diabetic nephropathy affects approximately 20%-40% of diabetes patients worldwide and is the leading cause of end-stage renal failure. Oxidative stress has been identified as a major causative factor in the development and progression of diabetic nephropathy; Nuclear factor erythroid 2-related factor 2 (Nrf2) activation protects the body against oxidative stress by induction of antioxidant enzymes. The renoprotective effect of ethyl ferulate was investigated in diabetes-induced renal injury. Ethyl ferulate was administered orally at three doses (50 mg/kg, 75 mg/kg, and 100 mg/kg). Metformin (500 mg/kg, p.o.) was used as a standard. Ethyl ferulate treatment decreased serum advanced glycation end products, glycosylated hemoglobin (HbA1c) levels, renal oxidative stress, tumor necrosis factor-α (TNF-α) level, and kidney hypertrophy index. It restored serum lipid profile, biomarkers of renal function, and mitigated histopathological signs of renal damage. Immunohistochemistry demonstrated higher Nrf2 protein levels in kidney sections of ethyl ferulate-treated rats. These findings suggest that ethyl ferulate ameliorated hyperglycemia-induced oxidative stress by increasing renal Nrf2 levels, thereby preventing diabetes-induced kidney injury. In conclusion, the present study endorses the usefulness of Nrf2 activators, such as ethyl ferulate, as adjuvant therapy for preventing the diabetic nephropathy. PRACTICAL APPLICATIONS: Ethyl ferulate (ethyl-3-hydroxyl-4-methoxycinnamate), a phenylpropanoid, is a naturally occurring ethyl ester of ferulic acid and is widely present in plants and especially grains, such as rice and maize. Our study has highlighted the renoprotective effect of ethyl ferulate in preventing diabetes-associated renal injury. The observed effect of ethyl ferulate is due to amelioration of diabetes-induced oxidative stress and inflammation, by activation of the Nrf2 pathway. These results indicate the potential of ethyl ferulate as a nutraceutical or adjuvant therapy in prevention of diabetic nephropathy.
Collapse
Affiliation(s)
- Aakruti Arun Kaikini
- Pharmacology Research Lab-II, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Suraj Muke
- Pharmacology Research Lab-II, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Vaibhavi Peshattiwar
- Pharmacology Research Lab-II, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Sneha Bagle
- Pharmacology Research Lab-II, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Vikas Dighe
- Department of Toxicology, National Institute of Research in Reproductive Health, Mumbai, India
| | - Sadhana Sathaye
- Pharmacology Research Lab-II, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
14
|
Sombutsuwan P, Jirattisakul A, Nakornsadet A, Akepratumchai S, Chumsantea S, Pojjanapornpun S, Lilitchan S, Krisnangkura K, Aryusuk K. A Simple and Efficient Method for Synthesis and Extraction of Ethyl Ferulate from γ-Oryzanol. J Oleo Sci 2021; 70:757-767. [PMID: 34078757 DOI: 10.5650/jos.ess20180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ethyl ferulate (EF) is a ferulic acid (FA) derivative with high commercial value. It is not found naturally and is mostly synthesized from FA via esterification with ethanol. The present work aimed to synthesize the EF from γ-oryzanol, a natural antioxidant from rice bran oil via acid-catalyzed transethylation at refluxing temperature of ethanol. The reaction was optimized by central composite design (CCD) under response surface methodology. Based on the CCD, the optimum condition for the synthesis of EF from 0.50 g of γ-oryzanol was as follows: γ-oryzanol to ethanol ratio of 0.50:2 (g/mL), 12.30% (v/v) H2SO4, and a reaction time of 9.37 h; these conditions correspond to a maximum EF yield of 87.11%. Moreover, the optimized transethylation condition was further validated using 12.50 g of γ-oryzanol. At the end of the reaction time, distilled water was added as antisolvent to selectively crystallize the co-products, phytosterol and unreacted γ-oryzanol, by adjusting the ethanol concentration to 49.95% (v/v). The recovery yield of 83.60% with a purity of 98% of EF was achieved. In addition, the DPPH and ABTS assays showed similar antioxidant activities between the prepared and commercial EF.
Collapse
Affiliation(s)
- Piraporn Sombutsuwan
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi
| | - Apiwat Jirattisakul
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi
| | - Akkaradech Nakornsadet
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi
| | - Saengchai Akepratumchai
- Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi
| | - Salisa Chumsantea
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi
| | - Siriluck Pojjanapornpun
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology, Thonburi (KMUTT)
| | | | - Kanit Krisnangkura
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi
| | - Kornkanok Aryusuk
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi
| |
Collapse
|
15
|
Cunha FVM, do Nascimento Caldas Trindade G, da Silva Azevedo PS, Coêlho AG, Braz EM, Pereira de Sousa Neto B, de Rezende DC, de Sousa DP, de Assis Oliveira F, Nunes LCC. Ethyl ferulate/β-cyclodextrin inclusion complex inhibits edema formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111057. [DOI: 10.1016/j.msec.2020.111057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/26/2020] [Accepted: 05/04/2020] [Indexed: 01/20/2023]
|
16
|
Coelho AG, Dos Santos WRP, Dos Santos AA, da Silva MG, Cunha FVM, Mendes AN, Arcanjo DDR. Plant-Derived Butters as Lipid Nanocarriers: A Systematic and Prospective Review. RECENT PATENTS ON NANOTECHNOLOGY 2020; 14:262-275. [PMID: 32442090 DOI: 10.2174/1872210514666200522213144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/29/2020] [Accepted: 03/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Pharmaceutical nanotechnology represents an efficient alternative for the delivery of pharmacologically active plant-derived compounds, considering their protective capacity, oral bioavailability and drug vectorization capacity. In this context, butters obtained from plant seeds have emerged as promising products for the development of pharmacologically active nanostructures. They possess a complex lipid composition, allowing the formation of different emulsion systems with solid cores, since this mixture of different triglycerides is solid at room temperature and body temperature. Therefore, the systematic mapping around the technological development of nanostructures produced from plant-derived butters is potentially valuable for researchers interested in novel alternative formulations for pharmacological therapy, with potential industrial, economic, health and societal impacts. METHODS Systematic review was carried out by the search of scientific papers and patents deposited in official databases concerning the development of nanostructured pharmaceutical products using plantderived butters as starting material. The publications obtained were subjected to sorting and analysis by applying the following inclusion/exclusion criteria. RESULTS The Solid Lipid Nanoparticle (SLN) was the type of nanostructure produced in all the analyzed scientific papers, due to the physicochemical characteristics of the lipid constituents of plantderived butters. In this sense, 54% of the articles have reported the use of Cocoa Butter for the production of nanostructures; 28% for Shea Butter; 6% for Cupuacu Butter, 6% for Murumuru Butter and 6% for Bacuri Butter. DISCUSSION In the technological prospection, only two patents exhibited SLN as an invention based on cocoa butter and on shea butter, respectively. The production methods employed have included: phase inversion temperature, microemulsion, hot high pressure homogenization, high shear homogenization and ultrasonication. CONCLUSION In light of this prospective review, the encouragement of novel studies in lipids-based nanotechnology is evident, considering the small number of findings so far, in order to stimulate new research involving plant-derived butters from easily cultivated fruits in tropical regions, then stimulating the pharmaceutical development of new therapeutic alternatives using biocompatible and sustainable raw materials.
Collapse
Affiliation(s)
- Angélica G Coelho
- Department of Biophysics and Physiology, Laboratory of Functional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Brazil
| | - Webysten R P Dos Santos
- Department of Biophysics and Physiology, Laboratory of Functional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Brazil
| | - Andressa A Dos Santos
- Department of Biophysics and Physiology, Laboratory of Functional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Brazil
| | - Maisa G da Silva
- Department of Biophysics and Physiology, Laboratory of Functional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Brazil
| | - Francisco V Macedo Cunha
- Department of Biophysics and Physiology, Laboratory of Functional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Brazil
| | - Anderson N Mendes
- Laboratory of Innovation on Science and Technology, Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | - Daniel D R Arcanjo
- Department of Biophysics and Physiology, Laboratory of Functional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|