1
|
Zhai J, Wang Z, Zhang T, He L, Ma S, Zuo Q, Zhang G, Wang X, Guo Y. Canagliflozin and irbesartan ameliorate renal fibrosis via the TGF-β1/Smad signaling pathway in Dahl salt-sensitive rats. J Int Med Res 2023; 51:3000605231206289. [PMID: 37862678 PMCID: PMC10590049 DOI: 10.1177/03000605231206289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023] Open
Abstract
OBJECTIVES This study assessed the antifibrotic effects of canagliflozin, with or without irbesartan, on renal injury in Dahl salt-sensitive (SS) rats fed a high-salt (HS) diet. METHODS After the preconditioning stage, Dahl SS rats (n = 47) were divided into five experimental groups as follows: low-salt (LS, n = 7), HS (n = 10), HS with canagliflozin (n = 10), HS with irbesartan (n = 10), and HS with canagliflozin and irbesartan (n = 10). RESULTS The HS diet increased systolic blood pressure (SBP), renal fibrosis, fibrotic protein expression, and transforming growth factor-β1 (TGF-β1)/Smad2/3 pathway protein expression compared with the findings in the LS group. Irbesartan reduced SBP and slowed the loss of renal function. Canagliflozin significantly reduced body weight and renal fibrosis and suppressed the TGF-β1/Smad2/3 pathway. The combined therapy exerted better renoprotective effects on all outcome parameters. CONCLUSIONS These results indicate that canagliflozin and irbesartan exert different effects on renal injury in SS hypertensive rats, and the combined regimen could have stronger effects than either monotherapy.
Collapse
Affiliation(s)
- Jianlong Zhai
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Zhongli Wang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Medical Examination Center, Hebei General Hospital, Shijiazhuang, China
| | - Tingting Zhang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Lili He
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Sai Ma
- Department of Pain Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Qingjuan Zuo
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Guorui Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Cardiology, The Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Xinyu Wang
- Department of Internal Medicine, Hebei North University, Zhangjiakou, China
| | - Yifang Guo
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
2
|
Jaikumkao K, Promsan S, Thongnak L, Swe MT, Tapanya M, Htun KT, Kothan S, Intachai N, Lungkaphin A. Dapagliflozin ameliorates pancreatic injury and activates kidney autophagy by modulating the AMPK/mTOR signaling pathway in obese rats. J Cell Physiol 2021; 236:6424-6440. [PMID: 33559163 DOI: 10.1002/jcp.30316] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/30/2020] [Accepted: 01/27/2021] [Indexed: 02/05/2023]
Abstract
Chronic consumption of a high-fat diet induces obesity and impairs the ultra-structure of organs and tissues. We examined the effect of sodium-glucose cotransporter 2 (SGLT2) inhibitor-dapagliflozin on renal and pancreatic injuries in obese condition. Rats were fed a high-fat diet for 16 weeks to induce obesity. After that, dapagliflozin or vildagliptin, 1.0 or 3.0 mg/kg/day, respectively, was administered by oral gavage for 4 weeks. The effects of dapagliflozin on insulin resistance, kidney autophagy, pancreatic oxidative stress, endoplasmic reticulum (ER) stress, inflammation, and apoptosis in high-fat diet-induced obese rats were elucidated. High-fat-diet fed rats demonstrated metabolic abnormalities including increased body weight, visceral fat weight, plasma insulin, plasma cholesterol, homeostasis model assessment (HOMA) index, and TAUCg, indicating the obese-insulin resistant and glucose intolerance conditions. Also, high-fat-diet fed rats exhibited significant pancreatic injury accompanied by decreased kidney autophagy. Dapagliflozin or vildagliptin treatment for 4 weeks ameliorated pancreatic oxidative stress, ER stress, inflammation, and apoptosis and restored kidney autophagy in obese rats. Moreover, the morphology changes of the pancreas and kidney were improved in the treated groups. Interestingly, dapagliflozin showed higher efficacy than vildagliptin in improving body weight, visceral fat weight, plasma cholesterol level, and pancreatic oxidative stress in our model. Taken together, the present study demonstrated that the therapeutic effects of dapagliflozin attenuated pancreatic injury, pancreatic oxidative stress, ER stress, inflammation, apoptosis, and exerted renoprotective effects by restoring autophagic signaling in obese rats.
Collapse
Affiliation(s)
- Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Center of Radiation Research and Medical Imaging, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Myat T Swe
- Department of Physiology, University of Medicine 2, Yangon, Yangon, Myanmar
| | - Monruedee Tapanya
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Khin T Htun
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Suchart Kothan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Center of Radiation Research and Medical Imaging, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttawadee Intachai
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Pafili K, Roden M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol Metab 2021; 50:101122. [PMID: 33220492 PMCID: PMC8324683 DOI: 10.1016/j.molmet.2020.101122] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) comprises hepatic alterations with increased lipid accumulation (steatosis) without or with inflammation (nonalcoholic steatohepatitis, NASH) and/or fibrosis in the absence of other causes of liver disease. NAFLD is developing as a burgeoning health challenge, mainly due to the worldwide obesity and diabetes epidemics. SCOPE OF REVIEW This review summarizes the knowledge on the pathogenesis underlying NAFLD by focusing on studies in humans and on hypercaloric nutrition, including effects of saturated fat and fructose, as well as adipose tissue dysfunction, leading to hepatic lipotoxicity, abnormal mitochondrial function, and oxidative stress, and highlights intestinal dysbiosis. These mechanisms are discussed in the context of current treatments targeting metabolic pathways and the results of related clinical trials. MAJOR CONCLUSIONS Recent studies have provided evidence that certain conditions, for example, the severe insulin-resistant diabetes (SIRD) subgroup (cluster) and the presence of an increasing number of gene variants, seem to predispose for excessive risk of NAFLD and its accelerated progression. Recent clinical trials have been frequently unsuccessful in halting or preventing NAFLD progression, perhaps partly due to including unselected cohorts in later stages of NAFLD. On the basis of this literature review, this study proposed screening in individuals with the highest genetic or acquired risk of disease progression, for example, the SIRD subgroup, and developing treatment concepts targeting the earliest pathophysiolgical alterations, namely, adipocyte dysfunction and insulin resistance.
Collapse
Affiliation(s)
- Kalliopi Pafili
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Michael Roden
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
4
|
Pafili K, Papanas N. Sodium-glucose cotransporter-2 inhibitors in type 2 diabetes: a magic potion to reduce heart failure? Expert Rev Clin Pharmacol 2019; 12:693-695. [PMID: 31232616 DOI: 10.1080/17512433.2019.1635453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- K Pafili
- a Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis , Alexandroupolis , Greece
| | - N Papanas
- a Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis , Alexandroupolis , Greece
| |
Collapse
|
5
|
Huang F, Zhao Y, Wang Q, Hillebrands JL, van den Born J, Ji L, An T, Qin G. Dapagliflozin Attenuates Renal Tubulointerstitial Fibrosis Associated With Type 1 Diabetes by Regulating STAT1/TGFβ1 Signaling. Front Endocrinol (Lausanne) 2019; 10:441. [PMID: 31333586 PMCID: PMC6616082 DOI: 10.3389/fendo.2019.00441] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Tubulointerstitial fibrosis (TIF) plays an important role in the progression of renal fibrosis in diabetic nephropathy (DN). Accumulating evidence supports a crucial inhibitory effect of dapagliflozin, a SGLT2 inhibitor, on TIF, but the underlying mechanisms remain largely unknown. This study aimed to shed light on the efficacy of dapagliflozin in reducing TIF as well as its possible impact on renal function. TIF in human kidney biopsies obtained from patients with DN was quantified by histopathological staining. In vitro, HK-2 cells were incubated in high glucose with dapagliflozin or fludarabine, and epithelial-mesenchymal transition (EMT) was determined. In vivo experiments were performed in streptozotocin (STZ)-induced type 1 diabetic mice treated with dapagliflozin by gavage for 16 weeks, after which specific functional characteristics and TIF were analyzed. In both DN patients and diabetic mice, fibronectin and Col IV, as well as STAT1 protein in the kidneys were increased as compared with controls. Dapagliflozin significantly decreased blood glucose, and renal STAT1 and TGF-β1 expression in mice. Furthermore, dapagliflozin improved renal function, and attenuated diabetes-induced TIF. In HK-2 cells, dapagliflozin, and fludarabine directly decreased aberrant STAT1 expression and reversed high glucose-induced downregulation of E-cadherin and α-SMA induction. Thus, the results demonstrate that dapagliflozin not only improves hyperglycemia but also slows down the progression of diabetes-associated renal TIF by improving hyperglycemia-induced activation of the STAT1/TGF-β1 pathway.
Collapse
Affiliation(s)
- Fengjuan Huang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Pathology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yanyan Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingzhu Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jan-Luuk Hillebrands
- Division of Pathology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jacob van den Born
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Linlin Ji
- Division of Pathology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tingting An
- Division of Pathology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Guijun Qin
| |
Collapse
|
6
|
Vas PRJ, Panagopoulos P, Papanas N. Diabetic Foot Fungal Osteomyelitis: No Longer Unknown and Hidden? INT J LOW EXTR WOUND 2018; 17:142-143. [DOI: 10.1177/1534734618794575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
7
|
Li Z, Xu X, Deng L, Liao R, Liang R, Zhang B, Zhang L. Design, synthesis and biological evaluation of nitric oxide releasing derivatives of dapagliflozin as potential anti-diabetic and anti-thrombotic agents. Bioorg Med Chem 2018; 26:3947-3952. [PMID: 29954682 DOI: 10.1016/j.bmc.2018.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 11/17/2022]
Abstract
The cardiovascular complications were highly prevalent in type 2 diabetes mellitus (T2DM), even at the early stage of T2DM or the state of intensive glycemic control. Therefore, there is an urgent need for the intervention of cardiovascular complications in T2DM. Herein, the new hybrids of NO donor and SGLT2 inhibitor were design to achieve dual effects of anti-hyperglycemic and anti-thrombosis. As expected, the preferred hybrid 2 exhibited moderate SGLT2 inhibitory effects and anti-platelet aggregation activities, and its anti-platelet effect mediated by NO was also confirmed in the presence of NO scavenger. Moreover, compound 2 revealed significantly hypoglycemic effects and excretion of urinary glucose during an oral glucose tolerance test in mice. Potent and multifunctional hybrid, such as compound 2, is expected as a potential candidate for the intervention of cardiovascular complications in T2DM.
Collapse
Affiliation(s)
- Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xue Xu
- Guangzhou General Pharmaceutical Research Institute Co., Ltd., Guangzhou 510240, PR China
| | - Liming Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ruoxian Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ruiying Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Bo Zhang
- Department of Clinical Laboratory Science, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, PR China.
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
8
|
Pafili K, Maltezos E, Papanas N. Ipragliflozin and sodium glucose transporter 2 inhibitors to reduce liver fat: will the prize we sought be won? Expert Opin Pharmacother 2017; 19:185-187. [DOI: 10.1080/14656566.2017.1413346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kalliopi Pafili
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Efstratios Maltezos
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| |
Collapse
|
9
|
Xiu C, Hua Z, Xiao BS, Tang WJ, Zhou HP, Liu XH. Novel benzopyran derivatives and their therapeutic applications: a patent review (2009-2016). Expert Opin Ther Pat 2017. [PMID: 28627270 DOI: 10.1080/13543776.2017.1338687] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The benzopyran derivatives present a wide variety of biological activity and behaviour. At the same time the benzopyran derivatives support their use as therapeutic agents for multiple diseases. Their structural characteristics correlated to physicochemical properties seem to define the extent of the biological activity. Areas covered: This review summarizes new patents published on new benzopyran derivatives from 2009 to 2016. Expert opinion: Many benzopyran derivatives have vivo/vitro biological responses. Their clinical evaluation will be critical to assess therapeutic utility. The compounds containing benzopyran moiety is well defined as lead compounds for design of new more promising molecules.
Collapse
Affiliation(s)
- Cheng Xiu
- a School of Material Science Chemical Engineering , ChuZhou University , ChuZhou , P. R. China.,b School of Pharmacy , BengBu Medical College , BengBu , P. R. China
| | - Zhou Hua
- a School of Material Science Chemical Engineering , ChuZhou University , ChuZhou , P. R. China
| | - Bao Sheng Xiao
- a School of Material Science Chemical Engineering , ChuZhou University , ChuZhou , P. R. China
| | - Wen Jian Tang
- a School of Material Science Chemical Engineering , ChuZhou University , ChuZhou , P. R. China
| | - Hai Pin Zhou
- c School of Pharmacy , Anhui Medical University , Hefei , P. R. China
| | - Xin Hua Liu
- a School of Material Science Chemical Engineering , ChuZhou University , ChuZhou , P. R. China.,c School of Pharmacy , Anhui Medical University , Hefei , P. R. China
| |
Collapse
|
10
|
Pafili K, Maltezos E, Papanas N. Dapagliflozin for the treatment of type 1 diabetes mellitus. Expert Opin Investig Drugs 2017; 26:873-881. [DOI: 10.1080/13543784.2017.1339788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kalliopi Pafili
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Efstratios Maltezos
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| |
Collapse
|