1
|
Hong J, Li Y, Chen L, Han D, Li Y, Mi X, Liu K, Wang Q, Song Y, Liu T, Yang N, Liu Y, Li Z, Guo X. A53T α-synuclein mutation increases susceptibility to postoperative delayed neurocognitive recovery via hippocampal Ang-(1-7)/MasR axis. Biochem Pharmacol 2024; 224:116261. [PMID: 38705534 DOI: 10.1016/j.bcp.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Delayed neurocognitive recovery (dNCR) is a common complication in geriatric surgical patients. The impact of anesthesia and surgery on patients with neurodegenerative diseases, such as Parkinson's disease (PD) or prion disease, has not yet been reported. In this study, we aimed to determine the association between a pre-existing A53T genetic background, which involves a PD-related point mutation, and the development of postoperative dNCR. We observed that partial hepatectomy induced hippocampus-dependent cognitive deficits in 5-month-old A53T transgenic mice, a model of early-stage PD without cognitive deficits, unlike in age-matched wild-type (WT) mice. We respectively examined molecular changes at 6 h, 1 day, and 2 days after partial hepatectomy and observed that cognitive changes were accompanied by weakened angiotensin-(1-7)/Mas receptor [Ang-(1-7)/MasR] axis, increased alpha-synuclein (α-syn) expression and phosphorylation, decreased methylated protein phosphatase-2A (Me-PP2A), and prompted microglia M1 polarization and neuronal apoptosis in the hippocampus at 1 day after surgery. Nevertheless, no changes in blood-brain barrier (BBB) integrity or plasma α-syn levels in either A53T or WT mice. Furthermore, intranasal administration of selective MasR agonist AVE 0991, reversed the mentioned cognitive deficits in A53T mice, enhanced MasR expression, reduced α-syn accumulation and phosphorylation, and attenuated microglia activation and apoptotic response. Our findings suggest that individuals with the A53T genetic background may be more susceptible to developing postoperative dNCR. This susceptibility could be linked to central α-syn accumulation mediated by the weakened Ang-(1-7)/MasR/methyl-PP2A signaling pathway in the hippocampus following surgery, independent of plasma α-syn level and BBB.
Collapse
Affiliation(s)
- Jingshu Hong
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Lei Chen
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Qian Wang
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yanan Song
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Beijing Center of Quality Control and Improvement on Clinical Anesthesia, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yajie Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Beijing Center of Quality Control and Improvement on Clinical Anesthesia, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), No. 49, North Garden Street, Haidian District, Beijing 100191, China.
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Beijing Center of Quality Control and Improvement on Clinical Anesthesia, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), No. 49, North Garden Street, Haidian District, Beijing 100191, China.
| |
Collapse
|
2
|
Sołtys K, Tarczewska A, Bystranowska D. Modulation of biomolecular phase behavior by metal ions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119567. [PMID: 37582439 DOI: 10.1016/j.bbamcr.2023.119567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Liquid-liquid phase separation (LLPS) appears to be a newly appreciated aspect of the cellular organization of biomolecules that leads to the formation of membraneless organelles (MLOs). MLOs generate distinct microenvironments where particular biomolecules are highly concentrated compared to those in the surrounding environment. Their thermodynamically driven formation is reversible, and their liquid nature allows them to fuse with each other. Dysfunctional biomolecular condensation is associated with human diseases. Pathological states of MLOs may originate from the mutation of proteins or may be induced by other factors. In most aberrant MLOs, transient interactions are replaced by stronger and more rigid interactions, preventing their dissolution, and causing their uncontrolled growth and dysfunction. For these reasons, there is great interest in identifying factors that modulate LLPS. In this review, we discuss an enigmatic and mostly unexplored aspect of this process, namely, the regulatory effects of metal ions on the phase behavior of biomolecules.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
3
|
Diaw SH, Borsche M, Streubel-Gallasch L, Dulovic-Mahlow M, Hermes J, Lenz I, Seibler P, Klein C, Brüggemann N, Vos M, Lohmann K. Characterization of the pathogenic α-Synuclein Variant V15A in Parkinson´s disease. NPJ Parkinsons Dis 2023; 9:148. [PMID: 37903765 PMCID: PMC10616187 DOI: 10.1038/s41531-023-00584-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/02/2023] [Indexed: 11/01/2023] Open
Abstract
Despite being a major component of Lewy bodies and Lewy neurites, pathogenic variants in the gene encoding alpha-Synuclein (α-Syn) are rare. To date, only four missense variants in the SNCA gene, encoding α-Syn have unequivocally been shown to be disease-causing. We here describe a Parkinson´s disease patient with early cognitive decline carrying an as yet not fully characterized variant in SNCA (NM_001146055: c.44T > C, p.V15A). We used different cellular models, including stably transfected neuroblastoma (SH-SY5Y) cell cultures, induced pluripotent stem cell (iPSC)-derived neuronal cultures, and generated a Drosophila model to elucidate the impact of the p.V15A variant on α-Syn function and aggregation properties compared to other known pathogenic variants. We demonstrate that p.V15A increased the aggregation potential of α-Syn and the levels of apoptotic markers, and impaired the mitochondrial network. Moreover, p.V15A affects the flying ability and survival of mutant flies. Thus, we provide supporting evidence for the pathogenicity of the p.V15A variant, suggesting its inclusion in genetic testing approaches.
Collapse
Affiliation(s)
| | - Max Borsche
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | | | | | - Julia Hermes
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Insa Lenz
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Melissa Vos
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany.
| |
Collapse
|
4
|
Prebble DW, Holland DC, Ferretti F, Hayton JB, Avery VM, Mellick GD, Carroll AR. α-Synuclein Aggregation Inhibitory and Antiplasmodial Activity of Constituents from the Australian Tree Eucalyptus cloeziana. JOURNAL OF NATURAL PRODUCTS 2023; 86:2171-2184. [PMID: 37610242 DOI: 10.1021/acs.jnatprod.3c00458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Amyloid protein aggregates are linked to the progression of neurodegenerative conditions and may play a role in life stages of Plasmodium falciparum, the parasite responsible for malaria. We hypothesize that amyloid protein aggregation inhibitors may show antiplasmodial activity and vice versa. To test this hypothesis, we screened antiplasmodial active extracts from 25 Australian eucalypt flowers using a binding affinity mass spectrometry assay to identify molecules that bind to the Parkinson's disease-implicated protein α-syn. Myrtucommulone P (1) from a flower extract of Eucalyptus cloeziana was shown to have α-syn affinity and antiplasmodial activity and to inhibit α-syn aggregation. 1 exists as a mixture of four interconverting rotamers. Assignment of the NMR resonances of all four rotamers allowed us to define the relative configuration, conformations, and ratios of rotamers in solution. Four additional new compounds, cloeziones A-C (2-4) and cloeperoxide (5), along with three known compounds were also isolated from E. cloeziana. The structures of all compounds were elucidated using HRMS and NMR analysis, and the absolute configurations for 2-4 were determined by comparison of TDDFT-calculated and experimental ECD data. Compounds 1-3 displayed antiplasmodial activities between IC50 6.6 and 16 μM. The α-syn inhibitory and antiplasmodial activity of myrtucommulone P (1) supports the hypothesized link between antiamyloidogenic and antiplasmodial activity.
Collapse
Affiliation(s)
- Dale W Prebble
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Darren C Holland
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Francesca Ferretti
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Joshua B Hayton
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Vicky M Avery
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
- Discovery Biology, Centre for Cellular Phenomics, Griffith University, Brisbane, Queensland 4111, Australia
- Infectious Diseases and Immunology, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4111, Australia
| | - George D Mellick
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|
5
|
Zhuo Y, Li X, He Z, Lu M. Pathological mechanisms of neuroimmune response and multitarget disease-modifying therapies of mesenchymal stem cells in Parkinson's disease. Stem Cell Res Ther 2023; 14:80. [PMID: 37041580 PMCID: PMC10091615 DOI: 10.1186/s13287-023-03280-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/13/2023] [Indexed: 04/13/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration of dopaminergic neurons in the substantia nigra (SN); the etiology and pathological mechanism of the disease are still unclear. Recent studies have shown that the activation of a neuroimmune response plays a key role in the development of PD. Alpha-synuclein (α-Syn), the primary pathological marker of PD, can gather in the SN and trigger a neuroinflammatory response by activating microglia which can further activate the dopaminergic neuron's neuroimmune response mediated by reactive T cells through antigen presentation. It has been shown that adaptive immunity and antigen presentation processes are involved in the process of PD and further research on the neuroimmune response mechanism may open new methods for its prevention and therapy. While current therapeutic regimens are still focused on controlling clinical symptoms, applications such as immunoregulatory strategies can delay the symptoms and the process of neurodegeneration. In this review, we summarized the progression of the neuroimmune response in PD based on recent studies and focused on the use of mesenchymal stem cell (MSC) therapy and challenges as a strategy of disease-modifying therapy with multiple targets.
Collapse
Affiliation(s)
- Yi Zhuo
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, Hunan, China
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Xuan Li
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, Hunan, China
| | - Zhengwen He
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, Hunan, China.
| | - Ming Lu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, Hunan, China.
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, 410003, Hunan, China.
| |
Collapse
|
6
|
Nwabufo CK, Aigbogun OP. Diagnostic and therapeutic agents that target alpha-synuclein in Parkinson's disease. J Neurol 2022; 269:5762-5786. [PMID: 35831620 PMCID: PMC9281355 DOI: 10.1007/s00415-022-11267-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
The development of disease-modifying drugs and differential diagnostic agents is an urgent medical need in Parkinson’s disease. Despite the complex pathophysiological pathway, the misfolding of alpha-synuclein has been identified as a putative biomarker for detecting the onset and progression of the neurodegeneration associated with Parkinson’s disease. Identifying the most appropriate alpha-synuclein-based diagnostic modality with clinical translation will revolutionize the diagnosis of Parkinson’s. Likewise, molecules that target alpha-synuclein could alter the disease pathway that leads to Parkinson’s and may serve as first-in class therapeutics compared to existing treatment options such as levodopa and dopamine agonist that do not necessarily modify the disease pathway. Notwithstanding the promising benefits that alpha-synuclein presents to therapeutics and diagnostics development for Parkinson’s disease, finding ways to address potential challenges such as inadequate preclinical models, safety and efficacy will be paramount to achieving clinical translation. In this comprehensive review paper, we described the role of alpha-synuclein in the pathogenesis of Parkinson’s disease, as well as how its structure and function relationship delineate disease onset and progression. We further discussed different alpha-synuclein-based diagnostic modalities including biomolecular assays and molecular imaging. Finally, we presented current small molecules and biologics that are being developed as disease-modifying drugs or positron emission tomography imaging probes for Parkinson’s disease.
Collapse
Affiliation(s)
- Chukwunonso K Nwabufo
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada. .,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| | - Omozojie P Aigbogun
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.,Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
7
|
Prebble DW, Er S, Hlushchuk I, Domanskyi A, Airavaara M, Ekins MG, Mellick GD, Carroll AR. α-Synuclein binding activity of the plant growth promoter asterubine. Bioorg Med Chem Lett 2022; 64:128677. [PMID: 35301136 DOI: 10.1016/j.bmcl.2022.128677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/05/2022] [Accepted: 03/12/2022] [Indexed: 11/02/2022]
Abstract
Preventing the aggregation of certain amyloid proteins has the potential to slow down the progression of diseases like Alzheimer's, Parkinson's, and type 2 diabetes mellitus. During a high-throughput screen of 300 Australian marine invertebrate extracts, the extract of the marine sponge Thorectandra sp. 4408 displayed binding activity to the Parkinson's disease-associated protein, α-synuclein. Isolation of the active component led to its identification as the known plant growth promoter asterubine (1). This molecule shares distinct structural similarities with potent amyloid beta aggregation inhibitors tramiprosate (homotaurine) and ALZ-801. Herein we report the isolation, NMR data acquired in DMSO and α-synuclein binding activity of asterubine (1).
Collapse
Affiliation(s)
- Dale W Prebble
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Safak Er
- Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Irena Hlushchuk
- Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Mikko Airavaara
- Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland; Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Merrick G Ekins
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia; Queensland Museum, South Brisbane BC, QLD 4101, Australia
| | - George D Mellick
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Anthony R Carroll
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia.
| |
Collapse
|
8
|
Hesperine, a new imidazole alkaloid and α-synuclein binding activity of 1-methyl-1,2,7,8-tetrahydro-2,8-dioxoadenosine from the marine sponge Clathria (Thalysias) cf. hesperia. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
A Microplate-Based Approach to Map Interactions between TDP-43 and α-Synuclein. J Clin Med 2022; 11:jcm11030573. [PMID: 35160025 PMCID: PMC8836581 DOI: 10.3390/jcm11030573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022] Open
Abstract
Trans-active response DNA-binding protein (TDP-43) is a multifunctional regulatory protein, whose abnormal deposition in neurons was linked to debilitating neurodegenerative diseases, such as amyotrophic lateral sclerosis, frontotemporal lobar degeneration, Limbic-predominant age-related TDP-43 encephalopathy, and Alzheimer’s disease with a secondary pathology. Several reports showed that TDP-43 proteinopathy as a comorbidity can form aggregates with other pathological proteins. The co-deposition of alpha synuclein and TDP-43 inclusions was previously reported in glial cells and by observing TDP-43 proteinopathy in Lewy body disease. In this study, it was hypothesized that alpha synuclein and TDP-43 may co-aggregate, resulting in comorbid synucleinopathy and TDP-43 proteinopathy. A solid-phase microplate-based immunoassay was used to map out the epitopes of anti-TDP-43 antibodies and locate the interaction of TDP-43 with α-synuclein. A region of the low complexity domain of TDP-43 (aa 311–314) was shown to interact with full-length α-synuclein. Conversely, full-length TDP-43 was shown to bind to the non-amyloid beta component of α-synuclein. Using in silico sequence-based prediction, the affinity and dissociation constant of full-length TDP-43 and α-synuclein were calculated to be −10.83 kcal/mol and 1.13 × 10−8, respectively. Taken together, this microplate-based method is convenient, economical, and rapid in locating antibody epitopes as well as interaction sites of two proteins.
Collapse
|
10
|
Prebble DW, Er S, Xu M, Hlushchuk I, Domanskyi A, Airavaara M, Ekins MG, Mellick GD, Carroll AR. α-synuclein aggregation inhibitory activity of the bromotyrosine derivatives aerothionin and aerophobin-2 from the subtropical marine sponge Aplysinella sp. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
11
|
Mohapatra A, Bohara VS, Kumar S, Chaudhary N. Polymyxin B accelerates the α-synuclein aggregation. Biophys Chem 2021; 277:106628. [PMID: 34118773 DOI: 10.1016/j.bpc.2021.106628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by the loss of dopaminergic neurons. It is characterised by the deposition of insoluble α-synuclein aggregates in the brain. Constipation is a common PD-associated condition, and the treatment of constipation with certain antibiotics seem to improve the PD symptoms. Polymyxin B, a last resort drug in treating the life-threatening Gram-negative bacterial infections, is one such antibiotic. The administration of polymyxin B in PD patients is known to alleviate the movement disorder symptoms; the mechanism of action, however, remains unclear. We, therefore, wondered if polymyxin B could modulate the aggregation of α-synuclein. We find that the polymyxin B catalyses the aggregation of α-synuclein into amyloid fibrils. At equimolar polymyxin B concentration, the lag phase was reduced to around one-third of that in the absence of polymyxin B.
Collapse
Affiliation(s)
- Anshuman Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Vijay Singh Bohara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Nitin Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India.
| |
Collapse
|
12
|
Gonçalves AM, Pereira-Santos AR, Esteves AR, Cardoso SM, Empadinhas N. The Mitochondrial Ribosome: A World of Opportunities for Mitochondrial Dysfunction Toward Parkinson's Disease. Antioxid Redox Signal 2021; 34:694-711. [PMID: 32098485 DOI: 10.1089/ars.2019.7997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Mitochondrial ribosomes (mitoribosomes) are organelles that translate mitochondrial messenger RNA in the matrix and, in mammals, have evolved to translate 13 polypeptides of the pathway that performs oxidative phosphorylation (OXPHOS). Although a number of devastating diseases result from defects in this mitochondrial translation apparatus, most are associated with genetic mutations and little is known about allelopathic defects caused by antibiotics, toxins, or nonproteinogenic amino acids. Recent Advances: The levels of mitochondrial ribosomal subunits 12S and 16S ribosomal RNA (rRNA) in cells/tissues from patients carrying mutations in these genes have been associated with alterations in mitochondrial translation efficiency and with impaired OXPHOS activities, as well as with the severity of clinical phenotypes. In recent decades, important studies revealed a prominent role of mitochondrial dysfunction in Parkinson's disease (PD); however, the involvement of mitoribosomes remains largely unknown. Critical Issues: Considering that mitoribosomal structure and function can determine the efficiency of OXPHOS and that an impaired mitochondrial respiratory chain is a common finding in PD, we argue that the mitoribosome may be key to disease onset and progression. With this review, we comprehensively integrate the available knowledge on the composition, assembly, and role of the mitoribosome in mitochondrial efficiency, reflecting on its possible involvement in the etiopathogenesis of this epidemic disease as an appealing research avenue. Future Directions: If a direct correlation between mitoribosome failure and PD pathology is demonstrated, these mitochondrial organelles will provide valuable early clinical markers and potentially attractive targets for the development of innovative PD-directed therapeutic agents.
Collapse
Affiliation(s)
- Ana Mafalda Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Török N, Tanaka M, Vécsei L. Searching for Peripheral Biomarkers in Neurodegenerative Diseases: The Tryptophan-Kynurenine Metabolic Pathway. Int J Mol Sci 2020; 21:E9338. [PMID: 33302404 PMCID: PMC7762583 DOI: 10.3390/ijms21249338] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are multifactorial, initiated by a series of the causative complex which develops into a certain clinical picture. The pathogenesis and disease course vary from patient to patient. Thus, it should be likewise to the treatment. Peripheral biomarkers are to play a central role for tailoring a personalized therapeutic plan for patients who suffered from neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, among others. Nevertheless, the use of biomarkers in clinical practice is still underappreciated and data presented in biomarker research for clinical use is still uncompelling, compared to the abundant data available for drug research and development. So is the case with kynurenines (KYNs) and the kynurenine pathway (KP) enzymes, which have been associated with a wide range of diseases including cancer, autoimmune diseases, inflammatory diseases, neurologic diseases, and psychiatric disorders. This review article discusses current knowledge of KP alterations observed in the central nervous system as well as the periphery, its involvement in pathogenesis and disease progression, and emerging evidence of roles of microbiota in the gut-brain axis, searching for practical peripheral biomarkers which ensure personalized treatment plans for neurodegenerative diseases.
Collapse
Affiliation(s)
- Nóra Török
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.T.); (M.T.)
| | - Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.T.); (M.T.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.T.); (M.T.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
14
|
Xie S, Niu W, Xu F, Wang Y, Hu S, Niu C. Differential expression and significance of miRNAs in plasma extracellular vesicles of patients with Parkinson's disease. Int J Neurosci 2020; 132:673-688. [PMID: 33045885 DOI: 10.1080/00207454.2020.1835899] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To study the feasibility of plasma extracellular vesicles (EVs) miRNAs as diagnostic biomarkers for Parkinson's disease (PD). METHODS Plasma EVs were isolated from 30 PD patients and 30 age- and sex-matched healthy controls. Plasma EVs miRNAs were analysed by qRT-PCR. SH-SY5Y cells were induced by different concentrations of 1-Methyl-4-phenil-pyridinium (MPP+) to obtain PD cellular model. The levels of miRNAs and α-synuclein (α-syn) in PD cellular model were analysed by qRT-PCR and Western blot. Receiver operating characteristic (ROC) curve analysis was performed to determine the diagnostic usefulness of the miRNAs in plasma EVs for PD. The gene ontology (GO) and KEGG pathways of the target genes of miRNAs were analysed by softwares. RESULTS The level of hsa-miR-30c-2-3p in plasma EVs was significantly higher in PD patients than that in controls, and the levels of hsa-miR-15b-5p, hsa-miR-138-5p, hsa-miR-338-3p, hsa-miR-106b-3p and hsa-miR-431-5p in plasma EVs were lower in PD patients than that in controls. When compared with the control group, the area under the curve (AUC) values for hsa-miR-15b-5p, hsa-miR-30c-2-3p, hsa-miR-138-5p, hsa-miR-431-5p, hsa-miR-338-3p and hsa-miR-106b-3p were all greater than 0.6. The target genes of hsa-miR-15b-5p, hsa-miR-30c-2-3p, hsa-miR-138-5p and hsa-miR-338-3p were enriched in dopaminergic synapse and PD pathway. CONCLUSIONS The hsa-miR-15b-5p, hsa-miR-30c-2-3p, hsa-miR-138-5p, hsa-miR-106b-3p, hsa-miR-338-3p and hsa-miR-431-5p may be used as potential biomarkers for the diagnosis of PD, and the combined diagnostic accuracy of hsa-miR-15b-5p, hsa-miR-30c-2-3p, hsa-miR-138-5p and hsa-miR-106b-3p was better. The target genes of hsa-miR-15b-5p, hsa-miR-30c-2-3p, hsa-miR-138-5p and hsa-miR-338-3p may regulate the expression of dopamine by dopaminergic synapse and PD pathway.HighlightsIsolation and identification of plasma EVs.The miRNAs in plasma EVs may be used as potential biomarkers for the diagnosis of PD.When SH-SY5Y cells were induced by different concentrations of MPP+, the levels of miRNAs and α-syn changed gradually.The target genes of miRNAs were enriched in dopaminergic synapse and PD pathway.The target genes of miRNAs may regulate the expression of dopamine.
Collapse
Affiliation(s)
- Shishuai Xie
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Anhui Provincial Key Laboratory of Brain Function and Brain Disease, Hefei, PR China.,Department of Neurosurgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, PR China
| | - Wanxiang Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Anhui Provincial Key Laboratory of Brain Function and Brain Disease, Hefei, PR China.,Department of Neurosurgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, PR China
| | - Feng Xu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Anhui Provincial Key Laboratory of Brain Function and Brain Disease, Hefei, PR China.,Department of Neurosurgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, PR China
| | - Yuping Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Anhui Provincial Key Laboratory of Brain Function and Brain Disease, Hefei, PR China
| | - Shanshan Hu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Anhui Provincial Key Laboratory of Brain Function and Brain Disease, Hefei, PR China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Anhui Provincial Key Laboratory of Brain Function and Brain Disease, Hefei, PR China.,Department of Neurosurgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, PR China
| |
Collapse
|
15
|
Javed H, Nagoor Meeran MF, Azimullah S, Adem A, Sadek B, Ojha SK. Plant Extracts and Phytochemicals Targeting α-Synuclein Aggregation in Parkinson's Disease Models. Front Pharmacol 2019; 9:1555. [PMID: 30941047 PMCID: PMC6433754 DOI: 10.3389/fphar.2018.01555] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
α-Synuclein (α-syn) is a presynaptic protein that regulates the release of neurotransmitters from synaptic vesicles in the brain. α-Syn aggregates, including Lewy bodies, are features of both sporadic and familial forms of Parkinson's disease (PD). These aggregates undergo several key stages of fibrillation, oligomerization, and aggregation. Therapeutic benefits of drugs decline with disease progression and offer only symptomatic treatment. Novel therapeutic strategies are required which can either prevent or delay the progression of the disease. The link between α-syn and the etiopathogenesis and progression of PD are well-established in the literature. Studies indicate that α-syn is an important therapeutic target and inhibition of α-syn aggregation, oligomerization, and fibrillation are an important disease modification strategy. However, recent studies have shown that plant extracts and phytochemicals have neuroprotective effects on α-syn oligomerization and fibrillation by targeting different key stages of its formation. Although many reviews on the antioxidant-mediated, neuroprotective effect of plant extracts and phytochemicals on PD symptoms have been well-highlighted, the antioxidant mechanisms show limited success for translation to clinical studies. The identification of specific plant extracts and phytochemicals that target α-syn aggregation will provide selective molecules to develop new drugs for PD. The present review provides an overview of plant extracts and phytochemicals that target α-syn in PD and summarizes the observed effects and the underlying mechanisms. Furthermore, we provide a synopsis of current experimental models and techniques used to evaluate plant extracts and phytochemicals. Plant extracts and phytochemicals were found to inhibit the aggregation or fibril formation of oligomers. These also appear to direct α-syn oligomer formation into its unstructured form or promote non-toxic pathways and suggested to be valuable drug candidates for PD and related synucleinopathy. Current evidences from in vitro studies require confirmation in the in vivo studies. Further studies are needed to ascertain their potential effects and safety in preclinical studies for pharmaceutical/nutritional development of these phytochemicals or dietary inclusion of the plant extracts in PD treatment.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shreesh Kumar Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
16
|
Albeely AM, Ryan SD, Perreault ML. Pathogenic Feed-Forward Mechanisms in Alzheimer's and Parkinson's Disease Converge on GSK-3. Brain Plast 2018; 4:151-167. [PMID: 30598867 PMCID: PMC6311352 DOI: 10.3233/bpl-180078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) share many commonalities ranging from signaling deficits such as altered cholinergic activity, neurotrophin and insulin signaling to cell stress cascades that result in proteinopathy, mitochondrial dysfunction and neuronal cell death. These pathological processes are not unidirectional, but are intertwined, resulting in a series of feed-forward loops that worsen symptoms and advance disease progression. At the center of these loops is glycogen synthase kinase-3 (GSK-3), a keystone protein involved in many of the multidirectional biological processes that contribute to AD and PD neuropathology. Here, a unified overview of the involvement of GSK-3 in the major processes involved in these diseases will be presented. The mechanisms by which these processes are linked will be discussed and the feed-forward pathways identified. In this regard, this review will put forth the notion that combination therapy, targeting these multiple facets of AD or PD neuropathology is a necessary next step in the search for effective therapies.
Collapse
Affiliation(s)
- Abdalla M. Albeely
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Scott D. Ryan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Melissa L. Perreault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
Amireddy N, Puttapaka SN, Vinnakota RL, Ravuri HG, Thonda S, Kalivendi SV. The unintended mitochondrial uncoupling effects of the FDA-approved anti-helminth drug nitazoxanide mitigates experimental parkinsonism in mice. J Biol Chem 2017; 292:15731-15743. [PMID: 28798236 DOI: 10.1074/jbc.m117.791863] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/31/2017] [Indexed: 01/04/2023] Open
Abstract
Mitochondria play a primary role in the pathophysiology of Parkinson's disease (PD), and small molecules that counteract the initial stages of disease may offer therapeutic benefit. In this regard, we have examined whether the off-target effects of the Food and Drug Administration (FDA)-approved anti-helminth drug nitazoxanide (NTZ) on mitochondrial respiration could possess any therapeutic potential for PD. Results indicate that MPP+-induced loss in oxygen consumption rate (OCR) and ATP production by mitochondria were ameliorated by NTZ in real time by virtue of its mild uncoupling effect. Pretreatment of cells with NTZ mitigated MPP+-induced loss in mitochondrial OCR and reactive oxygen species (ROS). Similarly, addition of NTZ to cells pretreated with MPP+ could reverse block in mitochondrial OCR and reactive oxygen species induced by MPP+ in real time. The observed effects of NTZ were found to be transient and reversible as removal of NTZ from incubation medium restored the mitochondrial respiration to that of controls. Apoptosis induced by MPP+ was ameliorated by NTZ in a dose-dependent manner. In vivo results demonstrated that oral administration of NTZ (50 mg/kg) in an acute MPTP mouse model of PD conferred significant protection against the loss of tyrosine hydroxylase (TH)-positive neurons of substantia nigra. Based on the above observations we believe that repurposing of NTZ for PD may offer therapeutic benefit.
Collapse
Affiliation(s)
| | | | | | - Halley G Ravuri
- Pharmacology and Toxicology, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500 007, Telangana State, India
| | | | | |
Collapse
|