1
|
Li J, Hua Q. Regorafenib inhibits growth, survival and angiogenesis in nasopharyngeal carcinoma and is synergistic with Mcl-1 inhibitor. J Pharm Pharmacol 2023; 75:1177-1185. [PMID: 37133348 DOI: 10.1093/jpp/rgad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/15/2023] [Indexed: 05/04/2023]
Abstract
OBJECTIVES Regorafenib is an oral multi-kinase inhibitor approved for various metastatic/advanced cancers, and has been investigated in clinical trials in many other tumour entities. The purpose of this study was to evaluate the therapeutic potential of regorafenib for nasopharyngeal carcinoma (NPC). METHODS Cellular proliferation, survival, apoptosis and colony formation assays were performed and combination index was determined. NPC xenograft tumour models were established. In vitro and In vivo angiogenesis assays were performed. KEY FINDINGS Regorafenib is effective against a panel of NPC cell lines regardless of cellular origin and genetic profiling while sparing normal nasal epithelial cells. The predominant inhibitory effects of regorafenib in NPC are anchorage-dependent and anchorage-independent growth rather than survival. Apart from tumour cells, regorafenib potently inhibits angiogenesis. Mechanistically, regorafenib inhibits multiple oncogenic pathways including Raf/Erk/Mek and PI3K/Akt/mTOR. Regorafenib decreases Bcl-2 but not Mcl-1 level in NPC cells. The in vitro observations are evident in in vivo NPC xenograft mouse model. The combination of Mcl-1 inhibitor with regorafenib is synergistic in inhibiting NPC growth without causing systemic toxicity in mice. CONCLUSIONS Our findings also support further clinical investigation of regorafenib and Mcl-1 inhibitor for NPC treatment.
Collapse
Affiliation(s)
- Jiangping Li
- Department of Otolaryngology & Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
- Department of Otolaryngology & Head and Neck Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| | - Qingquan Hua
- Department of Otolaryngology & Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| |
Collapse
|
2
|
Zhong Q, Nie Q, Wu R, Huang Y. Exosomal miR-18a-5p promotes EMT and metastasis of NPC cells via targeting BTG3 and activating the Wnt/β-catenin signaling pathway. Cell Cycle 2023; 22:1544-1562. [PMID: 37287276 PMCID: PMC10361138 DOI: 10.1080/15384101.2023.2216508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023] Open
Abstract
This study investigated the underlying mechanism of miR-18a-5p regulating the proliferation, invasion, and metastasis of nasopharyngeal carcinoma (NPC) cells in vitro and in vivo to indicate the pathogenesis of NPC. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was utilized to determine miR-18a-5p expression level in NPC tissues and cell lines. Besides, 2,5-diphenyl-2 H-tetrazolium bromide (MTT) and colony formation assays were employed to detect the effect of miR-18a-5p expression level on NPC cell proliferation. Wound healing and Transwell assays were utilized to detect the effect of miR-18a-5p on NPC cell invasion and migration. The expression levels of epithelial-mesenchymal transition (EMT)-related proteins (Vimentin, N-cadherin, and E-cadherin) were identified by Western blot assay. After collecting exosomes from CNE-2 cells, it was found that exosomal miR-18a-5p secreted from NPC cells promoted NPC cell proliferation, migration, invasion, and EMT, whereas inhibition of miR-18a-5p expression level led to the opposite results. The dual-luciferase reporter assay showed that BTG anti-proliferation factor 3 (BTG3) was the target gene of miR-18a-5p, and BTG3 could overturn the effect of miR-18a-5p on NPC cells. Xenograft mouse model of NPC nude mice showed that miR-18a-5p promoted NPC growth and metastasis in vivo. This study revealed that exosomal miR-18a-5p derived from NPC cells promoted angiogenesis via targeting BTG3 and activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Qiong Zhong
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, China
| | - Qihong Nie
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, China
| | - Renrui Wu
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, China
| | - Yun Huang
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, China
| |
Collapse
|
3
|
Tajik F, Alian F, Yousefi M, Azadfallah A, Hoseini A, Mohammadi F, Karimi-Dehkordi M, Alizadeh-Fanalou S. MicroRNA-372 acts as a double-edged sword in human cancers. Heliyon 2023; 9:e15991. [PMID: 37251909 PMCID: PMC10208947 DOI: 10.1016/j.heliyon.2023.e15991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are non-coding, single-stranded, endogenous RNAs that regulate various biological processes, most notably the pathophysiology of many human malignancies. It process is accomplished by binding to 3'-UTR mRNAs and controlling gene expression at the post-transcriptional level. As an oncogene, miRNAs can either accelerate cancer progression or slow it down as a tumor suppressor. MicroRNA-372 (miR-372) has been found to have an abnormal expression in numerous human malignancies, implying that the miRNA plays a role in carcinogenesis. It is both increased and downregulated in various cancers, and it serves as both a tumor suppressor and an oncogene. This study examines the functions of miR-372 as well as the LncRNA/CircRNA-miRNA-mRNA signaling pathways in various malignancies and analyses its potential prognostic, diagnostic, and therapeutic implications.
Collapse
Affiliation(s)
- Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad Yousefi
- Department of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Azadfallah
- Department of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Aref Hoseini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Maryam Karimi-Dehkordi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Payaradka R, Ramesh PS, Vyas R, Patil P, Rajendra VK, Kumar M, Shetty V, Devegowda D. Oncogenic viruses as etiological risk factors for head and neck cancers: An overview on prevalence, mechanism of infection and clinical relevance. Arch Oral Biol 2022; 143:105526. [DOI: 10.1016/j.archoralbio.2022.105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 12/07/2022]
|
5
|
Shi M, Du J, Shi J, Huang Y, Zhao Y, Ma L. Ferroptosis-related gene ATG5 is a novel prognostic biomarker in nasopharyngeal carcinoma and head and neck squamous cell carcinoma. Front Bioeng Biotechnol 2022; 10:1006535. [PMID: 36185455 PMCID: PMC9520473 DOI: 10.3389/fbioe.2022.1006535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC), a subtype of head and neck squamous cell carcinoma (HNSCC), is a malignant tumor that originates in the mucosal epithelium of the nasopharynx. Ferroptosis plays a key role in tumor suppression, while its prognostic value and critical factors in NPC have not been further explored. We select the Cancer Genome Atlas (TCGA) HNSCC dataset and the Gene Expression Omnibus (GEO) dataset of NPC samples, and find that ferroptosis-related factor ATG5 shows a high expression level with poor overall survival (OS) in HNSCC and NPC samples and is positively correlated with PD-L1/PD-L2 expression (p < 0.05). Furthermore, ATG5 high expression HNSCC patients show poor efficacy and short survival after receiving immune checkpoint blockade therapy treatment (p < 0.05). Moreover, ATG5 is significantly positively correlated with G2M checkpoint pathway (ρSpearman = 0.41, p < 0.01), and G2M checkpoint inhibitor drugs have lower IC50 in HNSCC patients with high expression of ATG5 (p < 0.01), indicating the potential value of G2M inhibitors in HNSCC/NPC treatment. In summary, our study shows that ferroptosis-related factors play a key role in immune infiltration in NPC and HNSCC, and ATG5, as a key immune invasion-related ferroptosis-related factor, has the potential to be a novel prognostic biomarker and a potential target in therapy for NPC and HNSCC.
Collapse
Affiliation(s)
- Ming Shi
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Jiangnan Du
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jingjing Shi
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | | | - Yan Zhao
- Shenzhen Bay Laboratory, Institute of Biomedical Health Technology and Engineering, Shenzhen, China
- *Correspondence: Yan Zhao, ; Lan Ma,
| | - Lan Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
- Shenzhen Bay Laboratory, Institute of Biomedical Health Technology and Engineering, Shenzhen, China
- *Correspondence: Yan Zhao, ; Lan Ma,
| |
Collapse
|
6
|
Zhang J, Jiang Y, Yu Y, Li J. Preclinical evaluation of the dual mTORC1/2 inhibitor sapanisertib in combination with cisplatin in nasopharyngeal carcinoma. Eur J Pharmacol 2022; 915:174688. [PMID: 34883074 DOI: 10.1016/j.ejphar.2021.174688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
A wide range of investigational drugs are being investigated in clinical trials for the treatment of nasopharyngeal carcinoma (NPC), including PI3K-mTOR inhibitor. The purpose of this study was to evaluate the effective combination of TORC1/2 inhibitor sapanisertib and chemotherapy drug cisplatin in preclinical models of NPC. In our work, sapanisertib at nanomolar concentrations decreases viability and proliferation in NPC cells regardless of varying genetic backgrounds. Sapanisertib acts synergistically with cisplatin via induces more G0/G1 arrest and apoptosis. At the same concentration, sapanisertib neither decreases viability nor proliferation in normal nasal epithelial cells. Sapanisertib also decreases NPC cell migration. It decreases phosphorylation of Akt, mTOR, p70S6K and 4EBP1 in NPC cells. The in vitro findings on the inhibitory effects of sapanisertib on NPC growth and mTOR signaling were also evident in the NPC xenograft mouse model. In addition, combination of sapanisertib with cisplatin resulted in better efficacy than monotherapy to inhibit NPC growth in mice without causing significant toxicity. These data clearly demonstrate efficacy and insignificant toxicity of sapanisertib alone and its combination with cisplatin in NPC preclinical models. Our findings will accelerate clinical trials evaluating combination of sapanisertib and chemotherapy for NPC treatment.
Collapse
Affiliation(s)
- Jianbin Zhang
- Department of Otolaryngology & Head and Neck Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China
| | - Yan Jiang
- Department of Otolaryngology & Head and Neck Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China
| | - Ye Yu
- Department of Otolaryngology & Head and Neck Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.
| | - Jiangping Li
- Department of Otolaryngology & Head and Neck Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.
| |
Collapse
|
7
|
Xu X, Zhang QY, Chu XY, Quan Y, Lv BM, Zhang HY. Facilitating Antiviral Drug Discovery Using Genetic and Evolutionary Knowledge. Viruses 2021; 13:v13112117. [PMID: 34834924 PMCID: PMC8626054 DOI: 10.3390/v13112117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Over the course of human history, billions of people worldwide have been infected by various viruses. Despite rapid progress in the development of biomedical techniques, it is still a significant challenge to find promising new antiviral targets and drugs. In the past, antiviral drugs mainly targeted viral proteins when they were used as part of treatment strategies. Since the virus mutation rate is much faster than that of the host, such drugs feature drug resistance and narrow-spectrum antiviral problems. Therefore, the targeting of host molecules has gradually become an important area of research for the development of antiviral drugs. In recent years, rapid advances in high-throughput sequencing techniques have enabled numerous genetic studies (such as genome-wide association studies (GWAS), clustered regularly interspersed short palindromic repeats (CRISPR) screening, etc.) for human diseases, providing valuable genetic and evolutionary resources. Furthermore, it has been revealed that successful drug targets exhibit similar genetic and evolutionary features, which are of great value in identifying promising drug targets and discovering new drugs. Considering these developments, in this article the authors propose a host-targeted antiviral drug discovery strategy based on knowledge of genetics and evolution. We first comprehensively summarized the genetic, subcellular location, and evolutionary features of the human genes that have been successfully used as antiviral targets. Next, the summarized features were used to screen novel druggable antiviral targets and to find potential antiviral drugs, in an attempt to promote the discovery of new antiviral drugs.
Collapse
Affiliation(s)
| | - Qing-Ye Zhang
- Correspondence: (Q.-Y.Z.); (H.-Y.Z.); Tel.: +86-27-8728-0877 (H.-Y.Z.)
| | | | | | | | - Hong-Yu Zhang
- Correspondence: (Q.-Y.Z.); (H.-Y.Z.); Tel.: +86-27-8728-0877 (H.-Y.Z.)
| |
Collapse
|
8
|
Mahmutović L, Bilajac E, Hromić-Jahjefendić A. Meet the Insidious Players: Review of Viral Infections in Head and Neck Cancer Etiology with an Update on Clinical Trials. Microorganisms 2021; 9:1001. [PMID: 34066342 PMCID: PMC8148100 DOI: 10.3390/microorganisms9051001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Head and neck cancers (HNC) occur in the upper aerodigestive tract and are among the most common cancers. The etiology of HNC is complex, involving many factors, including excessive tobacco and alcohol consumption; over the last two decades, oncogenic viruses have also been recognized as an important cause of HNC. Major etiological agents of nasopharynx carcinoma and oropharyngeal carcinoma include Epstein-Barr virus (EBV) and human papillomaviruses (HPVs), both of which are able to interfere with cell cycle control. Additionally, the association of hepatitis C and hepatitis B infection was observed in oral cavity, oropharyngeal, laryngeal, and nasopharyngeal cancers. Overall prognoses depend on anatomic site, stage, and viral status. Current treatment options, including radiotherapy, chemotherapy, targeted therapies and immunotherapies, are distributed in order to improve overall patient prognosis and survival rates. However, the interplay between viral genome sequences and the health, disease, geography, and ethnicity of the host are crucial for understanding the role of viruses and for development of potential personalized treatment and prevention strategies. This review provides the most comprehensive analysis to date of a vast field, including HNC risk factors, as well as viral mechanisms of infection and their role in HNC development. Additionally, currently available treatment options investigated through clinical practice are emphasized in the paper.
Collapse
Affiliation(s)
| | | | - Altijana Hromić-Jahjefendić
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina; (L.M.); (E.B.)
| |
Collapse
|
9
|
Anh VNQ, Van Ba N, Anh DT, Ung ND, Hiep NH, Ly VT, Hang DTT, Sy BT, Chinh HD, Ky LM, Phong VT, Luu NK, Trung NT, Son HA, Van Luong H, Thuan ND, Tung NT, Tho HH. Validation of a Highly Sensitive qPCR Assay for the Detection of Plasma Cell-Free Epstein-Barr Virus DNA in Nasopharyngeal Carcinoma Diagnosis. Cancer Control 2021; 27:1073274820944286. [PMID: 32726136 PMCID: PMC7658724 DOI: 10.1177/1073274820944286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Quantification of plasma cell-free Epstein Barr virus DNA (cf EBV DNA) has been suggested as a promising liquid biopsy assay for screening and early detection of nasopharyngeal carcinoma (NPC). However, the diagnostic value of this assay is currently not known in the population of Vietnam, one of the countries which contributed the most to the NPC cases. Herein, we have reported a highly sensitive quantitative polymerase chain reaction (qPCR)-based assay targeting cf EBV DNA for the detection of NPC. A standard curve with linear regression, R2 = 0.9961 (range: 25-150 000 copies/mL) and a detection limit of 25 copies/mL were obtained using an EBV standard panel provided by the Chinese University of Hong Kong. The clinical performance of this assay was assessed using plasma samples obtained from 261 Vietnamese individuals. The optimized qPCR assay detected cf EBV DNA in plasma with a sensitivity of 97.4% and a specificity of 98.2%. The absolute quantitative results of pretreatment cf EBV DNA and patient overall clinical stages were statistically correlated (P < .05). In summary, the remarkably high sensitivity and specificity of our optimized qPCR assay strongly supports the wide use of cf EBV DNA quantification as a routine noninvasive method in early diagnosis and management of patients with NPC.
Collapse
Affiliation(s)
- Vu Nguyen Quynh Anh
- Department of Genomics and Cytogenetics, Institute of Biomedicine & Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Van Ba
- Oncology Centre, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Do Tram Anh
- ENT Department, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Dinh Ung
- Department of Genomics and Cytogenetics, Institute of Biomedicine & Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Hoang Hiep
- Department of Genomics and Cytogenetics, Institute of Biomedicine & Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Vu Thi Ly
- Department of Genomics and Cytogenetics, Institute of Biomedicine & Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Dinh Thi Thu Hang
- Institute of Biomedicine & Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Bui Tien Sy
- Department of Microbiology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Hoang Dao Chinh
- Department of Oncology and Radiation, 108 Military Central Hospital, Hanoi, Vietnam
| | - Le Minh Ky
- Oncology and Head & Neck Surgery Centre, Vietnam National ENT Hospital, Hanoi, Vietnam
| | - Vu Truong Phong
- Oncology and Head & Neck Surgery Centre, Vietnam National ENT Hospital, Hanoi, Vietnam
| | - Nguyen Kim Luu
- Department of Radiation, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | | | - Ho Anh Son
- Institute of Biomedicine & Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Van Luong
- Institute of Biomedicine & Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nghiem Duc Thuan
- ENT Department, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ngo Thanh Tung
- Department of Head & Neck Cancer and Radiation Oncology, Vietnam National K Hospital, Hanoi, Vietnam
| | - Ho Huu Tho
- Department of Genomics and Cytogenetics, Institute of Biomedicine & Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| |
Collapse
|
10
|
Long Y, Cao X, Zhao R, Gong S, Jin L, Feng C. Fucoxanthin treatment inhibits nasopharyngeal carcinoma cell proliferation through induction of autophagy mechanism. ENVIRONMENTAL TOXICOLOGY 2020; 35:1082-1090. [PMID: 32449842 DOI: 10.1002/tox.22944] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Nasopharyngeal carcinoma (NPC) arises from the epithelium of the nasopharyngeal mucosa. Elderly people above the age of 65 years are more susceptible to NPC. Nasopharyngectomy is the renowned treatment procedure to NPC; however, it is too risky due to its complicated surgical procedure. Other treatment methods also reported with serious side effects such brain injury; hence, the alternative anticancer drug without any side effects was needed. Fucoxanthin is a carotenoid derived from marine algae with the numerous pharmacological functions. This study aims to examine the inhibitory potential in NPC cell proliferation via apoptosis and autophagy. The cytotoxicity of fucoxanthin on C666-1 cells was observed by the MTT assay. The expression of autophagy-linked proteins was assessed with immunoblotting analysis. The expression of autophagy protein LC3 was estimated using immunocytochemical analysis in C666-1 and GFP-LC3 transfected cells. Furthermore, the fucoxanthin-treated C666-1 cells were analyzed with TUNEL assay. The apoptotic level in the fucoxanthin-treated C666-1 cells was evaluated using acridine orange staining. Fucoxanthin significantly increased the expression of autophagy-linked proteins which is clearly depicted in the immunoblotting analysis and immunocytochemical analysis of GFP-tagged LC3 protein. The results of TUNEL assay of fucoxanthin-treated C666-1 in the presence autophagy inhibitors demonstrated the induction of autophagy by fucoxanthin. Acridine orange staining results of C666-1 confirmed fucoxanthin decreases the expression of autophagy-linked proteins during stressed condition thereby causes apoptosis. Our overall results authentically conclude that fucoxanthin induces autophagy and apoptosis in NPC cell line, and it can be ideal agent to treat nasopharyngeal cancer in future with further investigations.
Collapse
Affiliation(s)
- Yun Long
- Department of General Medicine, Kunming Yuanan Hospital, Kunming, Yunnan, China
| | - Xianbao Cao
- Otolaryngology Head and Neck Surgery, Yunnan First People's Hospital, Kunming, Yunnan, China
| | - Ruiquan Zhao
- Otolaryngology Head and Neck Surgery, 920 Hospital of PLA Joint Logistics Support Force, Kunming, Yunnan, China
| | - Sunmin Gong
- Otolaryngology Head and Neck Surgery, Yunnan First People's Hospital, Kunming, Yunnan, China
| | - Lijuan Jin
- Otolaryngology Head and Neck Surgery, Kunming Tongren Hospital, Kunming, Yunnan, China
| | - Chun Feng
- Otolaryngology Head and Neck Surgery, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
11
|
Liu L, Wang H, Yan C, Tao S. An Integrated Analysis of mRNAs and miRNAs Microarray Profiles to Screen miRNA Signatures Involved in Nasopharyngeal Carcinoma. Technol Cancer Res Treat 2020; 19:1533033820956998. [PMID: 32985354 PMCID: PMC7534087 DOI: 10.1177/1533033820956998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE We aim to identify several microRNAs (miRNAs/miRs)-messenger RNAs (mRNAs) biomarkers correlated to nasopharyngeal carcinoma (NPC) based on an integrated analysis of miRNA and mRNAs microarray expression profiles. METHODS The available mRNA and miRNA microarray datasets were retrieved from Gene Expression Omnibus (GEO) database according to pre-determined screening criteria. Differentially expressed miRNA and mRNAs (DEmiRNAs and DEmRNAs) were extracted between NPC and noncancerous nasopharyngeal tissues. The target genes of DEmiRNAs were predicted with miRTarBase followed by the construction of DEmiRNAs-target DEmRNAs network, and functional analyses were performed. The DEmiRNAs expressions were validated and the performance of these DEmiRNAs was assessed by the area under the curve (AUC) values. Finally, the correlations between DEmiRNAs and specific clinical factors were analyzed. RESULTS There were 1140 interaction pairs (including let-7d/f-MYC/HMGA2 and miR-452-ITGA9) in DEmiRNAs-target DEmRNAs network. The GO annotation analysis showed that several genes such as MYC, HMGA2 and ITGA9 primarily participated in cellular process. KEGG analysis showed that these targets were associated with cell cycle and cancer-related pathways. Down-regulated let-7(-d and -f) and up-regulated miR-452 were verified in datasets. The AUC values of these 3 DEmiRNAs (let-7d, let-7-f and miR-452) was 0.803, 0.835 and 0.735, respectively. Besides, miR-452 was significantly related to survival rate of NPC patients. CONCLUSION The findings implied let-7d/f-MYC/HMGA2 and miR-452-ITGA9 might be promising targets for the detection and treatment of NPC.
Collapse
Affiliation(s)
- Lei Liu
- Department of Otorhinolaryngology & Head and Neck Surgery, The Third Central Hospital of Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Hailing Wang
- Department of Diagnostic and Therapeutic Ultrasonography, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chaohui Yan
- Department of Otorhinolaryngology & Head and Neck Surgery, The Third Central Hospital of Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Shudong Tao
- Department of Otorhinolaryngology & Head and Neck Surgery, The Third Central Hospital of Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
12
|
Hau PM, Lung HL, Wu M, Tsang CM, Wong KL, Mak NK, Lo KW. Targeting Epstein-Barr Virus in Nasopharyngeal Carcinoma. Front Oncol 2020; 10:600. [PMID: 32528868 PMCID: PMC7247807 DOI: 10.3389/fonc.2020.00600] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is consistently associated with Epstein-Barr virus (EBV) infection in regions in which it is endemic, including Southern China and Southeast Asia. The high mortality rates of NPC patients with advanced and recurrent disease highlight the urgent need for effective treatments. While recent genomic studies have revealed few druggable targets, the unique interaction between the EBV infection and host cells in NPC strongly implies that targeting EBV may be an efficient approach to cure this virus-associated cancer. Key features of EBV-associated NPC are the persistence of an episomal EBV genome and the requirement for multiple viral latent gene products to enable malignant transformation. Many translational studies have been conducted to exploit these unique features to develop pharmaceutical agents and therapeutic strategies that target EBV latent proteins and induce lytic reactivation in NPC. In particular, inhibitors of the EBV latent protein EBNA1 have been intensively explored, because of this protein's essential roles in maintaining EBV latency and viral genome replication in NPC cells. In addition, recent advances in chemical bioengineering are driving the development of therapeutic agents targeting the critical functional regions of EBNA1. Promising therapeutic effects of the resulting EBNA1-specific inhibitors have been shown in EBV-positive NPC tumors. The efficacy of multiple classes of EBV lytic inducers for NPC cytolytic therapy has also been long investigated. However, the lytic-induction efficiency of these compounds varies among different EBV-positive NPC models in a cell-context-dependent manner. In each tumor, NPC cells can evolve and acquire somatic changes to maintain EBV latency during cancer progression. Unfortunately, the poor understanding of the cellular mechanisms regulating EBV latency-to-lytic switching in NPC cells limits the clinical application of EBV cytolytic treatment. In this review, we discuss the potential approaches for improvement of the above-mentioned EBV-targeting strategies.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Man Wu
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Man Tsang
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Nai Ki Mak
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Xue K, Cao J, Wang Y, Zhao X, Yu D, Jin C, Xu C. Identification of Potential Therapeutic Gene Markers in Nasopharyngeal Carcinoma Based on Bioinformatics Analysis. Clin Transl Sci 2019; 13:265-274. [PMID: 31863646 PMCID: PMC7070980 DOI: 10.1111/cts.12690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common cancer found in the nasopharynx with high metastatic and invasive nature. Increasing evidences have identified the critical role of gene therapy in NPC treatment. Hence, this study was designed to identify specific gene markers that affected NPC progression through gene expression profile analysis. NPC‐related gene expression data set gene set enrichment (GSE)53819 were retrieved and analyzed to screen out differentially expressed genes (DEGs), followed by determination of their expression in noncancerous tissues and NPC specimens. Next, weighted gene co‐expression network analysis (WGCNA) was conducted on DEGs to obtain tumor‐associated gene modules. Genes in those modules were intersected with DEGs for gene ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis. Then protein‐protein interaction network of tumor‐associated genes was constructed to select genes most closely linked to NPC. Afterward, expression of chromosome 9 open reading frame 24 (c9orf24), primary ciliary dyskinesia protein 1 (PCDP1), and leucine‐rich repeat‐containing protein 46 (LRRC46) was detected in GSE53819 and further verified in GSE12452 and GSE64634. Differential analysis on GSE53819 found that 2,173 genes were aberrantly expressed in NPC, among which 917 genes are upregulated and 1,256 genes are downregulated. WGCNA showed that genes were enriched in 17 modules and 727 genes exhibited ectopic expression in NPC and enriched in cytokine‐cytokine receptor interaction, cytochrome P450, and chemical carcinogenesis signaling pathways, among which c9orf24, PCDP1, and LRRC46 were poorly expressed in NPC. Therefore, c9orf24, PCDP1, and LRRC46 might serve as prominent diagnostic markers for NPC, which presents new insights for NPC therapy.
Collapse
Affiliation(s)
- Kai Xue
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Jinfeng Cao
- Department of Ophthalmology, The Second Hospital, Jilin University, Changchun, China
| | - Yinan Wang
- Department of Gynaecology and Obstetrics, The Second Hospital, Jilin University, Changchun, China
| | - Xue Zhao
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Dan Yu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Chunshun Jin
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Chengbi Xu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
14
|
Wang T, Du M, Zhang W, Bai H, Yin L, Chen W, He X, Chen Q. MicroRNA-432 Suppresses Invasion and Migration via E2F3 in Nasopharyngeal Carcinoma. Onco Targets Ther 2019; 12:11271-11280. [PMID: 31908492 PMCID: PMC6927591 DOI: 10.2147/ott.s233435] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
Background E2F transcription factor 3 (E2F3) is oncogenic and dysregulated in various malignancies. Complex networks involving microRNAs (miRNAs) and E2F3 regulate tumorigenesis and progression. However, the potential roles of E2F3 and its target miRNAs in nasopharyngeal carcinoma (NPC) are rarely reported. Methods E2F3 expression was detected in human NPC tissues and cell lines through quantitative real-time PCR. NPC cell proliferation, migration, and invasion were evaluated in vitro by colony forming, cell counting kit-8, wound healing, and Transwell invasion assays. Publicly available database software was used to explore the target miRNAs of E2F3. Dual-luciferase reporter assay was performed to identify the direct relationship. The function of miRNAs in vivo was investigated by using a tumor xenograft model. Results E2F3 was upregulated in NPC cell lines and tissues, and its exotic expression promoted NPC cell invasion and migration. E2F3 was identified as a target of miR-432, which restrained NPC cell invasion and migration in vitro and in vivo. Further experiments revealed that miR-432 repressed the invasion and migration potential of NPC cells by modulating E2F3 expression. Conclusion miRNA-432 suppressed the malignant biological behavior of NPC cells by targeting E2F3. This study provided further insights into NPC prognosis and treatment.
Collapse
Affiliation(s)
- Tingting Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| | - Mingyu Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| | - Wenjun Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| | - Hui Bai
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Li Yin
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| | - Wei Chen
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| | - Xia He
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
15
|
Shi C, Guan Y, Zeng L, Liu G, Zhu Y, Xu H, Lu Y, Liu J, Guo J, Feng X, Zhao X, Jiang W, Li G, Li G, Dai Y, Jin F, Li W, Zhou W. High COX-2 expression contributes to a poor prognosis through the inhibition of chemotherapy-induced senescence in nasopharyngeal carcinoma. Int J Oncol 2018; 53:1138-1148. [PMID: 29956730 PMCID: PMC6065426 DOI: 10.3892/ijo.2018.4462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/11/2018] [Indexed: 02/05/2023] Open
Abstract
Resistance to radiotherapy and chemotherapy currently represents one of the major reasons for therapeutic failure in nasopharyngeal carcinoma (NPC). However, the mechanisms underlying resistance to chemotherapy in NPC remain unclear. In this study, cell counting assay, cell cycle assay and senescence associated β-galactosidase activity were performed to evaluate cell growth, proliferation and senescence, respectively. We found that the aberrant expression of cyclooxygenase-2 (COX-2) was associated with a poor outcome and recurrance in patients with NPC. In NPC cells, COX-2 overexpression increased cell proliferation, inhibited cellular senescence and resulted in chemoresistance, while the knockdown of COX-2 reduced cell proliferation, promoted cellular senescence and overcame chemoresistance. Furthermore, fibroblasts from COX-2 knockout mice exhibited cellular senescence, particularly when treated with chemotherapeutic agents. Mechanistically, COX-2 interacted with p53 protein and inhibited cellular senescence, which resulted in chemotherapeutic resistance. On the whole, these findings indicate that COX-2 may play a critical role in chemotherapeutic resistance in NPC via the inhibition of chemotherapy-induced senescence via the inactivation of p53. This study provides experimental evidence for the preclinical value of increasing chemotherapy-induced senescence by targeting COX-2 as an effective antitumor treatment in patients with recurrent NPC.
Collapse
Affiliation(s)
- Chen Shi
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yongjun Guan
- Cancer Research Institute; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; National Health and Family Planning Commission, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liang Zeng
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Guizhu Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai 200030, P.R. China
| | - Yinghong Zhu
- Cancer Research Institute; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; National Health and Family Planning Commission, Central South University, Changsha, Hunan 410008, P.R. China
| | - He Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yichen Lu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiabin Liu
- Cancer Research Institute; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; National Health and Family Planning Commission, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jiaojiao Guo
- Cancer Research Institute; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; National Health and Family Planning Commission, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xinying Zhao
- Xiangya School of Public Health, Central South University, Changsha, Hunan 410008, P.R. China
| | - Weihong Jiang
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guancheng Li
- Cancer Research Institute; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; National Health and Family Planning Commission, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guiyuan Li
- Cancer Research Institute; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; National Health and Family Planning Commission, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fengyan Jin
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wen Zhou
- Cancer Research Institute; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; National Health and Family Planning Commission, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
16
|
Ngan HL, Wang L, Lo KW, Lui VWY. Genomic Landscapes of EBV-Associated Nasopharyngeal Carcinoma vs. HPV-Associated Head and Neck Cancer. Cancers (Basel) 2018; 10:E210. [PMID: 29933636 PMCID: PMC6070978 DOI: 10.3390/cancers10070210] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/09/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022] Open
Abstract
: Epstein-Barr virus-positive nasopharyngeal carcinoma (EBV(+) NPC), and human papillomavirus-positive head and neck squamous cell carcinoma (HPV(+) HNSCC) are two distinct types of aggressive head and neck cancers with early age onsets. Their recently identified genomic landscapes by whole-exome sequencing (WES) clearly reveal critical roles of: (1) inflammation via NF-kB activation, (2) survival via PI3K aberrations, and perhaps (3) immune evasion via MHC loss in these cancers as summarized in this review. Immediate outcomes of these WES studies include the identification of potential prognostic biomarkers, and druggable events for these cancers. The impact of these genomic findings on the development of precision medicine and immunotherapies will be discussed. For both of these cancers, the main lethality comes from metastases and disease recurrences which may represent therapy resistance. Thus, potential curing of these cancers still relies on future identification of key genomic drivers and likely druggable events in recurrent and metastatic forms of these intrinsically aggressive cancers of the head and neck.
Collapse
Affiliation(s)
- Hoi-Lam Ngan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Lan Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Kwok-Wai Lo
- Department of Anatomical and cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
17
|
Nasopharyngeal carcinoma: A review of current updates. Exp Ther Med 2018; 15:3687-3692. [PMID: 29556258 PMCID: PMC5844099 DOI: 10.3892/etm.2018.5878] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a rare malignancy worldwide, but it is endemic in a few areas including Southern China, Southeast Asia, North Africa and the Arctic. The underlying mechanisms behind this remarkable geographic distribution remain unclear. Although Epstein-Barr virus (EBV) infection has been suggested as a necessary cause of undifferentiated NPC, EBV itself is not sufficient to cause this malignancy. Other co-factors, such as environmental risk factors, and/or genetic susceptibility, may interact with EBV to play a role in the carcinogenesis of NPC. Survival rates differ significantly between NPC patients in early stages and late stages. Due to the close associations between EBV infection and NPC risk, EBV-related biomarkers have been used for early detection and screening for NPC in a few high-incidence areas. In the present review article the latest updates are discussed.
Collapse
|
18
|
Zhou Y, Xia L, Lin J, Wang H, Oyang L, Tan S, Tian Y, Su M, Wang H, Cao D, Liao Q. Exosomes in Nasopharyngeal Carcinoma. J Cancer 2018; 9:767-777. [PMID: 29581754 PMCID: PMC5868140 DOI: 10.7150/jca.22505] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes are nanosized (30-100nm) membrane microvesicles secreted through a complex cellular process. Exosomes contain a variety of bioactive molecules, such as proteins, microRNAs(miRNAs or miRs) and long non-coding RNAs (lncRNAs), playing an important role in the cell-to-cell substance transportation and signal transduction. Nasopharyngeal carcinoma-related exosomes (NPC-Exo) have been identified in circulating blood and contribute to tumor cell proliferation, angiopoiesis, and immune tolerance through remodeling of tumor microenvironment (TME). Nasopharyngeal carcinoma-related exosomes may also induce epithelial-mesenchymal transition (EMT), thus promoting tumor metastasis and chemoradioresistance. Clinically, the exosomes may serve as novel biomarkers for diagnosis and targeted therapies of nasopharyngeal carcinoma. This review article updates the understanding of exosomes in nasopharyngeal carcinoma(NPC).
Collapse
Affiliation(s)
- Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jingguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Heran Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine. 913 N. Rutledge Street, Springfield, IL 62794, USA
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|