1
|
Zeng W, Tomlinson B. Statin alternatives for the treatment of hypercholesterolemia - a safety evaluation. Expert Opin Drug Saf 2025; 24:17-24. [PMID: 39485240 DOI: 10.1080/14740338.2024.2424411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/19/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
INTRODUCTION Statins are well established as the first-line treatment to reduce low-density-lipoprotein cholesterol (LDL-C) and cardiovascular (CV) events, but some patients are unable to tolerate effective doses or sometimes any dose of statins and alternative treatments may be required. AREAS COVERED In this review we summarize the relevant published literature obtained from a PubMed search on the safety of statin alternatives for the treatment of hypercholesterolemia. EXPERT OPINION The main alternatives to statins are ezetimibe, the proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, evolocumab, alirocumab, and inclisiran, and the recently approved bempedoic acid. These have all shown an excellent safety profile and have not been associated with skeletal muscle symptoms or with increased risk of new onset diabetes and they have no major drug interactions. The injectable PCSK9 inhibitors are associated with a small increase in injection site reactions which are usually of mild or moderate intensity. Bempedoic acid is associated with a small increase in plasma uric acid and slightly increased frequency of episodes of gout in susceptible subjects. The cost and availability and the degree of lowering of LDL-C required are more likely to determine the choice of statin alternatives than the safety issues.
Collapse
Affiliation(s)
- Weiwei Zeng
- Department of Pharmacy, Shenzhen Longgang Second People's Hospital, Shenzhen, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| |
Collapse
|
2
|
Chait A, Eckel RH, Vrablik M, Zambon A. Lipid-lowering in diabetes: An update. Atherosclerosis 2024; 394:117313. [PMID: 37945448 DOI: 10.1016/j.atherosclerosis.2023.117313] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is accelerated in people with diabetes. Dyslipidemia, hyperglycemia, oxidative stress, and inflammation play a role via a variety of mechanisms operative in the artery wall. In addition, some unique features predispose people with type 1 diabetes to accelerated atherosclerosis. Various organizations have created guidelines that provide advice regarding screening, risk assessment, and roadmaps for treatment to prevent ASCVD in diabetes. Management of dyslipidemia, especially with statins, has proven to be of immense benefit in the prevention of clinical CVD. However, since many patients fail to attain the low levels of low-density lipoproteins (LDL) recommended in these guidelines, supplemental therapy, such as the addition of ezetimibe, bempedoic acid or PCSK9 inhibitors, is often required to reach LDL goals. As a result, the upfront use of combination therapies, particularly a statin plus ezetimibe, is a rational initial approach. The addition to statins of drugs that specifically lower triglyceride levels has not proven beneficial, although the addition of icosapent-ethyl has been shown to be of value, likely by mechanisms independent of triglyceride lowering. Newer treatments in development, including apoC-III and ANGPTL3 inhibitors, seem promising in further reducing apoB-containing lipoproteins.
Collapse
Affiliation(s)
- Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, WA, USA
| | - Robert H Eckel
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Michal Vrablik
- 3rd Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alberto Zambon
- Department of Medicine - DIMED, University of Padova, and IRCCS Multimedica Milan, Italy.
| |
Collapse
|
3
|
Chen Y, Li Y, Li C, Zhang D, Liu Y, Zhang J, Guan S, Ding X, Xiao Q. The current perspective and opportunities of small nucleic acid-based therapeutics. Drug Dev Res 2024; 85:e22164. [PMID: 38411296 DOI: 10.1002/ddr.22164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
Compared to traditional small molecule and antibody drugs, RNA-based drugs offer a simple design, short research and development cycles, high specificity, broad treatment fields, and long-term efficacy. As a result, RNA-based drugs are extensively used to treat genetic diseases, tumors, viral infections, and other illnesses, suggesting that they have the potential to become the third-largest drug class after small molecule and antibody drugs. Currently, more than 10 small nucleic acid drugs have gained regulatory approval. The commercialization successes of small nucleic acid drugs will stimulate the development of RNA-based drugs. Small nucleic acid drugs primarily target liver diseases, metabolic diseases, genetic diseases, and tumors, and there is also significant potential for expanding indications in the future. This review provides a brief overview of the advantages and development of small nucleic acid-based therapeutics and shows a focus on platform technologies such as chemical modifications and delivery systems that have enabled the clinical translation of small nucleic acid-based therapeutics. Additionally, we summarize the latest clinical progress in small nucleic acid-based therapeutics for the treatment of various diseases, including rare diseases, liver diseases, metabolic diseases, and tumors. Finally, we highlight the future prospects for this promising treatment approach.
Collapse
Affiliation(s)
- Yang Chen
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Yang Li
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chao Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Dandan Zhang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Yuheng Liu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jingjing Zhang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Shan Guan
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Xiaoyan Ding
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Qin Xiao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| |
Collapse
|
4
|
Schonck WAM, Stroes ESG, Hovingh GK, Reeskamp LF. Long-Term Efficacy and Tolerability of PCSK9 Targeted Therapy: A Review of the Literature. Drugs 2024; 84:165-178. [PMID: 38267805 PMCID: PMC10981656 DOI: 10.1007/s40265-024-01995-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
Increased plasma levels of low-density lipoprotein cholesterol (LDL-C) are causally associated with atherosclerotic cardiovascular disease (ASCVD), and statins that lower LDL-C have been the cornerstone of ASCVD prevention for decades. However, guideline-recommended LDL-C targets are not achieved in about 60% of statin users. Proprotein convertase subtilisin/kexin type 9 (PCSK9)-targeted therapy effectively lowers LDL-C levels and has been shown to reduce ASCVD risk. A growing body of scientific and clinical evidence shows that PCSK9-targeted therapy offers an excellent safety and tolerability profile with a low incidence of side effects in the short term. In this review, we present and discuss the current clinical and scientific evidence pertaining to the long-term efficacy and tolerability of PCSK9-targeted therapy.
Collapse
Affiliation(s)
- Willemijn A M Schonck
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Global Chief Medical Office, Novo Nordisk, Copenhagen, Denmark
| | - Laurens F Reeskamp
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Liu Y, Zhao Y, Feng P, Jiang H. PCSK9 inhibitor attenuates atherosclerosis by regulating SNHG16/EZH2/TRAF5-mediated VSMC proliferation, migration, and foam cell formation. Cell Biol Int 2023; 47:1267-1280. [PMID: 37017413 DOI: 10.1002/cbin.12018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/21/2023] [Accepted: 03/11/2023] [Indexed: 04/06/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor has been demonstrated to exert a great cardioprotection in cardiometabolic impairments, including atherosclerosis. However, its underlying mechanism remains not fully understood. This study focuses on uncovering the actions of PCSK9 inhibitor on the connection between atherosclerosis and vascular smooth muscle cell (VSMC) behaviors. qRT-PCR was utilized to detect the expression of SNHG16. Proliferation and migration of VSMC were characterized by Cell Counting Kit-8 and wound healing assays. The intracellular lipids and foam cell formation were assessed by Oil Red O staining, fluorescence image, and cholesterol quantification kit. Atherosclerosis in vivo was evaluated by imaging the atherosclerotic lesions, hematoxylin-eosin staining, Oil Red O staining and Masson staining. The interaction between SNHG16 with EZH2 and histone H3 lysine 27 trimethylation (H3K27me3) were investigated by fluorescence in situ hybridization, RNA immunoprecipitation, and chromatin immunoprecipitation assays. A ApoE-/- mice model was used to validate the role of PCSK9 inhibitor and SNHG16 for atherosclerosis. The protective regulation of PCSK9 inhibitor was observed both in high-fat diet (HFD)-fed mice and oxidized low-density lipoprotein (ox-LDL)-treated VSMC, as manifested in the decreased the atherosclerotic lesions in vivo, as well as the weakened cell proliferation, migration, and formation of foam cells in vitro. SNHG16 was identified to be a downstream effector of PCSK9 inhibitor-mediated biological functions, of which knockdown also significantly ox-LDL-treated VSMC proliferation, migration, and foam cell formation abilities. SNHG16 epigenetically suppressed TRAF5 via recruiting EZH2. Silencing of TRAF5 abolished the protective effects of SNHG16 knockdown on the pathogenesis of atherosclerosis. Collectively, PCSK9 inhibitor attenuated atherosclerosis by regulating SNHG16/EZH2/TRAF5 axis to impair the proliferation, migration, and foam cell formation of VSMC.
Collapse
Affiliation(s)
- Yan Liu
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yueyan Zhao
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Panyang Feng
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Haijie Jiang
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
6
|
Koenig W, Ray KK, Landmesser U, Leiter LA, Schwartz GG, Wright RS, Conde LG, Han J, Raal FJ. Efficacy and safety of inclisiran in patients with cerebrovascular disease: ORION-9, ORION-10, and ORION-11. Am J Prev Cardiol 2023; 14:100503. [PMID: 37252442 PMCID: PMC10209488 DOI: 10.1016/j.ajpc.2023.100503] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
Patients with cerebrovascular disease (CeVD) have been shown to benefit from lipid-lowering therapies, but guideline-recommended levels of low-density lipoprotein cholesterol (LDL-C) are often not attained with statin treatment alone. The ORION-9, ORION-10, and ORION-11 trials evaluated the efficacy and safety of inclisiran in 3660 primary and secondary prevention patients with hyperlipidemia despite maximum tolerated statin treatment. This pooled post hoc analysis comprised 202 randomized patients from those trials with established CeVD who had received either 284 mg inclisiran (equivalent to 300 mg inclisiran sodium, n = 110) or placebo (n = 92) on Days 1, 90, and 6-monthly thereafter up to Day 540. At baseline, mean (SD) LDL-C was 108.4 (34.3) mg/dL and 110.5 (35.3) mg/dL in inclisiran and placebo arms, respectively. Inclisiran produced a mean (95% CI) placebo-corrected percentage change in LDL-C from baseline to Day 510 of -55.2 (-64.5 to -45.9; p < 0.0001); the corresponding time-adjusted percentage change from baseline after Day 90 and up to Day 540 was -55.2 (-62.4 to -47.9; p < 0.0001). Treatment-emergent adverse events (TEAEs) and TEAEs at the injection site, mostly mild, were more frequent with inclisiran versus placebo (82.7% vs 70.7% and 3.6% vs 0%, respectively). In patients with CeVD, twice-yearly dosing with inclisiran (after the initial and 3-month doses) in combination with maximally tolerated statins provided effective and consistent LDL-C reductions and was well tolerated.
Collapse
Affiliation(s)
- Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Kausik K. Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, London, UK
| | - Ulf Landmesser
- Department of Cardiology, Charité-University Medicine Berlin, Berlin Institute of Health (BIH), DZHK, Partner Site Berlin, Germany
| | - Lawrence A. Leiter
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Gregory G. Schwartz
- Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - R. Scott Wright
- Division of Preventive Cardiology and Department of Cardiology, Mayo Clinic, Rochester, MN, USA
| | | | - Jackie Han
- Novartis Pharmaceutical Corporation, East Hanover, NJ, USA
| | - Frederick J. Raal
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Lv F, Cai X, Lin C, Yang W, Hu S, Ji L. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors and the Risk of Fracture: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Calcif Tissue Int 2023:10.1007/s00223-023-01085-0. [PMID: 37099141 DOI: 10.1007/s00223-023-01085-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/13/2023] [Indexed: 04/27/2023]
Abstract
Osteoporosis and hyperlipidemia are closely correlated and statins might be associated with a decreased risk of fracture. We aimed to investigate the association between proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) therapy and the risk of fracture. The PubMed, Cochrane library, and EMBASE databases were systematically searched from the inception dates to October 22, 2022. Randomized clinical trials (RCTs) that addressed to fracture events of participants using alirocumab, evolocumab, bococizumab or inclisiran, with a follow-up of ≥ 24 weeks were included. Meta-analyses were conducted to calculate the odds ratio (OR) with 95% confidence intervals (CIs) for major osteoporotic fracture, hip fracture, osteoporotic non-vertebral fracture, and total fracture. 30 trials assessing PCSK9i among 95, 911 adults were included. There were no significant associations between PCSK9i therapy and the risk of major osteoporotic fracture [OR 1.08 (95% Cl 0.87-1.34), p = 0.49], hip fracture [OR 1.05 (95% Cl 0.73-1.53), p = 0.79], osteoporotic non-vertebral fracture [OR 1.03 (95% Cl 0.80-1.32), p = 0.83], and total fracture [OR 1.03 (95% Cl 0.88-1.19), p = 0.74] over a period of 6-64 months. No significant associations were detected in any of the sensitivity analyses and subgroup analyses stratified by the type of PCSK9i, follow-up duration, age, sex, sample size, and patient profile. Pooled results of our meta-analysis showed that exposure to PCSK9i was not associated with reduced risks of fracture in the short term.
Collapse
Affiliation(s)
- Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| | - Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Suiyuan Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
8
|
Bell AS, Wagner J, Rosoff DB, Lohoff FW. Proprotein convertase subtilisin/kexin type 9 (PCSK9) in the central nervous system. Neurosci Biobehav Rev 2023; 149:105155. [PMID: 37019248 DOI: 10.1016/j.neubiorev.2023.105155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
The gene encoding proprotein convertase subtilisin/kexin type 9 (PCSK9) and its protein product have been widely studied for their role in cholesterol and lipid metabolism. PCSK9 increases the rate of metabolic degradation of low-density lipoprotein receptors, preventing the diffusion of low-density lipoprotein (LDL) from plasma into cells and contributes to high lipoprotein-bound cholesterol levels in the plasma. While most research has focused on the regulation and disease relevance of PCSK9 to the cardiovascular system and lipid metabolism, there is a growing body of evidence that PCSK9 plays a crucial role in pathogenic processes in other organ systems, including the central nervous system. PCSK9's impact on the brain is not yet fully understood, though several recent studies have sought to illuminate its impact on various neurodegenerative and psychiatric disorders, as well as its connection with ischemic stroke. Cerebral PCSK9 expression is low but is highly upregulated during disease states. Among others, PCSK9 is known to play a role in neurogenesis, neural cell differentiation, central LDL receptor metabolism, neural cell apoptosis, neuroinflammation, Alzheimer's Disease, Alcohol Use Disorder, and stroke. The PCSK9 gene contains several polymorphisms, including both gain-of-function and loss-of-function mutations which profoundly impact normal PCSK9 signaling and cholesterol metabolism. Gain-of-function mutations lead to persistent hypercholesterolemia and poor health outcomes, while loss-of-function mutations generally lead to hypocholesterolemia and may serve as a protective factor against diseases of the liver, cardiovascular system, and central nervous system. Recent genomic studies have sought to identify the end-organ effects of such mutations and continue to identify evidence of a much broader role for PCSK9 in extrahepatic organ systems. Despite this, there remain large gaps in our understanding of PCSK9, its regulation, and its effects on disease risk outside the liver. This review, which incorporates data from a wide range of scientific disciplines and experimental paradigms, is intended to describe PCSK9's role in the central nervous system as it relates to cerebral disease and neuropsychiatric disorders, and to examine the clinical potential of PCSK9 inhibitors and genetic variation in the PCSK9 gene on disease outcomes, including neurological and neuropsychiatric disease.
Collapse
|
9
|
Inclisiran-Safety and Effectiveness of Small Interfering RNA in Inhibition of PCSK-9. Pharmaceutics 2023; 15:pharmaceutics15020323. [PMID: 36839644 PMCID: PMC9965021 DOI: 10.3390/pharmaceutics15020323] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Dyslipidemia is listed among important cardiovascular disease risk factors. Treating lipid disorders is difficult, and achieving desirable levels of LDL-cholesterol (LDL-C) is essential in both the secondary and primary prevention of cardiovascular disease. For many years, statins became the basis of lipid-lowering therapy. Nevertheless, these drugs are often insufficient due to their side effects and restrictive criteria for achieving the recommended LDL-C values. Even the addition of other drugs, i.e., ezetimibe, does not help one achieve the target LDL-C. The discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9) discovery has triggered intensive research on a new class of protein-based drugs. The protein PCSK9 is located mainly in hepatocytes and is involved in the metabolism of LDL-C. In the beginning, antibodies against the PCSK9 protein, such as evolocumab, were invented. The next step was inclisiran. Inclisiran is a small interfering RNA (siRNA) that inhibits the expression of PCSK9 by binding specifically to the mRNA precursor of PCSK9 protein and causing its degradation. It has been noticed in recent years that siRNA is a powerful tool for biomedical research and drug discovery. The purpose of this work is to summarize the molecular mechanisms, pharmacokinetics, pharmacodynamics of inclisiran and to review the latest research.
Collapse
|
10
|
Voevoda MI, Gurevich VS, Ezhov MV, Sergienko IV. [Inclisiran - a new era in lipid-lowering therapy]. KARDIOLOGIIA 2022; 62:57-62. [PMID: 35834343 DOI: 10.18087/cardio.2022.6.n2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Inclisiran is a novel hypolipidemic drug that inhibits synthesis of the PCSK9 protein through the process called RNA interference. Inclisiran is a double-stranded, modified RNA bound to the N-acetylgalactosamine (GalNAc) carbohydrate molecule, a ligand of the acialoglycoprotein receptor, that is expressed by hepatocytes. After entering hepatocytes, inclisiran cleaves matrix RNA and, thereby, reduces the PCSK9 protein synthesis. This, in turn, enhances the uptake of circulating low-density lipoproteins (LDL) by specific receptors on hepatocytes, thereby lowering LDL levels in circulation. Efficacy and safety of inclisiran for lowering LDL cholesterol (C) in blood and its effect on the risk of clinical complications of atherosclerosis have been studied in the ORION program that includes multiple clinical trials. According to results of this program, inclisiran effectively reduces both LDL-C levels and the incidence of cardiovascular complications in the absence of clinically significant adverse reactions. An important advantage of inclisiran compared with other lipid-lowering drugs is the administration schedule (twice a year), which allows a considerable improvement of patients' compliance with the treatment and also of the effectiveness of the hypolipidemic treatment.
Collapse
Affiliation(s)
- M I Voevoda
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk
| | - V S Gurevich
- Mechnikov North-Western State Medical University, St. Petersburg
| | - M V Ezhov
- Chazov National Medical Research Center of Cardiology, Moscow
| | - I V Sergienko
- Chazov National Medical Research Center of Cardiology, Moscow
| |
Collapse
|
11
|
Taheri F, Taghizadeh E, Baniamerian F, Rostami D, Rozeian A, Mohammad Gheibi Hayat S, Jamialahmadi T, Reiner Ž, Sahebkar A. Cellular and Molecular Aspects of Managing Familial Hypercholesterolemia: Recent and Emerging Therapeutic Approaches. Endocr Metab Immune Disord Drug Targets 2022; 22:1018-1028. [PMID: 35532248 DOI: 10.2174/1871530322666220509040844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
Familial hypercholesterolemia (FH) as a high-frequency genetic disorder is diagnosed based on family and/or patient's history of coronary heart disease (CHD) or some other atherosclerotic disease, LDL-C levels and/or clinical signs such as tendonous xantomata, arcus cornealis before age 45 years as well as functional mutation in the LDLR, apoB or PCSK9 gene. Its clinical features are detectable since early childhood. Early diagnosis and timely treatment increase life expectancy in most patients with FH. Current FH therapies decrease the level of low-density lipoprotein up to ≥50% from baseline with diet, pharmacotherapeutic treatment, lipid apheresis, and liver transplantation. The cornerstone of medical therapy is the use of more potent statins in higher doses, to which often ezetimibe has to be added, but some FH patients do not achieve the target LDL-C with this therapy Therefore, besides these and the most recent but already established therapeutic approaches including PCSK9 inhibitors, inclisiran, and bempedoic acid, new therapies are on the horizon such as gene therapy, CRISPR/Cas9 strategy etc. This paper focuses on cellular and molecular potential strategies for the treatment of FH.
Collapse
Affiliation(s)
- Forough Taheri
- Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | - Eskandar Taghizadeh
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Fatemeh Baniamerian
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Daryoush Rostami
- Department of Anesthesia, school of Paramedical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Ahmad Rozeian
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, School of Medicine University of Zagreb, Croatia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Advantages and Disadvantages of Inclisiran: A Small Interfering Ribonucleic Acid Molecule Targeting PCSK9—A Narrative Review. Cardiovasc Ther 2022; 2022:8129513. [PMID: 35237348 PMCID: PMC8853778 DOI: 10.1155/2022/8129513] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Abstract
As dyslipidemias remain one of the main risk factors for developing cardiovascular disease, the question of maintaining optimal lipid levels with pharmacotherapy remains a subject of interest worldwide. In contrast to conventional pharmacotherapy, human monoclonal antibodies directed against proprotein convertase subtilisin/kexin type 9 (PSCK9) and small interfering RNA- (siRNA-) based drug targeting PCSK9 represent a new strategy for managing lipid disorders and reducing cardiovascular risk. Inclisiran is a long-acting, synthetic siRNA that targets hepatic production of PCSK9 and consequently causes a reduction in LDL-C concentrations by approximately 50% compared to placebo. The structural modification of inclisiran has led to better stability and prolonged biological activity of the drug. The main advantage over conventional pharmacotherapy and anti-PCSK9 monoclonal antibodies is its favorable administration regimen (0–90–180 days), which should lead to much better compliance. Clinical trials conducted so far have confirmed the tolerability and efficacy of inclisiran in long-term PCSK9 and LDL-C level reductions. Moreover, a short-term follow-up on the safety of inclisiran showed a relatively good safety profile of the drug. However, it is still of great importance for ongoing and forthcoming clinical trials to be continued on a larger group of patients in order to assess long-term tolerability, efficacy, and safety of inclisiran.
Collapse
|
13
|
Talap J, Zhao J, Shen M, Song Z, Zhou H, Kang Y, Sun L, Yu L, Zeng S, Cai S. Recent advances in therapeutic nucleic acids and their analytical methods. J Pharm Biomed Anal 2021; 206:114368. [PMID: 34571322 DOI: 10.1016/j.jpba.2021.114368] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
Therapeutic nucleic acids are various chemically modified RNA or DNA with different functions, which mainly play roles at the gene level. Owing to its accurately targeting at pathogenic genes, nucleic acid based therapeutics have a wide range of application prospects. Recently, the improvement on chemical synthesis and delivery materials accelerated the development of therapeutic nucleic acids rapidly. Up to now, 17 nucleic acid based therapeutics approved by Food and Drug Administration (FDA) or European Medicines Agency (EMA). The development of therapeutics raised higher requirements for analytical methods, both in quality control and in clinical research. The first part of this review introduces different classes of therapeutic nucleic acids, including antisense oligonucleotide (ASO), RNA interference (RNAi) therapy, mRNA, aptamer and other classes which are under research. The second part reviews the therapeutic nucleic acids commercialized from 2019 to now. The third part discusses the analytical methods for nucleic acid based therapeutics, including liquid chromatography-based methods, capillary gel electrophoresis (CGE), hybridization enzyme-linked immunosorbent assay (ELISA) and other infrequently used methods. Finally, the advantages and shortcomings of these methods are summarized, and the future development of analysis methods are prospected.
Collapse
Affiliation(s)
- Jadera Talap
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Minzhe Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zihan Song
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yu Kang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lianli Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China.
| | - Sheng Cai
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China.
| |
Collapse
|
14
|
Cesaro A, Fimiani F, Gragnano F, Moscarella E, Schiavo A, Vergara A, Akioyamen L, D'Erasmo L, Averna M, Arca M, Calabrò P. New Frontiers in the Treatment of Homozygous Familial Hypercholesterolemia. Heart Fail Clin 2021; 18:177-188. [PMID: 34776078 DOI: 10.1016/j.hfc.2021.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a rare genetic disorder. The most common cause is a mutation in both alleles of the gene encoding for the low-density lipoprotein (LDL) receptor, although other causative mutations have been identified. Complications of atherosclerotic cardiovascular disease are common in these patients; therefore, reducing the elevated LDL-cholesterol burden is critical in their management. Conventionally, this is achieved by patients initiating lipid-lowering therapy, but this can present challenges in clinical practice. Fortunately, novel therapeutic strategies have enabled promising innovations in HoFH treatment. This review highlights recent and ongoing studies examining new therapeutic options for patients with HoFH.
Collapse
Affiliation(s)
- Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Edificio C - Cardiologia Universitaria, Via Ferdinando Palasciano 1, Caserta 81100, Italy. https://twitter.com/arturocesaro
| | - Fabio Fimiani
- Unit of Inherited and Rare Cardiovascular Diseases, A.O.R.N. Dei Colli "V. Monaldi", Via Leonardo Bianchi snc, Naples 80131, Italy
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Edificio C - Cardiologia Universitaria, Via Ferdinando Palasciano 1, Caserta 81100, Italy. https://twitter.com/FeliceGragnano
| | - Elisabetta Moscarella
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Edificio C - Cardiologia Universitaria, Via Ferdinando Palasciano 1, Caserta 81100, Italy
| | - Alessandra Schiavo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Edificio C - Cardiologia Universitaria, Via Ferdinando Palasciano 1, Caserta 81100, Italy
| | - Andrea Vergara
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Edificio C - Cardiologia Universitaria, Via Ferdinando Palasciano 1, Caserta 81100, Italy
| | - Leo Akioyamen
- Faculty of Medicine, University of Toronto, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine "Sapienza" University of Rome, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Ex III Clinica Medica, Viale dell'Università, 37, Rome 00185, Italy
| | - Maurizio Averna
- Department of Health Promotion Sciences Maternal and Infantile Care, University of Palermo, A.O.U.P 'Paolo Giaccone' Padiglione n. 10, Via del Vespro 129, Palermo 90127, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine "Sapienza" University of Rome, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Ex III Clinica Medica, Viale dell'Università, 37, Rome 00185, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Edificio C - Cardiologia Universitaria, Via Ferdinando Palasciano 1, Caserta 81100, Italy.
| |
Collapse
|
15
|
Banerjee Y, Pantea Stoian A, Cicero AFG, Fogacci F, Nikolic D, Sachinidis A, Rizvi AA, Janez A, Rizzo M. Inclisiran: a small interfering RNA strategy targeting PCSK9 to treat hypercholesterolemia. Expert Opin Drug Saf 2021; 21:9-20. [PMID: 34596005 DOI: 10.1080/14740338.2022.1988568] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Inclisiran is a novel posttranscriptional gene silencing therapy that inhibits proprotein convertase subtilisin/kexin type 9 (PCSK9) synthesis by RNA interference and has a potent, dose-dependent, durable effect in lowering LDL-C, and therefore is an effective drug to treat dyslipidemia, reducing the risk for acute cardiovascular (CV) events. It is safe and well-tolerated. AREAS COVERED This paper aims to review the mechanism of action of inclisiran while evaluating its efficacy and safety in the treatment of dyslipidemia from data of the clinical trials in the ORION program. EXPERT OPINION Data from the clinical trials in the ORION program demonstrated efficacy and safety of inclisiran in patients with dyslipidemia. Adverse events were similar in the inclisiran and placebo groups in the clinical trials, although injection-site reactions were more frequent with inclisiran than with placebo. Although the combination of efficacy and safety makes inclisiran a good option for the treatment of dyslipidemia compared to other PCSK9 targeting therapeutic strategies, however, further studies should exclude the possibility that inclisiran, through lower-affinity interactions, may influence other mRNAs in the physiological milieu.
Collapse
Affiliation(s)
- Yajnavalka Banerjee
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates and Centre of Medical Education, University of Dundee, UK
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Italy
| | - Federica Fogacci
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Italy
| | - Dragana Nikolic
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy
| | - Alexandros Sachinidis
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy
| | - Ali A Rizvi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC, USA.,Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Ljubljana, Slovenia
| | - Manfredi Rizzo
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy.,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
16
|
Cupido AJ, Kastelein JJP. Inclisiran for the treatment of hypercholesterolaemia: implications and unanswered questions from the ORION trials. Cardiovasc Res 2021; 116:e136-e139. [PMID: 32766688 PMCID: PMC7449556 DOI: 10.1093/cvr/cvaa212] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Arjen J Cupido
- Department of Vascular Medicine, Amsterdam University Medical Centres - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - John J P Kastelein
- Department of Vascular Medicine, Amsterdam University Medical Centres - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Tomlinson B, Patil NG, Fok M, Lam CWK. Managing dyslipidemia in patients with Type 2 diabetes. Expert Opin Pharmacother 2021; 22:2221-2234. [PMID: 33823719 DOI: 10.1080/14656566.2021.1912734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is associated with increased risk for atherosclerotic cardiovascular disease (ASCVD) which is partly related to atherogenic dyslipidemia with raised triglycerides, reduced high-density lipoprotein cholesterol levels, and accompanying lipid changes. Treatment of this dyslipidemia is regarded as a priority to reduce the ASCVD risk in T2DM. AREAS COVERED This article reviews the relevant studies and guidelines from the publications related to this area. EXPERT OPINION Lifestyle modification should always be encouraged, and statin treatment is indicated in most patients with T2DM based on the outcome of randomized controlled trials. If LDL-C goals are not achieved, first, ezetimibe and subsequently proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors should be added. Patients with T2DM derive greater benefits from ezetimibe and PCSK9 inhibitors due to their higher absolute ASCVD risk compared to patients without T2DM. If triglyceride levels remain elevated, a high dose of eicosapentaenoic acid ethyl ester should be added. Fibrates should be used for severe hypertriglyceridemia to prevent acute pancreatitis. Novel treatments including pemafibrate and inclisiran are undergoing cardiovascular outcome trials, and RNA-based therapies may help to target residual hypertriglyceridemia and high lipoprotein(a) with the long acting treatments offering potential improved adherence to therapy.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau China
| | | | - Manson Fok
- Faculty of Medicine, Macau University of Science and Technology, Macau China
| | | |
Collapse
|
18
|
Maligłówka M, Bułdak Ł, Okopień B, Bołdys A. The consequences of PCSK9 inhibition in selected tissues. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.9127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is one of nine members of the proprotein
convertase family. These serine proteases play a pivotal role in the post-translational
modification of proteins and the activation of hormones, enzymes, transcription factors and
growth factors. As a result, they participate in many physiological processes like embryogenesis,
activity of central nervous system and lipid metabolism. Scientific studies show
that the family of convertases is also involved in the pathogenesis of viral and bacterial
infections, osteoporosis, hyperglycaemia, cardiovascular diseases, neurodegenerative disorders
and cancer. The inhibition of PCSK9 by two currently approved for use monoclonal
antibodies (alirocumab, evolocumab) slows down the degradation of low-density lipoprotein
cholesterol receptors (LDLRs). This leads to increased density of LDLRs on the surface
of hepatocytes, resulting in decreased level of low-density lipoprotein cholesterol (LDL-C)
in the bloodstream, which is connected with the reduction of cardiovascular risk. PCSK9 inhibitors (PCSK9i) were created for the patients who could not achieve appropriate level
of LDL-C using current statin and ezetimibe therapy. It seems that high therapeutic efficacy
of PCSK9i will make them more common in the clinical use. The pleiotropic effects
of previously mentioned lipid-lowering therapies were the reasons for literature review of
possible positive and negative effects of PCSK9 inhibition beyond cholesterol metabolism.
Collapse
Affiliation(s)
- Mateusz Maligłówka
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| | - Łukasz Bułdak
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| | - Bogusław Okopień
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| | - Aleksandra Bołdys
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| |
Collapse
|
19
|
Barale C, Melchionda E, Morotti A, Russo I. PCSK9 Biology and Its Role in Atherothrombosis. Int J Mol Sci 2021; 22:ijms22115880. [PMID: 34070931 PMCID: PMC8198903 DOI: 10.3390/ijms22115880] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
It is now about 20 years since the first case of a gain-of-function mutation involving the as-yet-unknown actor in cholesterol homeostasis, proprotein convertase subtilisin/kexin type 9 (PCSK9), was described. It was soon clear that this protein would have been of huge scientific and clinical value as a therapeutic strategy for dyslipidemia and atherosclerosis-associated cardiovascular disease (CVD) management. Indeed, PCSK9 is a serine protease belonging to the proprotein convertase family, mainly produced by the liver, and essential for metabolism of LDL particles by inhibiting LDL receptor (LDLR) recirculation to the cell surface with the consequent upregulation of LDLR-dependent LDL-C levels. Beyond its effects on LDL metabolism, several studies revealed the existence of additional roles of PCSK9 in different stages of atherosclerosis, also for its ability to target other members of the LDLR family. PCSK9 from plasma and vascular cells can contribute to the development of atherosclerotic plaque and thrombosis by promoting platelet activation, leukocyte recruitment and clot formation, also through mechanisms not related to systemic lipid changes. These results further supported the value for the potential cardiovascular benefits of therapies based on PCSK9 inhibition. Actually, the passive immunization with anti-PCSK9 antibodies, evolocumab and alirocumab, is shown to be effective in dramatically reducing the LDL-C levels and attenuating CVD. While monoclonal antibodies sequester circulating PCSK9, inclisiran, a small interfering RNA, is a new drug that inhibits PCSK9 synthesis with the important advantage, compared with PCSK9 mAbs, to preserve its pharmacodynamic effects when administrated every 6 months. Here, we will focus on the major understandings related to PCSK9, from its discovery to its role in lipoprotein metabolism, involvement in atherothrombosis and a brief excursus on approved current therapies used to inhibit its action.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/therapeutic use
- Atherosclerosis/drug therapy
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Blood Platelets/drug effects
- Blood Platelets/enzymology
- Blood Platelets/pathology
- Cholesterol, LDL/antagonists & inhibitors
- Cholesterol, LDL/metabolism
- Dyslipidemias/drug therapy
- Dyslipidemias/enzymology
- Dyslipidemias/genetics
- Dyslipidemias/pathology
- Fibrinolytic Agents/therapeutic use
- Gene Expression Regulation
- Humans
- Hypolipidemic Agents/therapeutic use
- Lipid Metabolism/drug effects
- Lipid Metabolism/genetics
- PCSK9 Inhibitors
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/enzymology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/pathology
- Platelet Activation/drug effects
- Proprotein Convertase 9/biosynthesis
- Proprotein Convertase 9/genetics
- RNA, Small Interfering/therapeutic use
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Signal Transduction
- Thrombosis/enzymology
- Thrombosis/genetics
- Thrombosis/pathology
- Thrombosis/prevention & control
Collapse
|
20
|
Landmesser U, Poller W, Tsimikas S, Most P, Paneni F, Lüscher TF. From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases. Eur Heart J 2021; 41:3884-3899. [PMID: 32350510 DOI: 10.1093/eurheartj/ehaa229] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/17/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Nucleic acid-based therapeutics are currently developed at large scale for prevention and management of cardiovascular diseases (CVDs), since: (i) genetic studies have highlighted novel therapeutic targets suggested to be causal for CVD; (ii) there is a substantial recent progress in delivery, efficacy, and safety of nucleic acid-based therapies; (iii) they enable effective modulation of therapeutic targets that cannot be sufficiently or optimally addressed using traditional small molecule drugs or antibodies. Nucleic acid-based therapeutics include (i) RNA-targeted therapeutics for gene silencing; (ii) microRNA-modulating and epigenetic therapies; (iii) gene therapies; and (iv) genome-editing approaches (e.g. CRISPR-Cas-based): (i) RNA-targeted therapeutics: several large-scale clinical development programmes, using antisense oligonucleotides (ASO) or short interfering RNA (siRNA) therapeutics for prevention and management of CVD have been initiated. These include ASO and/or siRNA molecules to lower apolipoprotein (a) [apo(a)], proprotein convertase subtilisin/kexin type 9 (PCSK9), apoCIII, ANGPTL3, or transthyretin (TTR) for prevention and treatment of patients with atherosclerotic CVD or TTR amyloidosis. (ii) MicroRNA-modulating and epigenetic therapies: novel potential therapeutic targets are continually arising from human non-coding genome and epigenetic research. First microRNA-based therapeutics or therapies targeting epigenetic regulatory pathways are in clinical studies. (iii) Gene therapies: EMA/FDA have approved gene therapies for non-cardiac monogenic diseases and LDL receptor gene therapy is currently being examined in patients with homozygous hypercholesterolaemia. In experimental studies, gene therapy has significantly improved cardiac function in heart failure animal models. (iv) Genome editing approaches: these technologies, such as using CRISPR-Cas, have proven powerful in stem cells, however, important challenges are remaining, e.g. low rates of homology-directed repair in somatic cells such as cardiomyocytes. In summary, RNA-targeted therapies (e.g. apo(a)-ASO and PCSK9-siRNA) are now in large-scale clinical outcome trials and will most likely become a novel effective and safe therapeutic option for CVD in the near future. MicroRNA-modulating, epigenetic, and gene therapies are tested in early clinical studies for CVD. CRISPR-Cas-mediated genome editing is highly effective in stem cells, but major challenges are remaining in somatic cells, however, this field is rapidly advancing.
Collapse
Affiliation(s)
- Ulf Landmesser
- Department of Cardiology, Campus Benjamin Franklin, CC11 (Cardiovascular Medicine), Charite-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health, Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, Germany
| | - Wolfgang Poller
- Department of Cardiology, Campus Benjamin Franklin, CC11 (Cardiovascular Medicine), Charite-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, 9500 Gilman Drive, BSB 1080, La Jolla, CA 92093-0682, USA
| | - Patrick Most
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,Center for Translational Medicine, Jefferson Medical College, 1020 Locust Street, Philadelphia, PA 19107, USA.,Molecular and Translational Cardiology, Department of Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Rämistrasse 100, MOU2, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Research, Education and Development, Royal Brompton and Harefield Hospital Trust and Imperial College London, National Heart and Lung Institute, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
21
|
Tomlinson B, Patil NG, Fok M, Lam CWK. Role of PCSK9 Inhibitors in Patients with Familial Hypercholesterolemia. Endocrinol Metab (Seoul) 2021; 36:279-295. [PMID: 33866776 PMCID: PMC8090480 DOI: 10.3803/enm.2021.964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with familial hypercholesterolemia (FH) are at high or very high risk for cardiovascular disease. Those with heterozygous FH (HeFH) often do not reach low-density lipoprotein cholesterol (LDL-C) targets with statin and ezetimibe therapy, and those with homozygous FH (HoFH) usually require additional lipid-modifying therapies. Drugs that inhibit proprotein convertase subtilisin/kexin type 9 (PCSK9) offer a novel approach to reduce LDL-C. The monoclonal antibodies, alirocumab and evolocumab, given by subcutaneous injection every 2 or 4 weeks produce reductions in LDL-C of 50% to 60% in patients with HeFH, allowing many of them to achieve their LDL-C goals. Patients with HoFH show a reduced and more variable LDL-C response, which appears to depend on residual LDL receptor activity, and those with receptor-negative mutations may show no response. Inclisiran is a long-acting small interfering RNA therapeutic agent that inhibits the synthesis of PCSK9. Subcutaneous doses of 300 mg can reduce LDL-C by more than 50% for at least 6 months and the responses in HeFH and HoFH patients are similar to those achieved with monoclonal antibodies. These PCSK9 inhibitors are generally well tolerated and they provide a new opportunity for effective treatment for the majority of patients with FH.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | | | - Manson Fok
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | | |
Collapse
|
22
|
Ma N, Fan L, Dong Y, Xu X, Yu C, Chen J, Ren J. New PCSK9 inhibitor miR-552-3p reduces LDL-C via enhancing LDLR in high fat diet-fed mice. Pharmacol Res 2021; 167:105562. [PMID: 33737240 DOI: 10.1016/j.phrs.2021.105562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022]
Abstract
PCSK9 has emerged as a promising new therapeutic target for hyperlipidemia. The efficacy of PCSK9 siRNA in clinic trials clues the feasibility of exploring more PCSK9 inhibitors based on genetic inhibition in the treatment of hyperlipidemia. MicroRNAs (miRNAs) as a class of endogenous non-coding small RNAs can regulate genes at transcriptional and/or translational level. Here, we screened miRNAs from the prediction of TargetScan database with possible inhibitory activities in PCSK9 protein level via AlphaLISA and Western blotting, in which miR-552-3p was selected out for its strongest inhibitory effect. MiR-552-3p could bind to the 3' untranslated region (3'-UTR) of PCSK9 to inhibit translation and interact with the promoter of PCSK9 to suppress transcription. Further in vitro and in vivo experiments proved the effects of miR-552-3p on PCSK9 and downstream effectors: it could increase LDLR protein level, promote LDL-C uptake in HepG2 cells and lower serum LDL-C in high fat diet (HFD)-fed mice. In conclusion, our findings firstly identified miR-552-3p as a new PCSK9 inhibitor with the dual-inhibition mechanism, which suggested the possible application of miR-552-3p in the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Ningning Ma
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Lei Fan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Yunxia Dong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Xiaoding Xu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Chuwei Yu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China.
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
23
|
Li LJ, Chang WM, Hsiao M. Aberrant Expression of microRNA Clusters in Head and Neck Cancer Development and Progression: Current and Future Translational Impacts. Pharmaceuticals (Basel) 2021; 14:ph14030194. [PMID: 33673471 PMCID: PMC7997248 DOI: 10.3390/ph14030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are small non-coding RNAs known to negative regulate endogenous genes. Some microRNAs have high sequence conservation and localize as clusters in the genome. Their coordination is regulated by simple genetic and epigenetic events mechanism. In cells, single microRNAs can regulate multiple genes and microRNA clusters contain multiple microRNAs. MicroRNAs can be differentially expressed and act as oncogenic or tumor suppressor microRNAs, which are based on the roles of microRNA-regulated genes. It is vital to understand their effects, regulation, and various biological functions under both normal and disease conditions. Head and neck squamous cell carcinomas are some of the leading causes of cancer-related deaths worldwide and are regulated by many factors, including the dysregulation of microRNAs and their clusters. In disease stages, microRNA clusters can potentially control every field of oncogenic function, including growth, proliferation, apoptosis, migration, and intercellular commutation. Furthermore, microRNA clusters are regulated by genetic mutations or translocations, transcription factors, and epigenetic modifications. Additionally, microRNA clusters harbor the potential to act therapeutically against cancer in the future. Here, we review recent advances in microRNA cluster research, especially relative to head and neck cancers, and discuss their regulation and biological functions under pathological conditions as well as translational applications.
Collapse
Affiliation(s)
- Li-Jie Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-2-2789–8752
| |
Collapse
|
24
|
Sunil B, Foster C, Wilson DP, Ashraf AP. Novel therapeutic targets and agents for pediatric dyslipidemia. Ther Adv Endocrinol Metab 2021; 12:20420188211058323. [PMID: 34868544 PMCID: PMC8637781 DOI: 10.1177/20420188211058323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/19/2021] [Indexed: 02/04/2023] Open
Abstract
Landmark studies have convincingly demonstrated that atherosclerosis begins in youth. While generally asymptomatic, an increasing number of youth with disorders of lipid and lipoprotein metabolism, such as familial hypercholesterolemia, are being identified through selective and universal screening. While a heart healthy lifestyle is the foundation of treatment for all youth with dyslipidemia, lipid-lowering therapy may be required by some to prevent morbidity and premature mortality, especially when initiated at a young age. When appropriate, use of statins has become standard of care for reducing low-density lipoprotein cholesterol, while fibrates may be beneficial in helping to lower triglycerides. Many therapeutic options commonly used in adults are not yet approved for use in youth less than 18 years of age. Although currently available lipid-lowering therapy is well tolerated and safe when administered to youth, response to treatment may vary and some conditions lack an efficient therapeutic option. Thus, newer agents are needed to aid in management. Many are in development and clinical trials in youth are currently in progress but will require FDA approval before becoming commercially available. Many utilize novel approaches to favorably alter lipid and lipoprotein metabolism. In the absence of long-term outcome data of youth who were treated beginning at an early age, clinical registries may prove to be useful in monitoring safety and efficacy and help to inform clinical decision-making. In this manuscript, we review currently available and novel therapeutic agents in development for the treatment of elevated cholesterol and triglycerides.
Collapse
Affiliation(s)
- Bhuvana Sunil
- Division of Pediatric Endocrinology &
Diabetes, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christy Foster
- Division of Pediatric Endocrinology &
Diabetes, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Don P. Wilson
- Cardiovascular Health and Risk Prevention,
Pediatric Endocrinology and Diabetes, Cook Children’s Medical Center, Fort
Worth, TX, USA
| | | |
Collapse
|
25
|
Su X, Cheng Y, Chang D. Lipid-lowering therapy: Guidelines to precision medicine. Clin Chim Acta 2020; 514:66-73. [PMID: 33359059 DOI: 10.1016/j.cca.2020.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023]
Abstract
Dyslipidemia is correlated with a series of health problems, such as obesity, insulin resistance, and the development of cardiovascular disease (CVD). Currently, accumulating evidence sheds light on the fact that β-hydroxy β-methylglutaryl-CoA reductase inhibitors, named statins, could lower circulating lipid-density lipoprotein cholesterol (LDL-C) and represent a revolution for the prevention of metabolic disorder diseases. In addition, statins remain the cornerstone of LDL-C-lowering treatments, together with ezetimibe and bile acid sequestrants, which are used either in combination with statins or as monotherapies in the case of statin intolerance or side effects. On the other hand, other medicines that reduce circulating LDL-C have also been researched, including inhibitors of protein convertase subtilisin/kexin type 9 (PCSK9). More recently, PCSK9 inhibitors have been approved for the secondary prevention of CVD and for the atherogenic dyslipidemia therapy. Here, we summarize the latest guidelines for the management of dyslipidemia and its relation to CVD, focusing on LDL-C-lowering medicines that are either available in daily clinical practice or under investigation. In addition, we also discuss the "who, when, and how" with respect to treating patients with dyslipidemia according to LDL-C reduction as an individualized clinical precision medicine.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ye Cheng
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Dong Chang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
26
|
Tomlinson B, Chan P, Zhang Y, Lam CWK. Efficacy and safety of add on therapies in patients with hypercholesterolemia undergoing statin therapy. Expert Opin Pharmacother 2020; 21:2137-2151. [PMID: 32772741 DOI: 10.1080/14656566.2020.1801638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Statins are the first-line treatment to reduce cardiovascular (CV) events, mainly by reducing low-density-lipoprotein cholesterol (LDL-C), but many patients need additional treatments to reach the current lipid goals. AREAS COVERED Herein, the authors review the published literature on the efficacy and safety of the therapies that are most often added to statins to achieve lipid targets. EXPERT OPINION Ezetimibe is usually the first additional treatment to achieve LDL-C targets. It reduces LDL-C by about a further 20% and has an excellent safety and tolerability profile. The monoclonal antibody proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, evolocumab, and alirocumab, can reduce LDL-C by ≥50% when added to statins and they also have a well-established safety and tolerability record. The recently approved bempedoic acid is well tolerated and appears to be free of skeletal muscle-related problems, but the CV outcome study with this drug has not been completed. Inclisiran, a small-interfering RNA targeting PCSK9 is at an advanced stage of development and the available data indicate a satisfactory safety profile and LDL-C lowering efficacy similar to the PCSK9 monoclonal antibodies with the advantage of less frequent administration.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology , Macau, China
| | - Paul Chan
- Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University , Taipei City, Taiwan
| | - Yuzhen Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine , Shanghai, China
| | | |
Collapse
|
27
|
O'Connell EM, Lohoff FW. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in the Brain and Relevance for Neuropsychiatric Disorders. Front Neurosci 2020; 14:609. [PMID: 32595449 PMCID: PMC7303295 DOI: 10.3389/fnins.2020.00609] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has long been studied in the liver due to its regulation of plasma low-density lipoprotein cholesterol (LDL-C) and its causal role in familial hypercholesterolemia. Although PCSK9 was first discovered in cerebellar neurons undergoing apoptosis, its function in the central nervous system (CNS) is less clear. PCSK9 has been shown to be involved in neuronal differentiation, LDL receptor family metabolism, apoptosis, and inflammation in the brain, but in vitro and in vivo studies offer contradictory findings. PCSK9 expression in the adult brain is low but is highly upregulated during disease states. Cerebral spinal fluid (CSF) PCSK9 concentrations are correlated with neural tube defects and neurodegenerative diseases in human patients. Epigenetic studies reveal that chronic alcohol use may modulate methylation of the PCSK9 gene and genetic studies show that patients with gain-of-function PCSK9 variants have higher LDL-C and an increased risk of ischemic stroke. Early safety studies of the PCSK9 inhibitors evolocumab and alirocumab, used to treat hypercholesterolemia, hinted that PCSK9 inhibition may negatively impact cognition but more recent, longer-term clinical trials found no adverse neurocognitive events. The purpose of this review is to elucidate the role of PCSK9 in the brain, particularly its role in disease pathogenesis.
Collapse
Affiliation(s)
- Emma M O'Connell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
28
|
Tomlinson B, Chan P, Zhang Y, Liu Z, Lam CWK. Pharmacokinetics of current and emerging treatments for hypercholesterolemia. Expert Opin Drug Metab Toxicol 2020; 16:371-385. [PMID: 32223657 DOI: 10.1080/17425255.2020.1749261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Reduction of low-density-lipoprotein cholesterol (LDL-C) and other apolipoprotein B (apoB)-containing lipoproteins reduces cardiovascular (CV) events and greater reductions have greater benefits. Current lipid treatments cannot always achieve desirable LDL-C targets and additional or alternative treatments are often needed.Areas covered: In this article, we review the pharmacokinetics of the available and emerging treatments for hypercholesterolemia and focus on recently approved drugs and those at a late stage of development.Expert opinion: Statin pharmacokinetics are well known and appropriate drugs and doses can usually be chosen for individual patients to achieve LDL-C targets and avoid adverse effects and drug-drug interactions. Ezetimibe, icosapent ethyl and the monoclonal antibodies evolocumab and alirocumab have established efficacy and safety. Newer oral agents including pemafibrate and bempedoic acid have generally favorable pharmacokinetics supporting use in a wide range of patients. RNA-based therapies with antisense oligonucleotides are highly specific for their targets and those inhibiting apoB, apoCIII, angiopoietin-like protein 3 and lipoprotein(a) have shown promising results. The small-interfering RNA inclisiran has the notable advantage that a single subcutaneous administration may be effective for up to 6 months. The CV outcome trial results and long term safety data are eagerly awaited for these new agents.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Paul Chan
- Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan.,Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yuzhen Zhang
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Zhongmin Liu
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | | |
Collapse
|
29
|
Macchi C, Sirtori CR, Corsini A, Santos RD, Watts GF, Ruscica M. A new dawn for managing dyslipidemias: The era of rna-based therapies. Pharmacol Res 2019; 150:104413. [PMID: 31449975 DOI: 10.1016/j.phrs.2019.104413] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022]
Abstract
The high occurrence of atherosclerotic cardiovascular disease (ASCVD) events is still a major public health issue. Although a major determinant of ASCVD event reduction is the absolute change of low-density lipoprotein-cholesterol (LDL-C), considerable residual risk remains and new therapeutic options are required, in particular, to address triglyceride-rich lipoproteins and lipoprotein(a) [Lp(a)]. In the era of Genome Wide Association Studies and Mendelian Randomization analyses aimed at increasing the understanding of the pathophysiology of ASCVD, RNA-based therapies may offer more effective treatment options. The advantage of oligonucleotide-based treatments is that drug candidates are targeted at highly specific regions of RNA that code for proteins that in turn regulate lipid and lipoprotein metabolism. For LDL-C lowering, the use of inclisiran - a silencing RNA that inhibits proprotein convertase subtilisin/kexin type 9 (PCSK9) synthesis - has the advantage that a single s.c. injection lowers LDL-C for up to 6 months. In familial hypercholesterolemia, the use of the antisense oligonucleotide (ASO) mipomersen, targeting apolipoprotein (apoB) to reduce LDL-C, has been a valuable therapeutic approach, despite unquestionable safety concerns. The availability of specific ASOs lowering Lp(a) levels will allow rigorous testing of the Lp(a) hypothesis; by dramatically reducing plasma triglyceride levels, Volanesorsen (APOC3) and angiopoietin-like 3 (ANGPTL3)-LRx will further clarify the causality of triglyceride-rich lipoproteins in ASCVD. The rapid progress to date heralds a new dawn in therapeutic lipidology, but outcome, safety and cost-effectiveness studies are required to establish the role of these new agents in clinical practice.
Collapse
Affiliation(s)
- C Macchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - C R Sirtori
- Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - A Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS Multimedica, Milan, Italy
| | - R D Santos
- Lipid Clinic, Heart Institute (InCor), University of Sao Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - G F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Cardiometabolic Services, Department of Cardiology, Royal Perth Hospital, Australia.
| | - M Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The cardiovascular (CV) risk related to lipid disorders is well established and is based on a robust body of evidence from well-designed randomized clinical trials, as well as prospective observational studies. In the last two decades, significant advances have been made in understanding the genetic basis of dyslipidemias. The present review is intended as a comprehensive discussion of current knowledge about the genetics and pathophysiology of disorders that predispose to dyslipidemia. We also focus on issues related to statins and the proprotein convertase subtilisin/kexin type 9 (PCSK9) and some of its polymorphisms, as well as new cholesterol-lowering medications, including PCSK9 inhibitors. RECENT FINDING Cholesterol is essential for the proper functioning of several body systems. However, dyslipidemia-especially elevated low-density lipoprotein (LDL-c) and triglyceride levels, as well as reduced lipoprotein lipase activity-is associated with an increased risk of coronary artery disease (CAD). High-density lipoprotein (HDL-c), however, seems to play a role as a risk marker rather than as a causal factor of the disease, as suggested by Mendelian randomization studies. Several polymorphisms in the lipoprotein lipase locus have been described and are associated with variations in the activity of this enzyme, producing high concentrations of triglycerides and increased risk of CAD. Dyslipidemia, especially increased LDL-c and triglyceride levels, continues to play a significant role in CV risk. The combination of genetic testing and counseling is important in the management of patients with dyslipidemia of genetic etiology. Strategies focused on primary prevention can offer an opportunity to reduce CV events.
Collapse
Affiliation(s)
- Ricardo Stein
- Graduate Program in Cardiology and Cardiovascular Sciences, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Exercise Cardiology Research Group (CardioEx), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,School of Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Serviço de Fisiatria e Reabilitação, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil.
| | - Filipe Ferrari
- Graduate Program in Cardiology and Cardiovascular Sciences, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Exercise Cardiology Research Group (CardioEx), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Scolari
- Graduate Program in Cardiology and Cardiovascular Sciences, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
31
|
Ruscica M, Reiner Z, Sirtori CR. Can we further optimize statin therapy to increase tolerability? Expert Opin Drug Discov 2019; 14:843-847. [DOI: 10.1080/17460441.2019.1615436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Massimiliano Ruscica
- Department of Pharmacological and Bimolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Zeljko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, Zagreb University, Zagreb, Croatia
| | - Cesare R. Sirtori
- Centro Dislipidemie, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
32
|
Macchi C, Banach M, Corsini A, Sirtori CR, Ferri N, Ruscica M. Changes in circulating pro-protein convertase subtilisin/kexin type 9 levels - experimental and clinical approaches with lipid-lowering agents. Eur J Prev Cardiol 2019; 26:930-949. [PMID: 30776916 DOI: 10.1177/2047487319831500] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regulation of pro-protein convertase subtilisin/kexin type 9 (PCSK9) by drugs has led to the development of a still small number of agents with powerful activity on low-density lipoprotein cholesterol levels, associated with a significant reduction of cardiovascular events in patients in secondary prevention. The Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER) and Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab (ODYSSEY OUTCOMES) studies, with the two available PCSK9 antagonists, i.e. evolocumab and alirocumab, both reported a 15% reduction in major adverse cardiovascular events. Regulation of PCSK9 expression is dependent upon a number of factors, partly genetic and partly associated to a complex transcriptional system, mainly controlled by sterol regulatory element binding proteins. PCSK9 is further regulated by concomitant drug treatments, particularly by statins, enhancing PCSK9 secretion but decreasing its stimulatory phosphorylated form (S688). These complex transcriptional mechanisms lead to variable circulating levels making clinical measurements of plasma PCSK9 for cardiovascular risk assessment a debated matter. Determination of total PCSK9 levels may provide a diagnostic tool for explaining an apparent resistance to PCSK9 inhibitors, thus indicating the need for other approaches. Newer agents targeting PCSK9 are in clinical development with a major interest in those with a longer duration of action, e.g. RNA silencing, allowing optimal patient compliance. Interest has been expanded to areas not only limited to low-density lipoprotein cholesterol reduction but also investigating other non-lipid pathways raising cardiovascular risk, in particular inflammation associated to raised high-sensitivity C-reactive protein levels, not significantly affected by the present PCSK9 antagonists.
Collapse
Affiliation(s)
- C Macchi
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - M Banach
- 2 Department of Hypertension, Medical University of Lodz, Poland.,3 Polish Mother's Memorial Hospital Research Institute (PMMHRI), Poland.,4 Cardiovascular Research Centre, University of Zielona Gora, Poland
| | - A Corsini
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy.,5 Multimedica IRCCS, Italy
| | - C R Sirtori
- 6 Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Italy
| | - N Ferri
- 7 Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Italy
| | - M Ruscica
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| |
Collapse
|
33
|
Ungar L, Sanders D, Becerra B, Barseghian A. Percutaneous Coronary Intervention in Familial Hypercholesterolemia Is Understudied. Front Cardiovasc Med 2018; 5:116. [PMID: 30214904 PMCID: PMC6125301 DOI: 10.3389/fcvm.2018.00116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/08/2018] [Indexed: 01/09/2023] Open
Abstract
Familial hypercholesterolemia (FH) is a common heritable condition in which mutations of genes governing cholesterol metabolism result in elevated LDL levels and accelerated atherosclerosis. The treatment of FH focuses on lipid lowering drugs to decrease patients' cholesterol levels and reduce their risk of cardiovascular events. Even with optimal medical therapy, some FH patients will develop coronary atherosclerosis, suffer myocardial infarction, and require revascularization. Yet, the revascularization of FH patients has not been widely studied. Here we review FH, identify unanswered questions in the interventional management of FH patients, and explore barriers and opportunities for answering these questions. Further research is needed in this neglected but important topic in interventional cardiology.
Collapse
Affiliation(s)
- Leo Ungar
- Department of Cardiology, University of California, Irvine, Irvine, CA, United States
| | - David Sanders
- Department of Internal Medicine, University of California, Irvine, Irvine, CA, United States
| | - Brian Becerra
- Department of Internal Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ailin Barseghian
- Department of Cardiology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|