1
|
Zhao ZY, Jiang ZL, Tong YP, Chi CJ, Zang Y, Choo YM, Xiong J, Li J, Hu JF. Phytochemical and biological studies on rare and endangered plants endemic to China. Part XLIV. Integrated NMR/EI-MS/LC-PDA-ESIMS approach for dereplication and targeted isolation of fortunefuroic acids from Keteleeria fortunei across diverse geographical origins. PHYTOCHEMISTRY 2025; 235:114453. [PMID: 39986408 DOI: 10.1016/j.phytochem.2025.114453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Secondary metabolites in plants of the same species, though originating from distinct geographical regions, frequently display both similarities and notable variations. A prior study on the vulnerable Chinese endemic conifer Keteleeria fortunei, collected from Yunnan province (KFYN), led to the isolation of fortunefuroic acids (FFAs) A-I. These compounds represent a unique class of triterpenoids characterized by a rare furoic acid moiety within the lateral chain. The distinct 23,27-epoxy-23,25(27)-dien-26-oic acid unit present in FFAs can be readily identified by characteristic proton NMR signals (δH-24: ca 6.36 ppm; δH-27: ca 7.97 ppm), a prominent ion fragment at m/z 125 in the EI-MS, and typical UV absorption peak around λmax 245 nm. In this study, an integrated approach was employed to dereplicate and isolate FFA-type compounds from K. fortunei collected from Fujian Province (KFFJ). This approach combined NMR, EI-MS, and LC-PDA-ESIMS data to detect and analyze compounds with molecular weights in the range of 464-468 Da, a distinguishing feature of FFA-type compounds. Consequently, six previously undescribed FFAs K-P (1-6) were obtained, alongside the re-isolation of FFAs A-D and H. Compound 1 exhibits a rare 17,14-friedo-cyclaorane type skeleton, while compound 2 is characterized as a 3,4-seco-cyclaorane-3,26-dioic acid. Compounds 3-6 are identified as derivatives of 9βH-lanost-26-oic FFAs. Additionally, a previously unreported lanost-26-oic acid derivative (7) was also identified, exhibiting an inhibitory effect on ATP-citrate lyase. Their chemical structures and absolute configurations were determined through spectroscopic analysis, GIAO NMR calculations combined with DP4+ probability analyses, and electronic circular dichroism calculations. The isolated FFAs have the potential to serve as chemotaxonomic markers for the genus Keteleeria within the Pinaceae family. This study marks the first application of integrated NMR/EI-MS/LC-PDA-ESIMS methods for both dereplication and the discovery of new natural products. Notably, the KFFJ samples were collected from a location approximately 1500 km away from that of KFYN. Understanding the impact of geographical origins on specialized metabolites may provide valuable insights into the sustainable utilization and conservation of endangered plant species.
Collapse
Affiliation(s)
- Ze-Yu Zhao
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Zhe-Lu Jiang
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, 318000, PR China
| | - Ying-Peng Tong
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, 318000, PR China
| | - Chun-Jing Chi
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, 318000, PR China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Yeun-Mun Choo
- Chemistry Department, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| |
Collapse
|
2
|
Boulos M, Mousa RS, Jeries N, Simaan E, Alam K, Bulus B, Assy N. Hidden in the Fat: Unpacking the Metabolic Tango Between Metabolic Dysfunction-Associated Steatotic Liver Disease and Metabolic Syndrome. Int J Mol Sci 2025; 26:3448. [PMID: 40244398 PMCID: PMC11989262 DOI: 10.3390/ijms26073448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic syndrome (MetS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are closely related, with rapidly increasing prevalence globally, driving significant public health concerns. Both conditions share common pathophysiological mechanisms such as insulin resistance (IR), adipose tissue dysfunction, oxidative stress, and gut microbiota dysbiosis, which contribute to their co-occurrence and progression. While the clinical implications of this overlap, including increased cardiovascular, renal, and hepatic risk, are well recognized, current diagnostic and therapeutic approaches remain insufficient due to the clinical and individuals' heterogeneity and complexity of these diseases. This review aims to provide an in-depth exploration of the molecular mechanisms linking MetS and MASLD, identify critical gaps in our understanding, and highlight existing challenges in early detection and treatment. Despite advancements in biomarkers and therapeutic interventions, the need for a comprehensive, integrated approach remains. The review also discusses emerging therapies targeting specific pathways, the potential of precision medicine, and the growing role of artificial intelligence in enhancing research and clinical management. Future research is urgently needed to combine multi-omics data, precision medicine, and novel biomarkers to better understand the complex interactions between MetS and MASLD. Collaborative, multidisciplinary efforts are essential to develop more effective diagnostic tools and therapies to address these diseases on a global scale.
Collapse
Affiliation(s)
- Mariana Boulos
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Rabia S. Mousa
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nizar Jeries
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Elias Simaan
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Klode Alam
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Bulus Bulus
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nimer Assy
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
3
|
Feng X, Luo X, Niu X, Wang S, Feng M, Jiang X, Chen W, Bai R. Discovery of small molecule ACC inhibitors: Potential treatment for excessive sebum secretion. Bioorg Chem 2025; 160:108438. [PMID: 40203719 DOI: 10.1016/j.bioorg.2025.108438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Overproduction of sebum can lead to various skin disorders, including acne and seborrheic dermatitis. Acetyl-CoA carboxylase is a key enzyme in the de novo synthesis of sebum. Consequently, inhibiting acetyl-CoA carboxylase is a feasible strategy to reduce sebum production, thereby providing therapeutic benefits for associated skin conditions. This review described the de novo synthesis of sebum and discusseed the various isoforms, functions and catalytic mechanisms of acetyl-CoA carboxylase. Additionally, it offered a comprehensive overview of the research advancements and structural-activity relationships of small molecule inhibitors of acetyl-CoA carboxylase over the past 15 years.
Collapse
Affiliation(s)
- Xilong Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaotian Niu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Shan Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Meiling Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
4
|
Jamadar A, Ward CJ, Remadevi V, Varghese MM, Pabla NS, Gumz ML, Rao R. Circadian Clock Disruption and Growth of Kidney Cysts in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2025; 36:378-392. [PMID: 39401086 PMCID: PMC11888963 DOI: 10.1681/asn.0000000528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Key Points Lack of Bmal1 , a circadian clock protein in renal collecting ducts disrupted the clock and increased cyst growth and fibrosis in an autosomal dominant polycystic kidney disease mouse model. Bmal1 gene deletion increased cell proliferation by increasing lipogenesis in kidney cells. Thus, circadian clock disruption could be a risk factor for accelerated disease progression in patients with autosomal dominant polycystic kidney disease. Background Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 and PKD2 genes and often progresses to kidney failure. ADPKD progression is not uniform among patients, suggesting that factors secondary to the PKD1/2 gene mutation could regulate the rate of disease progression. Here, we tested the effect of circadian clock disruption on ADPKD progression. Circadian rhythms are regulated by cell-autonomous circadian clocks composed of clock proteins. BMAL1 is a core constituent of the circadian clock. Methods To disrupt the circadian clock, we deleted Bmal1 gene in the renal collecting ducts of the Pkd1 RC/RC (RC/RC) mouse model of ADPKD (RC/RC;Bmal1 f/f;Pkhd1 cre, called double knockout [DKO] mice) and in Pkd1 knockout mouse inner medullary collecting duct cells (Pkd1Bmal1 KO mouse renal inner medullary collecting duct cells). Only male mice were used. Results Human nephrectomy ADPKD kidneys showed altered clock gene expression when compared with normal control human kidneys. When compared with RC/RC kidneys, DKO kidneys showed significantly altered clock gene expression, increased cyst growth, cell proliferation, apoptosis, and fibrosis. DKO kidneys also showed increased lipogenesis and cholesterol synthesis–related gene expression and increased tissue triglyceride levels compared with RC/RC kidneys. Similarly, in vitro , Pkd1Bmal1 KO cells showed altered clock genes, increased lipogenesis and cholesterol synthesis–related genes, and reduced fatty acid oxidation–related gene expression compared with Pkd1KO cells. The Pkd1Bmal1 KO cells showed increased cell proliferation compared with Pkd1KO cells, which was rescued by pharmacological inhibition of lipogenesis. Conclusions Renal collecting duct–specific Bmal1 gene deletion disrupted the circadian clock and triggered accelerated ADPKD progression by altering lipid metabolism–related gene expression.
Collapse
Affiliation(s)
- Abeda Jamadar
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Christopher J. Ward
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Viji Remadevi
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Meekha M. Varghese
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Navjot S. Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Michelle L. Gumz
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Physiology and Aging, Department of Medicine, University of Florida, Gainesville, Florida
| | - Reena Rao
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
5
|
Wan Z, Yuan M, Liu Z, Cai Y, He H, Hao K. Impact of Dapagliflozin on Hepatic Lipid Metabolism and a Dynamic Model of Ketone Body Levels. AAPS J 2025; 27:38. [PMID: 39900889 DOI: 10.1208/s12248-025-01024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
The rising prevalence of metabolic-associated steatotic liver disease emphasizes the need to understand its lipid metabolism. Dapagliflozin may improve hepatic steatosis but could also increase the risk of ketoacidosis by elevating β-hydroxybutyrate (KB) levels. This study investigates dapagliflozin's effects on hepatic lipid metabolism and quantifies KB levels in vivo. Male Sprague-Dawley rats were fed either a normal diet or a high-fat diet (HFD) for 12 weeks. The HFD rats were then divided into four subgroups to receive vehicle, 0.5 mg/kg, 1 mg/kg, and 3 mg/kg of dapagliflozin for four weeks. Free fatty acids (FFA) and KB levels were monitored, while protein and gene expression were analyzed. And a dynamic model of KB was developed for humans based on preclinical data. Dapagliflozin decreased body weight and visceral fat in HFD rats, increasing KB by upregulating CPT1a, HMGCS2, and HMGCL, and downregulating ACC. These changes correlated with reduced liver/fat index, liver pathology score, and oil-red staining area. A pharmacokinetic/pharmacodynamic (PK/PD) model was created from preclinical data to quantify KB levels in rats and validated in humans. Dapagliflozin reduces hepatic steatosis by enhancing fatty acid β-oxidation and ketogenesis and inhibiting fat synthesis. A dynamic model accurately predicts ketone body levels in treated individuals.
Collapse
Affiliation(s)
- Zhijie Wan
- State Key Laboratory of Natural Medicine, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Ming Yuan
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziao Liu
- State Key Laboratory of Natural Medicine, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuan Cai
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China.
| | - Kun Hao
- State Key Laboratory of Natural Medicine, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
6
|
Zhang J, Xu S, Yue L, Lei H, Zhai X. A Collection of Novel Antitumor Agents That Regulate Lipid Metabolism in the Tumor Microenvironment. J Med Chem 2025; 68:49-80. [PMID: 39726379 DOI: 10.1021/acs.jmedchem.4c02809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Lipid metabolism disorder is the cause of one of the most significant metabolic changes in tumors. In the process of tumor occurrence and development, tumor cells choose a continuous metabolic adaptation to accommodate the changing environment to the maximum extent possible. In a variety of tumors, the uptake, production, and storage of lipids are generally upregulated. Tumor cells take advantage of lipid metabolism to access basic energy, biofilm components, and signal molecules of the tumor microenvironment required for proliferation, survival, invasion, and metastasis. This Perspective briefly uncovers the main metabolic processes and key factors involved in lipid metabolism reprogramming, mainly related to lipid uptake, de novo synthesis and storage of fatty acids, oxidation of fatty acids, cholesterol synthesis, and related regulatory factors. From a medicinal chemistry perspective, agents against related key targets are reviewed, expecting to pave the way for promising antitumor drugs with prospects for application through lipid metabolism reprogramming.
Collapse
Affiliation(s)
- Jiahao Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Sha Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Lingfeng Yue
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|
7
|
Iturbe-Rey S, Maccali C, Arrese M, Aspichueta P, Oliveira CP, Castro RE, Lapitz A, Izquierdo-Sanchez L, Bujanda L, Perugorria MJ, Banales JM, Rodrigues PM. Lipotoxicity-driven metabolic dysfunction-associated steatotic liver disease (MASLD). Atherosclerosis 2025; 400:119053. [PMID: 39581063 DOI: 10.1016/j.atherosclerosis.2024.119053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a spectrum of liver lesions, ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), that may further progress to cirrhosis. MASLD is estimated to affect more than one third of the general population and it represents a risk factor for end-stage liver failure and liver cancer, substantially contributing to liver-related morbidity and mortality. Although the pathogenesis of MASLD is incompletely understood, it is known to consist of a multifactorial process influenced by extrinsic and intrinsic factors such as metabolic, environmental and demographic features, gut microbiota and genetics. Dysregulation of both extracellular and intracellular lipid composition is known to promote the generation of toxic lipid species, thereby triggering lipotoxicity and cellular stress. These events ultimately lead to the activation of distinct cell death pathways, resulting in inflammation, fibrogenesis and, eventually, carcinogenesis. In this manuscript, we provide a comprehensive review of the role of lipotoxicity during MASLD pathogenesis, discussing the most relevant lipid species and related molecular mechanisms, summarizing the cell type-specific effects and highlighting the most promising putative therapeutic strategies for modulating lipotoxicity and lipid metabolism in MASLD.
Collapse
Affiliation(s)
- Santiago Iturbe-Rey
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Claudia Maccali
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marco Arrese
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, 8330077, Chile
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Biobizkaia Health Research Institute, Cruces University Hospital, 48903, Barakaldo, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Claudia P Oliveira
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
8
|
Kwon Y, Gottmann P, Wang S, Tissink J, Motzler K, Sekar R, Albrecht W, Cadenas C, Hengstler JG, Schürmann A, Zeigerer A. Induction of steatosis in primary human hepatocytes recapitulates key pathophysiological aspects of metabolic dysfunction-associated steatotic liver disease. J Hepatol 2025; 82:18-27. [PMID: 38977136 DOI: 10.1016/j.jhep.2024.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 06/15/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver disease. Owing to limited available treatment options, novel pre-clinical models for target selection and drug validation are warranted. We have established and extensively characterized a primary human steatotic hepatocyte in vitro model system that could guide the development of treatment strategies for MASLD. METHODS Cryopreserved primary human hepatocytes from five donors varying in sex and ethnicity were cultured with free fatty acids in a 3D collagen sandwich for 7 days and the development of MASLD was followed by assessing classical hepatocellular functions. As proof of concept, the effects of the drug firsocostat (GS-0976) on in vitro MASLD phenotypes were evaluated. RESULTS Incubation with free fatty acids induced steatosis, insulin resistance, mitochondrial dysfunction, inflammation, and alterations in prominent human gene signatures similar to patients with MASLD, indicating the recapitulation of human MASLD in this system. The application of firsocostat rescued clinically observed fatty liver disease pathologies, highlighting the ability of the in vitro system to test the efficacy and potentially characterize the mode of action of drug candidates. CONCLUSIONS Altogether, our human MASLD in vitro model system could guide the development and validation of novel targets and drugs for the treatment of MASLD. IMPACT AND IMPLICATIONS Due to low drug efficacy and high toxicity, clinical treatment options for metabolic dysfunction-associated steatotic liver disease (MASLD) are currently limited. To facilitate earlier stop-go decisions in drug development, we have established a primary human steatotic hepatocyte in vitro model. As the model recapitulates clinically relevant MASLD characteristics at high phenotypic resolution, it can serve as a pre-screening platform and guide target identification and validation in MASLD therapy.
Collapse
Affiliation(s)
- Yun Kwon
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany, Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pascal Gottmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany; German Institute of Human Nutrition (DIfE), Department of Experimental Diabetology, Nuthetal, Germany
| | - Surui Wang
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany, Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Joel Tissink
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany, Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Karsten Motzler
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany, Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Revathi Sekar
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany, Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Department of Toxicology, Dortmund, Germany
| | - Cristina Cadenas
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Department of Toxicology, Dortmund, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Department of Toxicology, Dortmund, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany; German Institute of Human Nutrition (DIfE), Department of Experimental Diabetology, Nuthetal, Germany
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany, Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
9
|
Nielsen MH, Nøhr-Meldgaard J, Møllerhøj MB, Oró D, Pors SE, Andersen MW, Kamzolas I, Petsalaki E, Vacca M, Harder LM, Perfield JW, Veidal S, Hansen HH, Feigh M. Characterization of six clinical drugs and dietary intervention in the nonobese CDAA-HFD mouse model of MASH and progressive fibrosis. Am J Physiol Gastrointest Liver Physiol 2025; 328:G51-G71. [PMID: 39404770 DOI: 10.1152/ajpgi.00110.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 12/17/2024]
Abstract
The choline-deficient l-amino acid defined-high-fat diet (CDAA-HFD) mouse model is widely used in preclinical metabolic dysfunction-associated steatohepatitis (MASH) research. To validate the CDAA-HFD mouse, we evaluated disease progression and responsiveness to dietary and pharmacological interventions with semaglutide, lanifibranor, elafibranor, obeticholic acid (OCA), firsocostat, and resmetirom. Disease phenotyping was performed in C57BL/6J mice fed CDAA-HFD for 3-20 wk and ranked using the MASLD Human Proximity Score (MHPS). Semaglutide, lanifibranor, elafibranor, OCA, firsocostat, or resmetirom were profiled as treatment intervention for 8 wk, starting after 6 wk of CDAA-HFD feeding. Semaglutide and lanifibranor were further evaluated as early (preventive) therapy for 9 wk, starting 3 wk after CDAA-HFD diet feeding. In addition, benefits of dietary intervention (chow reversal) for 8 wk were characterized following 6 wk of CDAA-HFD feeding. CDAA-HFD mice demonstrated a nonobese phenotype with fast onset and progression of MASH and fibrosis, high similarity to human MASH-fibrosis, and tumor development after 20 wk of diet-induction. Semaglutide and lanifibranor partially reversed fibrosis when administered as prevention but not as treatment intervention. Elafibranor was the only interventional drug therapy to improve fibrosis. In comparison, chow-reversal resulted in complete regression of steatosis with improved liver inflammation and fibrosis in CDAA-HFD mice. CDAA-HFD mice recapitulate histological hallmarks of advanced MASH with progressive severe fibrosis, however, in the absence of a clinical translational obese dysmetabolic phenotype. CDAA-HFD mice are suitable for profiling drug candidates directly targeting hepatic lipid metabolism, inflammation, and fibrosis. The timing of pharmacological intervention is critical for determining antifibrotic drug efficacy in the model.NEW & NOTEWORTHY The CDAA-HFD mouse model is widely used in preclinical MASH research, but validation of the model is lacking. This study presents the longitudinal characterization of disease progression. Furthermore, late-stage clinical compounds and dietary intervention (chow reversal) display distinct hepatoprotective effects in the model. Collectively, the study provides critical information guiding the use of the CDAA-HFD mouse model in preclinical drug discovery for MASH and fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ioannis Kamzolas
- TVP Lab, WT/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Michele Vacca
- TVP Lab, WT/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Laboratory of Liver Metabolism and MASLD, Roger Williams Institute of Hepatology, London, United Kingdom
| | - Lea Mørch Harder
- Research and Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - James W Perfield
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States
| | - Sanne Veidal
- Research and Early Development, Novo Nordisk A/S, Måløv, Denmark
| | | | | |
Collapse
|
10
|
Misceo D, Mocciaro G, D'Amore S, Vacca M. Diverting hepatic lipid fluxes with lifestyles revision and pharmacological interventions as a strategy to tackle steatotic liver disease (SLD) and hepatocellular carcinoma (HCC). Nutr Metab (Lond) 2024; 21:112. [PMID: 39716321 DOI: 10.1186/s12986-024-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Steatotic liver disease (SLD) and Hepatocellular Carcinoma (HCC) are characterised by a substantial rewiring of lipid fluxes caused by systemic metabolic unbalances and/or disrupted intracellular metabolic pathways. SLD is a direct consequence of the interaction between genetic predisposition and a chronic positive energy balance affecting whole-body energy homeostasis and the function of metabolically-competent organs. In this review, we discuss how the impairment of the cross-talk between peripheral organs and the liver stalls glucose and lipid metabolism, leading to unbalances in hepatic lipid fluxes that promote hepatic fat accumulation. We also describe how prolonged metabolic stress builds up toxic lipid species in the liver, and how lipotoxicity and metabolic disturbances drive disease progression by promoting a chronic activation of wound healing, leading to fibrosis and HCC. Last, we provide a critical overview of current state of the art (pre-clinical and clinical evidence) regarding mechanisms of action and therapeutic efficacy of candidate SLD treatment options, and their potential to interfere with SLD/HCC pathophysiology by diverting lipids away from the liver therefore improving metabolic health.
Collapse
Affiliation(s)
- Davide Misceo
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gabriele Mocciaro
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK
| | - Simona D'Amore
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Clinica Medica "G. Baccelli", "Aldo Moro" University of Bari, 70124, Bari, Italy.
| | - Michele Vacca
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK.
| |
Collapse
|
11
|
Mateo-Marín MA, Alves-Bezerra M. Targeting acetyl-CoA carboxylases for the treatment of MASLD. J Lipid Res 2024; 65:100676. [PMID: 39461620 PMCID: PMC11621487 DOI: 10.1016/j.jlr.2024.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Hepatic accumulation of triglycerides is a hallmark feature of metabolic dysfunction-associated steatotic liver disease (MASLD). Growing evidence indicates that increased rates of de novo lipogenesis (DNL) are one of the earliest metabolic changes promoting hepatic steatosis in the onset of MASLD. The first step in DNL is catalyzed by acetyl-CoA carboxylases (ACC), which mediate the conversion of acetyl-CoA into malonyl-CoA. Given the critical role of ACC enzymes on DNL, ACC-based therapies have emerged as an attractive approach to address MASLD, leading to the development of pharmacologic inhibitors of ACC. In clinical trials, several of those compounds led to decreased DNL rates and improved hepatic steatosis in patients with MASLD. In this review, we describe the development of ACC dual inhibitors and isoform-specific inhibitors along with their clinical testing using monotherapy and combination therapy approaches. We also discuss their efficacy and safety profiles, identifying potential directions for future research. It is anticipated that advances in ACC-based therapies will be critical to the management of MASLD.
Collapse
Affiliation(s)
- María Antonia Mateo-Marín
- Department of Biomedicine, Biotechnology and Public Health, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Faculty of Medicine, University of Cadiz, Cadiz, Spain
| | - Michele Alves-Bezerra
- Department of Biomedicine, Biotechnology and Public Health, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Faculty of Medicine, University of Cadiz, Cadiz, Spain.
| |
Collapse
|
12
|
Feng T, Zhang H, Zhou Y, Zhu Y, Shi S, Li K, Lin P, Chen J. Roles of posttranslational modifications in lipid metabolism and cancer progression. Biomark Res 2024; 12:141. [PMID: 39551780 PMCID: PMC11571667 DOI: 10.1186/s40364-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Lipid metabolism reprogramming has emerged as a hallmark of malignant tumors. Lipids represent a complex group of biomolecules that not only compose the essential components of biological membranes and act as an energy source, but also function as messengers to integrate various signaling pathways. In tumor cells, de novo lipogenesis plays a crucial role in acquiring lipids to meet the demands of rapid growth. Increasing evidence has suggested that dysregulated lipid metabolism serves as a driver of cancer progression. Posttranslational modifications (PTMs), which occurs in most eukaryotic proteins throughout their lifetimes, affect the activity, abundance, function, localization, and interactions of target proteins. PTMs of crucial molecules are potential intervention sites and are emerging as promising strategies for the cancer treatment. However, there is limited information available regarding the PTMs that occur in cancer lipid metabolism and the potential treatment strategies associated with these PTMs. Herein, we summarize current knowledge of the roles and regulatory mechanisms of PTMs in lipid metabolism. Understanding the roles of PTMs in lipid metabolism in cancer could provide valuable insights into tumorigenesis and progression. Moreover, targeting PTMs in cancer lipid metabolism might represent a promising novel therapeutic strategy.
Collapse
Affiliation(s)
- Tianyu Feng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Yanjie Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Yalan Zhu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Shiya Shi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Kai Li
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
| | - Ping Lin
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China.
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
13
|
Bhardwaj M, Mazumder PM. The gut-liver axis: emerging mechanisms and therapeutic approaches for nonalcoholic fatty liver disease and type 2 diabetes mellitus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8421-8443. [PMID: 38861011 DOI: 10.1007/s00210-024-03204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), more appropriately known as metabolic (dysfunction) associated fatty liver disease (MAFLD), a prevalent condition in type 2 diabetes mellitus (T2DM) patients, is a complex condition involving hepatic lipid accumulation, inflammation, and liver fibrosis. The gut-liver axis is closely linked to metabolic dysfunction, insulin resistance, inflammation, and oxidative stress that are leading to the cooccurrence of MAFLD and T2DM cardiovascular diseases (CVDs). The purpose of this review is to raise awareness about the role of the gut-liver axis in the progression of MAFLD, T2DM and CVDs with a critical analysis of available treatment options for T2DM and MAFLD and their impact on cardiovascular health. This study analysed over 100 articles on this topic, using online searches and predefined keywords, to understand and summarise published research. Numerous studies have shown a strong correlation between gut dysfunction, particularly the gut microbiota and its metabolites, and the occurrence and progression of MAFLD and type 2 diabetes mellitus (T2DM). Herein, this article also examines the impact of the gut-liver axis on MAFLD, T2DM, and related complications, focusing on the role of gut microbiota dysbiosis in insulin resistance, T2DM and obesity-related cardiovascular complications. The study suggests potential treatment targets for MAFLD linked to T2DM, focusing on cardiovascular outcomes and the molecular mechanism of the gut-liver axis, as gut microbiota dysbiosis contributes to obesity-related metabolic abnormalities.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India.
| |
Collapse
|
14
|
Yang Y, Wu J, Zhou W, Ji G, Dang Y. Protein posttranslational modifications in metabolic diseases: basic concepts and targeted therapies. MedComm (Beijing) 2024; 5:e752. [PMID: 39355507 PMCID: PMC11442990 DOI: 10.1002/mco2.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolism-related diseases, including diabetes mellitus, obesity, hyperlipidemia, and nonalcoholic fatty liver disease, are becoming increasingly prevalent, thereby posing significant threats to human health and longevity. Proteins, as the primary mediators of biological activities, undergo various posttranslational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, methylation, and SUMOylation, among others, which substantially diversify their functions. These modifications are crucial in the physiological and pathological processes associated with metabolic disorders. Despite advancements in the field, there remains a deficiency in contemporary summaries addressing how these modifications influence processes of metabolic disease. This review aims to systematically elucidate the mechanisms through which PTM of proteins impact the progression of metabolic diseases, including diabetes, obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Additionally, the limitations of the current body of research are critically assessed. Leveraging PTMs of proteins provides novel insights and therapeutic targets for the prevention and treatment of metabolic disorders. Numerous drugs designed to target these modifications are currently in preclinical or clinical trials. This review also provides a comprehensive summary. By elucidating the intricate interplay between PTMs and metabolic pathways, this study advances understanding of the molecular mechanisms underlying metabolic dysfunction, thereby facilitating the development of more precise and effective disease management strategies.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
15
|
Yanagisawa H, Maeda H, Noguchi I, Tanaka M, Wada N, Nagasaki T, Kobayashi K, Kanazawa G, Taguchi K, Chuang VTG, Sakai H, Nakashima H, Kinoshita M, Kitagishi H, Iwakiri Y, Sasaki Y, Tanaka Y, Otagiri M, Watanabe H, Maruyama T. Carbon monoxide-loaded red blood cells ameliorate metabolic dysfunction-associated steatohepatitis progression via enhancing AMP-activated protein kinase activity and inhibiting Kupffer cell activation. Redox Biol 2024; 76:103314. [PMID: 39163766 PMCID: PMC11381851 DOI: 10.1016/j.redox.2024.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive form of nonalcoholic fatty liver disease characterised by fat accumulation, inflammation, oxidative stress, fibrosis, and impaired liver regeneration. In this study, we found that heme oxygenase-1 (HO-1) is induced in both MASH patients and in a MASH mouse model. Further, hepatic carbon monoxide (CO) levels in MASH model mice were >2-fold higher than in healthy mice, suggesting that liver HO-1 is activated as MASH progresses. Based on these findings, we used CO-loaded red blood cells (CO-RBCs) as a CO donor in the liver, and evaluated their therapeutic effect in methionine-choline deficient diet (MCDD)-induced and high-fat-diet (HFD)-induced MASH model mice. Intravenously administered CO-RBCs effectively delivered CO to the MASH liver, where they prevented fat accumulation by promoting fatty acid oxidation via AMP-activated protein kinase (AMPK) activation and peroxisome proliferator-activated receptor induction. They also markedly suppressed Kupffer cell activation and their corresponding anti-inflammatory and antioxidative stress activities in MASH mice. CO-RBCs also helped to restore liver regeneration in mice with HFD-induced MASH by activating AMPK. We confirmed the underlying mechanisms by performing in vitro experiments in RAW264.7 cells and palmitate-stimulated HepG2 cells. Taken together, CO-RBCs show potential as a promising cellular treatment for MASH.
Collapse
Affiliation(s)
- Hiroki Yanagisawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Isamu Noguchi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Motohiko Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Gastroenterology and Hepatology, Saiseikai Kumamoto Hospital, Kumamoto, Japan.
| | - Naoki Wada
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Kazuki Kobayashi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Gai Kanazawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan.
| | - Victor Tuan Giam Chuang
- Pharmacy Discipline, Curtin Medical School, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, 6845, Western Australia, Australia.
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Nara, Japan.
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan.
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06510, United States.
| | - Yutaka Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences and DDS Research Institute, Sojo University, Kumamoto, Japan.
| | - Hiroshi Watanabe
- Department of Clinical Pharmacy and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
16
|
Verma N, Vinod AP, Singal AK. The pharmacological management of alcohol-related cirrhosis: what's new? Expert Opin Pharmacother 2024; 25:1923-1941. [PMID: 39360770 DOI: 10.1080/14656566.2024.2409941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Alcohol use disorder (AUD) is present in the majority of patients with alcohol-associated liver disease (ALD), which leads to about 50% of cirrhosis-related hospitalizations and over 25% of deaths worldwide. Patients with ALD often present at an advanced stage, like cirrhosis with its complications and alcohol-associated hepatitis (AH), which has high short-term mortality. Current treatments are limited, with the limited benefit of glucocorticoids only in the short-term among patients with AH, highlighting an urgent need for novel therapies. AREAS COVERED This review applies the PIRO (Predisposition, Injury, Response, Organ dysfunction) concept to ALD, understanding an ongoing process of liver damage, and opportunities to address and halt the progression. We also highlight the significance of treating AUD to improve long-term outcomes in ALD. EXPERT OPINION Personalized therapies targeting specific genetic profiles and multiple pathogenic pathways are crucial in managing ALD. Emerging therapies like gut-liver-brain axis modulators like fecal microbiota transplant and probiotics, interleukin-22, granulocyte-colony stimulating factor (G-CSF) and stem cells, epigenetic regulators of inflammation and regeneration are encouraging with the potential of efficacy in patients with ALD. Liver transplantation (LT) is a definitive therapy for advanced cirrhosis with increasing impetus on early LT select patients with active alcohol use.
Collapse
Affiliation(s)
- Nipun Verma
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwin P Vinod
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwani K Singal
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Transplant Hepatology, Jewish Hospital and Trager Transplant Center, Louisville, Kentucky, USA
- Department of Research, Veteran Affairs Medical Center, Sioux Falls, SD, USA
| |
Collapse
|
17
|
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F, Lamas S. Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med 2024; 222:85-105. [PMID: 38838921 DOI: 10.1016/j.freeradbiomed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.
Collapse
Affiliation(s)
- Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
18
|
Kakde SP, Mushtaq M, Liaqat M, Ali H, Mushtaq MM, Sarwer MA, Ullah S, Hassan MW, Khalid A, Bokhari SFH. Emerging Therapies for Non-Alcoholic Steatohepatitis (NASH): A Comprehensive Review of Pharmacological and Non-Pharmacological Approaches. Cureus 2024; 16:e69129. [PMID: 39398771 PMCID: PMC11467241 DOI: 10.7759/cureus.69129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) has emerged as a significant global health concern, closely linked to the obesity epidemic and metabolic syndrome. This review explores emerging therapies for NASH that go beyond traditional lifestyle modifications. The complex pathophysiology of NASH, involving insulin resistance, lipotoxicity, oxidative stress, and chronic inflammation, offers multiple targets for therapeutic intervention. While lifestyle changes remain fundamental, their limitations in achieving sustained improvements highlight the need for effective pharmacological and interventional therapies. This review discusses novel pharmacological approaches, including farnesoid X receptor (FXR) agonists, peroxisome proliferator-activated receptor (PPAR) agonists, and agents addressing metabolic dysfunction, inflammation, and fibrosis. Promising candidates such as obeticholic acid, lanifibranor, and semaglutide are highlighted, along with combination therapies targeting multiple pathways simultaneously. Non-pharmacological interventions, including bariatric surgery, endoscopic bariatric and metabolic therapies, and innovative exercise regimens, are also examined for their potential in NASH management. Despite significant advancements, NASH drug development faces challenges due to the disease's complexity, patient heterogeneity, and stringent regulatory requirements. This review also addresses these limitations and explores future directions, including personalized medicine approaches, non-invasive diagnostic tools, and the potential of microbiome modulation and regenerative therapies. The evolving landscape of NASH research emphasizes the need for multidisciplinary approaches integrating advances in diagnostics, therapeutics, and digital health technologies. As the field progresses, the focus remains on developing more effective, personalized, and accessible strategies for preventing, diagnosing, and treating NASH, with the ultimate goal of improving outcomes for patients affected by this increasingly prevalent liver disease.
Collapse
Affiliation(s)
- Shradha P Kakde
- Internal Medicine, Mahatma Gandhi Mission Institute of Health Sciences, Aurangabad, IND
| | - Maham Mushtaq
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | - Maryyam Liaqat
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | - Husnain Ali
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | | | | | - Sami Ullah
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | | | - Asma Khalid
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | | |
Collapse
|
19
|
Xu R, Wu J, Pan J, Zhang S, Yang Y, Zhang L, Zhou W, Wu N, Hu D, Ji G, Dang Y. Gan-jiang-ling-zhu decoction improves steatohepatitis by regulating gut microbiota-mediated 12-tridecenoic acid inhibition. Front Pharmacol 2024; 15:1444561. [PMID: 39246653 PMCID: PMC11377346 DOI: 10.3389/fphar.2024.1444561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction: Gan-jiang-ling-zhu (GJLZ) decoction is a classical traditional Chinese medicine prescription. Through invigorating yang, activating qi and dissipating dampness, GJLZ decoction is widely applied for the treatment of chronic digestive disease, including nonalcoholic fatty liver disease. However, efficacy and mechanism of GJLZ decoction behind nonalcoholic steatohepatitis (NASH) treatment remains unelucidated. Methods: NASH was induced in mice, followed by treatment with GJLZ decoction. Various methods including hematoxylin-eosin, oil red O staining, and triglyceride analysis were employed to evaluate the treatment effects of GJLZ decoction on NASH. Gut microbiota, metabolomics, cell viability assays, immunofluorescence and Western blotting were performed to unveil the mechanism behind GJLZ decoction. Results: GJLZ decoction treatment significantly improved hepatic steatosis in mice with NASH. It led to remodeling of gut flora and metabolite structures, including the 12-tridecenoic acid level. 12-Tridecenoic acid aggravated hepatic steatosis by promoting acetyl-coenzyme A carboxylase alpha (ACC) expression and inhibiting carnitine palmitoyltransferase 1A (CPT1A) expression. GJLZ decoction treatment reduced the 12-tridecenoic acid level, inhibited ACC activity and promoted CPT1A expression. Conclusion: Our results demonstrated that 12-tridecenoic acid aggravated hepatic steatosis by affecting the ACC-CPT1A axis and GJLZ decoction treatment effectively reduced the 12-tridecenoic acid level and improved steatosis.
Collapse
Affiliation(s)
- Ruohui Xu
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traditional Chinese Medicine, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaxuan Wu
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Jiashu Pan
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Shengan Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Yunuo Yang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Li Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Na Wu
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Yanqi Dang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| |
Collapse
|
20
|
Jamadar A, Ward CJ, Remadevi V, Varghese MM, Pabla NS, Gumz ML, Rao R. Circadian clock disruption and growth of kidney cysts in autosomal dominant polycystic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606676. [PMID: 39211074 PMCID: PMC11361200 DOI: 10.1101/2024.08.05.606676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 and PKD2 genes, and often progresses to kidney failure. ADPKD progression is not uniform among patients, suggesting that factors secondary to the PKD1/2 gene mutation could regulate the rate of disease progression. Here we tested the effect of circadian clock disruption on ADPKD progression. Circadian rhythms are regulated by cell-autonomous circadian clocks composed of clock proteins. BMAL1 is a core constituent of the circadian clock. Methods To disrupt the circadian clock, we deleted Bmal1 gene in the renal collecting ducts of the Pkd1 RC/RC (RC/RC) mouse model of ADPKD (RC/RC; Bmal1 f/f ; Pkhd1 cre , called DKO mice), and in Pkd1 knockout mouse inner medullary collecting duct cells ( Pkd1Bmal1 KO mIMCD3 cells). Only male mice were used. Results Human nephrectomy ADPKD kidneys and Pkd1 KO mIMCD3 cells showed reduced Bmal1 gene expression compared to normal controls. When compared to RC/RC kidneys, DKO kidneys showed significantly altered clock gene expression, increased cyst growth, cell proliferation, apoptosis and fibrosis. DKO kidneys also showed increased lipogenesis and cholesterol synthesis-related gene expression, and increased tissue triglyceride levels compared to RC/RC kidneys. Similarly, in vitro, Pkd1Bmal1 KO cells showed altered clock genes, increased lipogenesis and cholesterol synthesis-related genes, and reduced fatty-acid oxidation-related gene expression compared to Pkd1KO cells. The Pkd1Bmal1 KO cells showed increased cell proliferation compared to Pkd1KO cells, which was rescued by pharmacological inhibition of lipogenesis. Conclusion Renal collecting duct specific Bmal1 gene deletion disrupts the circadian clock and triggers accelerated ADPKD progression by altering lipid metabolism-related gene expression. Key points Lack of BMAL1, a circadian clock protein in renal collecting ducts disrupted the clock and increased cyst growth and fibrosis in an ADPKD mouse model.BMAL1 gene deletion increased cell proliferation by increasing lipogenesis in kidney cells.Thus, circadian clock disruption could be a risk factor for accelerated disease progression in patients with ADPKD.
Collapse
|
21
|
Sivakumar P, Saul M, Robinson D, King LE, Amin NB. SomaLogic proteomics reveals new biomarkers and provides mechanistic, clinical insights into Acetyl coA Carboxylase (ACC) inhibition in Non-alcoholic Steatohepatitis (NASH). Sci Rep 2024; 14:17072. [PMID: 39048608 PMCID: PMC11269579 DOI: 10.1038/s41598-024-67843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) and Non-alcoholic Steatohepatitis (NASH) are major metabolic diseases with increasing global prevalence and no approved therapies. There is a mounting need to develop biomarkers of diagnosis, prognosis and treatment response that can effectively replace current requirements for liver biopsies, which are invasive, error-prone and expensive. We performed SomaLogic serum proteome profiling with baseline (n = 231) and on-treatment (n = 72, Weeks 12 and 16, Placebo and 25 mg PF-05221304) samples from a Phase 2a trial (NCT03248882) with Clesacostat (PF-05221304), an acetyl coA carboxylase inhibitor (ACCi) in patients with NAFLD/NASH. SomaSignal NASH probability scores and expression data for 7000+ analytes were analyzed to identify potential biomarkers associated with baseline clinical measures of NAFLD/NASH [Magnetic Resonance Imaging-Proton Density Fat Fraction (MRI-PDFF), alanine aminotransferase (ALT) and aspartate aminotransferase (AST)] as well as biomarkers of treatment response to ACCi. SomaSignal NASH probability scores identified biopsy-proven/clinically defined NIT-based (Presumed) NASH classification of the cohort with > 70% agreement. Clesacostat-induced reduction in steatosis probability scores aligned with observed clinical reduction in hepatic steatosis based on MRI-PDFF. We identify a set of 69 analytes that robustly correlate with clinical measures of hepatic inflammation and steatosis (MRI-PDFF, ALT and AST), 27 of which were significantly reversed with ACC inhibition. Clesacostat treatment dramatically upregulated Wnt5a protein and Apolipoproteins C3 and E, with drug-induced changes significantly correlating to changes on MRI-PDFF. Our data demonstrate the utility of SomaLogic- analyte panel for diagnosis and treatment response in NAFLD/NASH and provide potential new mechanistic insights into liver steatosis reduction, inflammation and serum triglyceride elevation with ACC inhibition. (Clinical Trial Identifier: NCT03248882).
Collapse
Affiliation(s)
- Pitchumani Sivakumar
- Translational Clinical Sciences, Pfizer Research and Development, 500 Arcola Road, Collegeville, PA, 19426, USA.
| | - Michelle Saul
- Translational Biomarker Statistics, Pfizer Research and Development, San Diego, USA
| | - Douglas Robinson
- Translational Biomarker Statistics, Pfizer Research and Development, San Diego, USA
| | - Lindsay E King
- Clinical Bioanalytics, Pfizer Research and Development, Cambridge, USA
| | - Neeta B Amin
- Internal Medicine, Pfizer Research and Development, Cambridge, USA
| |
Collapse
|
22
|
Lin XL, Zeng YL, Ning J, Cao Z, Bu LL, Liao WJ, Zhang ZM, Zhao TJ, Fu RG, Yang XF, Gong YZ, Lin LM, Cao DL, Zhang CP, Liao DF, Li YM, Zeng JG. Nicotinate-curcumin improves NASH by inhibiting the AKR1B10/ACCα-mediated triglyceride synthesis. Lipids Health Dis 2024; 23:201. [PMID: 38937844 PMCID: PMC11210137 DOI: 10.1186/s12944-024-02162-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is a prevalent chronic liver condition. However, the potential therapeutic benefits and underlying mechanism of nicotinate-curcumin (NC) in the treatment of NASH remain uncertain. METHODS A rat model of NASH induced by a high-fat and high-fructose diet was treated with nicotinate-curcumin (NC, 20, 40 mg·kg- 1), curcumin (Cur, 40 mg·kg- 1) and metformin (Met, 50 mg·kg- 1) for a duration of 4 weeks. The interaction between NASH, Cur and Aldo-Keto reductase family 1 member B10 (AKR1B10) was filter and analyzed using network pharmacology. The interaction of Cur, NC and AKR1B10 was analyzed using molecular docking techniques, and the binding energy of Cur and NC with AKR1B10 was compared. HepG2 cells were induced by Ox-LDL (25 µg·ml- 1, 24 h) in high glucose medium. NC (20µM, 40µM), Cur (40µM) Met (150µM) and epalrestat (Epa, 75µM) were administered individually. The activities of ALT, AST, ALP and the levels of LDL, HDL, TG, TC and FFA in serum were quantified using a chemiluminescence assay. Based on the changes in the above indicators, score according to NAS standards. The activities of Acetyl-CoA and Malonyl-CoA were measured using an ELISA assay. And the expression and cellular localization of AKR1B10 and Acetyl-CoA carboxylase (ACCα) in HepG2 cells were detected by Western blotting and immunofluorescence. RESULTS The results of the animal experiments demonstrated that NASH rat model induced by a high-fat and high-fructose diet exhibited pronounced dysfunction in liver function and lipid metabolism. Additionally, there was a significant increase in serum levels of FFA and TG, as well as elevated expression of AKR1B10 and ACCα, and heightened activity of Acetyl-CoA and Malonyl-CoA in liver tissue. The administration of NC showed to enhance liver function in rats with NASH, leading to reductions in ALT, AST and ALP levels, and decrease in blood lipid and significant inhibition of FFA and TG synthesis in the liver. Network pharmacological analysis identified AKR1B10 and ACCα as potential targets for NASH treatment. Molecular docking studies revealed that both Cur and NC are capable of binding to AKR1B10, with NC exhibiting a stronger binding energy to AKR1B10. Western blot analysis demonstrated an upregulation in the expression of AKR1B10 and ACCα in the liver tissue of NASH rats, accompanied by elevated Acetyl-CoA and Malonyl-CoA activity, and increased levels of FFA and TG. The results of the HepG2 cell experiments induced by Ox-LDL suggest that NC significantly inhibited the expression and co-localization of AKR1B10 and ACCα, while also reduced levels of TC and LDL-C and increased level of HDL-C. These effects are accompanied by a decrease in the activities of ACCα and Malonyl-CoA, and levels of FFA and TG. Furthermore, the impact of NC appears to be more pronounced compared to Cur. CONCLUSION NC could effectively treat NASH and improve liver function and lipid metabolism disorder. The mechanism of NC is related to the inhibition of AKR1B10/ACCα pathway and FFA/TG synthesis of liver.
Collapse
Affiliation(s)
- Xiu-Lian Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ya-Ling Zeng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Jie Ning
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua Central Hospital, Shenzhen, 518110, Guangdong, China
| | - Zhe Cao
- Hunan Laituofu Biotechnology Co., Ltd, Jinzhou New District, Ningxiang, 410604, Hunan, China
| | - Lan-Lan Bu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Wen-Jing Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Zhi-Min Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Tan-Jun Zhao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Rong-Geng Fu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xue-Feng Yang
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Hengyang, 421002, Hunan, China
| | - Yong-Zhen Gong
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Li-Mei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - De-Liang Cao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- Hunan Laituofu Biotechnology Co., Ltd, Jinzhou New District, Ningxiang, 410604, Hunan, China
| | - Cai-Ping Zhang
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Hengyang, 421002, Hunan, China.
| | - Ya-Mei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Jian-Guo Zeng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
23
|
Wu X, Miao X, Xue X, Qiao S, Dai Y, Wei Z. Aryl Hydrocarbon Receptor Activation Limits the Fatty Acid Synthesis and Subsequent "miR-193a-3p-HDAC3-FASN" Signals to Alleviate Intestinal Fibrosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13069-13082. [PMID: 38809951 DOI: 10.1021/acs.jafc.4c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Intestinal fibrosis is a common complication of Crohn's disease and characterized by excessive extracellular matrix (ECM) deposition. The aryl hydrocarbon receptor (AhR) detects micronutrients and microbial metabolites in diet and can attenuate intestinal fibrosis with unclear mechanisms. In this study, AhR activation was demonstrated to downregulate the transcription of collagen I and fibronectin in a Sp1- but not Sp3- or AP-1-dependent manner. A suppressed fatty acid synthesis was highlighted using untargeted metabolomics analyses, and synthetic products, palmitic acid (PA), were used as the intermediary agent. After a screening study, fatty acid synthase (FASN) was identified as the main targeted protein, and AhR activation regulated "HDAC3-acetylation" signals but not glycosylation to enhance FASN degradation. Furthermore, results of bioinformatics analysis and others showed that after being activated, AhR targeted miR-193a-3p to control HDAC3 transcription. Collectively, AhR activation inhibited ECM deposition and alleviated intestinal fibrosis by limiting fatty acid synthesis subsequent to the inhibition of "miR-193a-3p-HDAC3-FASN" signals.
Collapse
Affiliation(s)
- Xiaoqian Wu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xiaohong Miao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xinru Xue
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Simiao Qiao
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| |
Collapse
|
24
|
Iwaki M, Yoneda M, Wada N, Otani T, Kobayashi T, Nogami A, Saito S, Nakajima A. Emerging drugs for the treatment of hepatic fibrosis on nonalcoholic steatohepatitis. Expert Opin Emerg Drugs 2024; 29:127-137. [PMID: 38469871 DOI: 10.1080/14728214.2024.2328036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Approved drug therapies for nonalcoholic steatohepatitis (NASH) are lacking, for which various agents are currently being tested in clinical trials. Effective drugs for liver fibrosis, the factor most associated with prognosis in NASH, are important. AREAS COVERED This study reviewed the treatment of NASH with a focus on the effects of existing drugs and new drugs on liver fibrosis. EXPERT OPINION Considering the complex pathophysiology of fibrosis in NASH, drug therapy may target multiple pathways. The method of assessing fibrosis is important when considering treatment for liver fibrosis in NASH. The Food and Drug Administration considers an important fibrosis endpoint to be histological improvement in at least one fibrosis stage while preventing worsening of fatty hepatitis. To obtain approval as a drug for NASH, efficacy needs to be demonstrated on endpoints such as liver-related events and myocardial infarction. Among the current therapeutic agents for NASH, thiazolidinedione, sodium-glucose co-transporter 2, and selective peroxisome proliferator-activated receptors α modulator have been reported to be effective against fibrosis, although further evidence is required. The effects of pan-peroxisome proliferator-activated receptors, obeticholic acid, and fibroblast growth factor-21 analogs on liver fibrosis in the development stage therapeutics for NASH are of particular interest.
Collapse
Affiliation(s)
- Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naohiro Wada
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiro Otani
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoru Saito
- Department of Gastroenterology, Sanno Hospital, Minato-Ku, Tokyo, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
25
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
26
|
Jokinen MJ, Luukkonen PK. Hepatic mitochondrial reductive stress in the pathogenesis and treatment of steatotic liver disease. Trends Pharmacol Sci 2024; 45:319-334. [PMID: 38471991 DOI: 10.1016/j.tips.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Steatotic liver diseases (SLDs) affect one-third of the population, but the pathogenesis underlying these diseases is not well understood, limiting the available treatments. A common factor in SLDs is increased hepatic mitochondrial reductive stress, which occurs as a result of excessive lipid and alcohol metabolism. Recent research has also shown that genetic risk factors contribute to this stress. This review aims to explore how these risk factors increase hepatic mitochondrial reductive stress and how it disrupts hepatic metabolism, leading to SLDs. Additionally, the review will discuss the latest clinical studies on pharmaceutical treatments for SLDs, specifically peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists, thyroid hormone receptor (THR) agonists, acetyl-CoA carboxylase (ACC) inhibitors, and mitochondrial uncouplers. These treatments have a common effect of decreasing hepatic mitochondrial reductive stress, which has been largely overlooked.
Collapse
Affiliation(s)
- Mari J Jokinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Internal Medicine, University of Helsinki, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Panu K Luukkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Internal Medicine, University of Helsinki, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
27
|
Lu XR, Tao Q, Qin Z, Liu XW, Li SH, Bai LX, Ge WB, Liu YX, Li JY, Yang YJ. A combined transcriptomics and proteomics approach to reveal the mechanism of AEE relieving hyperlipidemia in ApoE -/- mice. Biomed Pharmacother 2024; 173:116400. [PMID: 38484560 DOI: 10.1016/j.biopha.2024.116400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Hyperlipidemia caused by abnormal lipid metabolism has reached epidemic proportions. This phenomenon is also common in companion animals. Previous studies showed that AEE significantly improves abnormal blood lipids in hyperlipidemia rats and mice, but its mechanism is still not clear enough. In this study, the mechanism and potential key pathways of AEE on improving hyperlipidemia in mice were investigated through the transcriptome and proteome study of ApoE-/- mice liver and the verification study on high-fat HepG2 cells. The results showed that AEE significantly decreased the serum TC and LDL-C levels of hyperlipidemia ApoE-/- mice, and significantly increased the enzyme activity of CYP7A1. After AEE intervention, the results of mice liver transcriptome and proteome showed that differential genes and proteins were enriched in lipid metabolism-related pathways. The results of RT-qPCR showed that AEE significantly regulated the expression of genes related to lipid metabolism in mice liver tissue. AEE significantly upregulated the protein expression of CYP7A1 in hyperlipidemia ApoE-/- mice liver tissue. The results in vitro showed that AEE significantly decreased the levels of TC and TG, and improved lipid deposition in high-fat HepG2 cells. AEE significantly increased the expression of CYP7A1 protein in high-fat HepG2 cells. AEE regulates the expression of genes related to lipid metabolism in high-fat HepG2 cells, mainly by FXR-SHP-CYP7A1 and FGF19-TFEB-CYP7A1 pathways. To sum up, AEE can significantly improve the hyperlipidemia status of ApoE-/- mice and the lipid deposition of high-fat HepG2 cells, and its main pathway is probably the bile acid metabolism-related pathway centered on CYP7A1.
Collapse
Affiliation(s)
- Xiao-Rong Lu
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Qi Tao
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Zhe Qin
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Shi-Hong Li
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Li-Xia Bai
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Wen-Bo Ge
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Ya-Xian Liu
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jian-Yong Li
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| | - Ya-Jun Yang
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| |
Collapse
|
28
|
Noureddin M. MASH clinical trials and drugs pipeline: An impending tsunami. Hepatology 2024:01515467-990000000-00811. [PMID: 38502810 DOI: 10.1097/hep.0000000000000860] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease, formerly known as NAFLD, has ascended to prominence as the predominant chronic liver disease in Western countries and now stands as a leading cause of liver transplantations. In the more advanced stage, metabolic dysfunction-associated steatohepatitis (MASH) may lead to fibrosis, a gateway to cirrhosis, liver cancer, and liver failure. Despite extensive research and exploration of various drug mechanisms, the anticipation for the inaugural approved drug to materialize by 2024 is palpable, marking a significant milestone. Numerous pathways have been investigated for MASH treatment, exploring thyroid hormone receptors, glucagon-like peptides 1, peroxisome proliferator-activated receptors, and agents influencing hepatic steatosis synthesis, inflammatory pathways, genetic components, fibrosis mechanisms, and an array of other avenues. Over time, key regulatory directions have crystallized, now manifesting in 2 primary endpoints under investigation: resolution of steatohepatitis without worsening fibrosis and/or improvement of fibrosis stage without worsening of steatohepatitis, especially used in phase 3 clinical trials, while alternative noninvasive endpoints are explored in phase 2 trials. The prospect of proving efficacy in clinical trials opens doors to combination therapies, evaluating the ideal combination of drugs to yield comprehensive benefits, extending beyond the liver to other organs. Certain combination drug trials are already underway. In this review, we discuss the forefront of MASH drug research as of 2023/2024, illuminating mechanisms, outcomes, and future trajectories. Furthermore, we tackle the challenges confronting MASH trials and propose potential strategies for surmounting them.
Collapse
Affiliation(s)
- Mazen Noureddin
- Sherrie & Alan Conover Center for Liver Disease & Transplantation, Underwood Center for Digestive Disorders Department of Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Houston Research Institute, Houston, Texas, USA
| |
Collapse
|
29
|
Kostadinova R, Ströbel S, Chen L, Fiaschetti-Egli K, Gadient J, Pawlowska A, Petitjean L, Bieri M, Thoma E, Petitjean M. Digital pathology with artificial intelligence analysis provides insight to the efficacy of anti-fibrotic compounds in human 3D MASH model. Sci Rep 2024; 14:5885. [PMID: 38467661 PMCID: PMC10928082 DOI: 10.1038/s41598-024-55438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe liver disease characterized by lipid accumulation, inflammation and fibrosis. The development of MASH therapies has been hindered by the lack of human translational models and limitations of analysis techniques for fibrosis. The MASH three-dimensional (3D) InSight™ human liver microtissue (hLiMT) model recapitulates pathophysiological features of the disease. We established an algorithm for automated phenotypic quantification of fibrosis of Sirius Red stained histology sections of MASH hLiMTs model using a digital pathology quantitative single-fiber artificial intelligence (AI) FibroNest™ image analysis platform. The FibroNest™ algorithm for MASH hLiMTs was validated using anti-fibrotic reference compounds with different therapeutic modalities-ALK5i and anti-TGF-β antibody. The phenotypic quantification of fibrosis demonstrated that both reference compounds decreased the deposition of fibrillated collagens in alignment with effects on the secretion of pro-collagen type I/III, tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-3 and pro-fibrotic gene expression. In contrast, clinical compounds, Firsocostat and Selonsertib, alone and in combination showed strong anti-fibrotic effects on the deposition of collagen fibers, however less pronounced on the secretion of pro-fibrotic biomarkers. In summary, the phenotypic quantification of fibrosis of MASH hLiMTs combined with secretion of pro-fibrotic biomarkers and transcriptomics represents a promising drug discovery tool for assessing anti-fibrotic compounds.
Collapse
Affiliation(s)
| | - Simon Ströbel
- InSphero AG, Wagistrasse 27A, Schlieren, Switzerland
| | - Li Chen
- PharmaNest, Princeton, NJ, USA
| | | | - Jana Gadient
- InSphero AG, Wagistrasse 27A, Schlieren, Switzerland
| | | | | | - Manuela Bieri
- InSphero AG, Wagistrasse 27A, Schlieren, Switzerland
| | - Eva Thoma
- InSphero AG, Wagistrasse 27A, Schlieren, Switzerland
| | | |
Collapse
|
30
|
Goldenberg RM, Gilbert JD, Manjoo P, Pedersen SD, Woo VC, Lovshin JA. Management of type 2 diabetes, obesity, or nonalcoholic steatohepatitis with high-dose GLP-1 receptor agonists and GLP-1 receptor-based co-agonists. Obes Rev 2024; 25:e13663. [PMID: 37968541 DOI: 10.1111/obr.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/22/2023] [Accepted: 10/07/2023] [Indexed: 11/17/2023]
Abstract
Type 2 diabetes (T2D), obesity, and nonalcoholic fatty liver disease/nonalacoholic steatohepatitis (NAFLD/NASH) share mutual causalities. Medications that may offer clinical benefits to all three conditions are being developed. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are approved for the management of T2D and obesity and there is great interest in evaluating higher doses of available GLP-1RAs and developing novel GLP-1RA-based co-agonists to provide greater reductions in glycated hemoglobin (HbA1c) and body weight as well as modifying NAFLD/NASH complications in clinically meaningful ways. High-dose GLP-1RAs and multi-hormonal strategies including GLP-1R agonism have either already been approved or are in development for managing T2D, obesity, or NASH. We provide a mechanistic outline with a detailed summary of the available clinical data and ongoing trials that are adjudicating the impact of high-dose GLP-1RAs, unimolecular, and multimolecular GLP-1R-based co-agonists in populations living with T2D, obesity, or NASH. The available trial findings are aligned with preclinical observations, showing clinical efficacy and safety thus providing optimism for the expansion of GLP-1R-based drug classes for managing the triad of T2D, obesity and NASH. Development, access, and wide-spread utilization of these new therapeutic approaches will offer important opportunities to markedly improve the collective global burden of T2D, obesity, and NASH.
Collapse
Affiliation(s)
| | - Jeremy D Gilbert
- Division of Endocrinology and Metabolism, Sunnybrook Health Sciences Centre, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Priya Manjoo
- Department of Endocrinology, University of British Columbia, and Cardiometabolic Collaborative Clinic, Vancouver Island Health Authority, Vancouver, British Columbia, Canada
| | - Sue D Pedersen
- C-ENDO Diabetes & Endocrinology Clinic Calgary, Calgary, Alberta, Canada
| | - Vincent C Woo
- Section of Endocrinology, Health Sciences Centre, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Julie A Lovshin
- Division of Endocrinology and Metabolism, Sunnybrook Health Sciences Centre, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Chen T, Yao J, Quan K, Xu J, Hang X, Tong Q, Liu G, Luo P, Zeng L, Feng G, Bi H. Repurposing a human acetyl-CoA carboxylase inhibitor firsocostat to treat fungal candidiasis alone and in combination. Antimicrob Agents Chemother 2024; 68:e0113123. [PMID: 38018962 PMCID: PMC10777831 DOI: 10.1128/aac.01131-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/15/2023] [Indexed: 11/30/2023] Open
Abstract
Opportunistic fungal infections, particularly caused by Candida albicans, remain a common cause of high morbidity and mortality in immunocompromised patients. The escalating prevalence of antifungal drug resistance necessitates the immediate exploration of alternative treatment strategies to combat these life-threatening fungal diseases. In this study, we investigated the antifungal efficacy of firsocostat, a human acetyl-CoA carboxylase (ACC) inhibitor, against C. albicans. Firsocostat alone displayed moderate antifungal activity, while combining it with voriconazole, itraconazole, or amphotericin B exhibited synergistic effects across almost all drug-sensitive and drug-resistant C. albicans strains tested. These observed synergies were further validated in two mouse models of oropharyngeal and systemic candidiasis, where the combination therapies demonstrated superior fungicidal effects compared to monotherapy. Moreover, firsocostat was shown to directly bind to C. albicans ACC and inhibit its enzymatic activity. Sequencing spontaneous firsocostat-resistant mutants revealed mutations mapping to C. albicans ACC, confirming that firsocostat has retained its target in C. albicans. Overall, our findings suggest that repurposing firsocostat, either alone or in combination with other antifungal agents, holds promising potential in the development of antifungal drugs and the treatment of candidiasis.
Collapse
Affiliation(s)
- Tianyu Chen
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jing Yao
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Keao Quan
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingchen Xu
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xudong Hang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Tong
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Genyan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peipei Luo
- Department of Gastroenterology, Wujin People’s Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu, China
| | - Liping Zeng
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ganzhu Feng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongkai Bi
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Luukkonen PK, Porthan K, Ahlholm N, Rosqvist F, Dufour S, Zhang XM, Lehtimäki TE, Seppänen W, Orho-Melander M, Hodson L, Petersen KF, Shulman GI, Yki-Järvinen H. The PNPLA3 I148M variant increases ketogenesis and decreases hepatic de novo lipogenesis and mitochondrial function in humans. Cell Metab 2023; 35:1887-1896.e5. [PMID: 37909034 DOI: 10.1016/j.cmet.2023.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/26/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023]
Abstract
The PNPLA3 I148M variant is the major genetic risk factor for all stages of fatty liver disease, but the underlying pathophysiology remains unclear. We studied the effect of this variant on hepatic metabolism in homozygous carriers and non-carriers under multiple physiological conditions with state-of-the-art stable isotope techniques. After an overnight fast, carriers had higher plasma β-hydroxybutyrate concentrations and lower hepatic de novo lipogenesis (DNL) compared to non-carriers. After a mixed meal, fatty acids were channeled toward ketogenesis in carriers, which was associated with an increase in hepatic mitochondrial redox state. During a ketogenic diet, carriers manifested increased rates of intrahepatic lipolysis, increased plasma β-hydroxybutyrate concentrations, and decreased rates of hepatic mitochondrial citrate synthase flux. These studies demonstrate that homozygous PNPLA3 I148M carriers have hepatic mitochondrial dysfunction leading to reduced DNL and channeling of carbons to ketogenesis. These findings have implications for understanding why the PNPLA3 variant predisposes to progressive liver disease.
Collapse
Affiliation(s)
- Panu K Luukkonen
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland.
| | - Kimmo Porthan
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Noora Ahlholm
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fredrik Rosqvist
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Oxford, UK; Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Sylvie Dufour
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT, USA
| | - Xian-Man Zhang
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT, USA
| | - Tiina E Lehtimäki
- Department of Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Wenla Seppänen
- Department of Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marju Orho-Melander
- Department of Clinical Sciences, Diabetes and Endocrinology, University Hospital Malmö, Lund University, Malmö, Sweden
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Oxford, UK
| | - Kitt Falk Petersen
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
33
|
Mallick R, Bhowmik P, Duttaroy AK. Targeting fatty acid uptake and metabolism in cancer cells: A promising strategy for cancer treatment. Biomed Pharmacother 2023; 167:115591. [PMID: 37774669 DOI: 10.1016/j.biopha.2023.115591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Despite scientific development, cancer is still a fatal disease. The development of cancer is thought to be significantly influenced by fatty acids. Several mechanisms that control fatty acid absorption and metabolism are reported to be altered in cancer cells to support their survival. Cancer cells can use de novo synthesis or uptake of extracellular fatty acid if one method is restricted. This factor makes it more difficult to target one pathway while failing to treat the disease properly. Side effects may also arise if several inhibitors simultaneously target many targets. If a viable inhibitor could work on several routes, the number of negative effects might be reduced. Comparative investigations against cell viability have found several potent natural and manmade substances. In this review, we discuss the complex roles that fatty acids play in the development of tumors and the progression of cancer, newly discovered and potentially effective natural and synthetic compounds that block the uptake and metabolism of fatty acids, the adverse side effects that can occur when multiple inhibitors are used to treat cancer, and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Prasenjit Bhowmik
- Department of Chemistry, Uppsala Biomedical Centre, Uppsala University, Sweden
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
34
|
Chen W, Zhong Y, Yuan Y, Zhu M, Hu W, Liu N, Xing D. New insights into the suppression of inflammation and lipid accumulation by JAZF1. Genes Dis 2023; 10:2457-2469. [PMID: 37554201 PMCID: PMC10404878 DOI: 10.1016/j.gendis.2022.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
Atherosclerosis is one of the leading causes of disease and death worldwide. The identification of new therapeutic targets and agents is critical. JAZF1 is expressed in many tissues and is found at particularly high levels in adipose tissue (AT). JAZF1 suppresses inflammation (including IL-1β, IL-4, IL-6, IL-8, IL-10, TNFα, IFN-γ, IAR-20, COL3A1, laminin, and MCP-1) by reducing NF-κB pathway activation and AT immune cell infiltration. JAZF1 reduces lipid accumulation by regulating the liver X receptor response element (LXRE) of the SREBP-1c promoter, the cAMP-response element (CRE) of HMGCR, and the TR4 axis. LXRE and CRE sites are present in many cytokine and lipid metabolism gene promoters, which suggests that JAZF1 regulates these genes through these sites. NF-κB is the center of the JAZF1-mediated inhibition of the inflammatory response. JAZF1 suppresses NF-κB expression by suppressing TAK1 expression. Interestingly, TAK1 inhibition also decreases lipid accumulation. A dual-targeting strategy of NF-κB and TAK1 could inhibit both inflammation and lipid accumulation. Dual-target compounds (including prodrugs) 1-5 exhibit nanomolar inhibition by targeting NF-κB and TAK1, EGFR, or COX-2. However, the NF-κB suppressing activity of these compounds is relatively low (IC50 > 300 nM). Compounds 6-14 suppress NF-κB expression with IC50 values ranging from 1.8 nM to 38.6 nM. HS-276 is a highly selective, orally bioavailable TAK1 inhibitor. Combined structural modifications of compounds using a prodrug strategy may enhance NF-κB inhibition. This review focused on the role and mechanism of JAZF1 in inflammation and lipid accumulation for the identification of new anti-atherosclerotic targets.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Yingjie Zhong
- Cancer Institute, Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Yang Yuan
- Cancer Institute, Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Meng Zhu
- Cancer Institute, Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Wenchao Hu
- Cancer Institute, Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266035, China
| | - Ning Liu
- Cancer Institute, Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Dongming Xing
- Cancer Institute, Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Buyl K, Vrints M, Fernando R, Desmae T, Van Eeckhoutte T, Jans M, Van Der Schueren J, Boeckmans J, Rodrigues RM, De Boe V, Rogiers V, De Kock J, Beirinckx F, Vanhaecke T. Human skin stem cell-derived hepatic cells as in vitro drug discovery model for insulin-driven de novo lipogenesis. Eur J Pharmacol 2023; 957:175989. [PMID: 37572939 DOI: 10.1016/j.ejphar.2023.175989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is characterized by intrahepatic triglyceride accumulation and can progress to metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. Hepatic de novo lipogenesis (DNL), activated by glucose and insulin, is a central pathway contributing to early-stage development of MASLD. The emerging global prevalence of MASLD highlights the urgent need for pharmaceutical intervention to combat this health threat. However, the identification of novel drugs that could inhibit hepatic DNL is hampered by a lack of reliable, insulin-sensitive, human, in vitro, hepatic models. Here, we report human skin stem cell-derived hepatic cells (hSKP-HPC) as a unique in vitro model to study insulin-driven DNL (iDNL), evidenced by both gene expression and lipid accumulation readouts. Insulin-sensitive hSKP-HPC showed increased sterol regulatory element-binding protein 1c (SREBP-1c) expression, a key transcription factor for DNL. Furthermore, this physiologically relevant in vitro human steatosis model allowed both inhibition and activation of the iDNL pathway using reference inhibitors and activators, respectively. Optimisation of the lipid accumulation assay to a high-throughput, 384-well format enabled the screening of a library of annotated compounds, delivering new insights on key players in the iDNL pathway and MASLD pathophysiology. Together, these results establish the value of the hSKP-HPC model in preclinical development of antisteatotic drugs to combat MASLD.
Collapse
Affiliation(s)
- Karolien Buyl
- Department of in Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium.
| | - Martine Vrints
- Galapagos NV, Industriepark Mechelen Noord, Generaal De Wittelaan L11 A3, B-2880, Mechelen, Belgium
| | - Ruani Fernando
- Department of in Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium
| | - Terry Desmae
- Department of in Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium
| | - Thomas Van Eeckhoutte
- Galapagos NV, Industriepark Mechelen Noord, Generaal De Wittelaan L11 A3, B-2880, Mechelen, Belgium
| | - Mia Jans
- Galapagos NV, Industriepark Mechelen Noord, Generaal De Wittelaan L11 A3, B-2880, Mechelen, Belgium
| | - Jan Van Der Schueren
- Galapagos NV, Industriepark Mechelen Noord, Generaal De Wittelaan L11 A3, B-2880, Mechelen, Belgium
| | - Joost Boeckmans
- Department of in Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium
| | - Robim M Rodrigues
- Department of in Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium
| | - Veerle De Boe
- Department of Urology, Universitair Ziekenhuis Brussel (UZ-Brussel), Laarbeeklaan 101, B-1090, Brussels, Belgium
| | - Vera Rogiers
- Department of in Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium
| | - Joery De Kock
- Department of in Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium
| | - Filip Beirinckx
- Galapagos NV, Industriepark Mechelen Noord, Generaal De Wittelaan L11 A3, B-2880, Mechelen, Belgium
| | - Tamara Vanhaecke
- Department of in Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium
| |
Collapse
|
36
|
Limberakis C, Smith AC, Bagley SW, Yayla HG, Kung DW, Griffith DA. Convergent Syntheses of Isomeric Imidazolospiroketones as Templates for Acetyl-CoA Carboxylase (ACC) Inhibitors. J Org Chem 2023; 88:13727-13740. [PMID: 37751412 DOI: 10.1021/acs.joc.3c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The synthesis of imidazole fused spirocyclic ketones as templates for acetyl-CoA carboxylase (ACC) inhibitors is reported. By completing the spirocyclic ring closure via divergent pathways, the synthesis of these regioisomers from common intermediates was developed. Through an aldehyde homologation/transmetalation strategy, one isomer was formed selectively. The second desired isomer was obtained via an intramolecular aromatic homolytic substitution reaction. Preparation of these isomeric spiroketones provided templates which, upon elaboration, led to key structure-activity relationship (SAR) points for delivery of potent ACC inhibitors.
Collapse
Affiliation(s)
- Chris Limberakis
- Pfizer Medicine Design, Groton, Connecticut 06340, United States
| | - Aaron C Smith
- Pfizer Medicine Design, Groton, Connecticut 06340, United States
| | - Scott W Bagley
- Pfizer Medicine Design, Groton, Connecticut 06340, United States
| | - Hatice G Yayla
- Pfizer Medicine Design, Groton, Connecticut 06340, United States
| | - Daniel W Kung
- Pfizer Medicine Design, Groton, Connecticut 06340, United States
| | - David A Griffith
- Pfizer Medicine Design, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Guo T, Yan W, Cui X, Liu N, Wei X, Sun Y, Fan K, Liu J, Zhu Y, Wang Z, Zhang Y, Chen L. Liraglutide attenuates type 2 diabetes mellitus-associated non-alcoholic fatty liver disease by activating AMPK/ACC signaling and inhibiting ferroptosis. Mol Med 2023; 29:132. [PMID: 37770820 PMCID: PMC10540362 DOI: 10.1186/s10020-023-00721-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common complications of type 2 diabetes mellitus (T2DM). The pathogenesis of NAFLD involves multiple biological changes, including insulin resistance, oxidative stress, inflammation, as well as genetic and environmental factors. Liraglutide has been used to control blood sugar. But the impact of liraglutide on T2DM-associated NAFLD remains unclear. In this study, we investigated the impact and potential molecular mechanisms of inhibiting ferroptosis for liraglutide improves T2DM-associated NAFLD. METHODS Mice were fed on high-fat-diet and injected with streptozotocin to mimic T2DM-associated NAFLD and gene expression in liver was analysed by RNA-seq. The fast blood glucose was measured during the period of liraglutide and ferrostatin-1 administration. Hematoxylin and eosin staining was used to evaluate the pathological changes in the liver. The occurrence of hepatic ferroptosis was measured by lipid peroxidation in vivo. The mechanism of liraglutide inhibition ferroptosis was investigated by in vitro cell culture. RESULTS Liraglutide not only improved glucose metabolism, but also ameliorated tissue damage in the livers. Transcriptomic analysis indicated that liraglutide regulates lipid metabolism related signaling including AMPK and ACC. Furthermore, ferroptosis inhibitor rather than other cell death inhibitors rescued liver cell viability in the presence of high glucose. Mechanistically, liraglutide-induced activation of AMPK phosphorylated ACC, while AMPK inhibitor compound C blocked the liraglutide-mediated suppression of ferroptosis. Moreover, ferroptosis inhibitor restored liver function in T2DM mice in vivo. CONCLUSIONS These findings indicate that liraglutide ameliorates the T2DM-associated NAFLD, which possibly through the activation of AMPK/ACC pathway and inhibition of ferroptosis.
Collapse
Affiliation(s)
- Tingli Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Wenhui Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xin Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Na Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiaotong Wei
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Yuzhuo Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - KeXin Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jieyun Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Yuanyuan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Zhuanzhuan Wang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yilei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China.
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China.
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
38
|
Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K, Yang JL. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J Hematol Oncol 2023; 16:103. [PMID: 37700339 PMCID: PMC10498649 DOI: 10.1186/s13045-023-01498-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Lipid metabolic reprogramming is an emerging hallmark of cancer. In order to sustain uncontrolled proliferation and survive in unfavorable environments that lack oxygen and nutrients, tumor cells undergo metabolic transformations to exploit various ways of acquiring lipid and increasing lipid oxidation. In addition, stromal cells and immune cells in the tumor microenvironment also undergo lipid metabolic reprogramming, which further affects tumor functional phenotypes and immune responses. Given that lipid metabolism plays a critical role in supporting cancer progression and remodeling the tumor microenvironment, targeting the lipid metabolism pathway could provide a novel approach to cancer treatment. This review seeks to: (1) clarify the overall landscape and mechanisms of lipid metabolic reprogramming in cancer, (2) summarize the lipid metabolic landscapes within stromal cells and immune cells in the tumor microenvironment, and clarify their roles in tumor progression, and (3) summarize potential therapeutic targets for lipid metabolism, and highlight the potential for combining such approaches with other anti-tumor therapies to provide new therapeutic opportunities for cancer patients.
Collapse
Affiliation(s)
- Hao-Ran Jin
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zi-Jing Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ming-Jia Xi
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bi-Han Xia
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Deng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China.
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Jin-Lin Yang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China.
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
39
|
Zhang J, Qiu Z, Zhang Y, Wang G, Hao H. Intracellular spatiotemporal metabolism in connection to target engagement. Adv Drug Deliv Rev 2023; 200:115024. [PMID: 37516411 DOI: 10.1016/j.addr.2023.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
40
|
Duarte Lau F, Giugliano RP. Adenosine Triphosphate Citrate Lyase and Fatty Acid Synthesis Inhibition: A Narrative Review. JAMA Cardiol 2023; 8:879-887. [PMID: 37585218 DOI: 10.1001/jamacardio.2023.2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Importance Adenosine triphosphate citrate lyase (ACLY) is a key regulatory enzyme of glucose metabolism, cholesterol and fatty acid synthesis, and the inflammatory cascade. Bempedoic acid, an ACLY inhibitor, significantly reduces atherogenic lipid markers, including low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol, and apolipoprotein B. Additional effects of ACLY inhibition include antitumor growth; reduction of triglycerides and proinflammatory molecules such as high-sensitivity C-reactive protein; less insulin resistance; reduction of hepatic lipogenesis; and weight loss. Observations While numerous ACLY inhibitors have been identified, most of the clinical data have focused on bempedoic acid. The Cholesterol Lowering via Bempedoic Acid, an ACL-Inhibiting Regimen (CLEAR) program was a series of phase 3 clinical trials that evaluated its effects on lipid parameters and safety, leading to US Food and Drug Administration approval in 2020. CLEAR Outcomes was a phase 3, double-blind, randomized, placebo-controlled trial in individuals with a history of statin intolerance, serum LDL-C level of 100 mg/dL or higher, and a history of, or at high risk for, cardiovascular disease. Bempedoic acid modestly reduced the primary 4-way cardiovascular composite end point as well as the individual components of myocardial infarction and coronary revascularization but did not reduce stroke, cardiovascular death, or all-cause mortality. Rates of gout and cholelithiasis were higher with bempedoic acid, and small increases in serum creatinine, uric acid, and hepatic-enzyme levels were also observed. Conclusions and relevance ACLY inhibition with bempedoic acid has been established as a safe and effective therapy in high-risk patients who require further LDL-C lowering, particularly for those with a history of statin intolerance. The recently published CLEAR Outcomes trial revealed modest reductions in cardiovascular events with bempedoic acid, proportional to its LDL-C lowering, in high-risk individuals with statin intolerance and LDL-C levels of 100 mg/dL or higher. The additional effects of ACLY inhibition have prompted a more thorough search for novel ACLY inhibitors for conditions such as cancer, hypertriglyceridemia, chronic inflammation, type 2 diabetes, fatty liver disease, obesity, and metabolic syndrome. Similarly, therapies that reduce fatty acid synthesis are being explored for their use in cardiometabolic conditions.
Collapse
Affiliation(s)
| | - Robert P Giugliano
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
41
|
Li N, Yin L, Shang J, Liang M, Liu Z, Yang H, Qiang G, Du G, Yang X. Kaempferol attenuates nonalcoholic fatty liver disease in type 2 diabetic mice via the Sirt1/AMPK signaling pathway. Biomed Pharmacother 2023; 165:115113. [PMID: 37418974 DOI: 10.1016/j.biopha.2023.115113] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases with limited treatment options. Moreover, its prevalence is doubled in type 2 diabetes mellitus (T2DM). Kaempferol (KAP) is a flavonoid compound that has been suggested to have beneficial effects on NAFLD, but studies on the mechanism are lacking, especially in the diabetic state. Herein, we investigated the effect of KAP on NAFLD associated with T2DM and its underlying mechanism in vitro and in vivo. The results of in vitro studies indicated that KAP treatment (10-8-10-6 M) significantly reduced lipid accumulation in oleic acid-induced HepG2 cells. Moreover, in the T2DM animal model of db/db mice, we confirmed that KAP (50 mg/kg) significantly reduced lipid accumulation and improved liver injury. Mechanistic studies in vitro and in vivo showed that Sirtuin 1 (Sirt1)/AMP-activated protein kinase (AMPK) signal was involved in KAP regulation of hepatic lipid accumulation. KAP treatment activated Sirt1 and AMPK, upregulated the levels of fatty acid oxidation-related protein proliferator activated receptor gamma coactivator 1α (PGC1α); and downregulated lipid synthesis-related proteins, including acetyl-coA carboxylase (ACC), fatty acid synthase (FASN), and sterol regulatory element-binding protein 1 (SREBP1). Furthermore, the curative effect of KAP on lipid accumulation was abolished by siRNA-mediated knockdown of either Sirt1 or AMPK. Collectively, these findings suggest that KAP may be a potential therapeutic agent for NAFLD associated with T2DM by regulating hepatic lipid accumulation through activation of Sirt1/AMPK signaling.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Lin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China; Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Jiamin Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Meidai Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Zhaoyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Haiguang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China.
| |
Collapse
|
42
|
Yehezkel AS, Abudi N, Nevo Y, Benyamini H, Elgavish S, Weinstock M, Abramovitch R. AN1284 attenuates steatosis, lipogenesis, and fibrosis in mice with pre-existing non-alcoholic steatohepatitis and directly affects aryl hydrocarbon receptor in a hepatic cell line. Front Endocrinol (Lausanne) 2023; 14:1226808. [PMID: 37664863 PMCID: PMC10469006 DOI: 10.3389/fendo.2023.1226808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 09/05/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is an aggressive form of fatty liver disease with hepatic inflammation and fibrosis for which there is currently no drug treatment. This study determined whether an indoline derivative, AN1284, which significantly reduced damage in a model of acute liver disease, can reverse steatosis and fibrosis in mice with pre-existing NASH and explore its mechanism of action. The mouse model of dietary-induced NASH reproduces most of the liver pathology seen in human subjects. This was confirmed by RNA-sequencing analysis. The Western diet, given for 4 months, caused steatosis, inflammation, and liver fibrosis. AN1284 (1 mg or 5 mg/kg/day) was administered for the last 2 months of the diet by micro-osmotic-pumps (mps). Both doses significantly decreased hepatic damage, liver weight, hepatic fat content, triglyceride, serum alanine transaminase, and fibrosis. AN1284 (1 mg/kg/day) given by mps or in the drinking fluid significantly reduced fibrosis produced by carbon tetrachloride injections. In human HUH7 hepatoma cells incubated with palmitic acid, AN1284 (2.1 and 6.3 ng/ml), concentrations compatible with those in the liver of mice treated with AN1284, decreased lipid formation by causing nuclear translocation of the aryl hydrocarbon receptor (AhR). AN1284 downregulated fatty acid synthase (FASN) and sterol regulatory element-binding protein 1c (SREBP-1c) and upregulated Acyl-CoA Oxidase 1 and Cytochrome P450-a1, genes involved in lipid metabolism. In conclusion, chronic treatment with AN1284 (1mg/kg/day) reduced pre-existing steatosis and fibrosis through AhR, which affects several contributors to the development of fatty liver disease. Additional pathways are also influenced by AN1284 treatment.
Collapse
Affiliation(s)
- Adi S. Yehezkel
- The Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Nathalie Abudi
- The Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marta Weinstock
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, Hebrew University, Jerusalem, Israel
| | - Rinat Abramovitch
- The Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
43
|
Chen Y, Wang W, Morgan MP, Robson T, Annett S. Obesity, non-alcoholic fatty liver disease and hepatocellular carcinoma: current status and therapeutic targets. Front Endocrinol (Lausanne) 2023; 14:1148934. [PMID: 37361533 PMCID: PMC10286797 DOI: 10.3389/fendo.2023.1148934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Obesity is a global epidemic and overwhelming evidence indicates that it is a risk factor for numerous cancers, including hepatocellular carcinoma (HCC), the third leading cause of cancer-related deaths worldwide. Obesity-associated hepatic tumorigenesis develops from nonalcoholic fatty liver disease (NAFLD), progressing to nonalcoholic steatohepatitis (NASH), cirrhosis and ultimately to HCC. The rising incidence of obesity is resulting in an increased prevalence of NAFLD and NASH, and subsequently HCC. Obesity represents an increasingly important underlying etiology of HCC, in particular as the other leading causes of HCC such as hepatitis infection, are declining due to effective treatments and vaccines. In this review, we provide a comprehensive overview of the molecular mechanisms and cellular signaling pathways involved in the pathogenesis of obesity-associated HCC. We summarize the preclinical experimental animal models available to study the features of NAFLD/NASH/HCC, and the non-invasive methods to diagnose NAFLD, NASH and early-stage HCC. Finally, since HCC is an aggressive tumor with a 5-year survival of less than 20%, we will also discuss novel therapeutic targets for obesity-associated HCC and ongoing clinical trials.
Collapse
Affiliation(s)
- Yinshuang Chen
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Maria P. Morgan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
44
|
Winarto J, Song DG, Pan CH. The Role of Fucoxanthin in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24098203. [PMID: 37175909 PMCID: PMC10179653 DOI: 10.3390/ijms24098203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic liver disease (CLD) has emerged as a leading cause of human deaths. It caused 1.32 million deaths in 2017, which affected men more than women by a two-to-one ratio. There are various causes of CLD, including obesity, excessive alcohol consumption, and viral infection. Among them, non-alcoholic fatty liver disease (NAFLD), one of obesity-induced liver diseases, is the major cause, representing the cause of more than 50% of cases. Fucoxanthin, a carotenoid mainly found in brown seaweed, exhibits various biological activities against NAFLD. Its role in NAFLD appears in several mechanisms, such as inducing thermogenesis in mitochondrial homeostasis, altering lipid metabolism, and promoting anti-inflammatory and anti-oxidant activities. The corresponding altered signaling pathways are the β3-adorenarine receptor (β3Ad), proliferator-activated receptor gamma coactivator (PGC-1), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor (PPAR), sterol regulatory element binding protein (SREBP), nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), protein kinase B (AKT), SMAD2/3, and P13K/Akt pathways. Fucoxanthin also exhibits anti-fibrogenic activity that prevents non-alcoholic steatohepatitis (NASH) development.
Collapse
Affiliation(s)
- Jessica Winarto
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Dae-Geun Song
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Cheol-Ho Pan
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
- Microalgae Ask US Co., Ltd., Gangneung 25441, Republic of Korea
| |
Collapse
|
45
|
Carrascosa JM, Vilarrasa E, Belinchón I, Herranz P, Crespo J, Guimerá F, Olveira A. [Translated article] Common Approach to Metabolic-Associated Fatty Liver Disease in Patients With Psoriasis: Consensus-Based Recommendations From a Multidisciplinary Group of Experts. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:T392-T401. [PMID: 37068635 DOI: 10.1016/j.ad.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 04/19/2023] Open
Abstract
Recent years have seen concerted efforts to understand the relation between psoriasis and metabolic-associated fatty liver disease (MAFLD). Not only is MALFD diagnosed more often in patients with psoriasis, but its clinical course is also more aggressive. A common approach is therefore needed to enable early detection of liver disease coincident with psoriasis. Especially important is an analysis of risks and benefits of potentially hepatotoxic treatments. This consensus paper presents the recommendations of a group of experts in dermatology and hepatology regarding screening for MALFD as well as criteria for monitoring patients and referring them to hepatologists when liver disease is suspected.
Collapse
Affiliation(s)
- J M Carrascosa
- Departamento de Dermatología, Hospital Universitario Germans Trias i Pujol, Universitat Autònoma de Barcelona, IGTP Badalona, Barcelona, Spain.
| | - E Vilarrasa
- Departamento de Dermatología, Hospital Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - I Belinchón
- Departamento de Dermatología, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica (ISABIAL), Universidad Miguel Hernández de Elche, Alicante, Spain
| | - P Herranz
- Departamento de Dermatología, Hospital Universitario La Paz, Madrid, Spain
| | - J Crespo
- Servicio de Gastroenterología y Hepatología, Hospital Universitario Marqués de Valdecilla, IDIVAL, Escuela de Medicina, Universidad de Cantabria, Santander, Spain
| | - F Guimerá
- Servicio de Dermatología y Patología, Hospital Universitario de Canarias, La Laguna, Spain
| | - A Olveira
- Servicio de Aparato Digestivo, Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
46
|
Carrascosa JM, Vilarrasa E, Belinchón I, Herranz P, Crespo J, Guimerá F, Olveira A. Common Approach to Metabolic-Associated Fatty Liver Disease in Patients With Psoriasis: Consensus-Based Recommendations From a Multidisciplinary Group of Experts. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:392-401. [PMID: 36720362 DOI: 10.1016/j.ad.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Recent years have seen concerted efforts to understand the relation between psoriasis and metabolic-associated fatty liver disease (MAFLD). Not only is MALFD diagnosed more often in patients with psoriasis, but its clinical course is also more aggressive. A common approach is therefore needed to enable early detection of liver disease coincident with psoriasis. Especially important is an analysis of risks and benefits of potentially hepatotoxic treatments. This consensus paper presents the recommendations of a group of experts in dermatology and hepatology regarding screening for MALFD as well as criteria for monitoring patients and referring them to hepatologists when liver disease is suspected.
Collapse
Affiliation(s)
- J M Carrascosa
- Departamento de Dermatología, Hospital Universitario Germans Trias i Pujol, Universitat Autònoma de Barcelona. IGTP Badalona, Barcelona, España.
| | - E Vilarrasa
- Departamento de Dermatología, Hospital Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, España
| | - I Belinchón
- Departamento de Dermatología, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica (ISABIAL), Universidad Miguel Hernández de Elche, Alicante, España
| | - P Herranz
- Departamento de Dermatología, Hospital Universitario La Paz, Madrid, España
| | - J Crespo
- Servicio de Gastroenterología y Hepatología, Hospital Universitario Marqués de Valdecilla. IDIVAL. Escuela de Medicina. Universidad de Cantabria, Santander, España
| | - F Guimerá
- Servicio de Dermatología y Patología, Hospital Universitario de Canarias, La Laguna, España
| | - A Olveira
- Servicio de Aparato Digestivo, Hospital Universitario La Paz, Madrid, España
| |
Collapse
|
47
|
Baykova SO, Geyl KK, Baykov SV, Boyarskiy VP. Synthesis of 3-(Pyridin-2-yl)quinazolin-2,4(1 H,3 H)-diones via Annulation of Anthranilic Esters with N-pyridyl Ureas. Int J Mol Sci 2023; 24:ijms24087633. [PMID: 37108796 PMCID: PMC10142796 DOI: 10.3390/ijms24087633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
A new route for the synthesis of quinazolin-2,4(1H,3H)-diones and thieno [2,3-d]pyrimidine-2,4(1H,3H)-diones substituted by pyridyl/quinolinyl moiety in position 3 has been developed. The proposed method concluded in an annulation of substituted anthranilic esters or 2-aminothiophene-3-carboxylates with 1,1-dimethyl-3-(pyridin-2-yl) ureas. The process consists of the formation of N-aryl-N'-pyridyl ureas followed by their cyclocondensation into the corresponding fused heterocycles. The reaction does not require the use of metal catalysts and proceeds with moderate to good yields (up to 89%). The scope of the method is more than 30 examples, including compounds with both electron-withdrawing and electron-donating groups, as well as diverse functionalities. At the same time, strong electron-acceptor substituents in the pyridine ring of the starting ureas reduce the product yield or even prevent the cyclocondensation step. The reaction can be easily scaled to gram quantities.
Collapse
Affiliation(s)
- Svetlana O Baykova
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russia
| | - Kirill K Geyl
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russia
| | - Sergey V Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russia
| | - Vadim P Boyarskiy
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russia
| |
Collapse
|
48
|
Xia Y, Andersson E, Anand SK, Cansby E, Caputo M, Kumari S, Porosk R, Kilk K, Nair S, Marschall HU, Blüher M, Mahlapuu M. Silencing of STE20-type kinase TAOK1 confers protection against hepatocellular lipotoxicity through metabolic rewiring. Hepatol Commun 2023; 7:02009842-202304010-00004. [PMID: 36930872 PMCID: PMC10027040 DOI: 10.1097/hc9.0000000000000037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/19/2022] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND NAFLD has become the leading cause of chronic liver disease worldwide afflicting about one quarter of the adult population. NASH is a severe subtype of NAFLD, which in addition to hepatic steatosis connotes liver inflammation and hepatocyte ballooning. In light of the exponentially increasing prevalence of NAFLD, it is imperative to gain a better understanding of its molecular pathogenesis. The aim of this study was to examine the potential role of STE20-type kinase TAOK1 -a hepatocellular lipid droplet-associated protein-in the regulation of liver lipotoxicity and NAFLD etiology. METHODS The correlation between TAOK1 mRNA expression in liver biopsies and the severity of NAFLD was evaluated in a cohort of 62 participants. Immunofluorescence microscopy was applied to describe the subcellular localization of TAOK1 in human and mouse hepatocytes. Metabolic reprogramming and oxidative/endoplasmic reticulum stress were investigated in immortalized human hepatocytes, where TAOK1 was overexpressed or silenced by small interfering RNA, using functional assays, immunofluorescence microscopy, and colorimetric analysis. Migration, invasion, and epithelial-mesenchymal transition were examined in TAOK1-deficient human hepatoma-derived cells. Alterations in hepatocellular metabolic and pro-oncogenic signaling pathways were assessed by immunoblotting. RESULTS We observed a positive correlation between the TAOK1 mRNA abundance in human liver biopsies and key hallmarks of NAFLD (i.e., hepatic steatosis, inflammation, and ballooning). Furthermore, we found that TAOK1 protein fully colocalized with intracellular lipid droplets in human and mouse hepatocytes. The silencing of TAOK1 alleviated lipotoxicity in cultured human hepatocytes by accelerating lipid catabolism (mitochondrial β-oxidation and triacylglycerol secretion), suppressing lipid anabolism (fatty acid influx and lipogenesis), and mitigating oxidative/endoplasmic reticulum stress, and the opposite changes were detected in TAOK1-overexpressing cells. We also found decreased proliferative, migratory, and invasive capacity, as well as lower epithelial-mesenchymal transition in TAOK1-deficient human hepatoma-derived cells. Mechanistic studies revealed that TAOK1 knockdown inhibited ERK and JNK activation and repressed acetyl-CoA carboxylase (ACC) protein abundance in human hepatocytes. CONCLUSIONS Together, we provide the first experimental evidence supporting the role of hepatic lipid droplet-decorating kinase TAOK1 in NAFLD development through mediating fatty acid partitioning between anabolic and catabolic pathways, regulating oxidative/endoplasmic reticulum stress, and modulating metabolic and pro-oncogenic signaling.
Collapse
Affiliation(s)
- Ying Xia
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Sumit K Anand
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Sima Kumari
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kalle Kilk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Syam Nair
- Institute of Neuroscience and Physiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
49
|
Abstract
Few metabolites can claim a more central and versatile role in cell metabolism than acetyl coenzyme A (acetyl-CoA). Acetyl-CoA is produced during nutrient catabolism to fuel the tricarboxylic acid cycle and is the essential building block for fatty acid and isoprenoid biosynthesis. It also functions as a signalling metabolite as the substrate for lysine acetylation reactions, enabling the modulation of protein functions in response to acetyl-CoA availability. Recent years have seen exciting advances in our understanding of acetyl-CoA metabolism in normal physiology and in cancer, buoyed by new mouse models, in vivo stable-isotope tracing approaches and improved methods for measuring acetyl-CoA, including in specific subcellular compartments. Efforts to target acetyl-CoA metabolic enzymes are also advancing, with one therapeutic agent targeting acetyl-CoA synthesis receiving approval from the US Food and Drug Administration. In this Review, we give an overview of the regulation and cancer relevance of major metabolic pathways in which acetyl-CoA participates. We further discuss recent advances in understanding acetyl-CoA metabolism in normal tissues and tumours and the potential for targeting these pathways therapeutically. We conclude with a commentary on emerging nodes of acetyl-CoA metabolism that may impact cancer biology.
Collapse
Affiliation(s)
- David A Guertin
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Dandan M, Han J, Mann S, Kim R, Li K, Mohammed H, Chuang JC, Zhu K, Billin AN, Huss RS, Chung C, Myers RP, Hellerstein M. Acetyl-CoA carboxylase inhibitor increases LDL-apoB production rate in NASH with cirrhosis: prevention by fenofibrate. J Lipid Res 2023; 64:100339. [PMID: 36737040 PMCID: PMC10017426 DOI: 10.1016/j.jlr.2023.100339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Treatment with acetyl-CoA carboxylase inhibitors (ACCi) in nonalcoholic steatohepatitis (NASH) may increase plasma triglycerides (TGs), with variable changes in apoB concentrations. ACC is rate limiting in de novo lipogenesis and regulates fatty acid oxidation, making it an attractive therapeutic target in NASH. Our objectives were to determine the effects of the ACCi, firsocostat, on production rates of plasma LDL-apoB in NASH and the effects of combined therapy with fenofibrate. Metabolic labeling with heavy water and tandem mass spectrometric analysis of LDL-apoB enrichments was performed in 16 NASH patients treated with firsocostat for 12 weeks and in 29 NASH subjects treated with firsocostat and fenofibrate for 12 weeks. In NASH on firsocostat, plasma TG increased significantly by 17% from baseline to week 12 (P = 0.0056). Significant increases were also observed in LDL-apoB fractional replacement rate (baseline to week 12: 31 ± 20.2 to 46 ± 22.6%/day, P = 0.03) and absolute synthesis rate (ASR) (30.4-45.2 mg/dl/day, P = 0.016) but not plasma apoB concentrations. The effect of firsocostat on LDL-apoB ASR was restricted to patients with cirrhosis (21.0 ± 9.6 at baseline and 44.2 ± 17 mg/dl/day at week 12, P = 0.002, N = 8); noncirrhotic patients did not change (39.8 ± 20.8 and 46.3 ± 14.8 mg/dl/day, respectively, P = 0.51, N = 8). Combination treatment with fenofibrate and firsocostat prevented increases in plasma TG, LDL-apoB fractional replacement rate, and ASR. In summary, in NASH with cirrhosis, ACCi treatment increases LDL-apoB100 production rate and this effect can be prevented by concurrent fenofibrate therapy.
Collapse
Affiliation(s)
- Mohamad Dandan
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Julia Han
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Sabrina Mann
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Rachael Kim
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Kelvin Li
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Hussein Mohammed
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | | | - Kaiyi Zhu
- Gilead Sciences, Inc, Foster City, CA, USA
| | | | | | | | | | - Marc Hellerstein
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|