1
|
Farid MF, Yasin NAE, Al-Mokaddem AK, Ibrahim MA, Abouelela YS, Rizk H. Combined laser-activated SVF and PRP remodeled spinal sclerosis via activation of Olig-2, MBP, and neurotrophic factors and inhibition of BAX and GFAP. Sci Rep 2024; 14:3096. [PMID: 38326395 PMCID: PMC10850074 DOI: 10.1038/s41598-024-52962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
A single injection of platelet-rich plasma (PRP) or stromal vascular fraction (SVF) in treating neurological ailments suggests promise; however, there is limited evidence of the efficacy of combination therapy. This trial aimed to determine whether combining SVF and PRP could provide further therapeutic effects in treating multiple sclerosis (MS). Fifteen Persian cats were separated into three groups (n = 5): group I (control negative), and group II (control positive); EB was injected intrathecally into the spinal cord and then treated 14 days later with intrathecal phosphate buffered saline injection, and group III (SVF + PRP), cats were injected intrathecally with EB through the spinal cord, followed by a combination of SVF and PRP 14 days after induction. Therapeutic effects were evaluated using the Basso-Beattie-Bresnahan scale throughout the treatment timeline and at the end. Together with morphological, MRI scan, immunohistochemical, transmission electron microscopy, and gene expression investigations. The results demonstrated that combining SVF and PRP successfully reduced lesion intensity on gross inspection and MRI. In addition to increased immunoreactivity to Olig2 and MBP and decreased immunoreactivity to Bax and GFAP, there was a significant improvement in BBB scores and an increase in neurotrophic factor (BDNF, NGF, and SDF) expression when compared to the positive control group. Finally, intrathecal SVF + PRP is the most promising and safe therapy for multiple sclerosis, resulting in clinical advantages such as functional recovery, MRI enhancement, and axonal remyelination.
Collapse
Affiliation(s)
- Mariam F Farid
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt.
| | - Noha A E Yasin
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| | - Yara S Abouelela
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| | - Hamdy Rizk
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| |
Collapse
|
2
|
Xu X, Yu Y, Ling M, Ares I, Martínez M, Lopez-Torres B, Maximiliano JE, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative stress and mitochondrial damage in lambda-cyhalothrin toxicity: A comprehensive review of antioxidant mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122694. [PMID: 37802283 DOI: 10.1016/j.envpol.2023.122694] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Lambda-cyhalothrin, also known as cyhalothrin, is an efficient, broad-spectrum, quick-acting pyrethroid insecticide and acaricide and the most powerful pyrethroid insecticide in the world. However, there is increasing evidence that lambda-cyhalothrin is closely related to a variety of toxicity drawbacks (hepatotoxicity, nephrotoxicity, neurotoxicity and reproductive toxicity, among others) in non-target organisms, and oxidative stress seems to be the main mechanism of toxicity. This manuscript reviews the oxidative and mitochondrial damage induced by lambda-cyhalothrin and the signalling pathways involved in this process, indicating that oxidative stress occupies an important position in lambda-cyhalothrin toxicity. The mechanism of antioxidants to alleviate the toxicity of lambda-cyhalothrin is also discussed. In addition, the metabolites of lambda-cyhalothrin and the major metabolic enzymes involved in metabolic reactions are summarized. This review article reveals a key mechanism of lambda-cyhalothrin toxicity-oxidative damage and suggests that the use of antioxidants seems to be an effective method for preventing toxicity.
Collapse
Affiliation(s)
- Xiaoqing Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yixin Yu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Min Ling
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| |
Collapse
|
3
|
Cai J, Guan H, Li D, Shi B, Jiang Y, Qiao S, Liu Q, Fang C, Zhang Z. New insights into Microalgal astaxanthin's effect on Lambda-cyhalothrin-induced lymphocytes immunotoxicity in Cyprinus carpio: Involving miRNA-194-5p-FoxO1-mediated-mitophagy and pyroptosis. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109046. [PMID: 37661035 DOI: 10.1016/j.fsi.2023.109046] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Lambda-cyhalothrin (LC), a pyrethroid insecticide widely used in agriculture, causes immunotoxicity to aquatic organisms in the aquatic environment. Microalgal astaxanthin (MA) is a natural carotenoid that enhances viability of a variety of fish. To investigate the immunotoxicity of LC and the improvement effect of MA in lymphocytes (Cyprinus carpio), lymphocytes were treated with LC (80 M) and/or MA (50 M) for 24 h. Firstly, CCK8 combined with PI staining results showed that MA significantly attenuated the LC-induced lymphocyte death rate. Secondly, LC exposure resulted in excessively damaged mitochondrial and mtROS, diminished mitochondrial membrane potential and ATP content, which could be improved by MA. Thirdly, MA upregulated the levels of mitophagy-related regulatory factors (Beclin1, LC3, ATG5, Tom20 and Lamp2) induced by LC. Importantly, MA decreased the levels of pyroptosis-related genes treated with LC, including NLRP3, Cas-4, GSDMD and active Cas-1. Further study indicated that LC treatment caused excessive miRNA-194-5p and reduced levels of FoxO1, PINK1 and Parkin, which was inhibited by MA treatment. Overall, we concluded that MA could enhance damaged mitochondrial elimination by promoting the miRNA-194-5p-FoxO1-PINK1/Parkin-mitophagy in lymphocytes, which reduced mtROS accumulation and alleviated pyroptosis. It offers insights into the importance of MA application in aquaculture as well as the defense of farmed fish against agrobiological hazards in fish under LC.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China
| | - Haoyue Guan
- College of Animal Science and Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Di Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yangyang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cheng Fang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
4
|
Cai J, Liu P, Zhang X, Shi B, Jiang Y, Qiao S, Liu Q, Fang C, Zhang Z. Micro-algal astaxanthin improves lambda-cyhalothrin-induced necroptosis and inflammatory responses via the ROS-mediated NF-κB signaling in lymphocytes of carp (Cyprinus carpio L.). FISH & SHELLFISH IMMUNOLOGY 2023:108929. [PMID: 37414307 DOI: 10.1016/j.fsi.2023.108929] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Lambda-cyhalothrin (LCY) is a widely used toxic pesticide that causes harmful effects on the immune organs of fish and aquatic species. Micro-algal astaxanthin (MAA), a heme pigment found in haematococcus pluvialis, has been shown to benefit antioxidants and immunity in aquaculture. To investigate how MAA protects carp lymphocytes from LCY-induced immunotoxicity, a model of fish lymphocytes treated with LCY and/or MAA was established. Lymphocytes from carp (Cyprinus carpio L.) were given LCY (80 μM) and/or MAA (50 μM) as a treatment for a period of 24 h. Firstly, LCY exposure resulted in excessive ROS and malondialdehyde production and reduces antioxidant enzymes (SOD and CAT), indicating a reduced capacity of the antioxidant system. Secondly, the results of flow cytometry and AO/EB labeling proved that lymphocytes treated with LCY have a larger ratio of necroptosis. In addition, LCY upregulated the levels of necroptosis-related regulatory factors (RIP1, RIP3 and MLKL) via the ROS-mediated NF-κB signaling pathway in lymphocytes. Thirdly, LCY treatment caused increased secretion of inflammatory genes (IL-6, INF-γ, IL-4, IL-1β and TNF-α), leading to immune dysfunction in lymphocytes. Surprisingly, LCY-induced immunotoxicity was inhibited by MAA treatment, indicating that it effectively attenuated the LCY-induced changes described above. Overall, we concluded that MAA treatment could ameliorate LCY-induced necroptosis and immune dysfunction by inhibiting the ROS-mediated NF-κB signaling in lymphocytes. It provides insights into the protection of farmed fish from agrobiological threats in fish under LCY and the value of MAA applications in aquaculture.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China
| | - Pinnan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yangyang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shenqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cheng Fang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
5
|
Rutin ameliorates gout via reducing XOD activity, inhibiting ROS production and NLRP3 inflammasome activation in quail. Biomed Pharmacother 2023; 158:114175. [PMID: 36587556 DOI: 10.1016/j.biopha.2022.114175] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Gout is a metabolic disease affected by monosodium urate (MSU) deposition, which is directly related to hyperuricemia. Recent reports on the prevalence and incidence of gout have been widely circulated worldwide. Currently, the anti-gout drugs in clinical practice are mainly small-molecule synthetic drugs, and the effectiveness and safety are limited. Reducing uric acid and inhibiting inflammation are the focused areas of drug research and development on gout. Rutin, a natural flavonoid, has been reported to alleviate inflammation in various diseases. However, whether rutin exerts protective effects on gout remains to be elucidated. This study used quails without urate oxidase as experimental animals to induce endogenous gout models through a high purine diet. We confirmed that quail in the model group developed gout symptoms at 30 days of the experiment. And the targets of uric acid metabolism, oxidative stress level, and NLRP3 inflammasome were dysregulated in quails. Rutin treatment improves gout and reduces inflammatory expression in quail. We further confirmed that rutin treatment reduced XOD activity and uric acid levels in quail. And rutin inhibited ROS production, restored oxidative stress balance, inhibited NLRP3 inflammasome activation, and exerted anti-inflammatory effects. We extracted and identified the fibroblast-like synoviocytes (FLS) for the first time. The results showed that rutin could reduce ROS production and NLRP3 inflammasome activation of FLS after uric acid stimulation. In conclusion, our findings underscore that rutin may be a gout protective agent by reducing XOD activity, inhibiting ROS production and NLRP3 inflammasome activation. Meanwhile, this study also provides an available animal model for the research drugs of gout.
Collapse
|
6
|
Hassanen EI, Kamel S, Mohamed WA, Mansour HA, Mahmoud MA. The potential mechanism of histamine-inducing cardiopulmonary inflammation and apoptosis in a novel oral model of rat intoxication. Toxicology 2023; 484:153410. [PMID: 36565801 DOI: 10.1016/j.tox.2022.153410] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Histamine (HIS) is a potent vasodilator that contributes to anaphylactic reactions. Our investigation aims to study the possible toxic impact of repeated oral administration of histamine on the target organs of HIS poisoning (lung & heart) in rats as a model of scombroid poisoning. We used 15 rats that were separated into three groups with 5 rats in each. All rats received the treatments orally for 14 days as follows; (1): distilled water, (2) HIS at a dosage level of 250 mg/kg BWT daily and (3) HIS at a dosage level of 1750 mg/kg BWT weekly. Our results revealed that the consumption of HIS either daily or weekly could cause marked cardiopulmonary toxicity in rats. HIS can trigger inflammatory reactions in the cardiopulmonary tissues and induce oxidative stress damage along with apoptosis of such organs. HIS was markedly increase the MDA levels and decrease the CAT and GSH activity in both lung and heart tissues. The main pathological lesion observed is inflammation which was confirmed by immunohistochemistry and demonstrated strong iNOS and TNF-α protein expressions. Cardiac muscles showed extensive degeneration and necrosis and displayed strong casp-3 protein expression. Additionally, all HIS receiving groups noticed marked elevation of the pulmonary transcription levels of Cox2, TNF-α, and IL1β along with substantial elevation of casp-3 and bax genes and downregulation of Bcl2 gene in the cardiac tissue. We concluded that the oral administration of HIS either daily or weekly can induce cardiopulmonary toxicity via the upregulation of proinflammatory cytokines resulting in ROS overgeneration and inducing both oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Wafaa A Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Hayam A Mansour
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mahmoud A Mahmoud
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
7
|
Abdelghany AK, El-Nahass ES, Ibrahim MA, El-Kashlan AM, Emeash HH, Khalil F. Neuroprotective role of medicinal plant extracts evaluated in a scopolamine-induced rat model of Alzheimer's disease. Biomarkers 2022; 27:773-783. [PMID: 35950787 DOI: 10.1080/1354750x.2022.2112975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BackgroundAlzheimer's disease is a debilitating neurological brain disease with memory impairment among the first signs. Scopolamine (SCO), a muscarinic receptor antagonist that disrupts cognition and memory acquisition, is considered a psychopharmacological AD model. We investigate the effectiveness of medicinal plants in mitigating the SCO-induced neurobehavioural damage in rats.Materials and MethodsAnimals were injected with Scopolamine hydrobromide trihydrate (2.2 mg/kg IP.) daily for 2 months. Each treatment group was administered one of four medicinal spice extracts (Nigella sativa, 400 mg/kg; rosemary, 200 mg/kg; sage, 600 mg/kg and ginseng;200 mg/kg 90 minutes after SCO injection. Animals were subjected to cognitive-behavioral tests (NOR, Y-maze, and MWM). After the experiment, we extracted the brains for histopathological examination and biochemical assessment for oxidative stress (levels of TT, CAT and TBARS) and gene expression of acetylcholinesterase and brain monoamines.ResultsAs expected, SCO treatment impaired memory and cognition, increased oxidative stress, decreased neurotransmitters, and caused severe neurodegenerative changes in the brain.ConclusionSurprisingly, these effects were measurably moderated by the administration of all four plant extracts, indicating a neuroprotective action that we suggest could alleviate AD disease manifestations.
Collapse
Affiliation(s)
- Asmaa K Abdelghany
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - El-Shymaa El-Nahass
- Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University
| | - Akram M El-Kashlan
- Biochemistry Department, Faculty of Pharmacy, University of Sadat City, Monufia, Egypt
| | - H H Emeash
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma Khalil
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
8
|
Ali SA, Kadry MO, Hammam O, Hassan SA, Abdel-Megeed RM. Ki-67 pulmonary immunoreactivity in silver nanoparticles toxicity: Size-rate dependent genotoxic impact. Toxicol Rep 2022; 9:1813-1822. [DOI: 10.1016/j.toxrep.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 12/08/2022] Open
|