1
|
Zandsalimi F, Talaei S, Noormohammad Ahari M, Aghamiri S, Raee P, Roshanzamiri S, Yarian F, Bandehpour M, Zohrab Zadeh Z. Antimicrobial peptides: a promising strategy for lung cancer drug discovery? Expert Opin Drug Discov 2020; 15:1343-1354. [PMID: 32749935 DOI: 10.1080/17460441.2020.1791080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Antimicrobial peptides (AMPs), also called host defense peptides (HDPs), are identified in almost any form of life, which play an important role in innate immune systems. They have a broad spectrum of antifungal, antiviral, antibacterial, and anticancer activities. Lung cancer remains the leading cause of global cancer-related death. Unfortunately, lung cancer chemotherapy is accompanied by serious side effects, nonspecific toxicity, and multidrug resistance. Hence, to overcome these drawbacks, anticancer peptides (ACPs) derived from AMPs may represent a potential promising synergistic treatment strategy for lung cancer. AREAS COVERED In this review, the authors provide the recent advancements in the use of AMPs for the treatment of lung cancer. Furthermore, the anti-lung cancer modes of action of these peptides have been fully reviewed. Importantly, various strategies for increasing the efficiency and safety of AMPs have been discussed. EXPERT OPINION The combination of AMPs and other cancer treatment approaches such as chemotherapy, nanoparticle-based delivery systems, and photodynamic therapy can be used as a promising revolutionary strategy for the treatment of lung cancer. The most significant limitations of this strategy that need to be focused on are low efficiency and off-target events.
Collapse
Affiliation(s)
- Farshid Zandsalimi
- Students' Scientific Research Center, Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Sam Talaei
- School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mehdi Noormohammad Ahari
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Soheil Roshanzamiri
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Fatemeh Yarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Zeinab Zohrab Zadeh
- Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| |
Collapse
|
2
|
Velázquez J, Pérez G, Semple SL, Rodríguez-Ramos T, Díaz-Rosales P, Ordás MDC, Lugo JM, Dixon B, Tafalla C, Estrada MP, Carpio Y. First in vivo evidence of pituitary adenylate cyclase-activating polypeptide antiviral activity in teleost. FISH & SHELLFISH IMMUNOLOGY 2020; 103:58-65. [PMID: 32334130 DOI: 10.1016/j.fsi.2020.04.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/02/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide belonging to the glucagon/secretin superfamily. In teleost fish, PACAP has been demonstrated to have an immunomodulatory role. Although previous studies have shown that viral/bacterial infections can influence the transcription of PACAP splicing variants and associated receptors in salmonids, the antiviral activity of PACAP has never been studied in teleost. Thus, in the present work, we investigated in vitro the influence of synthetic Clarias gariepinus PACAP-38 on the transcription of genes related to viral immunity using the rainbow trout monocyte/macrophage-like cell line RTS11 as a model. Positive transcriptional modulation of interferon gamma (IFNγ), interferon alpha (FNα1,2), interleukin 8 (IL-8), Mx and Toll-like receptor 3 (TLR3) genes was found in a dose and time dependent manner. We also explored how a pre-treatment with PACAP could enhance antiviral immune response using poly (I:C) as viral mimic. Interferons and IL-8 transcription levels were enhanced when PACAP was added 24 h previous to poly (I:C) exposure. With these evidences, we tested in vivo how PACAP administration by immersion bath affected the survival of rainbow trout fry to a challenge with viral hemorrhagic septicemia virus (VHSV). After challenge, PACAP-treated fish had increased survival compared to non-treated/challenge fish. Furthermore, PACAP was able to decrease the viral load in spleen/kidney and stimulate the transcription of IFNs and Mx when compared to untreated infected fish. Altogether, the results of this work provide valuable insights regarding the role of teleost PACAP in antiviral immunity and point to a potential application of this peptide to reduce the impact of viral infections in aquaculture.
Collapse
Affiliation(s)
- Janet Velázquez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Geysi Pérez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Shawna L Semple
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - María Del Camino Ordás
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Juana María Lugo
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain.
| | - Mario Pablo Estrada
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Yamila Carpio
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| |
Collapse
|
3
|
Lugo JM, Tafalla C, Oliva A, Pons T, Oliva B, Aquilino C, Morales R, Estrada MP. Evidence for antimicrobial and anticancer activity of pituitary adenylate cyclase-activating polypeptide (PACAP) from North African catfish (Clarias gariepinus): Its potential use as novel therapeutic agent in fish and humans. FISH & SHELLFISH IMMUNOLOGY 2019; 86:559-570. [PMID: 30481557 DOI: 10.1016/j.fsi.2018.11.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a regulatory neuropeptide that belongs to the secretin/glucagon superfamily, of which some members have shown antimicrobial activities. Contrasting to mammals, published studies on the action of PACAP in non-mammalian vertebrate immune system remain scarce. Some of our recent studies added this peptide to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in teleost fish. Regulation of PACAP and expression of its receptor genes has been demonstrated during an immune response mounted against acute bacterial infection in fish, though the direct effect of PACAP against fish pathogenic bacteria has never been addressed. Current work provides evidence of antimicrobial activity of Clarias gariepinus PACAP against a wide spectrum of Gram-negative and Gram-positive bacteria and fungi of interest for human medicine and aquaculture, in which computational prediction studies supported the putative PACAP therapeutic activity. Results also indicated that catfish PACAP not only exhibits inhibitory effects on pathogen growth, but also affects the proliferation of human non-small cell lung cancer cell line H460 in a dose-dependent manner. The observed cytotoxic activity of catfish PACAP against human tumor cells and pathogenic microorganisms, but not healthy fish and mammalian erythrocytes support a potential physiological role of this neuropeptide in selective microbial and cancer cell killing. All together, our findings extend the mechanisms by which PACAP could contribute to immune responses, and open up new avenues for future therapeutic application of this bioactive neuropeptide.
Collapse
Affiliation(s)
- Juana Maria Lugo
- Animal Biotechnology Department, Aquatic Biotechnology Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba; Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Ayme Oliva
- Animal Biotechnology Department, Veterinary Clinical Research Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba
| | - Tirso Pons
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Brizaida Oliva
- Pharmaceutical Department. Laboratory of Cancer Biology. Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba
| | - Carolina Aquilino
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Reynold Morales
- Animal Biotechnology Department, Aquatic Biotechnology Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Aquatic Biotechnology Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba.
| |
Collapse
|
4
|
Koyuncu OO, MacGibeny MA, Enquist LW. Latent versus productive infection: the alpha herpesvirus switch. Future Virol 2018; 13:431-443. [PMID: 29967651 DOI: 10.2217/fvl-2018-0023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
Abstract
Alpha herpesviruses are common pathogens of mammals. They establish a productive infection in many cell types, but a life-long latent infection occurs in PNS neurons. A vast majority of the human population has latent HSV-1 infections. Currently, there is no cure to clear latent infections. Even though HSV-1 is among the best studied viral pathogens, regulation of latency and reactivation is not well understood due to several challenges including a lack of animal models that precisely recapitulate latency/reactivation episodes; a difficulty in modeling in vitro latency; and a limited understanding of neuronal biology. In this review, we discuss insights gained from in vitro latency models with a focus on the neuronal and viral factors that determine the mode of infection.
Collapse
Affiliation(s)
- Orkide O Koyuncu
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Margaret A MacGibeny
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Lynn W Enquist
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
5
|
Compartmented neuronal cultures reveal two distinct mechanisms for alpha herpesvirus escape from genome silencing. PLoS Pathog 2017; 13:e1006608. [PMID: 29073268 PMCID: PMC5658187 DOI: 10.1371/journal.ppat.1006608] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/26/2017] [Indexed: 01/13/2023] Open
Abstract
Alpha herpesvirus genomes encode the capacity to establish quiescent infections (i.e. latency) in the peripheral nervous system for the life of their hosts. Multiple times during latency, viral genomes can reactivate to start a productive infection, enabling spread of progeny virions to other hosts. Replication of alpha herpesviruses is well studied in cultured cells and many aspects of productive replication have been identified. However, many questions remain concerning how a productive or a quiescent infection is established. While infections in vivo often result in latency, infections of dissociated neuronal cultures in vitro result in a productive infection unless lytic viral replication is suppressed by DNA polymerase inhibitors or interferon. Using primary peripheral nervous system neurons cultured in modified Campenot tri-chambers, we previously reported that reactivateable, quiescent infections by pseudorabies virus (PRV) can be established in the absence of any inhibitor. Such infections were established in cell bodies only when physically isolated axons were infected at a very low multiplicity of infection (MOI). In this report, we developed a complementation assay in compartmented neuronal cultures to investigate host and viral factors in cell bodies that prevent establishment of quiescent infection and promote productive replication of axonally delivered genomes (i.e. escape from silencing). Stimulating protein kinase A (PKA) signaling pathways in isolated cell bodies, or superinfecting cell bodies with either UV-inactivated PRV or viral light particles (LP) promoted escape from genome silencing and prevented establishment of quiescent infection but with different molecular mechanisms. Activation of PKA in cell bodies triggers a slow escape from silencing in a cJun N-terminal kinase (JNK) dependent manner. However, escape from silencing is induced rapidly by infection with UVPRV or LP in a PKA- and JNK-independent manner. We suggest that viral tegument proteins delivered to cell bodies engage multiple signaling pathways that block silencing of viral genomes delivered by low MOI axonal infection. Alpha herpesvirus infections stay life-long in infected human and animal hosts`nervous systems in a silent state ready to reactivate upon various stress signals. Remarkably, infection of epithelial cells with these viruses results in productive infection whereas infection of peripheral nervous system neurons results in non-productive silent infection (i.e. latency) in the natural hosts. More interestingly, infection of dissociated peripheral neurons in culture also results in productive infection unless DNA replication inhibitors are used. To study the molecular mechanisms of escape from latency, we used primary neurons cultured in compartmented tri-chambers. By this way, we recapitulated the natural route of infection by infecting axons with low dose of virus which resulted in a silent infection in a small number of neuronal cell bodies without the use of any inhibitors. Using these cultures, we developed a new complementation assay to investigate the molecular signals leading to escape from latency and establishment of productive infection. We found two different mechanisms to escape from latency: Cellular stress-mediated slow route and viral tegument mediated-fast route. Furthermore, we showed that the stress-mediated pathway requires protein kinase A and c-Jun N-terminal kinase activity while the viral tegument-mediated fast escape does not require these host cell kinase activities. We also concluded that a general response to DNA virus infection or presence of excess herpesviral genomes in the nucleus to saturate silencing complexes is not enough to escape from latency. Induction of a productive infection requires presence of tegument proteins or activation of PKA and JNK pathway.
Collapse
|
6
|
Wang XY, Yu HZ, Geng L, Xu JP, Yu D, Zhang SZ, Ma Y, Fei DQ. Comparative Transcriptome Analysis of Bombyx mori (Lepidoptera) Larval Midgut Response to BmNPV in Susceptible and Near-Isogenic Resistant Strains. PLoS One 2016; 11:e0155341. [PMID: 27168061 PMCID: PMC4864234 DOI: 10.1371/journal.pone.0155341] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/27/2016] [Indexed: 01/04/2023] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the primary pathogens causing severe economic losses in sericulture. However, the molecular mechanism of silkworm resistance to BmNPV remains largely unknown. Here, the recurrent parent P50 (susceptible strain) and the near-isogenic line BC9 (resistance strain) were used in a comparative transcriptome study examining the response to infection with BmNPV. A total of 14,300 unigenes were obtained from two different resistant strains; of these, 869 differentially expressed genes (DEGs) were identified after comparing the four transcriptomes. Many DEGs associated with protein metabolism, cytoskeleton, and apoptosis may be involved in the host response to BmNPV infection. Moreover, some immunity related genes were also altered following BmNPV infection. Specifically, after removing genetic background and individual immune stress response genes, 22 genes were found to be potentially involved in repressing BmNPV infection. These genes were related to transport, virus replication, intracellular innate immune, and apoptosis. Our study provided an overview of the molecular mechanism of silkworm resistance to BmNPV infection and laid a foundation for controlling BmNPV in the future.
Collapse
Affiliation(s)
- Xue-Yang Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Hai-Zhong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Lei Geng
- School of Life Sciences, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, People’s Republic of China
- * E-mail:
| | - Dong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Yan Ma
- School of Life Sciences, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Dong-Qiong Fei
- School of Life Sciences, Anhui Agricultural University, Hefei, People’s Republic of China
| |
Collapse
|
7
|
Gorgoglione B, Carpio Y, Secombes CJ, Taylor NGH, Lugo JM, Estrada MP. Viral and bacterial septicaemic infections modulate the expression of PACAP splicing variants and VIP/PACAP receptors in brown trout immune organs. FISH & SHELLFISH IMMUNOLOGY 2015; 47:923-932. [PMID: 26481517 DOI: 10.1016/j.fsi.2015.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and PACAP-Related Peptide (PRP) are structurally similar peptides encoded in the same transcripts. Their transcription has been detected not only in the brain but also in a wide range of peripheral tissues, even including organs of the immune system. PACAP exerts pleiotropic activities through G-protein coupled membrane receptors: the PACAP-specific PAC-1 and the VPAC-1 and VPAC-2 receptors that exhibit similar affinities for the Vasoactive Intestinal Peptide (VIP) and PACAP. Recent findings added PACAP and its receptors to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in fish. In this study the expression of genes encoding for PACAP and PRP, as well as VIP/PACAP receptors was studied in laboratory-reared brown trout (Salmo trutta) after septicaemic infections. Respectively Viral Haemorrhagic Septicaemia Virus (VHSV-Ia) or the Gram-negative bacterium Yersinia ruckeri (ser. O1 - biot. 2) were used in infection challenges. Kidney and spleen, the teleost main lymphopoietic organs, were sampled during the first two weeks post-infection. RT-qPCR analysis assessed specific pathogens burden and gene expression levels. PACAP and PRP transcription in each organ was positively correlated to the respective pathogen burden, assessed targeting the VHSV-glycoprotein or Y. ruckeri 16S rRNA. Results showed as the transcription of PACAP splicing variants and VIP/PACAP receptors is modulated in these organs during an acute viral and bacterial septicaemic infections in brown trout. These gene expression results provide clues as to how the PACAP system is modulated in fish, confirming an involvement during active immune responses elicited by both viral and bacterial aetiological agents. However, further experimental evidence is still required to fully elucidate and characterize the role of PACAP and PRP for an efficient immune response against pathogens.
Collapse
Affiliation(s)
- Bartolomeo Gorgoglione
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK; CEFAS Weymouth Laboratory, Weymouth, England, UK
| | - Yamila Carpio
- Aquatic Biotechnology Project, Centre for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK
| | | | - Juana María Lugo
- Aquatic Biotechnology Project, Centre for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mario Pablo Estrada
- Aquatic Biotechnology Project, Centre for Genetic Engineering and Biotechnology, Havana, Cuba.
| |
Collapse
|
8
|
Danaher RJ, Cook RK, Wang C, Triezenberg SJ, Jacob RJ, Miller CS. C-terminal trans-activation sub-region of VP16 is uniquely required for forskolin-induced herpes simplex virus type 1 reactivation from quiescently infected-PC12 cells but not for replication in neuronally differentiated-PC12 cells. J Neurovirol 2012. [PMID: 23192733 DOI: 10.1007/s13365-012-0137-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The HSV-1 tegument protein VP16 contains a trans-activation domain (TAD) that is required for induction of immediate early (IE) genes during lytic infection and induced reactivation from latency. Here we report the differential contributions of the two sub-regions of the TAD in neuronal and non-neuronal cells during activation of IE gene expression, virus replication, and reactivation from quiescently infected (QIF)-PC12 cells. Our studies show that VP16- and chemical (hexamethylenebisacetamide)-induced IE gene activation is attenuated in neuronal cells. Irrespective of neuronal or non-neuronal cell backgrounds, IE gene activation demonstrated a greater requirement for the N-terminal sub-region of VP16 TAD (VP16N) than the C-terminal sub-region (VP16C). In surprising contrast to these findings, a recombinant virus (RP4) containing the VP16N deletion was capable of modest forskolin-induced reactivation whereas a recombinant (RP3) containing a deletion of VP16C was incapable of stress-induced reactivation from QIF-PC12 cells. These unique process-dependent functions of the VP16 TAD sub-regions may be important during particular stages of the virus life cycle (lytic, entrance, and maintenance of a quiescent state and reactivation) when viral DNA would be expected to be differentially modified.
Collapse
Affiliation(s)
- Robert J Danaher
- Department of Oral Health Practice, Division of Oral Medicine, Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40536-0297, USA
| | | | | | | | | | | |
Collapse
|
9
|
Regulation of Kaposi's sarcoma-associated herpesvirus reactivation by dopamine receptor-mediated signaling pathways. J Acquir Immune Defic Syndr 2008; 48:531-40. [PMID: 18645521 DOI: 10.1097/qai.0b013e31817fbdcf] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Kaposi's sarcoma-associated herpesvirus (KSHV) possesses two distinct life cycles, lytic replication and latency. An immediate early viral protein, Replication and transcription activator (RTA), is responsible for the virus switch from latency to active replication. METHODS To identify cellular pathways that reactivate KSHV replication, an RTA-responsive viral early promoter, PAN, coupled with an enhanced green fluorescent protein (EGFP) reporter was delivered into a KSHV latently infected B cell line. Five different chemical libraries with defined cellular targets were screened for their ability to induce the PAN promoter as an indication of lytic replication. RESULTS We identified seven chemicals that disrupted latency in KSHV latently infected B cells, five being N-acyl-dopamine derivatives. We showed that these chemicals reactivate KSHV through interacting with dopamine receptors, and that KSHV utilizes dopamine receptors and the associated PKA and MAP kinase pathways to detect and transmit stress signals for reactivation. CONCLUSION Our study identified two cellular signaling pathways that mediate KSHV reactivation and provided a chemical genetics approach to identify new endogenous activators with therapeutic potential against herpesvirus associated malignancies.
Collapse
|
10
|
Herpes simplex virus type 1 modulates cellular gene expression during quiescent infection of neuronal cells. Arch Virol 2008; 153:1335-45. [DOI: 10.1007/s00705-008-0122-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 05/19/2008] [Indexed: 02/08/2023]
|
11
|
Danaher RJ, Jacob RJ, Miller CS. Reactivation from quiescence does not coincide with a global induction of herpes simplex virus type 1 transactivators. Virus Genes 2006; 33:163-7. [PMID: 16972030 DOI: 10.1007/s11262-005-0052-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 11/28/2005] [Indexed: 10/24/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) reactivates from a small fraction of latently infected neurons in vivo and neuronally differentiated (ND), quiescently infected (QIF)-PC12 cells in vitro. This may be the result of reactivation initiating in only a few cells, or reactivation followed by premature termination of the productive virus life cycle in many or even a majority of cells. To examine the viral stress response, HSV-1 promoters of representative alpha, beta, and gamma class genes were examined in ND- and QIF-PC12 cells after treatments with agents known to induce reactivation. HSV-1 promoters displayed variable levels of basal gene expression in ND-PC12 cells ranging from 2 to 1,200 times the level of the control vector pGL3-Basic. Expression of the latency associated transcript (LAT) was greatest, with representatives of the alpha class exhibiting greater expression than the beta and gamma classes. The HSV-1 promoters examined did not respond dramatically to stress treatments. The viral gene response was also measured during the initiation of reactivation of a cryptic HSV-1 genome after forskolin treatment, under conditions that restricted DNA replication. During the first 24 h after stress induction the response was limited. By 48 h post-forskolin treatment, only modest increases occurred for ICP0, ICP4, and LAT transcripts, reaching levels of no greater than 2.2 times mock treated levels. In contrast, ICP27, ribonucleotide reductase (RR), and VP16 promoters did not respond. These findings indicate that reactivation from QIF-PC12 cells does not result in a global response of the specific HSV-1 genes tested, when assessed at the population level. These data support the hypothesis that stress-induced reactivation initiates in a minority of cells.
Collapse
Affiliation(s)
- Robert J Danaher
- Oral Medicine Section, MN 324, Center for Oral Health Research and Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Dentistry and College of Medicine, 800 Rose Street, Lexington, 40536-0297, USA
| | | | | |
Collapse
|
12
|
Miller CS, Danaher RJ, Jacob RJ. ICP0 is not required for efficient stress-induced reactivation of herpes simplex virus type 1 from cultured quiescently infected neuronal cells. J Virol 2006; 80:3360-8. [PMID: 16537603 PMCID: PMC1440419 DOI: 10.1128/jvi.80.7.3360-3368.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral genes sufficient and required for herpes simplex virus type 1 (HSV-1) reactivation were identified using neuronally differentiated PC12 cells (ND-PC12 cells) in which quiescent infections with wild-type and recombinant strains were established. In this model, the expression of ICP0, VP16, and ICP4 from adenovirus vectors was sufficient to reactivate strains 17+ and KOS. The transactivators induced similar levels of reactivation with KOS; however, 17+ responded more efficiently to ICP0. To identify viral transactivators required for reactivation, we examined quiescently infected PC12 cell cultures (QIF-PC12 cell cultures) established with HSV-1 deletion mutants R7910 (deltaICP0), KD6 (deltaICP4), and in1814, a virus containing an insertion mutation in VP16. Although growth of these mutant viruses was impaired in ND-PC12 cells, R7910 and in1814 reactivated at levels equivalent to or better than their respective parental controls following stress (i.e., heat or forskolin) treatment. After treatment with trichostatin A, in1814 and 17+ reactivated efficiently, whereas the F strain and R7910 reactivated inefficiently. In contrast, KD6 failed to reactivate. In experiments with the recombinant KM100, which contains the in1814 mutation in VP16 and the n212 mutation in ICP0, spontaneous and stress-induced reactivation was observed. However, two strains, V422 and KM110, which lack the acidic activation domain of VP16, did not reactivate above low spontaneous levels after stress. These results demonstrate that in QIF-PC12 cells ICP0 is not required for efficient reactivation of HSV-1, the acidic activation domain of VP16 is essential for stress-induced HSV-1 reactivation, and HSV-1 reactivation is modulated uniquely by different treatment constraints and phenotypes.
Collapse
Affiliation(s)
- Craig S Miller
- Center for Oral Health Research, University of Kentucky College of Dentistry, Lexington, KY 40536-0297, USA.
| | | | | |
Collapse
|
13
|
Danaher RJ, Jacob RJ, Steiner MR, Allen WR, Hill JM, Miller CS. Histone deacetylase inhibitors induce reactivation of herpes simplex virus type 1 in a latency-associated transcript-independent manner in neuronal cells. J Neurovirol 2005; 11:306-17. [PMID: 16036811 PMCID: PMC1361429 DOI: 10.1080/13550280590952817] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Histone acetylation is implicated in the regulation of herpes simplex virus type 1 (HSV-1) latency. However, the role of histone acetylation in HSV-1 reactivation is less clear. In this study, the well-established model system, quiescently infected, neuronally differentiated PC12 (QIF-PC12) cells, was used to address the participation of histone acetylation in HSV-1 reactivation. In this model, sodium butyrate and trichostatin A (TSA), two histone deacetylase inhibitors, stimulated production of infectious HSV-1 progeny from a quiescent state. To identify viral genes responsive to TSA, the authors analyzed representative alpha, beta, and gamma viral genes using quantitative real-time polymerase chain reaction. Only the latency-associated transcript (LAT) accumulated in response to TSA treatment, under culture conditions that restricted virus replication and spread. This led the authors to evaluate the importance of LAT expression on TSA-induced reactivation. In QIF-PC12 cells, the LAT deletion mutant virus dLAT2903 reactivated equivalently with its wild-type parental strain (McKrae) after TSA treatment, as well as forskolin and heat stress treatment. Both viruses also reactivated equivalently from latently infected trigeminal ganglia explants from rabbits. In contrast, there was a marked reduction in the recovery of dLAT2903, as compared to wild-type virus, from the eyes of latently infected rabbits following epinephrine iontophoresis. These combined in vitro, ex vivo, and in vivo data suggest that LAT is not required for reactivation from latently infected neuronal cells per se, but may enhance processes that allow for the arrival of virus at, or close to, the site of original inoculation (i.e., recrudescence).
Collapse
Affiliation(s)
- Robert J. Danaher
- Oral Medicine Section, Center for Oral Health Research and
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Dentistry and College of Medicine, Lexington, KY 40536-0297
| | - Robert J. Jacob
- Oral Medicine Section, Center for Oral Health Research and
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Dentistry and College of Medicine, Lexington, KY 40536-0297
| | - Marion R. Steiner
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Dentistry and College of Medicine, Lexington, KY 40536-0297
| | - Will R. Allen
- Oral Medicine Section, Center for Oral Health Research and
| | - James M. Hill
- LSU Eye Center, Departments of Ophthalmology, Pharmacology, Microbiology, and Neuroscience, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Craig S. Miller
- Oral Medicine Section, Center for Oral Health Research and
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Dentistry and College of Medicine, Lexington, KY 40536-0297
- * Corresponding author: Dr. Craig S. Miller, Oral Medicine Section, MN324, University of Kentucky College of Dentistry, 800 Rose Street, Lexington, KY 40536-0297 Tel: 859-323-5598 (office), Fax: 859-323-9136, E-mail address:
| |
Collapse
|
14
|
De Bolle L, Andrei G, Snoeck R, Zhang Y, Van Lommel A, Otto M, Bousseau A, Roy C, De Clercq E, Naesens L. Potent, selective and cell-mediated inhibition of human herpesvirus 6 at an early stage of viral replication by the non-nucleoside compound CMV423. Biochem Pharmacol 2004; 67:325-36. [PMID: 14698045 DOI: 10.1016/j.bcp.2003.08.042] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
CMV423 (2-chloro-3-pyridin-3-yl-5,6,7,8-tetrahydroindolizine-1-carboxamide) is a new antiviral agent with potent and selective in vitro activity against the beta-herpesvirus human cytomegalovirus (HCMV), but not against alpha- or gamma-herpesviruses. Here we report that its activity also extends to human herpesvirus 6 (HHV-6) and 7 (HHV-7). When compared in vitro to ganciclovir and foscarnet (the standard drugs recommended for treatment of HHV-6 infections), CMV423 showed a superior selectivity, due to its high activity (antiviral IC(50): 53nM) and low cytotoxicity (CC(50): 144microM), both in continuous cell lines and in CBLCs infected with HHV-6. From mechanistic experiments at the level of viral mRNA and protein expression, we learned that CMV423 targets an event following viral entry but preceding viral DNA replication. Its antiviral action was dependent on the cell line used, implying involvement of a cellular component. When compared to a panel of known protein kinase inhibitors, CMV423 was found to share anti-HHV-6 characteristics with herbimycin A, which affects tyrosine kinase activity through heat shock protein 90 (Hsp90) inhibition. We demonstrated that high concentrations of CMV423 have an inhibitory effect on the total cellular protein tyrosine kinase activity, and that CMV423 and herbimycin A, when combined, act synergistically against HHV-6. The activities of cyclin-dependent kinases, protein kinases A and C, and the HHV-6-encoded pU69 kinase were not affected. We, therefore, conclude that CMV423 exerts its activity against HHV-6 through inhibition of a cellular process that is critical at early stages of viral replication and that may affect protein tyrosine kinase activity.
Collapse
Affiliation(s)
- Leen De Bolle
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Danaher RJ, Jacob RJ, Miller CS. Herpesvirus quiescence in neuronal cells. V: forskolin-responsiveness of the herpes simplex virus type 1 alpha0 promoter and contribution of the putative cAMP response element. J Neurovirol 2003; 9:489-97. [PMID: 12907393 DOI: 10.1080/13550280390218797] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The herpes simplex virus (HSV)-1 alpha0 promoter contains a putative cAMP response element (CRE) located at positions -68 to -60 with respect to the initiation of transcription. In this report, the authors examined the functionality of this element using (1) luciferase reporter gene assays in nerve growth factor-differentiated (ND)-PC12 cells and (2) virus-induced activation from quiescently infected (QIF)-PC12 cells. The putative alpha0 CRE was completely eliminated by digestion with the restriction enzyme Tsp45I followed by mung bean nuclease treatment. The mutated region was verified by DNA sequencing and was inserted into the alpha0-luciferase reporter plasmid (pRDalpha0-LUC) creating (pRDalpha0deltaCRE-LUC), and into the HSV-1 genome of strain 17(+)(alpha0deltaCRE). Insertion into both copies of the alpha0 promoter was verified by Southern blot analysis. ND-PC12 cells transfected with pRDalpha0-LUC and pRDalpha0deltaCRE-LUC plasmids responded similarly to forskolin (50 microM), with approximately 250% increases in luciferase activity compared to mock-treated cultures as measured 3 days following treatment. When QIF-PC12 cultures established with HSV-1 strain 17(+) and alpha0deltaCRE were treated with forskolin (50 microM) 17 days post infection, virus was detected in 9/24 (37.5%) and 13/24 (54.2%) of induced cultures by day 8 post treatment, respectively. In contrast, virus was detected in 0/23 and 1/24 (4.2%) of mock-treated cultures by day 8 post treatment for wild-type and mutant viruses, respectively. These findings indicate that the alpha0 promoter is forskolin responsive, the purported CRE of the alpha0 promoter does not confer forskolin responsiveness in ND-PC12 cells, and this element is not required for reactivation of HSV-1 from QIF-PC12 cells.
Collapse
Affiliation(s)
- Robert J Danaher
- Oral Medicine Section, Department of Oral Health Practice, University of Kentucky College of Dentistry and College of Medicine, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
16
|
Miller C, Bhattacharjee P, Higaki S, Jacob R, Danaher R, Thompson H, Hill J. Herpesvirus quiescence (QIF) in neuronal cells VI: Correlative analysis demonstrates usefulness of QIF-PC12 cells to examine HSV-1 latency, reactivation and genes implicated in its regulation. Curr Eye Res 2003; 26:239-48. [PMID: 12815553 DOI: 10.1076/ceyr.26.3.239.14901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To compare the usefulness of the in vitro quiescently infected (QIF)-PC12 cell model(30) with the in vivo rabbit eye model of latency for the study of herpes simplex virus (HSV) genes implicated in reactivation from latency. METHODS HSV-1 strains 17+/pR20.5/5 and 17+/pR20.5/5/LAT, that were previously constructed by insertion of genes encoding beta-galactosidase, green fluorescent protein (GFP) or the latency associated transcript (LAT) open reading frame in the U(S)5 region,(34) were used to examine viral growth and inducible reactivation in the two models. RESULTS 17+/pR20.5/5 exhibited diminished reactivation phenotype when compared with wild type 17+ in neuronal cells (i.e., QIF-PC12 cell model) and the rabbit eye model of latency. 17+/pR20.5/5/LAT, which contains the deregulated LAT gene, reactivated at wild type levels. Analysis of growth in neurally differentiated (ND)-PC12 cells demonstrated a low proportion of QIF cells expressed virus-encoded signals during the quiescent infection and a direct relationship between lytic viral growth in neuronal cells and reactivation phenotype. Even though 17+/pR20.5/5/LAT produced a more severe acute infection in the rabbit cornea, the different reactivation efficiency of 17+/pR20.5/5 and 17+/pR20.5/5/LAT in vivo and in vitro was not attributed to different viral genome copy number in the cells harboring cryptic genomes. CONCLUSIONS We conclude that 1) viral growth in neuronal cells correlates with reactivation phenotype in vivo and in vitro, 2) 17+/pR20.5/5 is attenuated in viral growth and reactivation in both models, and 3) 17+/pR20.5/5/LAT demonstrates wild-type phenotype for reactivation in both models. Attenuation of 17+/pR20.5/5 could be the result of the disruption of U(S)5 or a second site mutation. If the attenuation is the result of U(S)5 disruption, a gene that provides anti-apoptotic functions,( 41,42) this attenuation is more than compensated for by the expression of the LAT ORF. Overall, the findings indicate that the QIF-PC12 cell model is useful for segregating phases of reactivation, and particularly studying the inductive events involved in reactivation of a cryptic viral genome in neurally differentiated cells.
Collapse
Affiliation(s)
- Craig Miller
- Oral Medicine Section, Department of Oral Health Practice and Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Dentistry and College of Medicine, Kentucky, Lexington, USA
| | | | | | | | | | | | | |
Collapse
|