1
|
Liang K, Zhang M, Liang J, Zuo X, Jia X, Shan J, Li Z, Yu J, Xuan Z, Luo L, Zhao H, Gan S, Liu D, Qin Q, Wang Q. M1-type polarized macrophage contributes to brain damage through CXCR3.2/CXCL11 pathways after RGNNV infection in grouper. Virulence 2024; 15:2355971. [PMID: 38745468 PMCID: PMC11123556 DOI: 10.1080/21505594.2024.2355971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
The vertebrate central nervous system (CNS) is the most complex system of the body. The CNS, especially the brain, is generally regarded as immune-privileged. However, the specialized immune strategies in the brain and how immune cells, specifically macrophages in the brain, respond to virus invasion remain poorly understood. Therefore, this study aimed to examine the potential immune response of macrophages in the brain of orange-spotted groupers (Epinephelus coioides) following red-spotted grouper nervous necrosis virus (RGNNV) infection. We observed that RGNNV induced macrophages to produce an inflammatory response in the brain of orange-spotted grouper, and the macrophages exhibited M1-type polarization after RGNNV infection. In addition, we found RGNNV-induced macrophage M1 polarization via the CXCR3.2- CXCL11 pathway. Furthermore, we observed that RGNNV triggered M1 polarization in macrophages, resulting in substantial proinflammatory cytokine production and subsequent damage to brain tissue. These findings reveal a unique mechanism for brain macrophage polarization, emphasizing their role in contributing to nervous tissue damage following viral infection in the CNS.
Collapse
Affiliation(s)
- Kaishan Liang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Minlin Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jiantao Liang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaoling Zuo
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xianze Jia
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jinhong Shan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zongyang Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jie Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zijie Xuan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Liyuan Luo
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Songyong Gan
- Guangdong Marine Fishery Experiment Center, Agro-tech Extension Center of Guangdong Province, Huizhou, China
| | - Ding Liu
- Guangdong Havwii Agricultural Group Co. Ltd, Zhanjiang, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Fishery Institute of South China Agricultural University, Guangzhou, China
| | - Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Fishery Institute of South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Fani Maleki A, Cisbani G, Laflamme N, Prefontaine P, Plante MM, Baillargeon J, Rangachari M, Gosselin J, Rivest S. Selective Immunomodulatory and Neuroprotective Effects of a NOD2 Receptor Agonist on Mouse Models of Multiple Sclerosis. Neurotherapeutics 2021; 18:889-904. [PMID: 33479802 PMCID: PMC8423880 DOI: 10.1007/s13311-020-00998-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The significance of monocytes has been demonstrated in multiple sclerosis (MS). One of the therapeutic challenges is developing medications that induce mild immunomodulation that is solely targeting specific monocyte subsets without affecting microglia. Muramyl dipeptide (MDP) activates the NOD2 receptor, and systemic MDP administrations convert Ly6Chigh into Ly6Clow monocytes. Here, we report selective immunomodulatory and therapeutic effects of MDP on cuprizone and experimental autoimmune encephalomyelitis (EAE) mouse models of MS. MDP treatment exerted various therapeutic effects in EAE, including delaying EAE onset and reducing infiltration of leukocytes into the CNS before EAE onset. Of great interest is the robust beneficial effect of the MDP treatment in mice already developing the disease several days after EAE onset. Finally, we found that the NOD2 receptor plays a critical role in MDP-mediated EAE resistance. Our results demonstrate that MDP is beneficial in both early and progressive phases of EAE. Based on these results, and upon comprehensive basic and clinical research, we anticipate developing NOD2 agonist-based medications for MS in the future.
Collapse
MESH Headings
- Acetylmuramyl-Alanyl-Isoglutamine/pharmacology
- Acetylmuramyl-Alanyl-Isoglutamine/therapeutic use
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/therapeutic use
- Animals
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Freund's Adjuvant/toxicity
- Immunomodulating Agents/pharmacology
- Immunomodulating Agents/therapeutic use
- Male
- Mice
- Mice, Inbred C57BL
- Monocytes/drug effects
- Monocytes/immunology
- Multiple Sclerosis/chemically induced
- Multiple Sclerosis/immunology
- Multiple Sclerosis/prevention & control
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Nod2 Signaling Adaptor Protein/agonists
- Peptide Fragments/toxicity
Collapse
Affiliation(s)
- Adham Fani Maleki
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Giulia Cisbani
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Nataly Laflamme
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Paul Prefontaine
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Marie-Michele Plante
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Joanie Baillargeon
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Manu Rangachari
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Jean Gosselin
- Laboratory of Innate Immunity, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
3
|
Delery EC, MacLean AG. Culture Model for Non-human Primate Choroid Plexus. Front Cell Neurosci 2019; 13:396. [PMID: 31555096 PMCID: PMC6724611 DOI: 10.3389/fncel.2019.00396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/15/2019] [Indexed: 11/13/2022] Open
Abstract
While there are murine and rat choroid plexus epithelial cell cultures, a translationally relevant model for choroid plexus activation and function is still lacking. The rhesus macaque is the gold standard for modeling viral infection and activation of CNS, including HIV-associated neurocognitive disorders. We have developed a rhesus macaque choroid plexus epithelial cell culture model which we believe to be suitable for studies of inflammation associated with viral infection of the CNS. Epithelial morphology and function were assessed using vimentin, phalloidin, the tight junction protein zonula-occludens-1 (ZO-1), and focal adhesion kinase (FAK). Choroid plexus epithelial cell type was confirmed using immunofluorescence with two proteins highly expressed in the choroid plexus: transthyretin and α-klotho. Finally, barrier properties of the model were monitored using pro- and anti-inflammatory mediators (TNF-α, the TLR2 agonist PamCys3K, and dexamethasone). When pro-inflammatory TNF-α was added to the xCelligence wells, there was a decrease in barrier function, which decreased in a step-wise fashion with each additional administration. This barrier function was repaired upon addition of the steroid dexamethasone. The TLR2 agonist PAM3CysK increased barrier functions in TNF-α treated wells. We have presented a model of the blood-CSF barrier that will allow study into pro- and anti-inflammatory conditions in the brain, while simultaneously measuring real time changes to epithelial cells.
Collapse
Affiliation(s)
- Elizabeth C Delery
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States.,Tulane Program in Biomedical Sciences, New Orleans, LA, United States.,Department of Microbiology and Immunology, Tulane Medical School, New Orleans, LA, United States
| | - Andrew G MacLean
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States.,Tulane Program in Biomedical Sciences, New Orleans, LA, United States.,Department of Microbiology and Immunology, Tulane Medical School, New Orleans, LA, United States.,Tulane Brain Institute, New Orleans, LA, United States.,Tulane Center for Aging, New Orleans, LA, United States
| |
Collapse
|
4
|
Kierdorf K, Masuda T, Jordão MJC, Prinz M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat Rev Neurosci 2019; 20:547-562. [PMID: 31358892 DOI: 10.1038/s41583-019-0201-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Abstract
The segregation and limited regenerative capacity of the CNS necessitate a specialized and tightly regulated resident immune system that continuously guards the CNS against invading pathogens and injury. Immunity in the CNS has generally been attributed to neuron-associated microglia in the parenchyma, whose origin and functions have recently been elucidated. However, there are several other specialized macrophage populations at the CNS borders, including dural, leptomeningeal, perivascular and choroid plexus macrophages (collectively known as CNS-associated macrophages (CAMs)), whose origins and roles in health and disease have remained largely uncharted. CAMs are thought to be involved in regulating the fine balance between the proper segregation of the CNS, on the one hand, and the essential exchange between the CNS parenchyma and the periphery, on the other. Recent studies that have been empowered by major technological advances have shed new light on these cells and suggest central roles for CAMs in CNS physiology and in the pathogenesis of diseases.
Collapse
Affiliation(s)
- Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Takahiro Masuda
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany. .,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Wang J, Wang J, Wang J, Yang B, Weng Q, He Q. Targeting Microglia and Macrophages: A Potential Treatment Strategy for Multiple Sclerosis. Front Pharmacol 2019; 10:286. [PMID: 30967783 PMCID: PMC6438858 DOI: 10.3389/fphar.2019.00286] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central nervous system (CNS). The early stage is characterized by relapses and the later stage, by progressive disability. Results from experimental and clinical investigations have demonstrated that microglia and macrophages play a key part in the disease course. These cells actively initiate immune infiltration and the demyelination cascade during the early phase of the disease; however, they promote remyelination and alleviate disease in later stages. This review aims to provide a comprehensive overview of the existing knowledge regarding the neuromodulatory function of macrophages and microglia in the healthy and injured CNS, and it discusses the feasibility of harnessing microglia and macrophage physiology to treat MS. The review encourages further investigations into macrophage-targeted therapy, as well as macrophage-based drug delivery, for realizing efficient treatment strategies for MS.
Collapse
Affiliation(s)
- Jiaying Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Center for Drug Safety Evaluation and Research, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Center for Drug Safety Evaluation and Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Peterson TA, MacLean AG. Current and Future Therapeutic Strategies for Lentiviral Eradication from Macrophage Reservoirs. J Neuroimmune Pharmacol 2018; 14:68-93. [PMID: 30317409 DOI: 10.1007/s11481-018-9814-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Macrophages, one of the most abundant populations of leukocytes in the body, function as the first line of defense against pathogen invaders. Human Immunodeficiency virus 1 (HIV-1) remains to date one of the most extensively studied viral infections. Naturally occurring lentiviruses in domestic and primate species serve as valuable models to investigate lentiviral pathogenesis and novel therapeutics. Better understanding of the role macrophages play in HIV pathogenesis will aid in the advancement towards a cure. Even with current efficacy of first- and second-line Antiretroviral Therapy (ART) guidelines and future efficacy of Long Acting Slow Effective Release-ART (LASER-ART); ART alone does not lead to a cure. The major challenge of HIV eradication is viral latency. Latency Reversal Agents (LRAs) show promise as a possible means to eradicate HIV-1 from the body. It has become evident that complete eradication will need to include combinations of various effective therapeutic strategies such as LASER-ART, LRAs, and gene editing. Review of the current literature indicates the most promising HIV eradication strategy appears to be LASER-ART in conjunction with viral and receptor gene modifications via the CRISPR/Cas9 system. Graphical abstract A multimodal approach to HIV treatment including gene editing, LASER-ART, and latency reversal agents may provide a means to achieve HIV eradication.
Collapse
Affiliation(s)
- Tiffany A Peterson
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - Andrew G MacLean
- Department of Microbiology & Immunology, Division of Comparative Pathology, Tulane National Primate Research Center, Tulane Center for Aging, Tulane Brain Institute, 18703 Three Rivers Road, Covington, LA, 70433, USA.
| |
Collapse
|
7
|
Feline Immunodeficiency Virus Neuropathogenesis: A Model for HIV-Induced CNS Inflammation and Neurodegeneration. Vet Sci 2017; 4:vetsci4010014. [PMID: 29056673 PMCID: PMC5606611 DOI: 10.3390/vetsci4010014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022] Open
Abstract
Feline Immunodeficiency virus (FIV), similar to its human analog human immunodeficiency virus (HIV), enters the central nervous system (CNS) soon after infection and establishes a protected viral reservoir. The ensuing inflammation and damage give rise to varying degrees of cognitive decline collectively known as HIV-associated neurocognitive disorders (HAND). Because of the similarities to HIV infection and disease, FIV has provided a useful model for both in vitro and in vivo studies of CNS infection, inflammation and pathology. This mini review summarizes insights gained from studies of early infection, immune cell trafficking, inflammation and the mechanisms of neuropathogenesis. Advances in our understanding of these processes have contributed to the development of therapeutic interventions designed to protect neurons and regulate inflammatory activity.
Collapse
|
8
|
Abstract
To characterize the role of neurotrophin receptors on macrophages, we investigated the ability of nerve growth factor (NGF) and its precursor, proNGF, to regulate human macrophage phenotype. The p75 neurotrophin receptor (p75(NTR)) and TrkA were concentrated within overlapping domains on membrane ruffles. NGF stimulation of macrophages increased membrane ruffling, calcium spiking, phagocytosis and growth factor secretion. In contrast, proNGF induced podosome formation, increased migration, suppressed calcium spikes and increased neurotoxin secretion. These results demonstrate opposing roles of NGF and proNGF in macrophage regulation providing new avenues for pharmacological intervention during neuroinflammation.
Collapse
|
9
|
Bogie JFJ, Stinissen P, Hendriks JJA. Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol 2014; 128:191-213. [PMID: 24952885 DOI: 10.1007/s00401-014-1310-2] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/10/2014] [Accepted: 06/15/2014] [Indexed: 12/11/2022]
Abstract
Along with microglia and monocyte-derived macrophages, macrophages in the perivascular space, choroid plexus, and meninges are the principal effector cells in neuroinflammatory and neurodegenerative disorders. These phagocytes are highly heterogeneous cells displaying spatial- and temporal-dependent identities in the healthy, injured, and inflamed CNS. In the last decade, researchers have debated on whether phagocytes subtypes and phenotypes are pathogenic or protective in CNS pathologies. In the context of this dichotomy, we summarize and discuss the current knowledge on the spatiotemporal physiology of macrophage subsets and microglia in the healthy and diseased CNS, and elaborate on factors regulating their behavior. In addition, the impact of macrophages present in lymphoid organs on CNS pathologies is defined. The prime focus of this review is on multiple sclerosis (MS), which is characterized by inflammation, demyelination, neurodegeneration, and CNS repair, and in which microglia and macrophages have been extensively scrutinized. On one hand, microglia and macrophages promote neuroinflammatory and neurodegenerative events in MS by releasing inflammatory mediators and stimulating leukocyte activity and infiltration into the CNS. On the other hand, microglia and macrophages assist in CNS repair through the production of neurotrophic factors and clearance of inhibitory myelin debris. Finally, we define how microglia and macrophage physiology can be harnessed for new therapeutics aimed at suppressing neuroinflammatory and cytodegenerative events, as well as promoting CNS repair. We conclude that microglia and macrophages are highly dynamic cells displaying disease stage and location-specific fates in neurological disorders. Changing the physiology of divergent phagocyte subsets at particular disease stages holds promise for future therapeutics for CNS pathologies.
Collapse
Affiliation(s)
- Jeroen F J Bogie
- Hasselt University, Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | | | | |
Collapse
|
10
|
Meeker RB, Bragg DC, Poulton W, Hudson L. Transmigration of macrophages across the choroid plexus epithelium in response to the feline immunodeficiency virus. Cell Tissue Res 2012; 347:443-55. [PMID: 22281685 DOI: 10.1007/s00441-011-1301-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/08/2011] [Indexed: 12/23/2022]
Abstract
Although lentiviruses such as human, feline and simian immunodeficiency viruses (HIV, FIV, SIV) rapidly gain access to cerebrospinal fluid (CSF), the mechanisms that control this entry are not well understood. One possibility is that the virus may be carried into the brain by immune cells that traffic across the blood-CSF barrier in the choroid plexus. Since few studies have directly examined macrophage trafficking across the blood-CSF barrier, we established transwell and explant cultures of feline choroid plexus epithelium and measured trafficking in the presence or absence of FIV. Macrophages in co-culture with the epithelium showed significant proliferation and robust trafficking that was dependent on the presence of epithelium. Macrophage migration to the apical surface of the epithelium was particularly robust in the choroid plexus explants where 3-fold increases were seen over the first 24 h. Addition of FIV to the cultures greatly increased the number of surface macrophages without influencing replication. The epithelium in the transwell cultures was also permissive to PBMC trafficking, which increased from 17 to 26% of total cells after exposure to FIV. Thus, the choroid plexus epithelium supports trafficking of both macrophages and PBMCs. FIV significantly enhanced translocation of macrophages and T cells indicating that the choroid plexus epithelium is likely to be an active site of immune cell trafficking in response to infection.
Collapse
Affiliation(s)
- Rick B Meeker
- Department of Neurology and Curriculum in Neurobiology, University of North Carolina, CB #7025, 6109F Neuroscience Research Building 103 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
11
|
Fletcher NF, Meeker RB, Hudson LC, Callanan JJ. The neuropathogenesis of feline immunodeficiency virus infection: barriers to overcome. Vet J 2010; 188:260-9. [PMID: 20418131 DOI: 10.1016/j.tvjl.2010.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 03/19/2010] [Accepted: 03/27/2010] [Indexed: 11/27/2022]
Abstract
Feline immunodeficiency virus (FIV), like human immunodeficiency virus (HIV)-1, is a neurotropic lentivirus, and both natural and experimental infections are associated with neuropathology. FIV enters the brain early following experimental infection, most likely via the blood-brain and blood-cerebrospinal fluid barriers. The exact mechanism of entry, and the factors that influence this entry, are not fully understood. As FIV is a recognised model of HIV-1 infection, understanding such mechanisms is important, particularly as HIV enters the brain early in infection. Furthermore, the development of strategies to combat this central nervous system (CNS) infection requires an understanding of the interactions between the virus and the CNS. In this review the results of both in vitro and in vivo FIV studies are assessed in an attempt to elucidate the mechanisms of viral entry into the brain.
Collapse
Affiliation(s)
- Nicola F Fletcher
- Veterinary Sciences Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
12
|
Liu P, Hudson LC, Tompkins MB, Vahlenkamp TW, Colby B, Rundle C, Meeker RB. Cerebrospinal fluid is an efficient route for establishing brain infection with feline immunodeficiency virus and transfering infectious virus to the periphery. J Neurovirol 2006; 12:294-306. [PMID: 16966220 PMCID: PMC3166823 DOI: 10.1080/13550280600889567] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Like human immunodeficiency virus (HIV), feline immunodeficiency virus (FIV) invades and infects the central nervous system (CNS) soon after peripheral infection. The appearance of viral RNA is particularly prominent in the cerebrospinal fluid (CSF), suggesting an efficient route of virus transfer across the blood-CSF barrier. This raises the concern whether this route can establish a stable viral reservoir and also be a source of virus capable of reseeding peripheral systems. To examine this possibility, 200 mul of cell-free NCSU1 FIV or FIV-infected choroid plexus macrophages (ChP-Mac) was directly injected into the right lateral ventricle of the brain. Negative controls were sham inoculated with uninfected ChP-Mac or virus-free culture supernatant and positive controls were infected systemically by intraperitoneal (i.p.) injection. Intracerebroventricular (i.c.v.) inoculation with cell-free FIV resulted in high levels of plasma FIV RNA detected as early as 1 to 2 weeks post inoculation in all cats. In each case, the plasma viremia preceded the detection of CSF viral RNA. Compared to i.p. cats, i.c.v. cats had 32-fold higher CSF viral loads, 8-fold higher ratios of CSF to plasma viral load, and a 23-fold greater content of FIV proviral DNA in the brain. No FIV RNA was detected in plasma or CSF from the cats inoculated with FIV-infected ChP-Mac but an acute inflammatory response and a slight suppression of the CD4+:CD8+ ratio were observed. These results indicate that free FIV circulating in the CSF promotes infection of the CNS and provides a highly efficient pathway for the transfer of infectious virus to the periphery.
Collapse
Affiliation(s)
- Pinghuang Liu
- Immunology Program, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Liu P, Hudson LC, Tompkins MB, Vahlenkamp TW, Meeker RB. Compartmentalization and evolution of feline immunodeficiency virus between the central nervous system and periphery following intracerebroventricular or systemic inoculation. J Neurovirol 2006; 12:307-21. [PMID: 16966221 PMCID: PMC3130299 DOI: 10.1080/13550280600889575] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The emergence of distinct neuropathogenic strains resulting from the adaptation and the unique evolution of human immunodeficiency virus (HIV) in the brain may contribute to the development of HIV-induced neurological diseases. In this study, the authors tracked early changes in virus evolution and compartmentalization between peripheral tissues and the central nervous system (CNS) after intracerebroventricular (i.c.v.) or intraperitoneal (i.p.) inoculation of animals with cell-free feline immunodeficiency virus (FIV). Using the FIV-NCSU1 envelope V3-V4 heteroduplex tracking assay (HTA), the authors observed a rapid compartmentalization of envelope variants between the CNS and periphery. Animals receiving the i.c.v. inoculation showed two peaks of viral RNA in the cerebrospinal fluid (CSF) with very different HTA patterns. Compared to the initial viral peak in CSF, the second peak showed an increased compartmentalization from plasma, reduced viral diversity, and more divergence from the proviral DNA in peripheral blood mononuclear cells (PBMCs) and the choroid plexus. In contrast, changes in plasma over the same time period were small. Different animals harbored different FIV DNA genotypes with varied regional compartmentalization within the brain. These results demonstrated that the virus within the CNS experienced a relatively independent but variable evolution from the periphery. Initial penetration of virus into the CSF facilitated the development of brain-specific reservoirs and viral diversification within the CNS.
Collapse
Affiliation(s)
- Pinghuang Liu
- Immunology Program, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | |
Collapse
|
14
|
Feline immunodeficiency virus neuropathogenesis: from cats to calcium. J Neuroimmune Pharmacol 2006; 2:154-70. [PMID: 18040840 DOI: 10.1007/s11481-006-9045-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 09/07/2006] [Indexed: 10/23/2022]
Abstract
Invasion of human immunodeficiency virus (HIV) into the central and peripheral nervous system produces a wide range of neurological symptoms, which continue to persist even with adequate therapeutic suppression of the systemic viremia. The development of therapies designed to prevent the neurological complications of HIV require a detailed understanding of the mechanisms of virus penetration into the nervous system, infection, and subsequent neuropathogenesis. These processes, however, are difficult to study in humans. The identification of animal lentiviruses similar to HIV has provided useful models of HIV infection that have greatly facilitated these efforts. This review summarizes contributions made from in vitro and in vivo studies on the infectious and pathological interactions of feline immunodeficiency virus (FIV) with the nervous system. In vivo studies on FIV have provided insights into the natural progression of CNS disease as well as the contribution of various risk factors. In vitro studies have contributed to our understanding of immune cell trafficking, CNS infection and neuropathogenesis. Together, these studies have made unique contributions to our understanding of (1) lentiviral interactions at the blood-cerebrospinal fluid (CSF) barrier within the choroid plexus, (2) early FIV invasion and pathogenesis in the brain, and (3) lentiviral effects on intracellular calcium deregulation and neuronal dysfunction. The ability to combine in vitro and in vivo studies on FIV offers enormous potential to explore neuropathogenic mechanisms and generate information necessary for the development of effective therapeutic interventions.
Collapse
|
15
|
Noorbakhsh F, Tang Q, Liu S, Silva C, van Marle G, Power C. Lentivirus envelope protein exerts differential neuropathogenic effects depending on the site of expression and target cell. Virology 2006; 348:260-76. [PMID: 16492386 DOI: 10.1016/j.virol.2005.10.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 07/30/2005] [Accepted: 10/26/2005] [Indexed: 12/27/2022]
Abstract
We investigated the neuropathogenic effects of feline immunodeficiency virus (FIV) envelope proteins in the context of both extracellular exposure and intracellular expression in feline neural cells. The envelope from the neurovirulent CSF-derived FIV V1 strain (V1-CSF) conferred infectivity to pseudotyped viruses in peripheral blood mononuclear cells (P < 0.01) in contrast to other cell types. Intracellular V1-CSF envelope expression in macrophages and microglia but not astrocytes resulted in the induction of host inflammatory genes contributing to neurotoxicity including IL-1beta, TNF-alpha, and indolamine 2',3'-dioxygenase (IDO) (P < 0.05) with concurrent neuronal death (P < 0.05). Upregulation of the endoplasmic reticulum stress genes was evident in brains from FIV-infected animals (P < 0.05) and in FIV-infected macrophages (P < 0.05) relative to controls. Intrastriatal implantation of an FIV envelope pseudotyped virus led to marked neuroinflammation and neuronal injury associated with neurobehavioral deficits (P < 0.01). Thus, lentivirus envelope proteins exert differential neuropathogenic effects through mechanisms that depend on the infected or exposed cell type.
Collapse
|
16
|
Meeker RB, Boles JC, Robertson KR, Hall CD. Cerebrospinal fluid from human immunodeficiency virus--infected individuals facilitates neurotoxicity by suppressing intracellular calcium recovery. J Neurovirol 2005; 11:144-56. [PMID: 16036793 DOI: 10.1080/13550280590922757] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Neurologic decline associated with penetration of human immunodeficiency virus type 1(HIV-1) into the central nervous system is thought to be due, in large part, to inflammation and local secretion of neurotoxic substances. To examine the cellular processes that mediate neurotoxicity in vivo, the authors valuated the ability of neurons to maintain intracellular calcium homeostasis in the presence of toxic cerebrospinal fluid (CSF) (CSF(tox)) collected from a subset of HIV-infected individuals. Exposure of rat neural cultures to CSF(tox) resulted in a gradual increase in intracellular calcium in neurons (+63%), microglia (+251%), and astrocytes (+52%). Pretreatment of neural cultures with CSF(tox) resulted in an exaggerated calcium response to a brief pulse of glutamate and a > 90% suppression of the rate of recovery of intracellular calcium. Attempts to model the deficit using inhibitors of calcium transport across endoplasmic reticulum, mitochondrial, or plasma membrane indicated that blockade of the plasma membrane sodium/calcium exchanger was best able to reproduce the deficits seen during exposure to CSF(tox). Because the inability of cells to maintain calcium homeostasis would lead to exaggerated responses from a wide variety of stimuli, therapeutics designed to facilitate calcium transport from the cell may provide more comprehensive and effective intervention than strategies targeted to specific receptor pathways.
Collapse
Affiliation(s)
- Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|
17
|
Hudson LC, Bragg DC, Tompkins MB, Meeker RB. Astrocytes and microglia differentially regulate trafficking of lymphocyte subsets across brain endothelial cells. Brain Res 2005; 1058:148-60. [PMID: 16137663 DOI: 10.1016/j.brainres.2005.07.071] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 07/28/2005] [Accepted: 07/28/2005] [Indexed: 11/29/2022]
Abstract
Feline brain endothelial cells (BECs), astrocytes, and microglia were combined in different configurations in a cell culture insert system to assess the effect of different cell types on the trafficking of peripheral blood mononuclear cell (PBMC) subsets in response to feline immunodeficiency virus (FIV). The addition of astrocytes to BECs significantly increased the adherence of PBMCs. This increase in adherence was suppressed by microglia, whereas microglia alone had no effect on PBMC adherence. FIV exposure of the glial cells did not alter PBMC adherence as compared to same configurations with untreated cells. All PBMC subsets showed some level of trafficking across the endothelial cell layer. The level of trafficking of monocytes and B cells was significantly increased if astrocytes were present. The presence of microglia with the astrocytes reduced transmigration across all PBMC subsets. FIV exposure of astrocytes significantly increased the percentage of CD8 T cell transmigration from 24% to 64% of the total CD4 and CD8 numbers. The presence of microglia significantly reversed the preferential trafficking of CD8 cells in the presence of astrocytes. The results suggested that interaction between the triad of endothelial cells, astrocytes, and microglia played an important, but varying, role in the trafficking of different PBMC subsets. In general, astrocytes had a positive effect on trafficking of PBMCs, while microglia had a suppressive effect. Effects of FIV on trafficking were largely restricted to increases seen in CD8 T cells and monocytes.
Collapse
Affiliation(s)
- L C Hudson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA.
| | | | | | | |
Collapse
|
18
|
D'Aversa TG, Eugenin EA, Berman JW. NeuroAIDS: Contributions of the human immunodeficiency virus-1 proteins tat and gp120 as well as CD40 to microglial activation. J Neurosci Res 2005; 81:436-46. [PMID: 15954144 DOI: 10.1002/jnr.20486] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microglia are the resident phagocytes of the brain and are an important source of proinflammatory mediators. Human immunodeficiency virus (HIV)-1 infects the central nervous system early in the course of disease, and it is believed that this occurs, in part, through the transmigration of HIV-1-infected cells across the blood-brain barrier. Infected cells release viral proteins, such as Tat and gp120. After microglia interact with these proteins, they become activated and secrete chemokines; up-regulate key surface receptors, such as CD40, and also activate resident cells. This review focuses on the consequences of microglial activation in NeuroAIDS, with an emphasis on chemokine production and CD40 up-regulation after interaction with tat or gp120. The importance of microglial CD40 in two other neurological diseases, Alzheimer's disease and multiple sclerosis, is also discussed.
Collapse
Affiliation(s)
- T G D'Aversa
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
19
|
Johanson CE, Duncan JA, Stopa EG, Baird A. Enhanced Prospects for Drug Delivery and Brain Targeting by the Choroid Plexus–CSF Route. Pharm Res 2005; 22:1011-37. [PMID: 16028003 DOI: 10.1007/s11095-005-6039-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 04/12/2005] [Indexed: 02/07/2023]
Abstract
The choroid plexus (CP), i.e., the blood-cerebrospinal fluid barrier (BCSFB) interface, is an epithelial boundary exploitable for drug delivery to brain. Agents transported from blood to lateral ventricles are convected by CSF volume transmission (bulk flow) to many periventricular targets. These include the caudate, hippocampus, specialized circumventricular organs, hypothalamus, and the downstream pia-glia and arachnoid membranes. The CSF circulatory system normally provides micronutrients, neurotrophins, hormones, neuropeptides, and growth factors extensively to neuronal networks. Therefore, drugs directed to CSF can modulate a variety of endocrine, immunologic, and behavioral phenomema; and can help to restore brain interstitial and cellular homeostasis disrupted by disease and trauma. This review integrates information from animal models that demonstrates marked physiologic effects of substances introduced into the ventricular system. It also recapitulates how pharmacologic agents administered into the CSF system prevent disease or enhance the brain's ability to recover from chemical and physical insults. In regard to drug distribution in the CNS, the BCSFB interaction with the blood-brain barrier is discussed. With a view toward translational CSF pharmacotherapy, there are several promising innovations in progress: bone marrow cell infusions, CP encapsulation and transplants, neural stem cell augmentation, phage display of peptide ligands for CP epithelium, CSF gene transfer, regulation of leukocyte and cytokine trafficking at the BCSFB, and the purification of neurotoxic CSF in degenerative states. The progressively increasing pharmacological significance of the CP-CSF nexus is analyzed in light of treating AIDS, multiple sclerosis, stroke, hydrocephalus, and Alzheimer's disease.
Collapse
Affiliation(s)
- Conrad E Johanson
- Department of Clinical Neurosciences, Rhode Island Hospital, Brown Medical School, Providence, Rhode Island 02912, USA.
| | | | | | | |
Collapse
|
20
|
Meeker RB, Boles JC, Bragg DC, Robertson K, Hall C. Development of neuronal sensitivity to toxins in cerebrospinal fluid from HIV-type 1-infected individuals. AIDS Res Hum Retroviruses 2004; 20:1072-86. [PMID: 15585098 DOI: 10.1089/aid.2004.20.1072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HIV infection of the immature nervous system generally results in a rapid progression of neurological disease that cannot easily be explained by the severity of encephalitis, viral burden, systemic immune deficiency, or developmental changes in utero. Rather than the viral infection dictating disease progression, we explored the possibility that immature neurons might be particularly sensitive to toxins secreted in response to HIV. Primary cultures of rat cortical neurons were exposed to toxic cerebrospinal fluid (CSF) from HIV-infected individuals (CSF(tox)) and evaluated for changes in intracellular calcium and cell death. CSF(tox) had no detectable effect on early neurite outgrowth, calcium regulation, or cell death during the first few days in culture. Starting at Day 4, delayed increases in intracellular calcium appeared in response to CSF(tox). The magnitude of the delayed calcium rise and cell death increased with the age of the culture and correlated with the appearance of synaptophysin immunoreactive varicosities. A similar gradual development of sensitivity was seen during exposure of feline neurons to toxins generated by choroid plexus macrophages after exposure to feline immunodeficiency virus. The possibility that toxin sensitivity is dependent on the presence of synaptic activity is consistent with the rapid pathogenesis in the CNS seen during the first postnatal year. Emerging synaptic activity coupled with other factors such as high metabolic demand in the young nervous system may combine to increase the likelihood of calcium overload and neuronal dysfunction in response to HIV-associated toxins.
Collapse
Affiliation(s)
- R B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | |
Collapse
|
21
|
Kyrkanides S, Miller JH, Federoff HJ. Systemic FIV vector administration: transduction of CNS immune cells and Purkinje neurons. ACTA ACUST UNITED AC 2003; 119:1-9. [PMID: 14597224 DOI: 10.1016/j.molbrainres.2003.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The systemic effects of gene therapy have been previously described in a variety of peripheral organs following intravenous administration or intraperitoneal inoculation of viral vectors, as well as in the brain following intracranial administration. However, limited information is available on the ability of viral vectors to cross the blood-brain barrier and infect cells located within the central nervous system (CNS). We employed a VSV-G pseudotyped FIV(lacZ) vector capable of transducing dividing, growth-arrested, as well as post-mitotic cells with the reporter gene lacZ. Adult mice were injected intraperitoneally with FIV(lacZ), and the expression of beta-galactosidase was studied 5 weeks following treatment in the brain, liver, spleen and kidney by X-gal histochemistry and immunocytochemistry. Interestingly, relatively low doses of FIV(lacZ) administered intraperitoneally lead to beta-galactosidase detection in the brain and cerebellum. The identity of these cells was confirmed by double immunofluorescence, and included CD31-, CD3- and CD11b-positive cells. Fluorescent microspheres co-injected with FIV(lacZ) virus were identified within mononuclear cells in the brain parenchyma, suggesting infiltration of peripheral immune cells in the CNS. Cerebellar Purkinje neurons were also transduced in all adult-injected mice. Our observations indicate that relatively low doses of FIV(lacZ) administered intraperitoneally resulted in the transduction of immune cells in the brain, as well as a specific subset of cerebellar neurons.
Collapse
MESH Headings
- Animals
- Antigens, Surface/immunology
- Blood-Brain Barrier/virology
- Brain/cytology
- Brain/immunology
- Brain/virology
- Chemotaxis, Leukocyte/genetics
- Cyclooxygenase 2
- Genes, Reporter/genetics
- Genetic Therapy/methods
- Genetic Vectors/genetics
- Genetic Vectors/metabolism
- Immunodeficiency Virus, Feline/genetics
- Injections, Intraperitoneal
- Isoenzymes/metabolism
- Lac Operon/genetics
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- Male
- Mice
- Mice, Inbred C57BL
- Prostaglandin-Endoperoxide Synthases/metabolism
- Purkinje Cells/cytology
- Purkinje Cells/metabolism
- Purkinje Cells/virology
- Transduction, Genetic/methods
- Vascular Cell Adhesion Molecule-1/metabolism
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Stephanos Kyrkanides
- Department of Dentistry, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| | | | | |
Collapse
|
22
|
Shibata A, Zelivyanskaya M, Limoges J, Carlson KA, Gorantla S, Branecki C, Bishu S, Xiong H, Gendelman HE. Peripheral nerve induces macrophage neurotrophic activities: regulation of neuronal process outgrowth, intracellular signaling and synaptic function. J Neuroimmunol 2003; 142:112-29. [PMID: 14512170 DOI: 10.1016/s0165-5728(03)00253-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rat cortical neurons cultured in conditioned media from human monocyte-derived macrophages (MDM) show increased neuronal protein synthesis, neurite outgrowth, mitogen-activating protein kinase activity, and synaptic function. Neurotrophic properties of human MDM-conditioned media are significantly enhanced by human peripheral nerve and to a more limited extent by CD40 ligand pre-stimulation. Such positive effects of MDM secretions on neuronal function parallel the secretion of brain-derived neurotrophic factor (BDNF). MDM activation cues may serve to balance toxic activities produced during neurodegenerative diseases and thus, under certain circumstances, mitigate neuronal degeneration.
Collapse
Affiliation(s)
- Annemarie Shibata
- Center for Neurovirology and Neurodegenerative Disorders and the Department of Pathology and Microbiology, University of Nebraska Medical Center, 985215 Nebraska Medical Center, Omaha, NE 68198-5215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ryan G, Klein D, Knapp E, Hosie MJ, Grimes T, Mabruk MJEMF, Jarrett O, Callanan JJ. Dynamics of viral and proviral loads of feline immunodeficiency virus within the feline central nervous system during the acute phase following intravenous infection. J Virol 2003; 77:7477-85. [PMID: 12805447 PMCID: PMC164807 DOI: 10.1128/jvi.77.13.7477-7485.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2002] [Accepted: 04/12/2003] [Indexed: 11/20/2022] Open
Abstract
Animal models of human immunodeficiency virus 1, such as feline immunodeficiency virus (FIV), provide the opportunities to dissect the mechanisms of early interactions of the virus with the central nervous system (CNS). The aims of the present study were to evaluate viral loads within CNS, cerebrospinal fluid (CSF), ocular fluid, and the plasma of cats in the first 23 weeks after intravenous inoculation with FIV(GL8). Proviral loads were also determined within peripheral blood mononuclear cells (PBMCs) and brain tissue. In this acute phase of infection, virus entered the brain in the majority of animals. Virus distribution was initially in a random fashion, with more diffuse brain involvement as infection progressed. Virus in the CSF was predictive of brain parenchymal infection. While the peak of virus production in blood coincided with proliferation within brain, more sustained production appeared to continue in brain tissue. In contrast, proviral loads in the brain decreased to undetectable levels in the presence of a strengthening PBMC load. A final observation in this study was that there was no direct correlation between viral loads in regions of brain or ocular tissue and the presence of histopathology.
Collapse
Affiliation(s)
- G Ryan
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|