1
|
Kim J, Kim C, Lee JA, Lee SJ, Lee KH, Kim JH, Ahn JY, Jeong SJ, Ku NS, Choi JY, Yeom JS, Song YG. Long-term prognosis and overall mortality in patients with progressive multifocal leukoencephalopathy. Sci Rep 2023; 13:14291. [PMID: 37652945 PMCID: PMC10471597 DOI: 10.1038/s41598-023-41147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare but fatal opportunistic infection and mainly occurs in patients with immunosuppressive conditions. Despite the increasing number of patients receiving immunosuppressive treatments, studies on PML are still lacking due to its low prevalence and incidence. We retrospectively reviewed patients diagnosed with PML in two tertiary hospitals in South Korea from 1999 to 2021. Total of 47 PML patients were included. Of 27 patients (57.4%) were diagnosed with human immunodeficiency virus (HIV). Median last follow-up modified Rankin Scale (mRS) score was higher in the non-HIV PML group than that in the HIV group (5 vs. 4, p = 0.020). Median survival duration was lower in the non-HIV group (184 vs. 1,564 days). The 1-year and overall mortality rates of PML patients were significantly higher in the non-HIV group than that in HIV group (60.0% vs. 25.9%, p = 0.019; 80.0% vs. 40.7%, p = 0.007). Initial mRS score (HR 1.685, p = 0.038) and highly active antiretroviral therapy (HAART) in HIV patients (HR 0.374, p = 0.013) had a significant effect on overall mortality. Our findings suggest that early detection of PML with low mRS score and early initiation of HAART in patients with HIV may improve prognosis.
Collapse
Affiliation(s)
- Jinnam Kim
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Changhyup Kim
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Ah Lee
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Se Ju Lee
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ki Hyun Lee
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea.
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| | - Jin Young Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Jeong
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Nam Su Ku
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Yong Choi
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Joon-Sup Yeom
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young Goo Song
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Cortese I, Reich DS, Nath A. Progressive multifocal leukoencephalopathy and the spectrum of JC virus-related disease. Nat Rev Neurol 2020; 17:37-51. [PMID: 33219338 PMCID: PMC7678594 DOI: 10.1038/s41582-020-00427-y] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a devastating CNS infection caused by JC virus (JCV), a polyomavirus that commonly establishes persistent, asymptomatic infection in the general population. Emerging evidence that PML can be ameliorated with novel immunotherapeutic approaches calls for reassessment of PML pathophysiology and clinical course. PML results from JCV reactivation in the setting of impaired cellular immunity, and no antiviral therapies are available, so survival depends on reversal of the underlying immunosuppression. Antiretroviral therapies greatly reduce the risk of HIV-related PML, but many modern treatments for cancers, organ transplantation and chronic inflammatory disease cause immunosuppression that can be difficult to reverse. These treatments — most notably natalizumab for multiple sclerosis — have led to a surge of iatrogenic PML. The spectrum of presentations of JCV-related disease has evolved over time and may challenge current diagnostic criteria. Immunotherapeutic interventions, such as use of checkpoint inhibitors and adoptive T cell transfer, have shown promise but caution is needed in the management of immune reconstitution inflammatory syndrome, an exuberant immune response that can contribute to morbidity and death. Many people who survive PML are left with neurological sequelae and some with persistent, low-level viral replication in the CNS. As the number of people who survive PML increases, this lack of viral clearance could create challenges in the subsequent management of some underlying diseases. In this Review, Cortese et al. provide an overview of the pathobiology and evolving presentations of progressive multifocal leukoencephalopathy and other diseases caused by JC virus, and discuss emerging immunotherapeutic approaches that could increase survival. Progressive multifocal leukoencephalopathy (PML) is a rare, debilitating and often fatal disease of the CNS caused by JC virus (JCV). JCV establishes asymptomatic, lifelong persistent or latent infection in immune competent hosts, but impairment of cellular immunity can lead to reactivation of JCV and PML. PML most commonly occurs in patients with HIV infection or lymphoproliferative disease and in patients who are receiving natalizumab for treatment of multiple sclerosis. The clinical phenotype of PML varies and is shaped primarily by the host immune response; changes in the treatment of underlying diseases associated with PML have changed phenotypes over time. Other clinical manifestations of JCV infection have been described, including granule cell neuronopathy. Survival of PML depends on reversal of the underlying immunosuppression; emerging immunotherapeutic strategies include use of checkpoint inhibitors and adoptive T cell transfer.
Collapse
Affiliation(s)
- Irene Cortese
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Sanjo N, Nose Y, Shishido-Hara Y, Mizutani S, Sekijima Y, Aizawa H, Tanizawa T, Yokota T. A controlled inflammation and a regulatory immune system are associated with more favorable prognosis of progressive multifocal leukoencephalopathy. J Neurol 2018; 266:369-377. [PMID: 30511098 DOI: 10.1007/s00415-018-9140-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVE In the present study, we analyzed the inflammatory profiles of brain tissues obtained from patients with progressive multifocal leukoencephalopathy (PML) due to John Cunningham (JC) virus infection to identify potential prognostic factors. METHODS The study included seven patients (two men, five women) who had been pathologically diagnosed with PML, and all of whom were HIV negative. Fixed brain samples were analyzed via hematoxylin and eosin (HE) staining and Klüver-Barrera (KB) staining. We then performed immunohistochemistry (IHC) specific to JC virus capsid proteins (VP1 and VP2/3) and lymphocyte surface markers (CD4, CD8, CD138, and PD-1). RESULTS The mean age at onset was 53.4, while the mean duration until biopsy/autopsy was 4.7 months. Four patients were included in the good prognosis (GP) group, while three were included in the poor prognosis (PP) group. Pathological analysis revealed a significantly larger number of CD4-positive T-cell infiltrations (P = .029) in the GP group, along with a preserved CD4:CD8 ratio. Larger numbers of CD138-positive plasma cells were also observed in the GP group (P = .029) than in the PP group. Linear regression analyses revealed a significant association between the numbers of CD138-positive plasma cells and PD-1-positive cells (R2 = 0.80). CONCLUSIONS Viral loads in the cerebrospinal fluid, a controlled inflammatory response mediated by CD4- and CD8-positive T cells, and plasma cells are associated with PML prognosis. Our findings further indicate that regulatory plasma cells may regulate inflammatory T-cell activity via a PD-1/PD-L1 immuno-checkpoint pathway, thereby protecting the uninfected brain from excessive immune-mediated damage during an active JC virus infection.
Collapse
Affiliation(s)
- Nobuo Sanjo
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Yurie Nose
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan
| | | | - Saneyuki Mizutani
- Department of Internal Medicine (Neurology), Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Nagano, Japan
| | - Hitoshi Aizawa
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Toru Tanizawa
- Department of Pathology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
4
|
Maginnis MS. Virus-Receptor Interactions: The Key to Cellular Invasion. J Mol Biol 2018; 430:2590-2611. [PMID: 29924965 PMCID: PMC6083867 DOI: 10.1016/j.jmb.2018.06.024] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 11/05/2022]
Abstract
Virus–receptor interactions play a key regulatory role in viral host range, tissue tropism, and viral pathogenesis. Viruses utilize elegant strategies to attach to one or multiple receptors, overcome the plasma membrane barrier, enter, and access the necessary host cell machinery. The viral attachment protein can be viewed as the “key” that unlocks host cells by interacting with the “lock”—the receptor—on the cell surface, and these lock-and-key interactions are critical for viruses to successfully invade host cells. Many common themes have emerged in virus–receptor utilization within and across virus families demonstrating that viruses often target particular classes of molecules in order to mediate these events. Common viral receptors include sialylated glycans, cell adhesion molecules such as immunoglobulin superfamily members and integrins, and phosphatidylserine receptors. The redundancy in receptor usage suggests that viruses target particular receptors or “common locks” to take advantage of their cellular function and also suggests evolutionary conservation. Due to the importance of initial virus interactions with host cells in viral pathogenesis and the redundancy in viral receptor usage, exploitation of these strategies would be an attractive target for new antiviral therapeutics. Viral receptors are key regulators of host range, tissue tropism, and viral pathogenesis. Many viruses utilize common viral receptors including sialic acid, cell adhesion molecules such as immunoglobulin superfamily members and integrins, and phosphatidylserine receptors. Detailed molecular interactions between viruses and receptors have been defined through elegant biochemical analyses including glycan array screens, structural–functional analyses, and cell-based approaches providing tremendous insights into these initial events in viral infection. Commonalities in virus–receptor interactions present promising targets for the development of broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469-5735, USA.
| |
Collapse
|
5
|
Susceptibility of Primary Human Choroid Plexus Epithelial Cells and Meningeal Cells to Infection by JC Virus. J Virol 2018; 92:JVI.00105-18. [PMID: 29437972 DOI: 10.1128/jvi.00105-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022] Open
Abstract
JC polyomavirus (JCPyV) establishes a lifelong persistence in roughly half the human population worldwide. The cells and tissues that harbor persistent virus in vivo are not known, but renal tubules and other urogenital epithelial cells are likely candidates as virus is shed in the urine of healthy individuals. In an immunosuppressed host, JCPyV can become reactivated and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system. Recent observations indicate that JCPyV may productively interact with cells in the choroid plexus and leptomeninges. To further study JCPyV infection in these cells, primary human choroid plexus epithelial cells and meningeal cells were challenged with virus, and their susceptibility to infection was compared to the human glial cell line, SVG-A. We found that JCPyV productively infects both choroid plexus epithelial cells and meningeal cells in vitro Competition with the soluble receptor fragment LSTc reduced virus infection in these cells. Treatment of cells with neuraminidase also inhibited both viral infection and binding. Treatment with the serotonin receptor antagonist, ritanserin, reduced infection in SVG-A and meningeal cells. We also compared the ability of wild-type and sialic acid-binding mutant pseudoviruses to transduce these cells. Wild-type pseudovirus readily transduced all three cell types, but pseudoviruses harboring mutations in the sialic acid-binding pocket of the virus failed to transduce the cells. These data establish a novel role for choroid plexus and meninges in harboring virus that likely contributes not only to meningoencephalopathies but also to PML.IMPORTANCE JCPyV infects greater than half the human population worldwide and causes central nervous system disease in patients with weakened immune systems. Several recent reports have found JCPyV in the choroid plexus and leptomeninges of patients with encephalitis. Due to their role in forming the blood-cerebrospinal fluid barrier, the choroid plexus and leptomeninges are also poised to play roles in virus invasion of brain parenchyma, where infection of macroglial cells leads to the development of progressive multifocal leukoencephalopathy, a severely debilitating and often fatal infection. In this paper we show for the first time that primary choroid plexus epithelial cells and meningeal cells are infected by JCPyV, lending support to the association of JCPyV with meningoencephalopathies. These data also suggest that JCPyV could use these cells as reservoirs for the subsequent invasion of brain parenchyma.
Collapse
|
6
|
ViroFind: A novel target-enrichment deep-sequencing platform reveals a complex JC virus population in the brain of PML patients. PLoS One 2018; 13:e0186945. [PMID: 29360822 PMCID: PMC5779639 DOI: 10.1371/journal.pone.0186945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/10/2017] [Indexed: 11/19/2022] Open
Abstract
Deep nucleotide sequencing enables the unbiased, broad-spectrum detection of viruses in clinical samples without requiring an a priori hypothesis for the source of infection. However, its use in clinical research applications is limited by low cost-effectiveness given that most of the sequencing information from clinical samples is related to the human genome, which renders the analysis of viral genomes challenging. To overcome this limitation we developed ViroFind, an in-solution target-enrichment platform for virus detection and discovery in clinical samples. ViroFind comprises 165,433 viral probes that cover the genomes of 535 selected DNA and RNA viruses that infect humans or could cause zoonosis. The ViroFind probes are used in a hybridization reaction to enrich viral sequences and therefore enhance the detection of viral genomes via deep sequencing. We used ViroFind to detect and analyze all viral populations in the brain of 5 patients with progressive multifocal leukoencephalopathy (PML) and of 18 control subjects with no known neurological disease. Compared to direct deep sequencing, by using ViroFind we enriched viral sequences present in the clinical samples up to 127-fold. We discovered highly complex polyoma virus JC populations in the PML brain samples with a remarkable degree of genetic divergence among the JC virus variants of each PML brain sample. Specifically for the viral capsid protein VP1 gene, we identified 24 single nucleotide substitutions, 12 of which were associated with amino acid changes. The most frequent (4 of 5 samples, 80%) amino acid change was D66H, which is associated with enhanced tissue tropism, and hence likely a viral fitness advantage, compared to other variants. Lastly, we also detected sparse JC virus sequences in 10 of 18 (55.5%) of control samples and sparse human herpes virus 6B (HHV6B) sequences in the brain of 11 of 18 (61.1%) control subjects. In sum, ViroFind enabled the in-depth analysis of all viral genomes in PML and control brain samples and allowed us to demonstrate a high degree of JC virus genetic divergence in vivo that has been previously underappreciated. ViroFind can be used to investigate the structure of the virome with unprecedented depth in health and disease state.
Collapse
|
7
|
Karalic D, Lazarevic I, Banko A, Cupic M, Jevtovic D, Jovanovic T. Analysis of variability of urinary excreted JC virus strains in patients infected with HIV and healthy donors. J Neurovirol 2017; 24:305-313. [PMID: 29243131 DOI: 10.1007/s13365-017-0608-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 11/28/2022]
Abstract
In immunocompromised individuals, especially in patients with T cell immunodeficiency, reactivation of JCPyV can cause serious life-threatening diseases. Nowadays, HIV infection is one of the most important factor for reactivation of JCPyV and the development of of the progressive multifocal leukoencephalopathy (PML). Mutations in the outer loops of the VP1 region can lead to the selection of the viral variants with changed tropism and increased pathological potential. The aims of this study were to determine sequence variation and amino acid changes within VP1 loops and the structure of non-coding control region (NCCR) of urinary excreted JCPyV isolates among HIV-infected patients and healthy donors. Single urine samples from 114 HIV-infected patients and 120 healthy donors were collected. PCR was performed for amplification of VP1 and NCCR. Amplified fragments were directly sequenced and analyzed by using bioinformatics tools. Nucleotide substitutions were detected within DE and EF loops and in the β-sheets of both studied groups. In HIV-infected patients group, 70% of mutations were detected within receptor domains. Among healthy donors, one mutation was identified within β-sheets while the remaining were located within receptor domains. The most prevalent mutation was L157V in both groups. Analysis of NCCR revealed that all isolates had archetype structure with some minor changes. Since single point mutations at specific place within outer loop of VP1 region can cause formation of variants with changed receptor specificity, identification of these mutations in HIV-infected patients can help to single out those with higher risk for development of polyomavirus-associated diseases.
Collapse
Affiliation(s)
- Danijela Karalic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia.
| | - Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia
| | - Ana Banko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia
| | - Maja Cupic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia
| | - Djordje Jevtovic
- Clinics of Infectious and Tropical Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Serbia, Bulevar oslobodjenja 16, Belgrade, 11000, Serbia
| | - Tanja Jovanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia
| |
Collapse
|
8
|
JC Polyomavirus Attachment and Entry: Potential Sites for PML Therapeutics. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017; 4:132-141. [PMID: 28989857 DOI: 10.1007/s40588-017-0069-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW JC polyomavirus (JCPyV) is a significant human pathogen that causes an asymptomatic infection in the kidney in the majority of the population. In immunosuppressed individuals, the virus can become reactivated and spread to the brain, causing the fatal, demyelinating disease progressive multifocal leukoencephalopathy (PML). There are currently limited treatment options for this fatal disease. Attachment to receptors and entry into host cells are the initiating events in JCPyV infection and therefore an attractive target for therapeutics to prevent or treat PML. This review provides the current understanding of JCPyV attachment and entry events and the potential therapeutics to target these areas. RECENT FINDINGS JCPyV attachment and entry to host cells is mediated by α2,6-linked lactoseries tetrasaccharide c (LSTc) and 5-hydroxytryptamine receptors (5-HT2Rs), respectively, and subsequent trafficking to the endoplasmic reticulum is required for infection. Recently, vaccines, monoclonal antibodies, and small molecules have shown promise as anti-viral and PML therapies. SUMMARY This review summarizes our current understanding of JCPyV attachment, entry, and trafficking and the development of potential PML therapeutics that inhibit these critical steps in JCPyV infection.
Collapse
|
9
|
Rodio DM, Anzivino E, Mischitelli M, Bellizzi A, Scrivo R, Scribano D, Conte G, Prezioso C, Trancassini M, Valesini G, Palamara AT, Pietropaolo V. Increased Prevalence of Human Polyomavirus JC Viruria in Chronic Inflammatory Rheumatic Diseases Patients in Treatment with Anti-TNF α: A 18 Month Follow-Up Study. Front Microbiol 2016; 7:672. [PMID: 27242700 PMCID: PMC4861734 DOI: 10.3389/fmicb.2016.00672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/22/2016] [Indexed: 12/04/2022] Open
Abstract
Chronic inflammatory rheumatic diseases (CIRDs) are immune-mediated pathologies involving joints. To date, TNFα-blocking agents administration is the most promising therapy, although these treatments are associated with an increased Polyomavirus JC (JCPyV) reactivation, the etiological agent of the Progressive Multifocal Leukoencephalopathy (PML). The aim of this study was the recruitment and the analysis of a CIRDs cohort in order to investigate a possible correlation between JCPyV presence and the influence of anti-TNF-α agents on viral loads. Blood and urine samples were collected from 34 CIRDs subjects prior the first anti-TNF-α infusion (T0) and after 3 (T3), 6 (T6), 12 (T12), and 18 (T18) months. Results showed persistent JC viruria significantly higher than JC viremia throughout the 18 month follow-up study (p = 0.002). In JCPyV positive samples, the non-coding control region (NCCR) was analyzed. Results evidenced archetypal structures (type II-S) in all isolates with the exception of a sequence isolated from a plasma sample, that corresponds to the type II-R found in PML subjects. Finally, the viral protein 1 (VP1) genotyping was performed and results showed the prevalence of the European genotypes 1A, 1B, and 4. Since only few studies have been carried out to understand whether there is a PML risk in CIRDs population infected by JCPyV, this study contributes to enrich literature insight on JCPyV biology in this cluster. Further investigations are necessary in order to recognize the real impact of biologics on JCPyV life cycle and to identify possible and specific viral variants related to increased virulence in CIRDs patients.
Collapse
Affiliation(s)
- Donatella Maria Rodio
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome Rome, Italy
| | - Elena Anzivino
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome Rome, Italy
| | - Monica Mischitelli
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome Rome, Italy
| | - Anna Bellizzi
- Department of Public Health and Infectious Diseases, Institute Pasteur, Cenci-Bolognetti Foundation, "Sapienza" University of Rome Rome, Italy
| | - Rossana Scrivo
- Department of Internal Medicine and Medical Disciplines, Rheumatology, "Sapienza" University of Rome Rome, Italy
| | - Daniela Scribano
- Department of Experimental and Clinical Sciences, "G. D'Annunzio" University of Chieti Chieti, Italy
| | - Gianlorenzo Conte
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome Rome, Italy
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome Rome, Italy
| | - Maria Trancassini
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome Rome, Italy
| | - Guido Valesini
- Department of Internal Medicine and Medical Disciplines, Rheumatology, "Sapienza" University of Rome Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Institute Pasteur, Cenci-Bolognetti Foundation, "Sapienza" University of RomeRome, Italy; San Raffaele Pisana Scientific Institute for Research, Hospitalization and Health CareRome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, "Sapienza" University of RomeRome, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple UniversityPhiladelphia, PA, USA
| |
Collapse
|
10
|
Abstract
Monoclonal antibodies have become an important treatment option for a number of serious conditions. Concerns have arisen about the potential association of these products with progressive multifocal leukoencephalopathy (PML). A list of monoclonal antibodies authorized for sale was derived from the Health Canada Drug Product Database. Case reports of PML after exposure to a monoclonal antibody authorized for use in Canada were retrieved by searching Canada Vigilance and WHO adverse event databases and through a Pub MED/Medline literature search. 182 adverse event case reports were retrieved (adalimumab -1 case, alemtuzumab-14, bevacizumab -3, cetuximab -1, efalizumab - 8, ibritumomab tiuxetan-5, infliximab-4, natalizumab-32, and rituximab-114). The Canadian Product Monographs for natalizumab and ritiximab contain box warnings for PML. A natalizumab registry has been established.
Collapse
|
11
|
JC polyomavirus attachment, entry, and trafficking: unlocking the keys to a fatal infection. J Neurovirol 2014; 21:601-13. [PMID: 25078361 DOI: 10.1007/s13365-014-0272-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/05/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
Abstract
The human JC polyomavirus (JCPyV) causes a lifelong persistent infection in the reno-urinary tract in the majority of the adult population worldwide. In healthy individuals, infection is asymptomatic, while in immunocompromised individuals, the virus can spread to the central nervous system and cause a fatal demyelinating disease known as progressive multifocal leukoencephalopathy (PML). There are currently very few treatment options for this rapidly progressing and devastating disease. Understanding the basic biology of JCPyV-host cell interactions is critical for the development of therapeutic strategies to prevent or treat PML. Research in our laboratory has focused on gaining a detailed mechanistic understanding of the initial steps in the JCPyV life cycle in order to define how JCPyV selectively targets cells in the kidney and brain. JCPyV requires sialic acids to attach to host cells and initiate infection, and JCPyV demonstrates specificity for the oligosaccharide lactoseries tetrasaccharide c (LSTc) with an α2,6-linked sialic acid. Following viral attachment, JCPyV entry is facilitated by the 5-hydroxytryptamine (5-HT)2 family of serotonin receptors via clathrin-dependent endocytosis. JCPyV then undergoes retrograde transport to the endoplasmic reticulum (ER) where viral disassembly begins. A novel retrograde transport inhibitor termed Retro-2(cycl) prevents trafficking of JCPyV to the ER and inhibits both initial virus infection and infectious spread in cell culture. Understanding the molecular mechanisms by which JCPyV establishes infection will open up new avenues for the prevention or treatment of virus-induced disease.
Collapse
|
12
|
Abstract
A large number of viruses, including many human pathogens, bind cell-surface glycans during the initial steps of infection. Viral glycan receptors such as glycosaminoglycans and sialic acid-containing carbohydrates are often negatively charged, but neutral glycans such as histo-blood group antigens can also function as receptors. The engagement of glycans facilitates attachment and entry and, consequently, is often a key determinant of the host range, tissue tropism, pathogenicity, and transmissibility of viruses. Here, we review current knowledge about virus-glycan interactions using representative crystal structures of viral attachment proteins in complex with glycans. We illuminate the determinants of specificity utilized by different glycan-binding viruses and explore the potential of these interactions for switching receptor specificities within or even between glycan classes. A detailed understanding of these parameters is important for the prediction of binding sites where structural information is not available, and is invaluable for the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Luisa J Ströh
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076 Tübingen, Germany;
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076 Tübingen, Germany; .,Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
13
|
Diotti RA, Mancini N, Clementi N, Sautto G, Moreno GJ, Criscuolo E, Cappelletti F, Man P, Forest E, Remy L, Giannecchini S, Clementi M, Burioni R. Cloning of the first human anti-JCPyV/VP1 neutralizing monoclonal antibody: epitope definition and implications in risk stratification of patients under natalizumab therapy. Antiviral Res 2014; 108:94-103. [PMID: 24909571 DOI: 10.1016/j.antiviral.2014.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 12/16/2022]
Abstract
JC virus (JCPyV) has gained novel clinical importance as cause of progressive multifocal leukoencephalopathy (PML), a rare demyelinating disease recently associated to immunomodulatory drugs, such as natalizumab used in multiple sclerosis (MS) cases. Little is known about the mechanisms leading to PML, and this makes the need of PML risk stratification among natalizumab-treated patients very compelling. Clinical and laboratory-based risk-stratification markers have been proposed, one of these is represented by the JCPyV-seropositive status, which includes about 54% of MS patients. We recently proposed to investigate the possible protective role of neutralizing humoral immune response in preventing JCPyV reactivation. In this proof-of-concept study, by cloning the first human monoclonal antibody (GRE1) directed against a neutralizing epitope on JCPyV/VP1, we optimized a robust anti-JCPyV neutralization assay. This allowed us to evaluate the neutralizing activity in JCPyV-positive sera from MS patients, demonstrating the lack of correlation between the level of anti-JCPyV antibody and anti-JCPyV neutralizing activity. Relevant consequences may derive from future clinical studies induced by these findings; indeed the study of the serum anti-JCPyV neutralizing activity could allow not only a better risk stratification of the patients during natalizumab treatment, but also a better understanding of the pathophysiological mechanisms leading to PML, highlighting the contribution of peripheral versus central nervous system JCPyV reactivation. Noteworthy, the availability of GRE1 could allow the design of novel immunoprophylactic strategies during the immunomodulatory treatment.
Collapse
Affiliation(s)
- Roberta Antonia Diotti
- Laboratorio di Microbiologia e Virologia, Università "Vita-Salute" San Raffaele, Milan, Italy
| | - Nicasio Mancini
- Laboratorio di Microbiologia e Virologia, Università "Vita-Salute" San Raffaele, Milan, Italy.
| | - Nicola Clementi
- Laboratorio di Microbiologia e Virologia, Università "Vita-Salute" San Raffaele, Milan, Italy
| | - Giuseppe Sautto
- Laboratorio di Microbiologia e Virologia, Università "Vita-Salute" San Raffaele, Milan, Italy
| | - Guisella Janett Moreno
- Laboratorio di Microbiologia e Virologia, Università "Vita-Salute" San Raffaele, Milan, Italy
| | - Elena Criscuolo
- Laboratorio di Microbiologia e Virologia, Università "Vita-Salute" San Raffaele, Milan, Italy
| | - Francesca Cappelletti
- Laboratorio di Microbiologia e Virologia, Università "Vita-Salute" San Raffaele, Milan, Italy
| | - Petr Man
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Department of Biochemistry, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Eric Forest
- Institut de Biologie Structurale, CEA, CNRS, UJF, Grenoble, France
| | - Louise Remy
- Institut de Biologie Structurale, CEA, CNRS, UJF, Grenoble, France
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Massimo Clementi
- Laboratorio di Microbiologia e Virologia, Università "Vita-Salute" San Raffaele, Milan, Italy
| | - Roberto Burioni
- Laboratorio di Microbiologia e Virologia, Università "Vita-Salute" San Raffaele, Milan, Italy.
| |
Collapse
|
14
|
JC polyomavirus (JCV) and monoclonal antibodies: friends or potential foes? Clin Dev Immunol 2013; 2013:967581. [PMID: 23878587 PMCID: PMC3708391 DOI: 10.1155/2013/967581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/13/2013] [Indexed: 12/13/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system (CNS), observed in immunodeficient patients and caused by JC virus ((JCV), also called JC polyomavirus (JCPyV)). After the HIV pandemic and the introduction of immunomodulatory therapy, the PML incidence significantly increased. The correlation between the use of natalizumab, a drug used in multiple sclerosis (MS), and the PML development of particular relevance. The high incidence of PML in natalizumab-treated patients has highlighted the importance of two factors: the need of PML risk stratification among natalizumab-treated patients and the need of effective therapeutic options. In this review, we discuss these two needs under the light of the major viral models of PML etiopathogenesis.
Collapse
|
15
|
Progressive multifocal leukoencephalopathy-associated mutations in the JC polyomavirus capsid disrupt lactoseries tetrasaccharide c binding. mBio 2013; 4:e00247-13. [PMID: 23760462 PMCID: PMC3685208 DOI: 10.1128/mbio.00247-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human JC polyomavirus (JCPyV) is the causative agent of the fatal, demyelinating disease progressive multifocal leukoencephalopathy (PML). The Mad-1 prototype strain of JCPyV uses the glycan lactoseries tetrasaccharide c (LSTc) and serotonin receptor 5-HT2A to attach to and enter into host cells, respectively. Specific residues in the viral capsid protein VP1 are responsible for direct interactions with the α2,6-linked sialic acid of LSTc. Viral isolates from individuals with PML often contain mutations in the sialic acid-binding pocket of VP1 that are hypothesized to arise from positive selection. We reconstituted these mutations in the Mad-1 strain of JCPyV and found that they were not capable of growth. The mutations were then introduced into recombinant VP1 and reconstituted as pentamers in order to conduct binding studies and structural analyses. VP1 pentamers carrying PML-associated mutations were not capable of binding to permissive cells. High-resolution structure determination revealed that these pentamers are well folded but no longer bind to LSTc due to steric clashes in the sialic acid-binding site. Reconstitution of the mutations into JCPyV pseudoviruses allowed us to directly quantify the infectivity of the mutants in several cell lines. The JCPyV pseudoviruses with PML-associated mutations were not infectious, nor were they able to engage sialic acid as measured by hemagglutination of human red blood cells. These results demonstrate that viruses from PML patients with single point mutations in VP1 disrupt binding to sialic acid motifs and render these viruses noninfectious. Infection with human JC polyomavirus (JCPyV) is common and asymptomatic in healthy individuals, but during immunosuppression, JCPyV can spread from the kidney to the central nervous system (CNS) and cause a fatal, demyelinating disease, progressive multifocal leukoencephalopathy (PML). Individuals infected with HIV, those who have AIDS, or those receiving immunomodulatory therapies for autoimmune diseases are at serious risk for PML. Recent reports have demonstrated that viral isolates from PML patients often have distinct changes within the major capsid protein. Our structural-functional approach highlights that these mutations result in abolished engagement of the carbohydrate receptor motif LSTc that is necessary for infection. Viruses with PML-associated mutations are not infectious in glial cells, suggesting that they may play an alternative role in PML pathogenesis.
Collapse
|
16
|
Moens U, Van Ghelue M, Song X, Ehlers B. Serological cross-reactivity between human polyomaviruses. Rev Med Virol 2013; 23:250-64. [DOI: 10.1002/rmv.1747] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Ugo Moens
- University of Tromsø, Faculty of Health Sciences; Department of Medical Biology; Tromsø Norway
| | - Marijke Van Ghelue
- University Hospital of Northern-Norway; Department of Medical Genetics; Tromsø Norway
| | - Xiaobo Song
- University of Tromsø, Faculty of Health Sciences; Department of Medical Biology; Tromsø Norway
| | - Bernhard Ehlers
- Robert Koch Institute; Department of Infectious Diseases; Berlin Germany
| |
Collapse
|
17
|
Comar M, Zanotta N, Croci E, Murru I, Marci R, Pancaldi C, Dolcet O, Luppi S, Martinelli M, Giolo E, Ricci G, Tognon M. Association between the JC polyomavirus infection and male infertility. PLoS One 2012; 7:e42880. [PMID: 22912758 PMCID: PMC3418243 DOI: 10.1371/journal.pone.0042880] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/13/2012] [Indexed: 01/09/2023] Open
Abstract
In recent years the incidence of male infertility has increased. Many risk factors have been taken into consideration, including viral infections. Investigations into viral agents and male infertility have mainly been focused on human papillomaviruses, while no reports have been published on polyomaviruses and male infertility. The aim of this study was to verify whether JC virus and BK virus are associated with male infertility. Matched semen and urine samples from 106 infertile males and 100 fertile males, as controls, were analyzed. Specific PCR analyses were carried out to detect and quantify large T (Tag) coding sequences of JCV and BKV. DNA sequencing, carried out in Tag JCV-positive samples, was addressed to viral protein 1 (VP1) coding sequences. The prevalence of JCV Tag sequences in semen and urine samples from infertile males was 34% (72/212), whereas the BKV prevalence was 0.94% (2/212). Specifically, JCV Tag sequences were detected in 24.5% (26/106) of semen and 43.4% (46/106) of urine samples from infertile men. In semen and urine samples from controls the prevalence was 11% and 28%, respectively. A statistically significant difference (p<0.05) in JCV prevalence was disclosed in semen and urine samples of cases vs. controls. A higher JC viral DNA load was detected in samples from infertile males than in controls. In samples from infertile males the JC virus type 2 strain, subtype 2b, was more prevalent than ubiquitous type 1. JCV type 2 strain infection has been found to be associated with male infertility. These data suggest that the JC virus should be taken into consideration as an infectious agent which is responsible for male infertility.
Collapse
Affiliation(s)
- Manola Comar
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”– Trieste, University of Trieste, Trieste, Italy
| | - Nunzia Zanotta
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”– Trieste, Trieste, Italy
| | - Eleonora Croci
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”– Trieste, University of Trieste, Trieste, Italy
| | - Immacolata Murru
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”– Trieste, Trieste, Italy
| | - Roberto Marci
- Section of Obstetrics and Gynaecology, School of Medicine and Surgery, University of Ferrara, Ferrara, Italy
| | - Cecilia Pancaldi
- Section of Cell Biology and Molecular Genetics, School of Medicine and Surgery, University of Ferrara, Ferrara, Italy
| | - Ornella Dolcet
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”– Trieste, Trieste, Italy
| | - Stefania Luppi
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”– Trieste, Trieste, Italy
| | - Monica Martinelli
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”– Trieste, Trieste, Italy
| | - Elena Giolo
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”– Trieste, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”– Trieste, University of Trieste, Trieste, Italy
| | - Mauro Tognon
- Section of Cell Biology and Molecular Genetics, School of Medicine and Surgery, University of Ferrara, Ferrara, Italy
- * E-mail:
| |
Collapse
|
18
|
Vinhas de Souza M, Keller-Stanislawski B, Blake K, Hidalgo-Simon A, Arlett P, Dal Pan G. Drug-induced PML: a global agenda for a global challenge. Clin Pharmacol Ther 2012; 91:747-50. [PMID: 22378158 DOI: 10.1038/clpt.2012.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The occurrence of severe adverse events such as progressive multifocal leukoencephalopathy (PML) has the potential to limit the benefits of highly efficacious medicines being developed to fulfill unmet clinical needs across therapeutic areas. Following an Expert meeting in London in July 2011 (http://www.ema.europa.eu/docs/en_GB/document_library/Report/2011/09/WC500111562.pdf), a research agenda, highlighting methodological, clinical, and communication elements, to mitigate the risk and improve the management of drug-induced PML has been agreed upon.
Collapse
Affiliation(s)
- M Vinhas de Souza
- Pharmacovigilance and Risk Management Sector, European Medicines Agency, London, UK
| | | | | | | | | | | |
Collapse
|
19
|
Luo C, Hirsch HH, Kant J, Randhawa P. VP-1 quasispecies in human infection with polyomavirus BK. J Med Virol 2011; 84:152-61. [PMID: 22052529 DOI: 10.1002/jmv.22147] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2011] [Indexed: 11/06/2022]
Abstract
Polyomavirus BK is a recognized cause of nephropathy and hemorrhagic cystitis in kidney or allogeneic hematopoietic stem cell transplant recipients. This study explored a role of genetic variations in capsid protein VP-1 gene as a factor in viral pathogenesis. VP-1 was amplified from 7 healthy subjects with viruria, 7 transplant patients with viruria, and 11 patients with viremia or nephropathy. PCR products were cloned and a total of 558 clonal sequences were subjected to phylogenetic analysis using standard methods. VP-1 quasispecies were found in 25/25 and coinfection with different genotypes in 12/25 subjects. Genotype II was found as an unexpected minority species in 5/25 individuals. Recombinant strains of uncertain biologic significance, which frequently contained genotype II and IV sequences were identified in 9/25 subjects. Viremia/nephropathy group was characterized by (a) greater sequence complexity in whole VP-1 versus BC loop and BC loop compared to the HI loop, (b) greater intra-strain genetic diversity in the BC loop compared to whole VP-1 protein and HI loop, (c) more non-synonymous substitutions (dN) in the BC loop compared to whole VP-1 and HI loop, (e) fewer synonymous substitutions (dS) compared to healthy-viruria group, and (f) selection pressure (dN/dS >1.0) exerted on VP-1. In conclusion, this study documents frequent occurrence of quasispecies in a host DNA polymerase dependent virus, which is theoretically expected to show high replication fidelity. Quasispecies occur even in healthy subjects with viruria, but evolutionary selection pressure directed at the viral capsid protein (VP-1) is seen only in patients with viremia or nephropathy.
Collapse
Affiliation(s)
- Chunqing Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
20
|
Luo C, Hirsch HH, Kant J, Randhawa P. VP-1 quasispecies in human infection with polyomavirus BK. J Med Virol 2011. [PMID: 22052529 DOI: 10.1002/22147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polyomavirus BK is a recognized cause of nephropathy and hemorrhagic cystitis in kidney or allogeneic hematopoietic stem cell transplant recipients. This study explored a role of genetic variations in capsid protein VP-1 gene as a factor in viral pathogenesis. VP-1 was amplified from 7 healthy subjects with viruria, 7 transplant patients with viruria, and 11 patients with viremia or nephropathy. PCR products were cloned and a total of 558 clonal sequences were subjected to phylogenetic analysis using standard methods. VP-1 quasispecies were found in 25/25 and coinfection with different genotypes in 12/25 subjects. Genotype II was found as an unexpected minority species in 5/25 individuals. Recombinant strains of uncertain biologic significance, which frequently contained genotype II and IV sequences were identified in 9/25 subjects. Viremia/nephropathy group was characterized by (a) greater sequence complexity in whole VP-1 versus BC loop and BC loop compared to the HI loop, (b) greater intra-strain genetic diversity in the BC loop compared to whole VP-1 protein and HI loop, (c) more non-synonymous substitutions (dN) in the BC loop compared to whole VP-1 and HI loop, (e) fewer synonymous substitutions (dS) compared to healthy-viruria group, and (f) selection pressure (dN/dS >1.0) exerted on VP-1. In conclusion, this study documents frequent occurrence of quasispecies in a host DNA polymerase dependent virus, which is theoretically expected to show high replication fidelity. Quasispecies occur even in healthy subjects with viruria, but evolutionary selection pressure directed at the viral capsid protein (VP-1) is seen only in patients with viremia or nephropathy.
Collapse
Affiliation(s)
- Chunqing Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
21
|
Tavazzi E, White MK, Khalili K. Progressive multifocal leukoencephalopathy: clinical and molecular aspects. Rev Med Virol 2011; 22:18-32. [PMID: 21936015 DOI: 10.1002/rmv.710] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/29/2011] [Accepted: 08/03/2011] [Indexed: 12/12/2022]
Abstract
The fatal CNS demyelinating disease, progressive multifocal leukoencephalopathy (PML), is rare and appears to occur almost always as a consequence of immune dysfunction. Thus, it is associated with HIV/AIDS and also as a side effect of certain immunomodulatory monoclonal antibody therapies. In contrast to the rarity of PML, the etiological agent of the disease, the polyomavirus JC (JCV), is widespread in populations worldwide. In the 40 years since JCV was first isolated, much has been learned about the virus and the disease from laboratory and clinical observations. However, there are many aspects of the viral life cycle and of the pathogenesis of the disease that remain unclear, and our understanding is constantly evolving. In this review, we will discuss our current understanding of the clinical features of PML and molecular characteristics of JCV and of how they relate to each other. Clinical observations can inform molecular studies of the virus, and likewise, molecular findings concerning the life cycle of the virus can guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Tavazzi
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
22
|
Abstract
Progressive multifocal leukoencephalopathy (PML) is a disease of the central nervous system (CNS) with destructive infection of oligodendrocytes by JC virus. PML belongs to the opportunistic infections. It is observed in patients with HIV infection, lymphoid malignancies, after organ- and stem cell transplantations and more recently in the context of modern immune-therapies with monoclonal antibodies (mAb) like natalizumab, rituximab, infliximab and efalizumab. The natural course of PML is fatal within months. More recently, the Immune Reconstitution Inflammatory Syndrome (IRIS) has been observed in patients with HIV infection treated with combination antiretroviral therapy (cART) as well as patients in whom the PML-inducing immune therapy has been terminated. In PML-IRIS the immune system contributes to the elimination of JC virus from the CNS and if PML-IRIS emerges, PML can be survived but can lead as well to catastrophic outcomes with brain herniation and death. Therefore the management of IRIS requires special knowledge in JC virus biology and patient care. JC virus infection is possibly involved in a variety of additional neurological conditions and cancer. Much will be learned within the next years that could change our view on the understanding of JC virus and human disease.
Collapse
Affiliation(s)
- Robert Weissert
- Department of Neurology, Geneva University Hospital, Micheli-du-Crest 24, 1211 Geneva 14, Switzerland.
| |
Collapse
|
23
|
Ripellino P, Comi C, Mula M, Varrasi C, Conconi A, Stecco A, Brustia D, Nasuelli N, Savio K, De Paoli L, Cantello R, Gaidano G, Monaco F. Progressive multifocal leucoencephalopathy after autologous bone marrow transplantation: a treatment option. BMJ Case Rep 2011; 2011:2011/apr15_1/bcr1120103549. [PMID: 22701032 DOI: 10.1136/bcr.11.2010.3549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A patient with multiple myeloma was treated with high-dose chemotherapy followed by two autologous bone marrow transplantations (ABMTs). Nine months after the second ABMT the patient complained of severe left hemiparesis, paraesthesias, left homonymous visual field defects and gait ataxia. She was diagnosed with progressive multifocal leucoencephalopathy (PML) confirmed by detection of JC virus (JCV) DNA and prescribed cidofovir every other week and mirtazapine daily. Her symptoms and signs remained stable and after 6 months the JCV DNA was undetectable in the cerebrospinal fluid. Repeated MRI scans demonstrated the stabilisation of demyelinating lesion volume; after more than 2 years of follow-up the patient's neurological examination does not show significant variations. Combination of cidofovir and mirtazapine may be helpful in the treatment of PML in HIV-negative patients.
Collapse
Affiliation(s)
- P Ripellino
- Department of Neurology, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Focosi D, Marco T, Kast RE, Maggi F, Ceccherini-Nelli L, Petrini M. Progressive multifocal leukoencephalopathy: what's new? Neuroscientist 2010; 16:308-23. [PMID: 20479473 DOI: 10.1177/1073858409356594] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML), a severe demyelinating disease that is caused by human JC polyomavirus, was first described as a complication of immune suppression 50 years ago and emerged as a major complication of HIV infection in the 1980s. The prognosis has remained dismal since then, with discouraging results from clinical trials of various therapeutic approaches, including immunomodulation and/or inhibition of viral replication. PML is caused by reactivation of latent JC virus, and serotonergic 5-HT(2a) receptors have been identified as being critical for viral infection of glial cells. In recent years, immunosuppressive therapeutic antibodies have been associated with an increased incidence rate of PML. Here, the authors review findings on the pathogenesis of PML and the encouraging case reports of novel treatments.
Collapse
Affiliation(s)
- Daniele Focosi
- Department of Oncology, Transplants and Advances in Medicine, Division of Hematology, University of Pisa, Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Fink MCD, de Oliveira ACP, Romano CM, Vidal JE, Urbano PRP, Tateno AF, Oliveira CM, de Albuquerque Luna EJ, Pannuti CS. Molecular characterization of human polyomavirus JC in Brazilian AIDS patients with and without progressive multifocal leukoencephalopathy. J Clin Virol 2010; 48:6-10. [PMID: 20335066 DOI: 10.1016/j.jcv.2010.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/18/2010] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND JC virus (JCV), the causative agent of progressive multifocal leukoencephalopathy (PML), is classified in 8 different genotypes. Previous reports have suggested a positive association between specific genotypes and PML. OBJECTIVE To compare genotypes and adaptive mutations of JCV strains from Brazilian AIDS patients with and without PML. STUDY DESIGN The VP1 region of JCV was amplified by polymerase chain reaction from cerebrospinal fluid samples from 51 patients with PML and from urine samples of 47 patients with AIDS without central nervous system disease. Genotyping was done by phylogenetic analysis. Amino acid replacement and selection pressures were also investigated. RESULTS JCV genotype frequency distributions showed that genotypes 2 (32.7%), 1 (26.5%) and 3 (23.5%) were the most prevalent. Genotype 1 had a positive association (p<0.0001) and genotype 3 showed an inverse association (p<0.001) with PML. A previously undescribed point mutation at residue 91 (L/I or L/V) and (L/P), non-genotype-associated, was found in 5/49 (10.2%) and 2/47 (4.3%) JCV sequences from PML and non-PML patients, respectively. This mutation was under positive selection only in PML patients. A previously described substitution of T-A in position 128 showed a significant difference between PML and non-PML cases (70% versus 16%, respectively, p<0.0005). CONCLUSION In Brazilian patients with AIDS, JCV genotype 1 showed a strong association with PML (p<0.0001) and JCV genotype 3 showed an inverse association with PML. The possible association of aminoacids substitution in residues 91 and 128 with PML in patients with AIDS must be further investigated.
Collapse
Affiliation(s)
- Maria Cristina Domingues Fink
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Avenida Dr. Eneas de Carvalho Aguiar 470, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bayliss J, Moser R, Bowden S, McLean CA. Characterisation of single nucleotide polymorphisms in the genome of JC polyomavirus using MALDI TOF mass spectrometry. J Virol Methods 2010; 164:63-7. [DOI: 10.1016/j.jviromet.2009.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 11/24/2009] [Accepted: 11/26/2009] [Indexed: 11/26/2022]
|
27
|
Johnson EM. Structural evaluation of new human polyomaviruses provides clues to pathobiology. Trends Microbiol 2010; 18:215-23. [PMID: 20176487 DOI: 10.1016/j.tim.2010.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 01/19/2010] [Accepted: 01/28/2010] [Indexed: 12/17/2022]
Abstract
In the past three years, remarkable discoveries have added three new human polyomaviruses (KI virus (KIV), WU virus (WUV) and Merkel cell virus (MCV)) to a class that previously had only two disease-causing members (BK virus (BKV) and JC virus (JCV)) identified. Two monkey polyomaviruses, simian virus (SV)40 and B-cell lymphotropic polyomavirus (LPV) are also present in humans. KIV and WUV lack the agnoprotein coding sequence and regulatory micro (mi)RNA clusters of BKV, JCV and SV40. MCV lacks the agnoprotein sequence but generates miRNAs. KIV, WUV and MCV are all widespread in humans. Although they have distinctive tissue tropisms, all these viruses are probably acquired in childhood. Of these viruses, only MCV has thus far been strongly linked to cancer. Marshalled evidence from diverse sources implicates MCV as an etiological agent of Merkel cell carcinoma. This review compares the structural features of the new and previously known polyomaviruses, with the aim of identifying approaches to molecular pathology.
Collapse
Affiliation(s)
- Edward M Johnson
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| |
Collapse
|