1
|
Hamaoui J, Ocklenburg S, Segond H. Perinatal adversities as a common factor underlying the association between atypical laterality and neurodevelopmental disorders: A developmental perspective. Psychophysiology 2024:e14676. [PMID: 39198978 DOI: 10.1111/psyp.14676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
Several neurodevelopmental disorders are associated with a higher prevalence of atypical laterality (e.g., left-handedness). Both genetic and non-genetic factors play a role in this association, yet the underlying neurobiological mechanisms are largely unclear. Recent studies have found that stress, mediated by the hypothalamic-pituitary-adrenal (HPA) axis, could be linked to laterality development. These findings provide an opportunity to explore new theoretical perspectives on the association between atypical laterality and neurodevelopmental disorders. This article aims to provide a theoretical framework demonstrating how perinatal adversities could disrupt the typical developmental trajectories of both laterality and neurodevelopment, potentially impacting both the HPA axis and the vestibular system. Additionally, we argue that the relationship between atypical laterality and neurodevelopmental disorders cannot be understood by simply linking genetic and non-genetic factors to a diagnosis, but the developmental trajectories must be considered. Based on these ideas, several perspectives for future research are proposed.
Collapse
Affiliation(s)
- Jad Hamaoui
- Azrieli Research Center of Sainte-Justine University Hospital, Montreal, Quebec, Canada
- School of Psychoeducation, University of Montreal, Montreal, Quebec, Canada
| | - Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Hervé Segond
- Laboratoire de Psychologie des Cognitions, Department and faculty of Psychology, University of Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Guido G, Bonato A, Bonomi S, Franceschini S, Morris JC. Handedness in Alzheimer Disease: A Systematic Review. Alzheimer Dis Assoc Disord 2024; 38:298-304. [PMID: 39177174 DOI: 10.1097/wad.0000000000000640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Handedness has been a topic of scientific interest for many years. However, false and misleading ideas have dominated this field with a still limited amount of research into the association with clinical disorders like Alzheimer disease (AD). In accordance with PRISMA guidelines, PubMed, Embase, and Cochrane Library were searched for studies regarding the association of handedness and AD. Twelve articles were included. Case-control studies show that left-handedness is not a risk factor for late-onset AD (LOAD). However, nonright handedness was found to be more prevalent in patients with early-onset AD (EOAD). Moreover, handedness does not seem to affect neuropsychological performance. We also show that collapsing versus separating mixed and left-handedness may yield different results. Future research on the relation between handedness and AD may provide new insight into disease pathogenesis, improve rehabilitation, and help identify patients who will progress, aiding the design of prevention trials.
Collapse
Affiliation(s)
- Giorgio Guido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania
| | - Alberto Bonato
- Department of Medicine, University of Padua, Padova, Italy
| | - Samuele Bonomi
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Simone Franceschini
- Department of Medicine and Aging Sciences, University of Chieti, Chieti, Italy
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Ocklenburg S, Guo ZV. Cross-hemispheric communication: Insights on lateralized brain functions. Neuron 2024; 112:1222-1234. [PMID: 38458199 DOI: 10.1016/j.neuron.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/13/2023] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
On the surface, the two hemispheres of vertebrate brains look almost perfectly symmetrical, but several motor, sensory, and cognitive systems show a deeply lateralized organization. Importantly, the two hemispheres are connected by various commissures, white matter tracts that cross the brain's midline and enable cross-hemispheric communication. Cross-hemispheric communication has been suggested to play an important role in the emergence of lateralized brain functions. Here, we review current advances in understanding cross-hemispheric communication that have been made using modern neuroscientific tools in rodents and other model species, such as genetic labeling, large-scale recordings of neuronal activity, spatiotemporally precise perturbation, and quantitative behavior analyses. These findings suggest that the emergence of lateralized brain functions cannot be fully explained by largely static factors such as genetic variation and differences in structural brain asymmetries. In addition, learning-dependent asymmetric interactions between the left and right hemispheres shape lateralized brain functions.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany; ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany; Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Zengcai V Guo
- School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Schijven D, Soheili-Nezhad S, Fisher SE, Francks C. Exome-wide analysis implicates rare protein-altering variants in human handedness. Nat Commun 2024; 15:2632. [PMID: 38565598 PMCID: PMC10987538 DOI: 10.1038/s41467-024-46277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Handedness is a manifestation of brain hemispheric specialization. Left-handedness occurs at increased rates in neurodevelopmental disorders. Genome-wide association studies have identified common genetic effects on handedness or brain asymmetry, which mostly involve variants outside protein-coding regions and may affect gene expression. Implicated genes include several that encode tubulins (microtubule components) or microtubule-associated proteins. Here we examine whether left-handedness is also influenced by rare coding variants (frequencies ≤ 1%), using exome data from 38,043 left-handed and 313,271 right-handed individuals from the UK Biobank. The beta-tubulin gene TUBB4B shows exome-wide significant association, with a rate of rare coding variants 2.7 times higher in left-handers than right-handers. The TUBB4B variants are mostly heterozygous missense changes, but include two frameshifts found only in left-handers. Other TUBB4B variants have been linked to sensorineural and/or ciliopathic disorders, but not the variants found here. Among genes previously implicated in autism or schizophrenia by exome screening, DSCAM and FOXP1 show evidence for rare coding variant association with left-handedness. The exome-wide heritability of left-handedness due to rare coding variants was 0.91%. This study reveals a role for rare, protein-altering variants in left-handedness, providing further evidence for the involvement of microtubules and disorder-relevant genes.
Collapse
Affiliation(s)
- Dick Schijven
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Sourena Soheili-Nezhad
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Clyde Francks
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Pfeifer LS, Schmitz J, Schwalvenberg M, Güntürkün O, Ocklenburg S. A deep phenotyping approach to assess the association of handedness, early life factors and mental health. Sci Rep 2023; 13:15348. [PMID: 37714904 PMCID: PMC10504248 DOI: 10.1038/s41598-023-42563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
The development of handedness and other form of functional asymmetries is not yet understood in its critical determinants. Early life factors (e.g., birth weight, birth order) have been discussed to contribute to individual manifestations of functional asymmetries. However, large-scale data such as the UK Biobank suggest that the variance in handedness that is explained by early life factors is minimal. Additionally, atypical handedness has been linked to clinical outcomes such as neurodevelopmental and psychiatric disorders. Against the background of this triad, the current study investigated associations between different forms of functional asymmetries and (a) early life factors as well as (b) clinical outcomes. Functional asymmetries were determined by means of a deep phenotyping approach which notably extends previous work. In our final sample of N = 598 healthy participants, the different variables were tested for associations by means of linear regression models and group comparisons (i.e., ANOVAs and Chi-squared tests). Confirming previous findings from larger cohorts with shallow phenotyping, we found that birth factors do not explain a substantial amount of variance in functional asymmetries. Likewise, functional asymmetries did not seem to have comprehensive predictive power concerning clinical outcomes in our healthy participants. Future studies may further investigate postulated relations in healthy and clinical samples while acknowledging deep phenotyping of laterality.
Collapse
Affiliation(s)
- Lena Sophie Pfeifer
- Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Judith Schmitz
- Biological Personality Psychology, Georg-August-University Goettingen, Göttingen, Germany
| | - Maike Schwalvenberg
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Onur Güntürkün
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
6
|
Ocklenburg S, Borawski J, Mundorf A, Riedel K, Lischke A. Handedness and anxiety: a review. Laterality 2023; 28:336-356. [PMID: 37605527 DOI: 10.1080/1357650x.2023.2250074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Handedness is a core phenotype in clinical laterality research and several different disorders such as schizophrenia and autism spectrum disorders have been linked to a higher prevalence of non-right-handedness. Moreover, subclinical personality traits like schizotypy have been linked to a higher prevalence of non-right-handedness. The association with handedness is poorly understood for generalized anxiety disorder and specific phobias, as well as for state and trait anxiety and fear of specific stimuli in nonclinical samples. Therefore, we performed a narrative review of studies investigating handedness in anxiety disorders patients and studies that compared anxiety scores between different handedness groups. Unlike schizophrenia and autism spectrum disorders, there seems to be no strong association between anxiety disorders and handedness in adult patients, except for specific phobias. Studies often had small sample sizes and therefore a high risk to report spurious findings. Similar findings were reported in most non-clinical studies. Importantly, familial handedness affects phobia risk and antenatal maternal anxiety increased the probability of mixed-handedness. This suggests that a transgenerational, developmental perspective is essential to better understand the complex interrelations between handedness and anxiety. Familial and especially maternal handedness and anxiety disorders should be integrated into future studies on handedness and anxiety whenever possible.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Jette Borawski
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
| | - Annakarina Mundorf
- ISM Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Kerrin Riedel
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
| | - Alexander Lischke
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- ICPP Institute for Clinical Psychology and Psychotherapy, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Odintsova VV, van Dongen J, van Beijsterveldt CEM, Ligthart L, Willemsen G, de Geus EJC, Dolan CV, Boomsma DI. Handedness and 23 Early Life Characteristics in 37,495 Dutch Twins. Twin Res Hum Genet 2023; 26:199-208. [PMID: 37448258 DOI: 10.1017/thg.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
In studies of singletons, a range of early-life characteristics have been reported to be associated with handedness, but some of these associations have failed to replicate. We examined associations between 23 early life characteristics with handedness in a large sample of 37,495 5-year-old twins. We considered three definitions of handedness: left-handedness (LH), mixed-handedness (MH), and non-right-handedness (NRH). Our main aim was to test whether the associations with sex, birth weight, gestational age, and season of birth - as reported in singletons - replicate in twins, and to examine twin-specific variables, including zygosity, chorionicity, birth order, and intertwin delivery time. Compared to previously published data from adults born as singletons (7.23%), the prevalence of NRH was higher in both twins (16.19%) and their parents (15.09%). In the twins, LH and NRH were associated with parents' LH. Male sex and lower gestational age were associated with NRH, and LH was associated with not being breastfed. MH was related to neurodevelopmental delays and higher externalizing problems later in childhood. Other previously reported associations were not replicated, and no twin-specific characteristics were related to handedness. These results emphasize the importance of considering multiple definitions of handedness and indicate a small number of replicated associations across studies.
Collapse
Affiliation(s)
- Veronika V Odintsova
- Department of Biological Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research institute, Amsterdam, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research institute, Amsterdam, The Netherlands
| | | | - Lannie Ligthart
- Department of Biological Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Conor V Dolan
- Department of Biological Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research institute, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Stewart AG, Millard AR. The sinister story of a gauche deliverer and his corrie-fisted tribesmen: Ehud and the left-handed artillery. Laterality 2023:1-17. [PMID: 37139692 DOI: 10.1080/1357650x.2023.2199965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bias against left-handers is well-documented and seen in the etymology of "left" and "right" in most languages. The subject of this study, Ehud, lived between the exodus of the Hebrew slaves from Egypt and the establishment of the Israelite kingdom (c1200-1000 BC), at the transition between the Late Bronze Age and Iron Age 1. His left-handedness was crucial to his deliverance of the proto-nation from tyranny, recorded in Judges in the Hebrew Bible. The description of Ehud as left-handed ('iṭṭēr yaḏ-yεmînô) is used once more in the Hebrew Bible, also in Judges, to describe the artillery of Ehud's tribe. The words apparently mean "bound/restricted in the right hand", sometimes interpreted as "ambidextrous". This is unlikely: ambidexterity is uncommon. The artillery used the sling with either hand, but Ehud used his left (śεm'ōl) hand to draw his sword. śεm'ōl, used throughout the Hebrew Bible, means left, without bias or derogatory implications. We suggest that 'iṭṭēr yaḏ-yεmînô was a right-handed bias towards left-handed people, but Ehud's left-handed victory was recognized as significant. Significant enough that (a) the language changed and the biased description was dropped in favour of simple description, and (b) the army changed with the development of left-handed slingers (artillery).
Collapse
Affiliation(s)
- Alex G Stewart
- College of Life and Environmental Science, University of Exeter, Exeter, UK
- Health Protection, Public Health England, Liverpool, UK
| | - Alan R Millard
- Department of Archaeology, Classics and Egyptology, Liverpool University, Liverpool, UK
| |
Collapse
|
9
|
Richards G, Tan DW, Whitehouse AJO, Chris McManus I, Beaton AA, Hickey M, Maybery MT, Licari MK, Lawson L. A longitudinal examination of perinatal testosterone, estradiol and vitamin D as predictors of handedness outcomes in childhood and adolescence. Laterality 2022; 27:547-580. [PMID: 35938410 DOI: 10.1080/1357650x.2022.2109656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The developmental origins of handedness remain elusive, though very early emergence suggests individual differences manifesting in utero could play an important role. Prenatal testosterone and Vitamin D exposure are considered, yet findings and interpretations remain equivocal. We examined n = 767 offspring from a population-based pregnancy cohort (The Raine Study) for whom early biological data and childhood/adolescent handedness data were available. We tested whether 18-week maternal circulatory Vitamin D (25[OH]D), and testosterone and estradiol from umbilical cord blood sampled at birth predicted variance in direction of hand preference (right/left), along with right- and left-hand speed, and the strength and direction of relative hand skill as measured by a finger-tapping task completed at 10 (Y10) and/or 16 (Y16) years. Although higher concentrations of Vitamin D predicted more leftward and less lateralized (regardless of direction) relative hand skill profiles, taken as a whole, statistically significant findings typically did not replicate across time-point (Y10/Y16) or sex (male/female) and were rarely detected across different (bivariate/multivariate) levels of analysis. Considering the number of statistical tests and generally inconsistent findings, our results suggest that perinatal testosterone and estradiol contribute minimally, if at all, to subsequent variance in handedness. Vitamin D, however, may be of interest in future studies.
Collapse
Affiliation(s)
- Gareth Richards
- School of Psychology, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Diana Weiting Tan
- School of Psychological Science, University of Western Australia, Perth, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia.,School of Education, Macquarie University, Sydney, Australia
| | | | - I Chris McManus
- Research Department of Clinical, Education and Health Psychology, Division of Psychology and Language Sciences, Faculty of Brain Sciences, School of Life and Medical Sciences, University College London, London, UK.,Research Department for Medical Education, University College London Medical School, School of Life and Medical Sciences, University College London, London, UK
| | - Alan A Beaton
- Department of Psychology, School of Human & Health Sciences, Swansea University, Swansea, UK.,Department of Psychology, Aberystwyth University, Aberystwyth, UK
| | - Martha Hickey
- Department of Obstetrics and Gynaecology, University of Melbourne and the Royal Women's Hospital, Victoria, Australia
| | - Murray T Maybery
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - Melissa K Licari
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Lauren Lawson
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, Australia
| |
Collapse
|
10
|
Hamaoui J, Stefaniak N, Segond H. The influence of vestibular system and fetal presentation on handedness, cognitive and motor development: A comparison between cephalic and breech presentation. Dev Sci 2022; 26:e13317. [PMID: 36029182 DOI: 10.1111/desc.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
Genetics are undoubtedly implicated in the ontogenesis of laterality. Nonetheless, environmental factors, such as the intrauterine environment, may also play a role in the development of functional and behavioral lateralization. The aim of this study was to test the Left-Otolithic Dominance Theory (LODT; Previc, 1991) by investigating a hypothetical developmental pattern where it is assumed that a breech presentation, which is putatively associated with a dysfunctional and weakly lateralized vestibular system, can lead to weak handedness and atypical development associated with language and motor difficulties. We used the ALSPAC cohort of children from 7 to 10 years of age to conduct our investigation. Our results failed to show an association between the vestibular system and fetal presentation, nor any influence of the latter on hand preference, hand performance, or language and motor development. Bayesian statistical analyses supported these findings. Contrary to our LODT-derived hypotheses, this study offers evidence that fetal presentation does not influence the vestibular system's lateralization and seems to be a poor indicator for handedness. Nonetheless, we found that another non-genetic factor, prematurity, could lead to atypical development of handedness. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jad Hamaoui
- Laboratoire de Psychologie des Cognitions (UR 4440), Université de Strasbourg, France
| | - Nicolas Stefaniak
- Laboratoire Cognition Santé Société (UR 6291), Université de Reims Champagne-Ardenne, France
| | - Hervé Segond
- Laboratoire de Psychologie des Cognitions (UR 4440), Université de Strasbourg, France
| |
Collapse
|
11
|
Light-induced asymmetries in embryonic retinal gene expression are mediated by the vascular system and extracellular matrix. Sci Rep 2022; 12:12086. [PMID: 35840576 PMCID: PMC9287303 DOI: 10.1038/s41598-022-14963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Left–right asymmetries in the nervous system (lateralisation) influence a broad range of behaviours, from social responses to navigation and language. The role and pathways of endogenous and environmental mechanisms in the ontogeny of lateralisation remains to be established. The domestic chick is a model of both endogenous and experience-induced lateralisation driven by light exposure. Following the endogenous rightward rotation of the embryo, the asymmetrical position in the egg results in a greater exposure of the right eye to environmental light. To identify the genetic pathways activated by asymmetric light stimulation, and their time course, we exposed embryos to different light regimes: darkness, 6 h of light and 24 h of light. We used RNA-seq to compare gene expression in the right and left retinas and telencephalon. We detected differential gene expression in right vs left retina after 6 h of light exposure. This difference was absent in the darkness condition and had already disappeared by 24 h of light exposure, suggesting that light-induced activation is a self-terminating phenomenon. This transient effect of light exposure was associated with a downregulation of the sensitive-period mediator gene DIO2 (iodothyronine deiodinase 2) in the right retina. No differences between genes expressed in the right vs. left telencephalon were detected. Gene networks associated with lateralisation were connected to vascularisation, cell motility, and the extracellular matrix. Interestingly, we know that the extracellular matrix—including the differentially expressed PDGFRB gene—is involved in morphogenesis, sensitive periods, and in the endogenous chiral mechanism of primary cilia, that drives lateralisation. Our data show a similarity between endogenous and experience-driven lateralisation, identifying functional gene networks that affect lateralisation in a specific time window.
Collapse
|
12
|
Cerebral Polymorphisms for Lateralisation: Modelling the Genetic and Phenotypic Architectures of Multiple Functional Modules. Symmetry (Basel) 2022. [DOI: 10.3390/sym14040814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent fMRI and fTCD studies have found that functional modules for aspects of language, praxis, and visuo-spatial functioning, while typically left, left and right hemispheric respectively, frequently show atypical lateralisation. Studies with increasing numbers of modules and participants are finding increasing numbers of module combinations, which here are termed cerebral polymorphisms—qualitatively different lateral organisations of cognitive functions. Polymorphisms are more frequent in left-handers than right-handers, but it is far from the case that right-handers all show the lateral organisation of modules described in introductory textbooks. In computational terms, this paper extends the original, monogenic McManus DC (dextral-chance) model of handedness and language dominance to multiple functional modules, and to a polygenic DC model compatible with the molecular genetics of handedness, and with the biology of visceral asymmetries found in primary ciliary dyskinesia. Distributions of cerebral polymorphisms are calculated for families and twins, and consequences and implications of cerebral polymorphisms are explored for explaining aphasia due to cerebral damage, as well as possible talents and deficits arising from atypical inter- and intra-hemispheric modular connections. The model is set in the broader context of the testing of psychological theories, of issues of laterality measurement, of mutation-selection balance, and the evolution of brain and visceral asymmetries.
Collapse
|
13
|
Odintsova VV, Suderman M, Hagenbeek FA, Caramaschi D, Hottenga JJ, Pool R, Dolan CV, Ligthart L, van Beijsterveldt CEM, Willemsen G, de Geus EJC, Beck JJ, Ehli EA, Cuellar-Partida G, Evans DM, Medland SE, Relton CL, Boomsma DI, van Dongen J. DNA methylation in peripheral tissues and left-handedness. Sci Rep 2022; 12:5606. [PMID: 35379837 PMCID: PMC8980054 DOI: 10.1038/s41598-022-08998-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/07/2022] [Indexed: 01/08/2023] Open
Abstract
Handedness has low heritability and epigenetic mechanisms have been proposed as an etiological mechanism. To examine this hypothesis, we performed an epigenome-wide association study of left-handedness. In a meta-analysis of 3914 adults of whole-blood DNA methylation, we observed that CpG sites located in proximity of handedness-associated genetic variants were more strongly associated with left-handedness than other CpG sites (P = 0.04), but did not identify any differentially methylated positions. In longitudinal analyses of DNA methylation in peripheral blood and buccal cells from children (N = 1737), we observed moderately stable associations across age (correlation range [0.355-0.578]), but inconsistent across tissues (correlation range [- 0.384 to 0.318]). We conclude that DNA methylation in peripheral tissues captures little of the variance in handedness. Future investigations should consider other more targeted sources of tissue, such as the brain.
Collapse
Affiliation(s)
- Veronika V Odintsova
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development, AR&D Research Institute, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Doretta Caramaschi
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Conor V Dolan
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Lannie Ligthart
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Catharina E M van Beijsterveldt
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | | | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, USA
| | - Gabriel Cuellar-Partida
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
| | - David M Evans
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, AR&D Research Institute, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development, AR&D Research Institute, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Rodway P, Thoma V, Schepman A. The effects of sex and handedness on masturbation laterality and other lateralized motor behaviours. Laterality 2021; 27:324-352. [PMID: 34836486 DOI: 10.1080/1357650x.2021.2006211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Masturbation is a common human behaviour. Compared to other unimanual behaviours it has unique properties, including increased sexual and emotional arousal, and privacy. Self-reported hand preference for masturbation was examined in 104 left-handed and 103 right-handed women, and 100 left-handed and 99 right-handed men. Handedness (modified Edinburgh Handedness Inventory, EHI), footedness, eyedness, and cheek kissing preferences were also measured. Seventy nine percent used their dominant hand (always/usually) for masturbation, but left-handers (71.5%) were less consistently lateralized to use their dominant hand than right-handers (86.5%). Hand preference for masturbation correlated more strongly with handedness (EHI), than with footedness, eyedness, or cheek preference. There was no difference in masturbation frequency between left- and right-handers, but men masturbated more frequently than women, and more women (75%) than men (33%) masturbated with sex aids. For kissing the preferred cheek of an emotionally close person from the viewer's perspective, left-handers showed a left-cheek preference, and right-handers a weaker right-cheek preference. The results suggest that hemispheric asymmetries in emotion do not influence hand preference for masturbation but may promote a leftward shift in cheek kissing. In all, masturbation is lateralized in a similar way to other manual motor behaviours in left-handed and right-handed men and women.
Collapse
Affiliation(s)
- Paul Rodway
- School of Psychology, University of Chester, Chester, United Kingdom
| | - Volker Thoma
- School of Psychology, The University of East London, London, United Kingdom
| | - Astrid Schepman
- School of Psychology, University of Chester, Chester, United Kingdom
| |
Collapse
|
15
|
Handedness and its genetic influences are associated with structural asymmetries of the cerebral cortex in 31,864 individuals. Proc Natl Acad Sci U S A 2021; 118:2113095118. [PMID: 34785596 PMCID: PMC8617418 DOI: 10.1073/pnas.2113095118] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 01/01/2023] Open
Abstract
Left-handedness occurs in roughly 10% of people, but whether it involves altered brain anatomy has remained unclear. We measured left to right asymmetry of the cerebral cortex in 28,802 right-handers and 3,062 left-handers. There were small average differences between the two handedness groups in brain regions important for hand control, language, vision, and working memory. Genetic influences on handedness were associated with some of these brain asymmetries, especially of language-related regions. This suggests links between handedness and language during human development and evolution. One implicated gene is NME7, which also affects placement of the visceral organs (heart, liver, etc.) on the left to right body axis—a possible connection between brain and body asymmetries in embryonic development. Roughly 10% of the human population is left-handed, and this rate is increased in some brain-related disorders. The neuroanatomical correlates of hand preference have remained equivocal. We resampled structural brain image data from 28,802 right-handers and 3,062 left-handers (UK Biobank population dataset) to a symmetrical surface template, and mapped asymmetries for each of 8,681 vertices across the cerebral cortex in each individual. Left-handers compared to right-handers showed average differences of surface area asymmetry within the fusiform cortex, the anterior insula, the anterior middle cingulate cortex, and the precentral cortex. Meta-analyzed functional imaging data implicated these regions in executive functions and language. Polygenic disposition to left-handedness was associated with two of these regional asymmetries, and 18 loci previously linked with left-handedness by genome-wide screening showed associations with one or more of these asymmetries. Implicated genes included six encoding microtubule-related proteins: TUBB, TUBA1B, TUBB3, TUBB4A, MAP2, and NME7—mutations in the latter can cause left to right reversal of the visceral organs. There were also two cortical regions where average thickness asymmetry was altered in left-handedness: on the postcentral gyrus and the inferior occipital cortex, functionally annotated with hand sensorimotor and visual roles. These cortical thickness asymmetries were not heritable. Heritable surface area asymmetries of language-related regions may link the etiologies of hand preference and language, whereas nonheritable asymmetries of sensorimotor cortex may manifest as consequences of hand preference.
Collapse
|
16
|
Pullman LE, Refaie N, Lalumière ML, Krupp DB. Is Psychopathy a Mental Disorder or an Adaptation? Evidence From a Meta-Analysis of the Association Between Psychopathy and Handedness. EVOLUTIONARY PSYCHOLOGY 2021; 19:14747049211040447. [PMID: 34605282 PMCID: PMC10358405 DOI: 10.1177/14747049211040447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/02/2021] [Indexed: 11/15/2022] Open
Abstract
Psychopathy has historically been conceptualized as a mental disorder, but there is growing evidence that it may instead be an alternative, adaptive life history strategy designed by natural selection. Although the etiology of mental disorders is not fully understood, one likely contributor is perturbations affecting neurodevelopment. Nonright-handedness is a sign of such perturbations, and therefore can be used to test these competing models. If psychopathy is a mental disorder, psychopaths should show elevated rates of nonright-handedness. However, an adaptive strategy perspective expects psychopaths to be neurologically healthy and therefore predicts typical rates of nonright-handedness. We meta-analyzed 16 studies that investigated the association between psychopathy and handedness in various populations. There was no difference in the rates of nonright-handedness between community participants high and low in psychopathy. Furthermore, there was no difference between psychopathic and nonpsychopathic offenders in rates of nonright-handedness, though there was a tendency for offenders scoring higher on the Interpersonal/Affective dimension of psychopathy to have lower rates of nonright-handedness, and for offenders scoring higher on the Behavioral dimension of psychopathy to have higher rates of nonright-handedness. Lastly, there was no difference in rates of nonright-handedness between psychopathic and nonpsychopathic mental health patients. Thus, our results fail to support the mental disorder model and partly support the adaptive strategy model. We discuss limitations of the meta-analysis and implications for theories of the origins of psychopathy.
Collapse
Affiliation(s)
- Lesleigh E. Pullman
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario K1N 6N5, Canada
| | - Nabhan Refaie
- Gordon S. Lang School of Business and Economics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Martin L. Lalumière
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario K1N 6N5, Canada
| | - DB Krupp
- Department of Interdisciplinary Studies, Lakehead University, 500 University Ave., Orillia, Ontario L3V 0B9, Canada
| |
Collapse
|
17
|
Abstract
Asymmetries in the functional and structural organization of the nervous system are widespread in the animal kingdom and especially characterize the human brain. Although there is little doubt that asymmetries arise through genetic and nongenetic factors, an overarching model to explain the development of functional lateralization patterns is still lacking. Current genetic psychology collects data on genes relevant to brain lateralizations, while animal research provides information on the cellular mechanisms mediating the effects of not only genetic but also environmental factors. This review combines data from human and animal research (especially on birds) and outlines a multi-level model for asymmetry formation. The relative impact of genetic and nongenetic factors varies between different developmental phases and neuronal structures. The basic lateralized organization of a brain is already established through genetically controlled embryonic events. During ongoing development, hemispheric specialization increases for specific functions and subsystems interact to shape the final functional organization of a brain. In particular, these developmental steps are influenced by environmental experiences, which regulate the fine-tuning of neural networks via processes that are referred to as ontogenetic plasticity. The plastic potential of the nervous system could be decisive for the evolutionary success of lateralized brains.
Collapse
|
18
|
Abstract
Around the world, about 10% people prefer using their left-hand. What leads to this fixed proportion across populations and what determines left versus right preference at an individual level is far from being established. Genetic studies are a tool to answer these questions. Analysis in twins and family show that about 25% of handedness variance is due to genetics. In spite of very large cohorts, only a small fraction of this genetic component can be pinpoint to specific genes. Some of the genetic associations identified so far provide evidence for shared biology contributing to both handedness and cerebral asymmetries. In addition, they demonstrate that handedness is a highly polygenic trait. Typically, handedness is measured as the preferred hand for writing. This is a very convenient measure, especially to reach large sample sizes, but quantitative measures might capture different handedness dimensions and be better suited for genetic analyses. This paper reviews the latest findings from molecular genetic studies as well as the implications of using different ways of assessing handedness.
Collapse
|
19
|
Ocklenburg S, Berretz G, Packheiser J, Friedrich P. Laterality 2020: Response to the article commentaries. Laterality 2021; 26:348-357. [PMID: 34047243 DOI: 10.1080/1357650x.2021.1932983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In our recent opinion paper "Laterality 2020: entering the next decade", we highlighted trends that we thought are likely to shape laterality research in the 2020s. Our opinion paper inspired 11 commentaries by experts from several disciplines which discussed a wide range of topics complementing the 10 trends we identified in the opinion paper. In this reply, we summarize and discuss the 11 commentaries by clustering them into 3 different main topics. The topic that was covered by the largest number of commentaries was the role of comparative and evolutionary approaches in laterality research. Moreover, several comments focused on the ontogenesis of hemispheric asymmetries and the importance of reliability and validity in laterality research. Embracing the technical advances, research trends and controversies laid out in the commentaries will significantly improve our understanding of several of the core questions of laterality research.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Gesa Berretz
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Julian Packheiser
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Patrick Friedrich
- Brain and Behaviour (INM-7), Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|