1
|
Swetha K, Indumathi MC, Siddappa S, Chen CH, Marathe GK. Comparative Study of Non-invasive Mouse Models of Pancreatitis. Dig Dis Sci 2025; 70:233-244. [PMID: 39604666 DOI: 10.1007/s10620-024-08771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND AIMS Although a relevant animal model is essential for studying human diseases, one has yet to be established for mouse pancreatitis. Early non-invasive models of mouse pancreatitis have serious limitations. METHODS In this study, we compared the efficiency, consistency, and reproducibility of inducing pancreatitis in 3 non-invasive mouse models of pancreatitis in Wistar albino mice: (1) L-arginine-induced model (2 intraperitoneal injections of 4 g/kg body weight of L-arginine spaced 1 h apart), (2) caerulein-induced model (6 intraperitoneal injections of 50 µg/kg body weight of caerulein at hourly intervals), and (3) caerulein + LPS (lipopolysaccharide)-induced model (6 intraperitoneal doses of 50 µg/kg body weight of caerulein at hourly intervals, along with an LPS [10 mg/kg body weight] injection immediately after the last caerulein injection). RESULTS Our findings showed that the L-arginine-induced model was inconsistent. The levels of the pancreatic enzymes, amylase and lipase, were higher in the caerulein and caerulein + LPS groups. Histological examination showed tissue destruction in the induced groups, with varying degrees of fibrosis in the caerulein + LPS group. CONCLUSIONS The caerulein + LPS model was the most reliable model in Wistar albino mice. Our findings may be useful in helping investigators choose the most appropriate animal model for pancreatitis research.
Collapse
Affiliation(s)
- Kamatam Swetha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore-06, India
| | | | - Shiva Siddappa
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore-15, India
| | - Chu-Huang Chen
- Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, 77030, USA
| | - Gopal K Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore-06, India.
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore-06, India.
| |
Collapse
|
2
|
Sripadi HP, Kaur R, Manohar Koli S, Sharma N, Vijaya Sarathi UVR, Babu Nanubolu J, Balaji Andugulapati S, Sistla R. Biochanin-A co-crystal formulation improves bioavailability and ameliorates cerulein-induced pancreatitis by attenuating the inflammation. Int J Pharm 2024; 667:124874. [PMID: 39490549 DOI: 10.1016/j.ijpharm.2024.124874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Co-crystallization of a therapeutic ingredient with an appropriate co-former is a powerful technique to augment the physicochemical and pharmacokinetic properties and the effectiveness of Active Pharmaceutical Ingredients (APIs). Biochanin A (BCA), a flavonoid with medicinal potential, is limited by poor solubility and low oral bioavailability. This study aimed to design and develop a novel BCA-nicotinamide cocrystal as BCC to enhance BCA's oral bioavailability and explore its therapeutic potential for ameliorating cerulein-induced acute pancreatitis (CIAP) by elucidating the target identification utilizing tissue/serum metabolite profiles. The cocrystal was designed by the supramolecular synthon approach and characterized by single-crystal X-ray diffraction that confirms a robust three-dimensional hydrogen-bonded network of BCA and Nicotinamide (NCT) in the crystal. FT-IR and DSC were used to analyze the cocrystal's intermolecular interactions and thermal behavior. BCC exhibited enhanced solubility and drug release compared to BCA alone, resulting in enhanced oral bioavailability and pancreatic tissue concentration. Comparing BCC to BCA in the CIAP model, BCC therapy remarkably reduced cerulein-induced pancreatitis, evidenced by significant reductions in inflammation, acinar cell atrophy, and amylase levels in pancreatic tissues. Further, the cocrystal formulation also down-regulated the oxidative stress markers, inflammatory cytokines and macrophage-related proteins. The study has identified distinct metabolomic signatures linked with AP with the help of Orbitrap Exploris mass spectrometry, which could pave the way for creating focused diagnostic tools for a better prognosis. In conclusion, these results offer new insights into exploring mechanistic pathways associated with specific biomarkers and underscore BCC cocrystal as a promising approach to enhance BCA's therapeutic potential.
Collapse
Affiliation(s)
- Hari Priya Sripadi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Rajwinder Kaur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Saylee Manohar Koli
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Nidhi Sharma
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - U V R Vijaya Sarathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Jagadeesh Babu Nanubolu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India.
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
3
|
Wang H, Ciccocioppo R, Terai S, Shoeibi S, Carnevale G, De Marchi G, Tsuchiya A, Ishii S, Tonouchi T, Furuyama K, Yang Y, Mito M, Abe H, Di Tinco R, Cardinale V. Targeted animal models for preclinical assessment of cellular and gene therapies in pancreatic and liver diseases: regulatory and practical insights. Cytotherapy 2024:S1465-3249(24)00934-4. [PMID: 39755978 DOI: 10.1016/j.jcyt.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 01/07/2025]
Abstract
Cellular and gene therapy (CGT) products have emerged as a popular approach in regenerative medicine, showing promise in treating various pancreatic and liver diseases in numerous clinical trials. Before these therapies can be tested in human clinical trials, it is essential to evaluate their safety and efficacy in relevant animal models. Such preclinical testing is often required to obtain regulatory approval for investigational new drugs. However, there is a lack of detailed guidance on selecting appropriate animal models for CGT therapies targeting specific pancreatic and liver conditions, such as pancreatitis and chronic liver diseases. In this review, the gastrointestinal committee for the International Society for Cell and Gene Therapy provides a summary of current recommendations for animal species and disease model selection, as outlined by the US Food and Drug Administration, with references to EU EMA and Japan PMDA. We discuss a range of small and large animal models, as well as humanized models, that are suitable for preclinical testing of CGT products aimed at treating pancreatic and liver diseases. For each model, we cover the associated pathophysiology, commonly used metrics for assessing disease status, the pros and limitations of the models, and the relevance of these models to human conditions. We also summarize the use and application of humanized mouse and other animal models in evaluating the safety and efficacy of CGT products. This review aims to provide comprehensive guidance for selecting appropriate animal species and models to help bridge the gap between the preclinical research and clinical trials using CGT therapies for specific pancreatic and liver diseases.
Collapse
Affiliation(s)
- Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph H Johnson Veteran Medical Center, Charleston, South Carolina, USA.
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sara Shoeibi
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia De Marchi
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Soichi Ishii
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takafumi Tonouchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kaito Furuyama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuan Yang
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Mito
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Su XJ, Chen Y, Zhang QC, Peng XB, Liu YP, Wang L, Du YQ. Exosomes Derived From Cerulein-Stimulated Pancreatic Acinar Cells Mediate Peritoneal Macrophage M1 Polarization and Pyroptosis via an miR-24-3p/MARCH3/NLRP3 Axis in Acute Pancreatitis. Pancreas 2024; 53:e641-e651. [PMID: 38530976 DOI: 10.1097/mpa.0000000000002351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
OBJECTIVES Acute pancreatitis (AP) has a high incidence of hospitalizations, morbidity, and mortality worldwide. A growing number of studies on AP pathogenesis are based on cerulein-induced experimental model, which simulates human AP in vivo. It has been demonstrated that both pancreatic acinar cells and peritoneal macrophages are involved in pancreatic inflammation and damage. However, their connection has not been well understood. METHODS A cerulein-induced AP model was established on the pancreatic acinar cell line AR42J. Rat macrophages were isolated from the peritoneal cavity. The effects of cerulein-induced pancreatic exosomes on the peritoneal macrophage and pancreas in vivo and in vitro were examined. The underlying molecular mechanism was investigated by exploring the regulatory role of downstream molecules. RESULTS We found that exosomes derived from cerulein-treated AR42J cells induced rat peritoneal macrophage M1 polarization and pyroptosis. miR-24-3p was upregulated in cerulein-stimulated exosomes, whereas the miR-24-3p inhibitor counteracted the effect of pancreatic exosomes on peritoneal macrophage M1 polarization and pyroptosis. Furthermore, miR-24-3p inhibited March3 expression, whereas MARCH3 mediated NLRP3 ubiquitination in rat peritoneal macrophages, which, in turn, contributed to the apoptosis, reactive oxygen species production, and inflammation in AR42J cells. CONCLUSIONS Exosomes derived from cerulein-stimulated pancreatic acinar cells mediate peritoneal macrophage M1 polarization and pyroptosis via an miR-24-3p/MARCH3/NLRP3 axis in AP.
Collapse
Affiliation(s)
- Xiao-Ju Su
- From the Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan Chen
- From the Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qi-Chen Zhang
- From the Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Bo Peng
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ya-Ping Liu
- From the Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Wang
- From the Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yi-Qi Du
- From the Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Oikonomou P, Nikolaou C, Papachristou F, Sovatzidis A, Lambropoulou M, Giouleka C, Kontaxis V, Linardoutsos D, Papalois A, Pitiakoudis M, Tsaroucha A. Eugenol Reduced ΜPO, CD45 and HMGB1 Expression and Attenuated the Expression of Leukocyte Infiltration Markers in the Intestinal Tissue in Biliopancreatic Duct Ligation-Induced Pancreatitis in Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:74. [PMID: 38256335 PMCID: PMC10820626 DOI: 10.3390/medicina60010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Inflammation and dysregulation in the intestinal barrier function in acute pancreatitis (AP) trigger pancreatic lesions, systemic inflammatory response, and multiple organ dysfunction. Eugenol, as the main component of clove (Syzygium aromaticum), is known for its antioxidant and anti-inflammatory properties. We studied the potentially beneficial effect of eugenol in a rodent model of biliopancreatic duct ligation-induced AP. Materials and Methods: Rats were randomly divided into three groups: Sham, AP, and AP + eugenol (15 mg/kg/day). Serum TNFα, IL-6, IL-18, and resistin levels, as well as IL-6, TNFα, MPO, HMGB1, and CD45 tissue expression, were determined at various timepoints after the induction of AP. Results: Eugenol attenuated hyperemia and inflammatory cell infiltration in the intestinal mucosal, submucosal, and muscular layers. IL-6 and resistin serum levels were significantly reduced in the AP + eugenol group, while serum TNFα and IL-18 levels remained unaffected overall. TNFα pancreatic and intestinal expression was attenuated by eugenol at 72 h, while IL-6 expression was affected only in the pancreas. MPO, CD45, and HMGB1 intestinal expression was significantly reduced in eugenol-treated rats. Conclusions: Eugenol managed to attenuate the inflammatory response in the intestine in duct ligation-induced AP in rats.
Collapse
Affiliation(s)
- Panagoula Oikonomou
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.N.); (F.P.)
| | - Christina Nikolaou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.N.); (F.P.)
| | - Fotini Papachristou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.N.); (F.P.)
| | - Apostolos Sovatzidis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Maria Lambropoulou
- Laboratory of Histology-Embryology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Charikleia Giouleka
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Vasileios Kontaxis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Dimitrios Linardoutsos
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Apostolos Papalois
- Experimental Research Center, ELPEN Pharmaceuticals, Pikermi, 19009 Athens, Greece;
| | - Michael Pitiakoudis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Alexandra Tsaroucha
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.N.); (F.P.)
| |
Collapse
|
6
|
Michałek K, Oberska P, Murawski M, Schwarz T, Tomaszewska E, Muszyński S, Świątkiewicz M, Korytkowski Ł, Bonior J, Zelent M, Ayomide DSA, Grabowska M. Kidney morphology and renal expression of aquaporins 2, 3 and 4 during cerulein - Induced chronic pancreatitis in pigs. Adv Med Sci 2023; 68:306-313. [PMID: 37708639 DOI: 10.1016/j.advms.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/24/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE Chronic pancreatitis (CP) is associated with serious complications and reduced quality of life. Kidney failure is a frequent complication of acute pancreatitis (AP), however limited information is available regarding the impact of CP on this condition. In the kidney, 9 aquaporins (AQPs) are expressed to maintain body water homeostasis and concentrate urine. The purpose of this study was to morphologically assess and analyze the location and expression of AQP2, AQP3 and AQP4 and determine whether CP affects renal structure and expression of AQPs in collecting duct (CD) principal cells. MATERIALS/METHODS CP was induced in domestic pigs through intramuscular injections of cerulein (1 μg/kg bw/day for 6 days; n = 5); pigs without CP (n = 5) were used as a control group. Kidney samples were collected 6 weeks after the last injection and subjected to histological examination. Expression of AQPs was determined by immunohistochemistry and Western blot. RESULTS The kidneys of animals with CP exhibited moderate changes, including glomerular enlargement, increased collagen percentage, numerous stromal erythrorrhages and inflammatory infiltrations compared to control group. Although the total abundance of AQP2 in the CD decreased in pigs after cerulein administration, the difference was not statistically significant. Expression of AQP3 and AQP4 was limited to the basolateral membrane of the CD cells. AQP4 abundance remained relatively stable in both groups, while AQP3 expression increased nearly three-fold in pigs with CP. CONCLUSION This study identified morphological alterations and a statistically significant increase in the expression of renal AQP3 when pigs developed CP.
Collapse
Affiliation(s)
- Katarzyna Michałek
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Poland.
| | - Patrycja Oberska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Poland
| | - Maciej Murawski
- Department of Animal Nutrition, Biotechnology and Fisheries, University of Agriculture in Kraków, Poland
| | - Tomasz Schwarz
- Department of Animal Genetics, Breeding and Ethology, University of Agriculture in Kraków, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Poland
| | - Małgorzata Świątkiewicz
- National Research Institute of Animal Production, Department of Animal Nutrition and Feed Science Balice, Poland
| | - Łukasz Korytkowski
- National Research Institute of Animal Production, Department of Reproductive Biotechnology and Cryoconservation, Balice, Poland
| | - Joanna Bonior
- Department of Medical Physiology, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Mateusz Zelent
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Poland
| | - David Salako-Adeoye Ayomide
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Poland
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
7
|
Zheng J, Tan Z, Wu J, Liu J, Yang T, Yang H. Polystyrene microplastics aggravate acute pancreatitis in mice. Toxicology 2023; 491:153513. [PMID: 37075930 DOI: 10.1016/j.tox.2023.153513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
Microplastics (MPs) with a diameter of < 5mm are emerging as a new type of environmental pollutants. With the discovery of MPs in human tissues, the health risks of MPs have attracted considerable attention in recent years. In this study, we aimed to investigate the impact of MPs on acute pancreatitis (AP). We exposed male mice to 100 and 1000μg/L polystyrene MPs for 28 days, then intraperitoneally injected mice with cerulein to develop acute pancreatitis (AP). The results demonstrated that MPs dose-dependently exacerbated pancreatic injuries and inflammation in AP. High-dose MPs significantly increased intestinal barrier disruption in AP mice, which may be partly responsible for the aggravation of AP. Moreover, through tandem mass tag (TMT)- based proteomics of pancreatic tissues, we screened 101 differentially expressed proteins (DEPs) between AP mice and high-dose MPs-treated AP mice. Gene Ontology and KEGG Pathway analysis revealed that the DEPs were mainly implicated in the molecular events including cytoskeleton organization, acute inflammatory response, arginine metabolism, etc. These mechanisms may also contribute to the aggravating AP effects of MPs. Collectively, our data provide new evidence for the harmful potential of MPs.
Collapse
Affiliation(s)
- Junyuan Zheng
- Department of gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Zhenlin Tan
- Department of gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Jianyu Wu
- Department of gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Jian Liu
- Department of gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Tao Yang
- Department of gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China.
| | - Hui Yang
- Department of gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China.
| |
Collapse
|
8
|
Chen L, Zhang X, Liu Y, Liu L, Liang X, Yang S, Xia Q, Jin T, Ma Y, Chen Y, Yuan X, Tie Y, Gu Y, Fang C, Chen S, Mo F, Yu T, Hu Y, Qian Z, Peng Y, Geng J, Zhou Z, Wu M, Ding J, Yang D, Wei X. JMJD3 Is Required for Acute Pancreatitis and Pancreatitis-Associated Lung Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:180-190. [PMID: 36458991 PMCID: PMC9772398 DOI: 10.4049/jimmunol.2200484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/01/2022] [Indexed: 01/04/2023]
Abstract
Acute pancreatitis (AP) can be complicated by inflammatory disorders of remote organs, such as lung injury, in which Jumonji domain-containing protein 3 (JMJD3) plays a vital role in proinflammatory responses. Currently, we found that JMJD3 expression was upregulated in the pancreas and lung in an AP male mouse model, which was also confirmed in AP patients. Further experiments revealed that the upregulation of JMJD3 and proinflammatory effects were possibly exerted by mitochondrial DNA (mtDNA) or oxidized-mtDNA from tissue injury caused by AP. The release of mtDNA and oxidized-mtDNA contributed to the infiltration of inflammatory monocytes in lung injury through the stimulator of IFN genes (STING)/TLR9-NF-κB-JMJD3-TNF-α pathway. The inhibition of JMJD3 or utilization of Jmjd3-cKO mice significantly alleviated pulmonary inflammation induced by AP. Blocking mtDNA oxidation or knocking down the TLR9/STING pathway effectively alleviated inflammation. Therefore, inhibition of JMJD3 or STING/TLR9 pathway blockage might be a potential therapeutic strategy to treat AP and the associated lung injury.
Collapse
Affiliation(s)
- Li Chen
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xiangxian Zhang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yu Liu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Li Liu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xiao Liang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Shengqun Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Tao Jin
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yun Ma
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yonghua Chen
- Department of Pancreatic Surgery/Pancreatic Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xia Yuan
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yan Tie
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yangzhuo Gu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Chunju Fang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Fei Mo
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ting Yu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yuzhu Hu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhiyong Qian
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yong Peng
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Jia Geng
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND; and
| | - Jiansheng Ding
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daoke Yang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
9
|
Kurashige S, Matsutani N, Aoki T, Kodama T, Otagiri Y, Togashi Y. Evaluation of circulating miR-216a and miR-217 as biomarkers of pancreatic damage in the L-arginine-induced acute pancreatitis mouse model. J Toxicol Sci 2023; 48:527-534. [PMID: 37778981 DOI: 10.2131/jts.48.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
We investigated the usefulness of circulating miR-216a-5p and miR-217-5p that are pancreas-enriched micro RNAs (miRNAs) as biomarkers of acute pancreatic damage, and compared them with conventional pancreatic biomarkers in L-arginine-induced acute pancreatitis mouse model. As the results, amylase and lipase levels apparently increased and peaked on Day 3 when acute pancreatitis including acinar cell degeneration/necrosis and inflammatory cell infiltration reached its peak. In contrast, miR-216a-5p and miR-217-5p increased from Day 1 when histopathological findings in the acinar cells were limited to decreased zymogen granules, and the increases in ratios were much higher than those of amylase and lipase. The miRNAs remained at high levels until Day 5 when the pseudo-tubular complex and replacement of inflammatory cells and fibrotic cells were apparent instead of necrosis, whereas amylase and lipase levels decreased to the control levels. Furthermore, we examined the relationship between biomarker levels and histopathological degeneration/necrosis scores in the acinar cells. miR-216a-5p and miR-217-5p levels increased depending on the score of degeneration/necrosis, and all individual miRNAs exceeded the control levels from a score of 2 (focal necrosis), whereas all individual amylase and lipase levels exceeded the control levels at scores of 4 (lobular necrosis) and 3 (sublobular necrosis), respectively. In conclusion, we demonstrated that circulating miR-216a-5p and miR-217-5p could detect pancreatic damage earlier with greater magnitude, and the sensitivity to detect acinar cell degeneration/necrosis was superior to that of conventional biomarkers in the L-arginine-induced acute pancreatitis mouse model.
Collapse
Affiliation(s)
- Seiichiro Kurashige
- Toxicology and Pharmacokinetics Research Group, Research Institute, EA Pharma Co., Ltd
| | - Naomi Matsutani
- Toxicology and Pharmacokinetics Research Group, Research Institute, EA Pharma Co., Ltd
| | | | | | - Yasuteru Otagiri
- Toxicology and Pharmacokinetics Research Group, Research Institute, EA Pharma Co., Ltd
| | - Yuko Togashi
- Toxicology and Pharmacokinetics Research Group, Research Institute, EA Pharma Co., Ltd
| |
Collapse
|
10
|
Lin M, Jin Y, Wang F, Meng Y, Huang J, Qin X, Fan Z. MARCH9 Mediates NOX2 Ubiquitination to Alleviate NLRP3 Inflammasome-Dependent Pancreatic Cell Pyroptosis in Acute Pancreatitis. Pancreas 2023; 52:e62-e69. [PMID: 37378901 DOI: 10.1097/mpa.0000000000002225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
OBJECTIVE The pathogenesis of acute pancreatitis mainly involves NLRP3 inflammasome-mediated pancreatic cell injury, although regulators of this inflammasome machinery are still not fully identified. Membrane-associated RING-CH 9 (MARCH9) is a member of MARCH-type finger proteins, which regulates innate immunity through catalyzing polyubiquitination of critical immune factors. The aim of present research is to examine the function of MARCH9 in acute pancreatitis. METHODS Cerulein-induced acute pancreatitis was established on pancreatic cell line AR42J and rat model. Reactive oxygen species (ROS) accumulation and NLRP3 inflammasome-dependent cell pyroptosis in pancreas were examined by flow cytometry. RESULTS MARCH9 was downregulated by cerulein, but overexpressing MARCH9 could inhibit NLRP3 inflammasome activation and ROS accumulation, thus suppressing pancreatic cell pyroptosis and mitigating pancreatic injury. We further uncovered that the mechanism underlying such an effect of MARCH9 is through mediating the ubiquitination of NADPH oxidase-2, whose deficiency reduces cellular ROS accumulation and inflammasome formation. CONCLUSIONS Our results suggested that MARCH9 suppresses NLRP3 inflammasome-mediated pancreatic cell injury through mediating the ubiquitination and degradation of NADPH oxidase-2, which compromises ROS generation and NLRP3 inflammasomal activation.
Collapse
Affiliation(s)
- Min Lin
- From the Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Yuzhou Jin
- From the Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Fushuang Wang
- From the Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Yao Meng
- From the Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Jin Huang
- From the Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | | | | |
Collapse
|
11
|
Kotan R, Peto K, Deak A, Szentkereszty Z, Nemeth N. Hemorheological and Microcirculatory Relations of Acute Pancreatitis. Metabolites 2022; 13:metabo13010004. [PMID: 36676930 PMCID: PMC9863893 DOI: 10.3390/metabo13010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Acute pancreatitis still means a serious challenge in clinical practice. Its pathomechanism is complex and has yet to be fully elucidated. Rheological properties of blood play an important role in tissue perfusion and show non-specific changes in acute pancreatitis. An increase in blood and plasma viscosity, impairment of red blood cell deformability, and enhanced red blood cell aggregation caused by metabolic, inflammatory, free radical-related changes and mechanical stress contribute to the deterioration of the blood flow in the large vessels and also in the microcirculation. Revealing the significance of these changes in acute pancreatitis may better explain the pathogenesis and optimize the therapy. In this review, we give an overview of the role of impaired microcirculation by changes in hemorheological properties in acute pancreatitis.
Collapse
Affiliation(s)
- Robert Kotan
- Endocrine Surgery Unit, Linköping University Hospital, Universitetssjukhuset, 581 85 Linköping, Sweden
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
| | - Zsolt Szentkereszty
- Department of Surgery, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-416-915
| |
Collapse
|
12
|
Genetically engineered and enucleated human mesenchymal stromal cells for the targeted delivery of therapeutics to diseased tissue. Nat Biomed Eng 2022; 6:882-897. [PMID: 34931077 PMCID: PMC9207157 DOI: 10.1038/s41551-021-00815-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/07/2021] [Indexed: 02/05/2023]
Abstract
Targeting the delivery of therapeutics specifically to diseased tissue enhances their efficacy and decreases their side effects. Here we show that mesenchymal stromal cells with their nuclei removed by density-gradient centrifugation following the genetic modification of the cells for their display of chemoattractant receptors and endothelial-cell-binding molecules are effective vehicles for the targeted delivery of therapeutics. The enucleated cells neither proliferate nor permanently engraft in the host, yet retain the organelles for energy and protein production, undergo integrin-regulated adhesion to inflamed endothelial cells, and actively home to chemokine gradients established by diseased tissues. In mouse models of acute inflammation and of pancreatitis, systemically administered enucleated cells expressing two types of chemokine receptor and an endothelial adhesion molecule enhanced the delivery of an anti-inflammatory cytokine to diseased tissue (with respect to unmodified stromal cells and to exosomes derived from bone-marrow-derived stromal cells), attenuating inflammation and ameliorating disease pathology. Enucleated cells retain most of the cells' functionality, yet acquire the cargo-carrying characteristics of cell-free delivery systems, and hence represent a versatile delivery vehicle and therapeutic system.
Collapse
|
13
|
Farooq A, Hernandez L, Swain SM, Shahid RA, Romac JMJ, Vigna SR, Liddle RA. Initiation and severity of experimental pancreatitis are modified by phosphate. Am J Physiol Gastrointest Liver Physiol 2022; 322:G561-G570. [PMID: 35293263 PMCID: PMC9054345 DOI: 10.1152/ajpgi.00022.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 01/31/2023]
Abstract
Proper mitochondrial function and adequate cellular ATP are necessary for normal pancreatic protein synthesis and sorting, maintenance of intracellular organelles and enzyme secretion. Inorganic phosphate is required for generating ATP and its limited availability may lead to reduced ATP production causing impaired Ca2+ handling, defective autophagy, zymogen activation, and necrosis, which are all features of acute pancreatitis. We hypothesized that reduced dietary phosphate leads to hypophosphatemia and exacerbates pancreatitis severity of multiple causes. We observed that mice fed a low-phosphate diet before the induction of pancreatitis by either repeated caerulein administration or pancreatic duct injection as a model of pressure-induced pancreatitis developed hypophosphatemia and exhibited more severe pancreatitis than normophosphatemic mice. Pancreatitis severity was significantly reduced in mice treated with phosphate. In vitro modeling of secretagogue- and pressure-induced pancreatic injury was evaluated in isolated pancreatic acini using cholecystokinin and the mechanoreceptor Piezo1 agonist, Yoda1, under low and normal phosphate conditions. Isolated pancreatic acini were more sensitive to cholecystokinin- and Yoda1-induced acinar cell damage and mitochondrial dysfunction under low-phosphate conditions and improved following phosphate supplementation. Importantly, even mice on a normal phosphate diet exhibited less severe pancreatitis when treated with supplemental phosphate. Thus, hypophosphatemia sensitizes animals to pancreatitis and phosphate supplementation reduces pancreatitis severity. These appear to be direct effects of phosphate on acinar cells through restoration of mitochondrial function. We propose that phosphate administration may be useful in the treatment of acute pancreatitis.NEW & NOTEWORTHY Impaired ATP synthesis disrupts acinar cell homeostasis and is an early step in pancreatitis. We report that reduced phosphate availability impairs mitochondrial function and worsens pancreatic injury. Phosphate supplementation improves mitochondrial function and protects against experimental pancreatitis, raising the possibility that phosphate supplementation may be useful in treating pancreatitis.
Collapse
Affiliation(s)
- Ahmad Farooq
- Department of Medicine, Duke University, Durham, North Carolina
| | | | - Sandip M Swain
- Department of Medicine, Duke University, Durham, North Carolina
| | - Rafiq A Shahid
- Department of Medicine, Duke University, Durham, North Carolina
| | | | - Steven R Vigna
- Department of Medicine, Duke University, Durham, North Carolina
| | - Rodger A Liddle
- Department of Medicine, Duke University, Durham, North Carolina
- Veterans Affairs Health Care System, Durham, North Carolina
| |
Collapse
|
14
|
Hong XX, Wang HY, Yang JM, Lin BF, Min QQ, Liang YZ, Huang PD, Zhong ZY, Guo SJ, Huang B, Xu YF. Systemic injury caused by taurocholate‑induced severe acute pancreatitis in rats. Exp Ther Med 2022; 24:468. [PMID: 35747153 PMCID: PMC9204573 DOI: 10.3892/etm.2022.11395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/13/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Xin-Xin Hong
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Hong-Yan Wang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Jiong-Ming Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Bao-Fu Lin
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Qin-Qin Min
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Yi-Zhong Liang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Pei-Di Huang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Zi-You Zhong
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Shao-Ju Guo
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Bin Huang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Yi-Fei Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| |
Collapse
|
15
|
Fawzy HA, Mohammed AA, Fawzy HM, Fikry EM. Reorienting of pramipexole as a promising therapy for acute pancreatitis in a rat model by suppressing TLR-4\NF-κB p65\NLRP3 inflammasome signaling. Can J Physiol Pharmacol 2022; 100:542-552. [PMID: 35413206 DOI: 10.1139/cjpp-2021-0664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Acute pancreatitis (AP), a disorder of global importance, has a growing incidence and prevalence, particularly in the western world. Its complications include pseudo-cysts and chronic pancreatitis. Pramipexole (PMX), a D2/3 receptor selecting agonist used in Parkinsonism, has reported anti-inflammatory effects lately. PURPOSE Exploring the potential curative role of PMX in an l-arginine-induced acute pancreatitis rat model besides a possible mechanistic pathway. METHODS Rats were divided randomly into three groups: control, l-arginine, and "l-arginine + PMX". 7 days after AP induction, rats decapitated and estimated for serum amylase, lipase, glucose, pancreatic inflammatory mediators "toll-like receptor-4, nuclear factor- kappa B p65 ,serum tumor necrosis factor-α, NLRP3 inflammasome, caspase-1, interleukin-1 beta, oxidative biomarkers "malondialdehyde, myeloperoxidase, nitrite/nitrate, reduced glutathione, and the apoptotic marker "caspase-3", with pancreatic histopathological changes. RESULTS L-arginine mediated AP proved by elevated serum lipase and amylase, pancreatic inflammatory, oxidative and apoptotic markers with infiltration of inflammatory cells using hematoxylin and eosin stain. PMX improved all these adverse signs of AP greatly. CONCLUSION PMX might be considered as an innovative therapy for AP due to its remarkable antioxidant, anti-apoptotic, and anti-inflammatory effects, which are attributed to the suppression of the NLRP3 inflammasome and its downstream inflammatory cytokines.
Collapse
Affiliation(s)
| | - Asmaa A Mohammed
- Al-Azhar University, 68820, Department of Pharmacology and Toxicology, Cairo, Egypt;
| | - Hala M Fawzy
- NODCAR, 204596, Department of Pharmacology, Giza, Egypt;
| | | |
Collapse
|
16
|
Song B, Li P, Yan S, Liu Y, Gao M, Lv H, Lv Z, Guo Y. Effects of Dietary Astragalus Polysaccharide Supplementation on the Th17/Treg Balance and the Gut Microbiota of Broiler Chickens Challenged With Necrotic Enteritis. Front Immunol 2022; 13:781934. [PMID: 35265068 PMCID: PMC8899652 DOI: 10.3389/fimmu.2022.781934] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
This study aimed to investigate the effects of dietary astragalus polysaccharide (APS) supplementation on the immune function, gut microbiota and metabolism of broiler chickens challenged with necrotic enteritis (NE). Two hundred forty Arbor Acres broiler chicks (one day old) were randomly assigned using a 2 × 2 factorial arrangement into two groups fed different levels of dietary APS (0 or 200 ppm of diet) and two disease challenge groups (control or NE challenged). The results showed that NE infection significantly increased FCR, mortality rate, Th17/Treg (Th17 cells% in blood and ileum, Th17/Treg, IL-17 and IL-17/IL-10 in blood), NO, lysozyme activity and IL-1β in blood, intestinal immune cell proportion and activity (Tc%, Treg% and monocyte phagocytic activity in ileum), intestinal inflammatory cytokines (TLR2, NF-κB, TNF-α and IL- 6) gene expression levels, and the number of Clostridium perfringens in cecum. NE infection significantly reduced body weight gain, thymus index, lymphocyte proliferation activity in blood and ileum, villus height and V/C in jejunum, Th cells% and Mucin2 gene expression in ileum. Dietary APS supplementation significantly increased body weight, feed intake, proportion of immune cells (T cells in blood and Tc, Treg in ileum), lymphocyte proliferation activity, V/C in jejunum, and ZO-1 gene expression in ileum. Dietary APS supplementation significantly reduced FCR and mortality rate, Th17/Treg, Th17%, intestinal pathology scores, intestinal inflammatory cytokine gene expression levels, and the number of Clostridium perfringens in cecum. In addition, broilers challenged with NE significantly increased Staphylococcus and Turicibacter and reduced α diversity of microbiota in ileum. Dietary APS supplementation significantly increased α diversity, Romboutsia, Halomonas, propionic acid, butyric acid, formononetin, taurine, cholic acid and equol and downregulated uric acid, L-arginine and serotonin in ileum. Spearman’s correlation analysis revealed that Romboutsia, Turicibacter, Staphylocpccus, Halomonas, Streptococcus, Escherichia-Shigella, Prevotella, uric acid, L-arginine, jerivne, sodium cholate and cholic acid were related to inflammation and Th17/Treg balance. In conclusion, APS alleviated intestinal inflammation in broilers challenged with NE probably by regulating intestinal immune, Th17/Treg balance, as well as intestinal microbiota and metabolites.
Collapse
Affiliation(s)
- Bochen Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Peng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shaojia Yan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huiyuan Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Centre Research Institute, Beijing Centre Biology Co., Ltd., Beijing, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Yuming Guo,
| |
Collapse
|
17
|
Venis SM, Moon HR, Yang Y, Utturkar SM, Konieczny SF, Han B. Engineering of a functional pancreatic acinus with reprogrammed cancer cells by induced PTF1a expression. LAB ON A CHIP 2021; 21:3675-3685. [PMID: 34581719 PMCID: PMC9175079 DOI: 10.1039/d1lc00350j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A pancreatic acinus is a functional unit of the exocrine pancreas producing digest enzymes. Its pathobiology is crucial to pancreatic diseases including pancreatitis and pancreatic cancer, which can initiate from pancreatic acini. However, research on pancreatic acini has been significantly hampered due to the difficulty of culturing normal acinar cells in vitro. In this study, an in vitro model of the normal acinus, named pancreatic acinus-on-chip (PAC), is developed using reprogrammed pancreatic cancer cells. The developed model is a microfluidic platform with an epithelial duct and acinar sac geometry microfabricated by a newly developed two-step controlled "viscous-fingering" technique. In this model, human pancreatic cancer cells, Panc-1, reprogrammed to revert to the normal state upon induction of PTF1a gene expression, are cultured. Bioinformatic analyses suggest that, upon induced PTF1a expression, Panc-1 cells transition into a more normal and differentiated acinar phenotype. The microanatomy and exocrine functions of the model are characterized to confirm the normal acinus phenotypes. The developed model provides a new and reliable testbed to study the initiation and progression of pancreatic cancers.
Collapse
Affiliation(s)
- Stephanie M Venis
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Yi Yang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Sagar M Utturkar
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen F Konieczny
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
18
|
Farooq A, Richman CM, Swain SM, Shahid RA, Vigna SR, Liddle RA. The Role of Phosphate in Alcohol-Induced Experimental Pancreatitis. Gastroenterology 2021; 161:982-995.e2. [PMID: 34051238 PMCID: PMC8380702 DOI: 10.1053/j.gastro.2021.05.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Heavy alcohol consumption is a common cause of acute pancreatitis; however, alcohol abuse does not always result in clinical pancreatitis. As a consequence, the factors responsible for alcohol-induced pancreatitis are not well understood. In experimental animals, it has been difficult to produce pancreatitis with alcohol. Clinically, alcohol use predisposes to hypophosphatemia, and hypophosphatemia has been observed in some patients with acute pancreatitis. Because of abundant protein synthesis, the pancreas has high metabolic demands, and reduced mitochondrial function leads to organelle dysfunction and pancreatitis. We proposed, therefore, that phosphate deficiency might limit adenosine triphosphate synthesis and thereby contribute to alcohol-induced pancreatitis. METHODS Mice were fed a low-phosphate diet (LPD) before orogastric administration of ethanol. Direct effects of phosphate and ethanol were evaluated in vitro in isolated mouse pancreatic acini. RESULTS LPD reduced serum phosphate levels. Intragastric administration of ethanol to animals maintained on an LPD caused severe pancreatitis that was ameliorated by phosphate repletion. In pancreatic acinar cells, low-phosphate conditions increased susceptibility to ethanol-induced cellular dysfunction through decreased bioenergetic stores, specifically affecting total cellular adenosine triphosphate and mitochondrial function. Phosphate supplementation prevented ethanol-associated cellular injury. CONCLUSIONS Phosphate status plays a critical role in predisposition to and protection from alcohol-induced acinar cell dysfunction and the development of acute alcohol-induced pancreatitis. This finding may explain why pancreatitis develops in only some individuals with heavy alcohol use and suggests a potential novel therapeutic approach to pancreatitis. Finally, an LPD plus ethanol provides a new model for studying alcohol-associated pancreatic injury.
Collapse
Affiliation(s)
- Ahmad Farooq
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Courtney M Richman
- School of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Sandip M Swain
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Rafiq A Shahid
- Department of Pathology, Brown University, Providence, Rhode Island
| | - Steven R Vigna
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Rodger A Liddle
- Department of Medicine, Duke University Medical Center, Durham, North Carolina; Department of Veterans Affairs Health Care System, Durham, North Carolina.
| |
Collapse
|
19
|
Tarasiuk A, Bulak K, Talar M, Fichna J. Chlorogenic acid reduces inflammation in murine model of acute pancreatitis. Pharmacol Rep 2021; 73:1448-1456. [PMID: 34383255 PMCID: PMC8460566 DOI: 10.1007/s43440-021-00320-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 10/28/2022]
Abstract
BACKGROUND The pathogenesis of acute pancreatitis (AP) initiation and progression is still unknown, and effective treatment is limited to supportive care. Many phytochemicals have the potential to alleviate AP symptoms and may be a useful and effective supplement to standard AP treatment. The objective of the study was to examine the potential role of chlorogenic acid (CGA), a polyphenol known for anti-inflammatory effect, in the treatment of experimental AP in mice. METHODS Two intraperitoneal (ip) injections of L-arginine (dosage 400 mg/100 g BW) were given 1 h apart to generate the AP murine model. Mice were separated into two experimental groups after 12 h from the first L-arginine injection: AP mice treated with CGA (oral gavage (po) every 12 h; 20 mg/kg BW) and non-treated AP mice (po vehicle, 5% dimethyl sulfoxide every 12 h). Every 12 h, control mice were given an equivalent volume of vehicle. At 72 h, mice were slaughtered. Histology, as well as myeloperoxidase (MPO) and amylase activity assays, were performed on pancreatic tissues. RESULTS In murine mouse model of AP po administration of CGA decreased MPO vs. AP (40.40 ± 2.10 U vs. 7.39 ± 0.34; p < 0.001) as well as amylase activity vs. AP (1444 ± 56 mU/mL vs. 3340 ± 144 mU/mL, Fig. 2B; p < 0.001). When comparing CGA mice to AP mice, histological research demonstrated that the severity of AP was reduced following CGA treatment. CONCLUSIONS The current study found that CGA might have anti-inflammatory effect on L-arginine-induced pancreatitis. Dietary intervention with CGA may be advised as a supportive treatment for AP, according to our findings.
Collapse
Affiliation(s)
- Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kamila Bulak
- Sub-Department of Pathomorphology and Forensic Veterinary Medicine, Department and Clinic of Animal Internal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Marcin Talar
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
20
|
MicroRNA MiR-27a-5p Alleviates the Cerulein-Induced Cell Apoptosis and Inflammatory Injury of AR42J Cells by Targeting Traf3 in Acute Pancreatitis. Inflammation 2021; 43:1988-1998. [PMID: 32647955 DOI: 10.1007/s10753-020-01272-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Acute pancreatitis (AP), a sudden inflammatory process of pancreas, is painful and may contribute to death. The aberrant expression of miR-27a-5p has been reported in many types of cancers and diseases including AP. Thus, it is urgent to manifest the functions and mechanism of miR-27a-5p in AP. The levels of miR-27a-5p, tumor necrosis factor (TNF) receptor-associated factor 3 (Traf3) in serum of AP patient, or cerulein-treated AR42J cells were detected by qRT-PCR. Functionally, the apoptotic rate, the protein levels of Bcl-2 and Bax, the caspase-3 activity, and the levels of IL-1β, IL-6, and TNF-α in cerulein-treated AR42J cells were measured by flow cytometry, Western blot, caspase-3 activity assay, and qRT-PCR and ELISA assay, respectively. In addition, the putative target of miR-27a-5p was predicted by TargetScan online database, and the dual luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted to verify this interaction. Cerulein-treated mouse AP model was established to explore the role of miR-27a-5p in AP in vivo. The level of miR-27a-5p was notably downregulated in AP patients and cerulein-treated AR42J cells. The functional experiments indicated that miR-27a-5p mimics attenuated the promotion effects on cell apoptosis and the inflammatory response in AR42J cells caused by cerulein. The interaction between miR-27a-5p and Traf3 was predicted by TargetScan online database and validated by dual luciferase reporter assay and RIP assay. Following qRT-PCR results exhibited that Traf3 was apparently enhanced in cerulein-treated AR42J cells. The further functional experiments disclosed that Traf3 overexpression relieved the inhibitory effects on cell apoptosis and the inflammatory response induced by miR-27a-5p mimics in cerulein-treated AR42J cells. Moreover, miR-27a-5p alleviated cerulein-induced injury in vivo. In this study, we established the cerulein-treated AR42J cells as AP model in vitro. We validated that miR-27a-5p was significantly downregulated, and Traf3 was strikingly upregulated in AP patient and/or cerulein-treated AR42J cells. The further mechanistical and functional experiments unraveled that miR-27a-5p regulated Traf3 to relieve the cerulein-induced cell apoptosis and inflammatory injury of AR42J cells. Therefore, this novel regulatory network may provide therapeutic target for AP patients.
Collapse
|
21
|
Veena G, Challa SR, Palatheeya S, Prudhivi R, Kadari A. Granny Smith Apple Extract Lowers Inflammation and Improves Antioxidant Status in L-arginine-induced Exocrine Pancreatic Dysfunction in Rats. Turk J Pharm Sci 2021; 18:262-270. [PMID: 34157815 DOI: 10.4274/tjps.galenos.2020.92145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Objectives Granny Smith is a cultivated hybrid variety of apple with a high antioxidant content relative to all other species of apple. Acute pancreatitis (AP) is an instantly emerging inflammatory condition with a high mortality rate. The preferred treatment is restricted to symptomatic relief and supportive care. The present study was undertaken to evaluate the favorable effects of Granny Smith apple extract (GSAE) as a prophylactic treatment for L-arginine-induced AP in rats. Materials and Methods Male Sprague Dawley rats were divided in to five groups (n=6): Normal control (saline), disease control (a single dose of L-arginine 2.5 g/kg I.P.), positive control (pelatonin 10 mg/kg I.P.), and GSAE I and II (200 mg/kg and 400 mg/kg, orally, respectively). All groups were treated for 7 days. At the end of the study, blood samples were collected from the retro-orbital plexus, serum separated, and subjected to estimation of biomarker enzymes such as amylase, lipase, antioxidant enzymes, etc. The animals were then sacrificed, and the pancreas was isolated and subjected to estimation of tissue biomarkers, DNA fragmentation assay, and histopathological studies. Results Serum levels of amylase and lipase were significantly (p<0.001) reduced in L-arginine-treated rats. Similar results were also observed with tissue inflammatory markers such as malondialdehyde, nitrate, etc. There was a dramatic increase (p<0.001) in the overall antioxidant enzyme levels when compared with disease control rats. Histopathological examination of pancreatic tissue showed an intact structural feature of acinar cells in the extract-treated group of rats, which was further in pact with the intact DNA found in the DNA fragmentation assay. Conclusion Thus, GSAE treatment was found to be beneficial in lowering the inflammatory conditions of AP by improving the overall antioxidant levels, and a further investigation into its exact molecular mechanism is needed.
Collapse
Affiliation(s)
- Gadicherla Veena
- Sri Indu Institute of Pharmacy, Department of Pharmacology, Telangana, India
| | - Siva Reddy Challa
- KVSR Siddhartha College of Pharmaceutical Sciences, Department of Pharmacology, Andhra Pradesh, India
| | - Sujatha Palatheeya
- Palamuru University College of Pharmaceutical Sciences, Department of Pharmacy, Telangana, India
| | - Ramakrishna Prudhivi
- Dayananda Sagar University, Dayananda Sagar College of Pharmaceutical Sciences, Department of Pharmacy Practice, Karnataka, India
| | - Anitha Kadari
- Sri Indu Institute of Pharmacy, Department of Pharmacology, Telangana, India
| |
Collapse
|
22
|
Bu HF, Subramanian S, Geng H, Wang X, Liu F, Chou PM, Du C, De Plaen IG, Tan XD. MFG-E8 Plays an Important Role in Attenuating Cerulein-Induced Acute Pancreatitis in Mice. Cells 2021; 10:728. [PMID: 33806041 PMCID: PMC8064467 DOI: 10.3390/cells10040728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
Milk fat globule-EGF factor 8 (MFG-E8) is a secreted glycoprotein that regulates tissue homeostasis, possesses potent anti-inflammatory properties, and protects against tissue injury. The human pancreas expresses MFG-E8; however, the role of MFG-E8 in the pancreas remains unclear. We examined the expression of MFG-E8 in the pancreas at baseline and during cerulein-induced acute pancreatitis in mice and determined whether MFG-E8 attenuates the progression of pancreatitis, a serious inflammatory condition that can be life-threatening. We administered cerulein to wild-type (WT) and Mfge8 knockout (KO) mice to induce pancreatitis. Immunoblot analysis showed that MFG-E8 is constitutively expressed in the murine pancreas and is increased in mice with cerulein-induced acute pancreatitis. In situ hybridization revealed that ductal epithelial cells in the mouse pancreas express Mfge8 transcripts at baseline. During pancreatitis, Mfge8 transcripts were abundantly expressed in acinar cells and endothelial cells in addition to ductal epithelial cells. Knocking out Mfge8 in mice exacerbated the severity of cerulein-induced acute pancreatitis and delayed its resolution. In contrast, administration of recombinant MFG-E8 attenuated cerulein-induced acute pancreatitis and promoted repair of pancreatic injury in Mfge8 KO mice. Taken together, our study suggests that MFG-E8 protects the pancreas against inflammatory injury and promotes pancreatic tissue repair. MFG-E8 may represent a novel therapeutic target in acute pancreatitis.
Collapse
Affiliation(s)
- Heng-Fu Bu
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Saravanan Subramanian
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hua Geng
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Xiao Wang
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Fangyi Liu
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Pauline M. Chou
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Chao Du
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Isabelle G. De Plaen
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Xiao-Di Tan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Research & Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
23
|
Tsaroucha A, Kaldis V, Vailas M, Schizas D, Lambropoulou M, Papalois A, Tsigalou C, Gaitanidis A, Pitiakoudis M, Simopoulos C. The positive effect of eugenol on acute pancreatic tissue injury: a rat experimental model. Pan Afr Med J 2021; 38:132. [PMID: 33912302 PMCID: PMC8052617 DOI: 10.11604/pamj.2021.38.132.20202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/20/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction we present a rat experimental model used to evaluate the possible reduction in the extent of pancreatic tissue injury in acute pancreatitis cases, after administration of eugenol. Methods one hundred and twenty Wistar rats were used, which were randomly assigned in 3 groups: sham (n=20), control (n=50) and eugenol (n=50). Acute pancreatitis was induced by biliopancreatic ligation in the control and eugenol groups, but not in the Sham group. In the eugenol group, eugenol was administered per-os. Five histopathological parameters, such as edema, inflammatory infiltration, duct dilatation, hemorrhage and acinar necrosis were evaluated. Results at 72 h from acute pancreatitis induction, the total histological score was diminished in the eugenol group (p<0.0005) and duct dilatation and inflammatory infiltration were reduced compared to the control group (p<0.05). In addition, at 72 h, eugenol reduced pancreatic myeloperoxidase activity (p<0.0005). Conclusion eugenol, a highly free radical scavenger agent, may have a preventive role in acute pancreatic injury, as it was evident in our rat experimental model.
Collapse
Affiliation(s)
- Alexandra Tsaroucha
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,2nd Department of Surgery and Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Kaldis
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michail Vailas
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,First Department of Surgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Schizas
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,First Department of Surgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Lambropoulou
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Histology-Embryology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Apostolos Papalois
- Experimental-Research Department, ELPEN Pharmaceuticals, Pikermi, Attica, Greece
| | - Christina Tsigalou
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Microbiology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Apostolos Gaitanidis
- 2nd Department of Surgery and Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael Pitiakoudis
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,2nd Department of Surgery and Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Constantinos Simopoulos
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,2nd Department of Surgery and Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
24
|
Parajuli P, Nguyen TL, Prunier C, Razzaque MS, Xu K, Atfi A. Pancreatic cancer triggers diabetes through TGF-β-mediated selective depletion of islet β-cells. Life Sci Alliance 2020; 3:e201900573. [PMID: 32371554 PMCID: PMC7211975 DOI: 10.26508/lsa.201900573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease that remains incurable because of late diagnosis, which renders any therapeutic intervention challenging. Most PDAC patients develop de novo diabetes, which exacerbates their morbidity and mortality. How PDAC triggers diabetes is still unfolding. Using a mouse model of KrasG12D-driven PDAC, which faithfully recapitulates the progression of the human disease, we observed a massive and selective depletion of β-cells, occurring very early at the stages of preneoplastic lesions. Mechanistically, we found that increased TGF beta (TGF-β) signaling during PDAC progression caused erosion of β-cell mass through apoptosis. Suppressing TGF-β signaling, either pharmacologically through TGF-β immunoneutralization or genetically through deletion of Smad4 or TGF-β type II receptor (TβRII), afforded substantial protection against PDAC-driven β-cell depletion. From a translational perspective, both activation of TGF-β signaling and depletion of β-cells frequently occur in human PDAC, providing a mechanistic explanation for the pathogenesis of diabetes in PDAC patients, and further implicating new-onset diabetes as a potential early prognostic marker for PDAC.
Collapse
Affiliation(s)
- Parash Parajuli
- Cellular and Molecular Pathogenesis Division, Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Thien Ly Nguyen
- Cellular and Molecular Pathogenesis Division, Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Céline Prunier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | - Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Keli Xu
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Azeddine Atfi
- Cellular and Molecular Pathogenesis Division, Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| |
Collapse
|
25
|
Wu XB, Sun HY, Luo ZL, Cheng L, Duan XM, Ren JD. Plasma-derived exosomes contribute to pancreatitis-associated lung injury by triggering NLRP3-dependent pyroptosis in alveolar macrophages. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165685. [DOI: 10.1016/j.bbadis.2020.165685] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
|
26
|
Animal models to study the role of pulmonary intravascular macrophages in spontaneous and induced acute pancreatitis. Cell Tissue Res 2020; 380:207-222. [DOI: 10.1007/s00441-020-03211-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
|
27
|
Roch AM, Maatman TK, Cook TG, Wu HH, Merfeld-Clauss S, Traktuev DO, March KL, Zyromski NJ. Therapeutic Use of Adipose-Derived Stromal Cells in a Murine Model of Acute Pancreatitis. J Gastrointest Surg 2020; 24:67-75. [PMID: 31745900 DOI: 10.1007/s11605-019-04411-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/11/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND No specific therapy exists for acute pancreatitis (AP), and current treatment remains entirely supportive. Adipose stem cells (ASCs) have significant immunomodulatory and regenerative activities. We hypothesized that systemic administration of ASCs would mitigate inflammation in AP. METHODS AP was induced in mice by 6 hourly intraperitoneal injections of cerulein. Twenty-four hours after AP induction, mice were randomized into four systemic treatment groups: sham group (no acute pancreatitis), vehicle, human ASCs, and human ASC-conditioned media. Mice were sacrificed at 48 h, and blood and organs were collected and analyzed. Pancreatic injury was quantified histologically using a published score (edema, inflammation, and necrosis). Pancreatic inflammation was also studied by immunohistochemistry and PCR. RESULTS When using IV infusion of Hoechst-labeled ASCs, ASCs were found to localize to inflamed tissues: lungs and pancreas. Mice treated with ASCs had less severe AP, as shown by a significantly decreased histopathology score (edema, inflammation, and necrosis) (p = 0.001). ASCs infusion polarized pancreatic macrophages toward an anti-inflammatory M2 phenotype. ASC-conditioned media reduced pancreatic inflammation similarly to ASCs only, highlighting the importance of ASCs secreted factors in modulating inflammation. CONCLUSION Intravenous delivery of human ASCs markedly reduces pancreatic inflammation in a murine model of AP ASCs which represent an effective therapy for AP.
Collapse
Affiliation(s)
- Alexandra M Roch
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Drive EH 519, Indianapolis, IN, 46202, USA
| | - Thomas K Maatman
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Drive EH 519, Indianapolis, IN, 46202, USA
| | - Todd G Cook
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Drive EH 519, Indianapolis, IN, 46202, USA
| | - Howard H Wu
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie Merfeld-Clauss
- Department of Medicine, Division of Cardiovascular Medicine, Center for Regenerative medicine, University of Florida, Gainesville, FL, USA
| | - Dmitry O Traktuev
- Department of Medicine, Division of Cardiovascular Medicine, Center for Regenerative medicine, University of Florida, Gainesville, FL, USA
| | - Keith L March
- Department of Medicine, Division of Cardiovascular Medicine, Center for Regenerative medicine, University of Florida, Gainesville, FL, USA
| | - Nicholas J Zyromski
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Drive EH 519, Indianapolis, IN, 46202, USA.
| |
Collapse
|
28
|
Miller RJ, Han A, Erdman JW, Wallig MA, O’Brien WD. Quantitative Ultrasound and the Pancreas: Demonstration of Early Detection Capability. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2019; 38:2093-2102. [PMID: 30575064 PMCID: PMC6588516 DOI: 10.1002/jum.14901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/10/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVES To show that quantitative ultrasound biomarkers attenuation (AC) and backscatter (BSC) coefficients are effective tools to detect early changes in acute pancreatitis, using a cerulein-induced pancreatitis rat model. METHODS Sprague-Dawley rats (n = 68) were divided into 8 groups: uninjected cage controls, saline-injected controls, and cerulein-injected rats euthanized at 2, 4, 15, 24, 48, and 60 hours after injection. Pancreatic AC and BSC (25-55 MHz) were estimated in vivo (Vevo 2100, VisualSonics, Toronto, CA) and ex vivo (40-MHz transducer). The pancreas of each rat was evaluated histopathologically. RESULTS Changes in both in vivo and ex vivo AC and BSC relative to controls reflected temporal histomorphologic changes. Overall, there were decreased AC and BSC at early time points and then rebound toward control values over time. Maximal in vivo AC and BSC decreases occurred at 2 hours after cerulein injection. Attenuation coefficient changes corresponded well with early pancreatic edema and acinar cell vacuolation, with rebound as edema decreased, autophagy/cellular death occurred, and histiocytic infiltrates and fibrosis manifested. Backscatter coefficient decreased early but rebounded as autophagy and apoptosis increased, only to fall as acinar atrophy peaked, and fibrosis and histiocytic infiltration increased. CONCLUSIONS Cerulein-induced pancreatitis is an excellent model for studying ultrasonic AC and BSC biomarkers during the early stages of acute pancreatitits, reflecting microscopic structural changes. Edema followed by cell shrinkage and apoptosis, then histiocytic infiltration and fibrosis, has certain similarities with the morphologies of some forms of pancreatic carcinoma. This suggests that quantitative ultrasound may be very useful for early detection of disease onset or response to therapy for not only acute pancreatitis but also pancreatic cancer.
Collapse
Affiliation(s)
- Rita J. Miller
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 North Wright Street, Urbana, IL 61801, Miller: ; Han: ; O’Brien:
| | - Aiguo Han
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 North Wright Street, Urbana, IL 61801, Miller: ; Han: ; O’Brien:
| | - John W. Erdman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, Erdman:
| | - Matthew A. Wallig
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, Wallig:
| | - William D. O’Brien
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 North Wright Street, Urbana, IL 61801, Miller: ; Han: ; O’Brien:
| |
Collapse
|
29
|
Saloman JL, Albers KM, Cruz-Monserrate Z, Davis BM, Edderkaoui M, Eibl G, Epouhe AY, Gedeon JY, Gorelick FS, Grippo PJ, Groblewski GE, Husain SZ, Lai KK, Pandol SJ, Uc A, Wen L, Whitcomb DC. Animal Models: Challenges and Opportunities to Determine Optimal Experimental Models of Pancreatitis and Pancreatic Cancer. Pancreas 2019; 48:759-779. [PMID: 31206467 PMCID: PMC6581211 DOI: 10.1097/mpa.0000000000001335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At the 2018 PancreasFest meeting, experts participating in basic research met to discuss the plethora of available animal models for studying exocrine pancreatic disease. In particular, the discussion focused on the challenges currently facing the field and potential solutions. That meeting culminated in this review, which describes the advantages and limitations of both common and infrequently used models of exocrine pancreatic disease, namely, pancreatitis and exocrine pancreatic cancer. The objective is to provide a comprehensive description of the available models but also to provide investigators with guidance in the application of these models to investigate both environmental and genetic contributions to exocrine pancreatic disease. The content covers both nongenic and genetically engineered models across multiple species (large and small). Recommendations for choosing the appropriate model as well as how to conduct and present results are provided.
Collapse
Affiliation(s)
- Jami L. Saloman
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Kathryn M. Albers
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition; Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Brian M. Davis
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Mouad Edderkaoui
- Basic and Translational Pancreas Research, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Ariel Y. Epouhe
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Jeremy Y. Gedeon
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Fred S. Gorelick
- Department of Internal Medicine, Section of Digestive Diseases & Department of Cell Biology Yale University School of Medicine; Veterans Affairs Connecticut Healthcare, West Haven, CT
| | - Paul J. Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, UI Cancer Center, University of Illinois at Chicago, Chicago, IL
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | | | - Keane K.Y. Lai
- Department of Pathology (National Medical Center), Department of Molecular Medicine (Beckman Research Institute), and Comprehensive Cancer Center, City of Hope, Duarte, CA
| | - Stephen J. Pandol
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Aliye Uc
- Stead Family Department of Pediatrics, University of Iowa, Stead Family Children’s Hospital, Iowa City, IA
| | - Li Wen
- Department of Pediatrics, Stanford University, Palo Alto, CA
| | | |
Collapse
|
30
|
Silva-Vaz P, Abrantes AM, Castelo-Branco M, Gouveia A, Botelho MF, Tralhão JG. Murine Models of Acute Pancreatitis: A Critical Appraisal of Clinical Relevance. Int J Mol Sci 2019; 20:E2794. [PMID: 31181644 PMCID: PMC6600324 DOI: 10.3390/ijms20112794] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Acute pancreatitis (AP) is a severe disease associated with high morbidity and mortality. Clinical studies can provide some data concerning the etiology, pathophysiology, and outcomes of this disease. However, the study of early events and new targeted therapies cannot be performed on humans due to ethical reasons. Experimental murine models can be used in the understanding of the pancreatic inflammation, because they are able to closely mimic the main features of human AP, namely their histologic glandular changes and distant organ failure. These models continue to be important research tools for the reproduction of the etiological, environmental, and genetic factors associated with the pathogenesis of this inflammatory pathology and the exploration of novel therapeutic options. This review provides an overview of several murine models of AP. Furthermore, special focus is made on the most frequently carried out models, the protocols used, and their advantages and limitations. Finally, examples are provided of the use of these models to improve knowledge of the mechanisms involved in the pathogenesis, identify new biomarkers of severity, and develop new targeted therapies.
Collapse
Affiliation(s)
- Pedro Silva-Vaz
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
- General Surgery Department, Unidade Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Ana Margarida Abrantes
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Miguel Castelo-Branco
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - António Gouveia
- General Surgery Department, Unidade Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Maria Filomena Botelho
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
| | - José Guilherme Tralhão
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
- Surgery Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal.
| |
Collapse
|
31
|
Stojanović NM, Stevanović M, Randjelović P, Mitić K, Petrović V, Sokolović D, Mladenović B, Lalić J, Radulović NS. Low dose of carvacrol prevents rat pancreas tissue damage after L-arginine application, while higher doses cause pancreatic tissue impairment. Food Chem Toxicol 2019; 128:280-285. [DOI: 10.1016/j.fct.2019.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
|
32
|
Weis S, Heindl M, Carvalho T, Jentho E, Lorenz J, Sommerer I, Mössner J, Hoffmeister A. Azithromycin does not improve disease severity in acute experimental pancreatitis. PLoS One 2019; 14:e0216614. [PMID: 31075097 PMCID: PMC6510415 DOI: 10.1371/journal.pone.0216614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/24/2019] [Indexed: 12/31/2022] Open
Abstract
Acute pancreatitis is a severe systemic disease triggered by a sterile inflammation and initial local tissue damage of the pancreas. Immune cells infiltrating into the pancreas are main mediators of acute pancreatitis pathogenesis. In addition to their antimicrobial potency, macrolides possess anti-inflammatory and immunomodulatory properties which are routinely used in patients with chronic airway infections and might also beneficial in the treatment of acute lung injury. We here tested the hypothesis that the macrolide antibiotic azithromycin can improve the course of acute experimental pancreatitis via ameliorating the damage imposed by sterile inflammation, and could be used as a disease specific therapy. However, our data show that azithromycin does not have influence on caerulein induced acute pancreatitis in terms of reduction of organ damage, and disease severity. Furthermore Infiltration of immune cells into the pancreas or the lungs was not attenuated by azithromycin as compared to controls or ampicillin treated animals with acute experimental pancreatitis. We conclude that in the chosen model, azithromycin does not have any beneficial effects and that its immunomodulatory properties cannot be used to decrease disease severity in the model of caerulein-induced pancreatitis in mice.
Collapse
Affiliation(s)
- Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany
- Division of Gastroenterology, University Hospital Leipzig, Leipzig, Germany
| | - Mario Heindl
- Division of Gastroenterology, University Hospital Leipzig, Leipzig, Germany
| | - Tania Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Elisa Jentho
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Jana Lorenz
- Division of Gastroenterology, University Hospital Leipzig, Leipzig, Germany
| | - Ines Sommerer
- Division of Gastroenterology, University Hospital Leipzig, Leipzig, Germany
| | - Joachim Mössner
- Division of Gastroenterology, University Hospital Leipzig, Leipzig, Germany
| | - Albrecht Hoffmeister
- Division of Gastroenterology, University Hospital Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
33
|
Ye R, Onodera T, Blanchard PG, Kusminski CM, Esser V, Brekken RA, Scherer PE. β1 Syntrophin Supports Autophagy Initiation and Protects against Cerulein-Induced Acute Pancreatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:813-825. [PMID: 30653956 DOI: 10.1016/j.ajpath.2019.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/26/2018] [Accepted: 01/02/2019] [Indexed: 01/23/2023]
Abstract
Syntrophins are a family of proteins forming membrane-anchored scaffolds and serving as adaptors for various transmembrane and intracellular signaling molecules. To understand the physiological roles of β1 syntrophin, one of the least characterized members, we generated mouse models to eliminate β1 syntrophin specifically in the endocrine or exocrine pancreas. β1 syntrophin is dispensable for the morphology and function of insulin-producing β cells. However, mice with β1 syntrophin deletion in exocrine acinar cells exhibit increased severity of cerulein-induced acute pancreatitis. Reduced expression of cystic fibrosis transmembrane conductance regulator and dilation of acinar lumen are potential predisposition factors. During the disease progression, a relative lack of autophagy is associated with deficiencies in both actin assembly and endoplasmic reticulum nucleation. Our findings reveal, for the first time, that β1 syntrophin is a critical regulator of actin cytoskeleton and autophagy in pancreatic acinar cells and is potently protective against cerulein-induced acute pancreatitis.
Collapse
Affiliation(s)
- Risheng Ye
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Medical Education, Texas Tech University Health Sciences Center Paul L. Foster School of Medicine, El Paso, Texas
| | - Toshiharu Onodera
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Pierre-Gilles Blanchard
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
34
|
Gadicherla V, Challa S, Basaveswara Rao M, Kunda P, Prudhvi R. Morinda Citrifolia (Noni) fruit protects the exocrine pancreatic dysfunction against L-arginine induced acute pancreatitis in rats. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_661_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
35
|
Leal AS, Liby KT. Murine Models of Pancreatitis Leading to the Development of Pancreatic Cancer. ACTA ACUST UNITED AC 2018; 83:e48. [PMID: 30325112 DOI: 10.1002/cpph.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic or repeated episodes of acute pancreatic inflammation, or pancreatitis, are risk factors for the development of pancreatic cancer. Pancreatic cancer is characterized by a strong fibro-inflammatory tumor microenvironment. In pancreatitis, the same fibro-inflammatory reaction is observed concurrently with a loss of normal pancreatic cells. Mouse models are commonly employed to study the progression of pancreatitis and pancreatic cancer, with genetic and pharmacological tools used to elucidate cellular and acellular interactions within pancreatic tumors. Described in this article is a protocol for using KrasG12D ; Pdx1-Cre (KC) mice stimulated with caerulein, a small oligopeptide that increases secretion of digestive enzymes, as a model for pancreatitis. KRAS is mutated in 90-95% of the tumors in patients with pancreatic cancer. The combination of this mutation with an inflammatory stimulus accelerates the development of pancreatic cancer. The protocol detailed in this report follows the progression of disease in KC mice from pancreatic intraepithelial neoplasias to invasive pancreatic adenocarcinoma. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ana S Leal
- Michigan State University, Department of Pharmacology & Toxicology, East Lansing, Michigan
| | - Karen T Liby
- Michigan State University, Department of Pharmacology & Toxicology, East Lansing, Michigan
| |
Collapse
|
36
|
Nakamura K, Fukatsu K, Sasayama A, Yamaji T. An immune-modulating formula comprising whey peptides and fermented milk improves inflammation-related remote organ injuries in diet-induced acute pancreatitis in mice. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2018; 37:1-8. [PMID: 29387516 PMCID: PMC5787410 DOI: 10.12938/bmfh.17-011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/30/2017] [Indexed: 02/06/2023]
Abstract
It has been demonstrated that an immune-modulating enteral formula enriched with whey peptides and fermented milk (IMF) had anti-inflammatory effects in some experimental models when it was administered before the
induction of inflammation. Here, we investigated the anti-inflammatory effects of the IMF administration after the onset of systemic inflammation and investigated whether the IMF could improve the remote organ injuries
in an acute pancreatitis (AP) model. Mice were fasted for 12 hours and then fed a choline-deficient and ethionine-supplemented diet (CDE diet) for 24 hours to induce pancreatitis. In experiment 1, the diet was replaced
with a control enteral formula, and mice were sacrificed at 24-hour intervals for 96 hours. In experiment 2, mice were randomized into control and IMF groups and received the control formula or the IMF respectively for
72 hr or 96 hr. In experiment 1, pancreatitis was induced by the CDE diet, and inflammatory mediators were elevated for several days. Remote organ injuries such as splenomegaly, hepatomegaly, and elevation of the hepatic
enzymes developed. A significant strong positive correlation was observed between plasma MCP-1 and hepatic enzymes. In experiment 2, the IMF significantly improved splenomegaly, hepatomegaly, and the elevation of hepatic
enzymes. Plasma MCP-1 levels were significantly lower in the IMF group than in the control group. Nutrition management with the IMF may be useful for alleviating remote organ injuries after AP.
Collapse
Affiliation(s)
- Kentaro Nakamura
- Nutrition Research Department, Food Science & Technology Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919, Japan
| | | | - Akina Sasayama
- Nutrition Research Department, Food Science & Technology Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919, Japan
| | - Taketo Yamaji
- Nutrition Research Department, Food Science & Technology Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919, Japan
| |
Collapse
|
37
|
Soares FS, Amaral FC, Silva NLC, Valente MR, Santos LKR, Yamashiro LH, Scheffer MC, Castanheira FVES, Ferreira RG, Gehrke L, Alves-Filho JC, Silva LP, Báfica A, Spiller F. Antibiotic-Induced Pathobiont Dissemination Accelerates Mortality in Severe Experimental Pancreatitis. Front Immunol 2017; 8:1890. [PMID: 29375557 PMCID: PMC5770733 DOI: 10.3389/fimmu.2017.01890] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022] Open
Abstract
Although antibiotic-induced dysbiosis has been demonstrated to exacerbate intestinal inflammation, it has been suggested that antibiotic prophylaxis may be beneficial in certain clinical conditions such as acute pancreatitis (AP). However, whether broad-spectrum antibiotics, such as meropenem, influence the dissemination of multidrug-resistant (MDR) bacteria during severe AP has not been addressed. In the currently study, a mouse model of obstructive severe AP was employed to investigate the effects of pretreatment with meropenem on bacteria spreading and disease outcome. As expected, animals subjected to biliopancreatic duct obstruction developed severe AP. Surprisingly, pretreatment with meropenem accelerated the mortality of AP mice (survival median of 2 days) when compared to saline-pretreated AP mice (survival median of 7 days). Early mortality was associated with the translocation of MDR strains, mainly Enterococcus gallinarum into the blood stream. Induction of AP in mice with guts that were enriched with E. gallinarum recapitulated the increased mortality rate observed in the meropenem-pretreated AP mice. Furthermore, naïve mice challenged with a mouse or a clinical strain of E. gallinarum succumbed to infection through a mechanism involving toll-like receptor-2. These results confirm that broad-spectrum antibiotics may lead to indirect detrimental effects during inflammatory disease and reveal an intestinal pathobiont that is associated with the meropenem pretreatment during obstructive AP in mice.
Collapse
Affiliation(s)
- Fernanda S Soares
- Laboratory of Immunobiology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Flávia C Amaral
- Laboratory of Immunobiology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Natália L C Silva
- Laboratory of Immunobiology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Matheus R Valente
- Laboratory of Immunobiology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Lorena K R Santos
- Laboratory of Immunobiology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Lívia H Yamashiro
- Laboratory of Immunobiology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Mara C Scheffer
- Microbiology Laboratory, University Hospital, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Fernanda V E S Castanheira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Raphael G Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Laura Gehrke
- Laboratory of Immunobiology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Luciano P Silva
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil.,Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - André Báfica
- Laboratory of Immunobiology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil.,Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Fernando Spiller
- Laboratory of Immunobiology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil.,Department of Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| |
Collapse
|
38
|
Hamasaki MY, Machado MCC, Pinheiro da Silva F. Animal models of neuroinflammation secondary to acute insults originated outside the brain. J Neurosci Res 2017; 96:371-378. [DOI: 10.1002/jnr.24184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Mike Yoshio Hamasaki
- Laboratório de Emergências Clínicas, Faculdade de Medicina FMUSP; Universidade de São Paulo; São Paulo SP Brazil
| | | | - Fabiano Pinheiro da Silva
- Laboratório de Emergências Clínicas, Faculdade de Medicina FMUSP; Universidade de São Paulo; São Paulo SP Brazil
| |
Collapse
|
39
|
Zhang X, Shi Q, Wang C, Wang G. Differential susceptibility of mouse strains on pancreatic injury and regeneration in cerulein-induced pancreatitis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9934-9944. [PMID: 31966883 PMCID: PMC6966007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/09/2017] [Indexed: 06/10/2023]
Abstract
Acute pancreatitis (AP), a common disease, causes significant morbidity and mortality in clinical practice. Our objective of this study was to establish an experimental mouse AP model with cerulein treatment and to explore the susceptibility of mouse strains on the severity of pancreatic injury and the subsequent repair and regeneration. C57BL/6 and FVB/N mouse strains were used in this study. AP model was induced by six hourly intraperitoneal (i.p.) injections of cerulein dissolved in saline (100 μg/kg) administered on four consecutive days. Animals were sacrificed on 1, 3 and 7 days after last cerulein treatment, and then pancreas tissues were harvested and subjected to various histological, cellular and molecular analysis. Analyses of pancreatic injury and pancreatic amylase expression indicated that this cerulein-induced AP model was established successfully and that FVB/N mice showed more severe pancreatic injury and poor recovery compared to C57BL/6 strain. Analyses of myeloperoxidase (MPO), IL-1β and NF-κB showed that FVB/N strain exhibited more severe inflammation in the pancreas compared to C57BL/6 mice. Immunofluorescence analysis of activated caspase-3 and TUNEL assay indicated that the pancreas of FVB/N strain had more apoptosis compared to C57BL/6 mice. Analysis of Ki67 indicated FVB/N mice experienced more active proliferation compared to C57BL/6 strain. Collectively, these results demonstrated that there exists differential susceptibility on pancreatic injury and regeneration between FVB/N and C57BL/6 mice in the cerulein-induced AP.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, China
- Department of Surgery, SUNY Upstate Medical UniversitySyracuse, New York, USA
| | - Qiao Shi
- Department of Surgery, SUNY Upstate Medical UniversitySyracuse, New York, USA
| | - Chunting Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, China
| | - Guirong Wang
- Department of Surgery, SUNY Upstate Medical UniversitySyracuse, New York, USA
| |
Collapse
|
40
|
Foss CA, Liu L, Mease RC, Wang H, Pasricha P, Pomper MG. Imaging Macrophage Accumulation in a Murine Model of Chronic Pancreatitis with 125I-Iodo-DPA-713 SPECT/CT. J Nucl Med 2017; 58:1685-1690. [PMID: 28522739 DOI: 10.2967/jnumed.117.189571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/01/2017] [Indexed: 12/15/2022] Open
Abstract
Pancreatitis remains a diagnostic challenge in patients with mild to moderate disease, with current imaging modalities being inadequate. Given the prominent macrophage infiltration in chronic pancreatitis, we hypothesized that 125I-iodo-DPA-713, a small-molecule radiotracer that specifically targets macrophages, could be used with SPECT/CT to image pancreatic inflammation in a relevant experimental model. Methods: Chronic pancreatitis was induced with cerulein in C57BL/6 mice, which were contrasted with saline-injected control mice. The animals were imaged at 7 wk after induction using N,N-diethyl-2-(2-(3-125I-iodo-4-methoxyphenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide (125I-iodo-DPA-713) SPECT/CT or 18F-FDG PET/CT. The biodistribution of 125I-iodo-DPA-713 was determined under the same conditions, and a pair of mice was imaged using a fluorescent analog of 125I-iodo-DPA-713, DPA-713-IRDye800CW, for correlative histology. Results: Pancreatic 125I-iodo-DPA-713 uptake was significantly higher in treated mice than control mice (5.17% ± 1.18% vs. 2.41% ± 0.34% injected dose/g, P = 0.02), as corroborated by imaging. Mice imaged with 18F-FDG PET/CT showed cerulein-enhanced pancreatic uptake in addition to a moderate signal from healthy pancreas. Near-infrared fluorescence imaging with DPA-713-IRDye800CW showed strong pancreatic uptake, focal liver uptake, and gastrointestinal uptake in the treated mice, whereas the control mice showed only urinary excretion. Ex vivo fluorescence microscopy revealed a large influx of macrophages in the pancreas colocalizing with the retained fluorescent probe in the treated but not the control mice. Conclusion: These data support the application of both 125I-iodo-DPA-713 SPECT/CT and DPA-713-IRDye800CW near-infrared fluorescence to delineate pancreatic, liver, or intestinal inflammation in living mice.
Collapse
Affiliation(s)
- Catherine A Foss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Liansheng Liu
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ronnie C Mease
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Haofan Wang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Pankaj Pasricha
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| |
Collapse
|
41
|
Neuroprotective effects of octreotide on diabetic neuropathy in rats. Biomed Pharmacother 2017; 89:468-472. [PMID: 28249248 DOI: 10.1016/j.biopha.2017.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/31/2017] [Accepted: 02/09/2017] [Indexed: 11/21/2022] Open
Abstract
The purpose of the present study is to investigate the possible healing effects of octreotide (OCT) on motor performance, electrophysiological and histopathological findings of diabetic neuropathy in a rat model of diabetes mellitus (DM). To induce diabetes, rats were administered a single dose (60mg/kg) of streptozotocin (STZ). Diabetic rats were treated either with saline (1ml/kg/day, n=7) or OCT (0.1mg/kg/day, n=7) for four weeks. Seven rats served as control group and received no treatment. At the end of the study, electromyography (EMG), gross motor function (inclined plate test), general histology and the perineural thickness of sciatic nerve were evaluated. At the end of study, weight loss was significantly lower in OCT treated rats than that of saline treated ones (p<0.001). Electrophysiologically, compound muscle action potential (CMAP) amplitudes of the saline treated DM group were significantly reduced than those of controls (p<0.0001). Also, distal latency and CMAP durations were significantly prolonged in saline treated DM group (p<0.05) compared to control. However, treatment of diabetic rats with OCT significantly counteracted these alterations in EMG. Furthermore, OCT significantly improved the motor performance scores in diabetic rats (p<0.05). Histomorphometric assessment of the sciatic nerve demonstrated a significant reduction in perineural thickness in OCT treated group compared to saline group. In conclusion, OCT possesses beneficial effects against STZ-induced diabetic neuropathy, which promisingly support the use of OCT as a neuroprotective agent in patients with diabetic neuropathy.
Collapse
|
42
|
Effect of Previous High Glutamine Infusion on Inflammatory Mediators and Mortality in an Acute Pancreatitis Model. Mediators Inflamm 2016; 2016:4261419. [PMID: 28070142 PMCID: PMC5192344 DOI: 10.1155/2016/4261419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/10/2016] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
Parenteral glutamine supplementation in acute inflammatory conditions is controversial. We evaluated the inflammatory and survival responses after parenteral glutamine infusion in sodium taurocholate-induced acute pancreatitis (AP) model. Lewis rats received 1 g/kg parenteral glutamine (n = 42), saline (n = 44), or no treatment (n = 45) for 48 h before AP induction. Blood, lung, and liver samples were collected 2, 12, and 24 h after AP to measure serum cytokines levels and tissue heat shock protein (HSP) expression. From each group, 20 animals were not sacrificed after AP for a 7-day mortality study. Serum cytokine levels did not differ among groups at any time point, but the intragroup analysis over time showed higher interferon-γ only in the nontreatment and saline groups at 2 h (versus 12 and 24 h; both p ≤ 0.05). The glutamine group exhibited greater lung and liver HSP90 expression than did the nontreatment group at 2 and 12 h, respectively; greater liver HSP90 and HSP70 expression than did the saline group at 12 h; and smaller lung HSP70 and liver HSP90 expression than did the nontreatment group at 24 h (all p ≤ 0.019). The 7-day mortality rate did not differ among groups. In experimental AP, pretreatment with parenteral glutamine was safe and improved early inflammatory mediator profiles without affecting mortality.
Collapse
|
43
|
Kaur J, Sidhu S, Chopra K, Khan MU. Calendula officinalis ameliorates l-arginine-induced acute necrotizing pancreatitis in rats. PHARMACEUTICAL BIOLOGY 2016; 54:2951-2959. [PMID: 27339751 DOI: 10.1080/13880209.2016.1195848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 05/15/2016] [Accepted: 05/25/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Calendula officinalis L. (Asteraceae) has been traditionally used in treating inflammation of internal organs, gastrointestinal tract ulcers and wound healing. OBJECTIVE The present study investigates the effect of ethanol extract (95%) of Calendula officinalis flowers in l-arginine induced acute necrotizing pancreatitis in rats. MATERIALS AND METHODS Rats were divided into four groups: normal control, l-arginine control, Calendula officinalis extract (COE) treated and melatonin treated (positive control), which were further divided into subgroups (24 h, day 3 and 14) according to time points. Two injections of l-arginine 2 g/kg i.p. at 1 h intervals were administered in l-arginine control, COE and melatonin-treated groups to produce acute necrotizing pancreatitis. Biochemical parameters [serum amylase, lipase, pancreatic amylase, nucleic acid content, total proteins, transforming growth factor-β1 (TGF-β1), collagen content, lipid peroxidation, reduced glutathione and nitrite/nitrate] and histopathological studies were carried out. RESULTS COE treatment (400 mg/kg p.o.) was found to be beneficial. This was evidenced by significantly lowered histopathological scores (2 at day 14). Nucleic acid content (DNA 21.1 and RNA 5.44 mg/g pancreas), total proteins (0.66 mg/mL pancreas) and pancreatic amylase (1031.3 100 SU/g pancreas) were significantly improved. Marked reduction in pancreatic oxidative and nitrosative stress; collagen (122 μmoles/100 mg pancreas) and TGF-β1 (118.56 pg/mL) levels were noted. Results obtained were comparable to those of positive control. DISCUSSION AND CONCLUSION The beneficial effect of COE may be attributed to its antioxidant, antinitrosative and antifibrotic actions. Hence, the study concludes that COE promotes spontaneous repair and regeneration of the pancreas.
Collapse
Affiliation(s)
- Jagdeep Kaur
- a Department of Research Innovations and Consultancy , IKG Punjab Technical University , Kapurthala , Punjab , India
- b Sri Sai College of Pharmacy, Badhani , Pathankot , Punjab , India
| | - Shabir Sidhu
- c Department of Life Sciences and Technology , Punjab Institute of Technology, IKG Punjab Technical University , Kapurthala , Punjab , India
| | - Kanwaljit Chopra
- d Pharmacology Research Laboratory , University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University , Chandigarh , India
| | - M U Khan
- b Sri Sai College of Pharmacy, Badhani , Pathankot , Punjab , India
| |
Collapse
|
44
|
Zeren S, Bayhan Z, Koçak C, Koçak FE, Metineren MH, Savran B, Kocak H, Algin MC, Kahraman C, Kocak A, Cosgun S. Antioxidant Effect of Ukrain Versus N-Acetylcysteine Against Acute Biliary Pancreatitis in An Experimental Rat Model. J INVEST SURG 2016; 30:116-124. [PMID: 27690697 DOI: 10.1080/08941939.2016.1230247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Purpose/Aim: Oxidative stress plays an important role in the pathogenesis of acute pancreatitis (AP). We compared the therapeutic effects of Ukrain (NSC 631570) and N-acetylcysteine (NAC) in rats with AP. MATERIALS AND METHODS Forty male Sprague Dawley rats were divided into four groups: controls; AP; AP with NAC; and AP with Ukrain. AP was induced via the ligation of the bile-pancreatic duct; drugs were administered intraperitoneally (i.p.) 30 min and 12 h after AP induction. Twenty-four hours after AP induction, animals were sacrificed and the pancreas was excised. Levels of malondialdehyde (MDA) and nitric oxide (NO), and activity levels of tumor necrosis factor (TNF)-α, and myeloperoxidase (MPO) were measured in tissue samples. Total oxidant status (TOS), total antioxidant status (TAS), and total bilirubin, as well as activity levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), amylase and lipase were measured in serum samples. Pancreatic tissue histopathology was also evaluated. RESULTS Test drugs reduced levels of MDA, NO, TNF-α, total bilirubin, AST, ALT, TOS and MPO, amylase and lipase activities (P < 0.001), and increased TAS (P < 0.001). Rats treated with test drugs attenuated AP-induced morphologic changes and decreased pancreatic damage scores compared with the AP group (P < 0.05). Both test drugs attenuated pancreatic damage, but the therapeutic effect was more pronounced in rats that received Ukrain than in those receiving NAC. CONCLUSIONS These results suggest that treatment with Ukrain or NAC can reduce pancreatic damage via anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Sezgin Zeren
- a Faculty of Medicine , Department of General Surgery , Dumlupinar University , Kutahya , Turkey
| | - Zulfu Bayhan
- a Faculty of Medicine , Department of General Surgery , Dumlupinar University , Kutahya , Turkey
| | - Cengiz Koçak
- b Faculty of Medicine , Department of Pathology , Dumlupinar University , Kutahya , Turkey
| | - Fatma Emel Koçak
- c Faculty of Medicine , Department of Medical Biochemistry , Dumlupinar University , Kutahya , Turkey
| | | | - Bircan Savran
- d Faculty of Medicine , Department of Pediatric Surgery , Dumlupinar University , Kutahya , Turkey
| | - Havva Kocak
- c Faculty of Medicine , Department of Medical Biochemistry , Dumlupinar University , Kutahya , Turkey
| | - Mustafa Cem Algin
- a Faculty of Medicine , Department of General Surgery , Dumlupinar University , Kutahya , Turkey
| | - Cuneyt Kahraman
- e Faculty of Medicine , Department of Internal Medicine , Dumlupinar University , Kutahya , Turkey
| | - Ahmet Kocak
- f Faculty of Medicine , Department of Histology and Embrology , Dumlupinar University , Kutahya , Turkey
| | - Suleyman Cosgun
- g Faculty of Medicine , Department of Gastroenterology and Hepatology , Dumlupinar University , Kutahya , Turkey
| |
Collapse
|
45
|
Kim JH, Lee JM. Clinicopathologic Review of 31 Cases of Solid Pseudopapillary Pancreatic Tumors: Can We Use the Scoring System of Microscopic Features for Suggesting Clinically Malignant Potential? Am Surg 2016. [PMID: 27097622 DOI: 10.1177/000313481608200414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A solid pseudopapillary tumor (SPT) is a pancreatic neoplasm of low malignant potential. The potentially malignant pathologic features of SPTs were regarded as angioinvasion, perineural invasion, deep invasion of the surrounding acinar tissue, and nuclear pleomorphism. We retrospectively reviewed 31 cases of SPTs (25 female and 6 male patients, with an average age of 35 ± 14 years). The mean follow-up period was 132.0 ± 55.9 months. To evaluate the clinical impact of above pathological parameters, we analyzed their correlation with actually observed clinical malignancy. In three cases, the SPTs were clearly clinically malignant: one patient had recurrences three times, one showed lymph node metastases, and one deep soft tissue invasion around the gastroduodenal artery. Tumor infiltration to the peripancreatic soft tissue was observed in 17 cases (54.8%). The pathologic features considered suggestive of malignant potential were angioinvasion (25.8%), perineural invasion (6.5%), presence of mitosis in 10 high-power fields (16.1%), and moderate nuclear pleomorphism (19.4%). The presence of at least three of these features was not correlated with clinically confirmed malignant behavior (P = 0.570). Microscopic pathologic features of SPTs cannot be reliably associated with aggressive clinical behavior. Moreover, the absence of these microscopic features cannot exclude clinical malignancy.
Collapse
Affiliation(s)
- Jang-Hee Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | | |
Collapse
|
46
|
Zeng J, Li LQ, Cheng J, Wang S, Chen X, Jiang Z. Meta-analysis of effectiveness and safety of octreotide combined with alprostadil for acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2016; 24:3119-3127. [DOI: 10.11569/wcjd.v24.i20.3119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To systematically evaluate the effectiveness and safety of octreotide combined with alprostadil in the treatment of acute pancreatitis (AP).
METHODS: Relevant randomized controlled trials (RCTs) were searched via databases including PubMed, CBM, VIP, CNKI and WanFang Data from their inception to October 2015, and the references of the included studies were also screened. Two reviewers screened the literature, assessed the quality of studies and extracted the data. RevMan 5.2 software was used to complete the meta-analysis.
RESULTS: Eighteen trials involving 1277 participants were included. The results of the systematic review showed that compared with the control group, the experimental group was superior with regard to clinical effective rate (RR = 1.20, 95%CI: 1.15-1.26), time to relief of bellyache [SMD = -2.68, 95%CI: -3.11-(-2.25)], time to relief of signs of abdominal tenderness [SMD = -2.54, 95%CI: -2.79-(-2.30)], time to recovery of blood amylase [SMD = -1.95, 95%CI: -2.15-(-1.76)], incidence of AP complications (RR = 0.30, 95%CI: 0.13-0.69), and average length of hospital stay [SMD = -8.95, 95%CI: -13.61-(-4.29)].
CONCLUSION: Octreotide combined with alprostadil for treating AP is superior to octreotide alone. Due to the limited quality of the included studies, our conclusion needs to be verified by more high quality studies.
Collapse
|
47
|
Song R, Yu D, Park J. Changes in gene expression of tumor necrosis factor alpha and interleukin 6 in a canine model of caerulein-induced pancreatitis. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2016; 80:236-241. [PMID: 27408338 PMCID: PMC4924559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/01/2016] [Indexed: 06/06/2023]
Abstract
Acute pancreatitis is an inflammatory process that frequently involves peripancreatic tissues and remote organ systems. It has high morbidity and mortality rates in both human and veterinary patients. The severity of pancreatitis is generally determined by events that occur after acinar cell injury in the pancreas, resulting in elevated levels of various proinflammatory mediators, such as interleukin (IL) 1β and 6, as well as tumor necrosis factor alpha (TNF-α). When these mediators are excessively released into the systemic circulation, severe pancreatitis occurs with systemic complications. This pathophysiological process is similar to that of sepsis; thus, there are many striking clinical similarities between patients with septic shock and those with severe acute pancreatitis. We induced acute pancreatitis using caerulein in dogs and measured the change in the gene expression of proinflammatory cytokines. The levels of TNF-α and IL-6 mRNA peaked at 3 h, at twice the baseline levels, and the serum concentrations of amylase and lipase also increased. Histopathological examination revealed severe hyperemia of the pancreas and hyperemia in the duodenal villi and the hepatic sinusoid. Thus, pancreatitis can be considered an appropriate model to better understand the development of naturally occurring sepsis and to assist in the effective treatment and management of septic patients.
Collapse
Affiliation(s)
| | | | - Jinho Park
- Address all correspondence to Dr. Jinho Park; telephone: +82-63-850-0949; fax: +82-63-850-0910; e-mail:
| |
Collapse
|
48
|
Bläuer M, Laaninen M, Sand J, Laukkarinen J. Reciprocal stimulation of pancreatic acinar and stellate cells in a novel long-term in vitro co-culture model. Pancreatology 2016; 16:570-7. [PMID: 27075041 DOI: 10.1016/j.pan.2016.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND/OBJECTIVES Pancreatic stellate cells (PSCs) are the key fibrogenic cells in the pancreas. Acinar cell injury is known to trigger PSC activation. To facilitate the experimental analysis of the crosstalk between acinar cells and PSCs, an in vitro system for their long-term co-cultivation was developed. MATERIALS AND METHODS PSCs and acinar cells capable of retaining their secretory phenotype in long-term in vitro culture were obtained from mouse pancreata. A dual-chamber co-culture model was built in 24-well format with acinar cells seeded in the wells and PSCs in tissue culture inserts. Acinar cell-3T3 fibroblast co-cultures served as controls. After 4-day maintenance, the acinar compartment was analyzed for cell morphology, secretory capability, necrosis (HMGB1), apoptosis (TUNEL) and inflammation (NFκB). PSCs were analyzed for migratory activity and extracellular matrix (ECM) protein expression. The results were compared to parallel monocultures. RESULTS Acinar cells in monoculture and in co-culture with fibroblasts exhibited a healthy monolayer arrangement and an ability to respond to 0.1 nM caerulein stimulus by increased amylase release. Co-culture with PSCs caused marked changes in acinar cell morphology and rendered them insensitive to secretagogue stimulus. Activation of NFκB and necrotic changes, but not apoptosis, were identified in co-cultured acinar cells. Co-culture increased the migratory activity and ECM protein expression of PSCs. CONCLUSIONS Humoral interactions between acinar and PSCs in co-culture were shown to reciprocally affect their cellular functions. With its two separable cell compartments the co-culture system provides a versatile culture setting that allows independent manipulation and analysis of both cell types.
Collapse
Affiliation(s)
- Merja Bläuer
- Tampere Pancreas Laboratory, Tampere University Hospital, Teiskontie 35, FIN-33521 Tampere, Finland
| | - Matias Laaninen
- Tampere Pancreas Laboratory, Tampere University Hospital, Teiskontie 35, FIN-33521 Tampere, Finland
| | - Juhani Sand
- Tampere Pancreas Laboratory, Tampere University Hospital, Teiskontie 35, FIN-33521 Tampere, Finland; Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Teiskontie 35, FIN-33521 Tampere, Finland
| | - Johanna Laukkarinen
- Tampere Pancreas Laboratory, Tampere University Hospital, Teiskontie 35, FIN-33521 Tampere, Finland; Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Teiskontie 35, FIN-33521 Tampere, Finland.
| |
Collapse
|
49
|
The Role of Eugenol in the Prevention of Acute Pancreatitis-Induced Acute Kidney Injury: Experimental Study. HPB SURGERY : A WORLD JOURNAL OF HEPATIC, PANCREATIC AND BILIARY SURGERY 2016; 2016:3203147. [PMID: 26884642 PMCID: PMC4739212 DOI: 10.1155/2016/3203147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/09/2015] [Accepted: 11/30/2015] [Indexed: 01/15/2023]
Abstract
Aim. Acute pancreatitis is an inflammatory intra-abdominal disease, which takes a severe form in 15–20% of patients and can result in high mortality especially when complicated by acute renal failure. The aim of this study is to assess the possible reduction in the extent of acute kidney injury after administration of eugenol in an experimental model of acute pancreatitis. Materials and Methods. 106 male Wistar rats weighing 220–350 g were divided into 3 groups: (1) Sham, with sham surgery; (2) Control, with induction of acute pancreatitis, through ligation of the biliopancreatic duct; and (3) Eugenol, with induction of acute pancreatitis and eugenol administration at a dose of 15 mg/kg. Serum urea and creatinine, histopathological changes, TNF-α, IL-6, and MPO activity in the kidneys were evaluated at predetermined time intervals. Results. The group that was administered eugenol showed milder histopathological changes than the Control group, TNF-α activity was milder in the Eugenol group, and there was no difference in activity for MPO and IL-6. Serum urea and creatinine levels were lower in the Eugenol group than in the Control group. Conclusions. Eugenol administration was protective for the kidneys in an experimental model of acute pancreatitis in rats.
Collapse
|
50
|
Feng WM, Guo HH, Xue T, Wang X, Tang CW, Ying B, Gong H, Cui G. Polyelectrolyte multilayers assembled from IL-10 plasmid DNA and TGF-β siRNA facilitate chronic pancreatitis treatment. RSC Adv 2016. [DOI: 10.1039/c6ra06681j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanoparticles assembled with IL-10 plasmid DNA and TGF-β siRNA can reduce inflammation and fibrosis in mice with chronic pancreatitis (CP).
Collapse
Affiliation(s)
- Wen-ming Feng
- Department of General Surgery
- The First Affiliated Hospital
- Huzhou University
- China
| | - Hui-hui Guo
- Research Center
- The First Affiliated Hospital
- Huzhou University
- China
| | - Tao Xue
- Research Center
- The First Affiliated Hospital
- Huzhou University
- China
| | - Xiang Wang
- Research Center
- The First Affiliated Hospital
- Huzhou University
- China
| | - Cheng-wu Tang
- Department of General Surgery
- The First Affiliated Hospital
- Huzhou University
- China
| | - Bao Ying
- Department of General Surgery
- The First Affiliated Hospital
- Huzhou University
- China
| | - Hui Gong
- Research Center
- The First Affiliated Hospital
- Huzhou University
- China
| | - Ge Cui
- Department of Pathology
- First Affiliated Hospital of Huzhou University
- Huzhou
- China
| |
Collapse
|