1
|
Chatterjee P, Moss CT, Omar S, Dhillon E, Hernandez Borges CD, Tang AC, Stevens DA, Hsu JL. Allergic Bronchopulmonary Aspergillosis (ABPA) in the Era of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators. J Fungi (Basel) 2024; 10:656. [PMID: 39330416 PMCID: PMC11433030 DOI: 10.3390/jof10090656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity disease caused by Aspergillus fumigatus (Af), prevalent in persons with cystic fibrosis (CF) or asthma. In ABPA, Af proteases drive a T-helper cell-2 (Th2)-mediated allergic immune response leading to inflammation that contributes to permanent lung damage. Corticosteroids and antifungals are the mainstays of therapies for ABPA. However, their long-term use has negative sequelae. The treatment of patients with CF (pwCF) has been revolutionized by the efficacy of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy. Pharmacological improvement in CFTR function with highly effective elexacaftor/tezacaftor/ivacaftor (ETI) provides unprecedented improvements in lung function and other clinical outcomes of pwCF. The mechanism behind the improvement in patient outcomes is a continued topic of investigation as our understanding of the role of CFTR function evolves. As ETI therapy gains traction in CF management, understanding its potential impact on ABPA, especially on the allergic immune response pathways and Af infection becomes increasingly crucial for optimizing patient outcomes. This literature review aims to examine the extent of these findings and expand our understanding of the already published research focusing on the intersection between ABPA therapeutic approaches in CF and the rapid impact of the evolving CFTR modulator landscape. While our literature search yielded limited reports specifically focusing on the role of CFTR modulator therapy on CF-ABPA, findings from epidemiologic and retrospective studies suggest the potential for CFTR modulator therapies to positively influence pulmonary outcomes by addressing the underlying pathophysiology of CF-ABPA, especially by decreasing inflammatory response and Af colonization. Thus, this review highlights the promising scope of CFTR modulator therapy in decreasing the overall prevalence and incidence of CF-ABPA.
Collapse
Affiliation(s)
- Paulami Chatterjee
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | - Carson Tyler Moss
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sarah Omar
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | - Ekroop Dhillon
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | | | - Alan C. Tang
- Department of Medicine, Keck School of Medicine, Los Angeles, CA 90089, USA;
| | - David A. Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA;
| | - Joe L. Hsu
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| |
Collapse
|
2
|
Steels S, Proesmans M, Bossuyt X, Dupont L, Frans G. Laboratory biomarkers in the diagnosis and follow-up of treatment of allergic bronchopulmonary aspergillosis in cystic fibrosis. Crit Rev Clin Lab Sci 2023; 60:1-24. [PMID: 35968577 DOI: 10.1080/10408363.2022.2101612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Allergic bronchopulmonary aspergillosis (ABPA), a severe inflammatory respiratory disease, is caused by a hypersensitivity reaction to the colonization of the airways with Aspergillus fumigatus. It is most often described in patients with asthma or cystic fibrosis. The diagnosis of ABPA is based on a combination of clinical, radiological, and immunological findings that have been included in different diagnostic criteria over the years. In this paper, we review the biomarkers included in these diagnostic criteria and novel research biomarkers that may be used in the diagnosis and treatment follow-up of ABPA in cystic fibrosis.
Collapse
Affiliation(s)
- Sophie Steels
- Department of Laboratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Marijke Proesmans
- Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Xavier Bossuyt
- Department of Laboratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Lieven Dupont
- Department of Respiratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Glynis Frans
- Department of Laboratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Kanaujia R, Arora A, Chakrabarti A, Rudramurthy SM, Agarwal R. Occurrence of Cystic Fibrosis Transmembrane Conductance Regulator Gene Mutations in Patients with Allergic Bronchopulmonary Aspergillosis Complicating Asthma. Mycopathologia 2022; 187:147-155. [PMID: 35430640 DOI: 10.1007/s11046-022-00631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
|
4
|
de Dios Caballero J, Cantón R, Ponce-Alonso M, García-Clemente MM, Gómez G. de la Pedrosa E, López-Campos JL, Máiz L, del Campo R, Martínez-García MÁ. The Human Mycobiome in Chronic Respiratory Diseases: Current Situation and Future Perspectives. Microorganisms 2022; 10:810. [PMID: 35456861 PMCID: PMC9029612 DOI: 10.3390/microorganisms10040810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 12/15/2022] Open
Abstract
Microbes play an important role in the pathogenesis of chronic lung diseases, such as chronic obstructive pulmonary disease, cystic fibrosis, non-cystic fibrosis bronchiectasis, and asthma. While the role of bacterial pathogens has been extensively studied, the contribution of fungal species to the pathogenesis of chronic lung diseases is much less understood. The recent introduction of next-generation sequencing techniques has revealed the existence of complex microbial lung communities in healthy individuals and patients with chronic respiratory disorders, with fungi being an important part of these communities' structure (mycobiome). There is growing evidence that the components of the lung mycobiome influence the clinical course of chronic respiratory diseases, not only by direct pathogenesis but also by interacting with bacterial species and with the host's physiology. In this article, we review the current knowledge on the role of fungi in chronic respiratory diseases, which was obtained by conventional culture and next-generation sequencing, highlighting the limitations of both techniques and exploring future research areas.
Collapse
Affiliation(s)
- Juan de Dios Caballero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute, 28034 Madrid, Spain; (J.d.D.C.); (M.P.-A.); (E.G.G.d.l.P.); (R.d.C.)
- CIBER of Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Rafael Cantón
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute, 28034 Madrid, Spain; (J.d.D.C.); (M.P.-A.); (E.G.G.d.l.P.); (R.d.C.)
- CIBER of Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Manuel Ponce-Alonso
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute, 28034 Madrid, Spain; (J.d.D.C.); (M.P.-A.); (E.G.G.d.l.P.); (R.d.C.)
- CIBER of Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Marta María García-Clemente
- Department of Pneumology, Central Asturias University Hospital, 33011 Oviedo, Spain;
- Principality Asturias Health Research Institute (ISPA), 33011 Oviedo, Spain
| | - Elia Gómez G. de la Pedrosa
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute, 28034 Madrid, Spain; (J.d.D.C.); (M.P.-A.); (E.G.G.d.l.P.); (R.d.C.)
- CIBER of Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, 28029 Madrid, Spain
| | - José Luis López-Campos
- Medical-Surgical Unit for Respiratory Diseases (CIBERES), Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, University of Seville, 41013 Sevilla, Spain;
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain; (L.M.); (M.Á.M.-G.)
| | - Luis Máiz
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain; (L.M.); (M.Á.M.-G.)
- Department of Pneumology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Rosa del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute, 28034 Madrid, Spain; (J.d.D.C.); (M.P.-A.); (E.G.G.d.l.P.); (R.d.C.)
- CIBER of Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Miguel Ángel Martínez-García
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain; (L.M.); (M.Á.M.-G.)
- Department of Pneumology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
| |
Collapse
|
5
|
Bojanowski CM, Lu S, Kolls JK. Mucosal Immunity in Cystic Fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2901-2912. [PMID: 35802761 PMCID: PMC9270582 DOI: 10.4049/jimmunol.2100424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/21/2021] [Indexed: 05/27/2023]
Abstract
The highly complex and variable genotype-phenotype relationships observed in cystic fibrosis (CF) have been an area of growing interest since the discovery of the CF transmembrane conductance regulator (CFTR) gene >30 y ago. The consistently observed excessive, yet ineffective, activation of both the innate and adaptive host immune systems and the establishment of chronic infections within the lung, leading to destruction and functional decline, remain the primary causes of morbidity and mortality in CF. The fact that both inflammation and pathogenic bacteria persist despite the introduction of modulator therapies targeting the defective protein, CFTR, highlights that we still have much to discover regarding mucosal immunity determinants in CF. Gene modifier studies have overwhelmingly implicated immune genes in the pulmonary phenotype of the disease. In this context, we aim to review recent advances in our understanding of the innate and adaptive immune systems in CF lung disease.
Collapse
Affiliation(s)
- Christine M Bojanowski
- Section of Pulmonary Diseases, Critical Care, and Environmental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA;
| | - Shiping Lu
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA; and
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
6
|
Small Molecule CCR4 Antagonists Protect Mice from Aspergillus Infection and Allergy. Biomolecules 2021; 11:biom11030351. [PMID: 33669094 PMCID: PMC7996545 DOI: 10.3390/biom11030351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/29/2022] Open
Abstract
The ability to regulate the recruitment of immune cells makes chemokines and their receptors attractive drug targets in many inflammatory diseases. Based on its preferential expression on T helper type 2 (Th2) cells, C-C chemokine receptor type 4 (CCR4) has been widely studied in the context of allergic diseases, but recent evidence on the expression of CCR4 in other cell types has considerably expanded the potential applications of CCR4 antagonism. However, the current number of approved indications, as well as the portfolio of CCR4-targeting drugs, are still limited. In the present study, we have assessed the potential therapeutic efficacy of a CCR4 small molecule antagonist, SP50, discovered via an in silico-based approach, against a variety of pre-clinical settings of infection with the fungus Aspergillus fumigatus. We show that SP50 efficiently worked as prophylactic vaccine adjuvant in immunocompetent mice, protected against invasive aspergillosis in immunosuppressed mice. Further, the CCR4 antagonist prevented allergic bronchopulmonary aspergillosis in susceptible mice, and in a murine model of cystic fibrosis, a genetic disorder characterized by chronic pulmonary inflammation and recurrent infections. In conclusion, our results extend the potential applications of CCR4 antagonism and prompt for the development of novel compounds with the potential to progress to clinical trials.
Collapse
|
7
|
Margalit A, Carolan JC, Kavanagh K. Bacterial Interactions with Aspergillus fumigatus in the Immunocompromised Lung. Microorganisms 2021; 9:microorganisms9020435. [PMID: 33669831 PMCID: PMC7923216 DOI: 10.3390/microorganisms9020435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The immunocompromised airways are susceptible to infections caused by a range of pathogens which increases the opportunity for polymicrobial interactions to occur. Pseudomonas aeruginosa and Staphylococcus aureus are the predominant causes of pulmonary infection for individuals with respiratory disorders such as cystic fibrosis (CF). The spore-forming fungus Aspergillus fumigatus, is most frequently isolated with P. aeruginosa, and co-infection results in poor outcomes for patients. It is therefore clinically important to understand how these pathogens interact with each other and how such interactions may contribute to disease progression so that appropriate therapeutic strategies may be developed. Despite its persistence in the airways throughout the life of a patient, A. fumigatus rarely becomes the dominant pathogen. In vitro interaction studies have revealed remarkable insights into the molecular mechanisms that drive agonistic and antagonistic interactions that occur between A. fumigatus and pulmonary bacterial pathogens such as P. aeruginosa. Crucially, these studies demonstrate that although bacteria may predominate in a competitive environment, A. fumigatus has the capacity to persist and contribute to disease.
Collapse
Affiliation(s)
| | | | - Kevin Kavanagh
- Correspondence: ; Tel.: +353-1-708-3859; Fax: +353-1-708-3845
| |
Collapse
|
8
|
Eickmeier O, Zissler UM, Wittschorek J, Unger F, Schmitt-Grohé S, Schubert R, Herrmann E, Zielen S. Clinical relevance of Aspergillus fumigatus sensitization in cystic fibrosis. Clin Exp Allergy 2020; 50:325-333. [PMID: 31886564 DOI: 10.1111/cea.13557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
RATIONALE The clinical relevance of sensitization to Aspergillus (A) fumigatus in cystic fibrosis (CF) is unclear. Some researchers propose that specific A fumigatus IgE is an innocent bystander, whereas others describe it as the major cause of TH-2-driven asthma-like disease. OBJECTIVES Lung function parameters in mild CF patients may be different in patients with and without A fumigatus sensitization. We aimed to ascertain whether allergen exposure to A fumigatus by bronchial allergen provocation (BAP) induces TH-2 inflammation comparable to an asthma-like disease. METHODS A total of 35 patients, aged 14.8 ± 8.5 years, and 20 healthy controls were investigated prospectively. The patients were divided into two groups: group 1 (n = 18): specific (s)IgE negative, and group 2 (n = 17): sIgE positive (≥0.7 KU/L) for A fumigatus. Lung function, exhaled NO, and induced sputum were analysed. All sensitized patients with an FEV1 > 75% (n = 13) underwent BAP with A fumigatus, and cell counts, and the expression of IL-5, IL-13, INF-γ, and IL-8 as well as transcription factors T-bet, GATA-3, and FoxP3, were measured. RESULTS Lung function parameters decreased significantly compared to controls, but not within the CF patient group. After BAP, 8 of 13 patients (61%) had a significant asthmatic response and increased eNO 24 hours later. In addition, marked TH-2-mediated inflammation involving eosinophils, IL-5, IL-13, and FoxP3 became apparent in induced sputum cells. CONCLUSION Our study demonstrated the clinical relevance of A fumigatus for the majority of sensitized CF patients. A distinct IgE/TH-2-dominated inflammation was found in induced sputum after A fumigatus exposure.
Collapse
Affiliation(s)
- Olaf Eickmeier
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Julia Wittschorek
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany
| | - Frederike Unger
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany
| | - Sabina Schmitt-Grohé
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany
| | - Ralf Schubert
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modeling, Goethe University, Frankfurt, Germany
| | - Stefan Zielen
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany
| |
Collapse
|
9
|
Fungal Infections and ABPA. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Gago S, Denning DW, Bowyer P. Pathophysiological aspects of Aspergillus colonization in disease. Med Mycol 2019; 57:S219-S227. [PMID: 30239804 DOI: 10.1093/mmy/myy076] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022] Open
Abstract
Aspergillus colonization of the lower respiratory airways is common in normal people, and of little clinical significance. However, in some patients, colonization is associated with severe disease including poorly controlled asthma, allergic bronchopulmonary aspergillosis (ABPA) with sputum plugs, worse lung function in chronic obstructive pulmonary aspergillosis (COPD), invasive aspergillosis, and active infection in patients with chronic pulmonary aspergillosis (CPA). Therefore, understanding the pathophysiological mechanisms of fungal colonization in disease is essential to develop strategies to avert or minimise disease. Aspergillus cell components promoting fungal adherence to the host surface, extracellular matrix, or basal lamina are indispensable for pathogen persistence. However, our understanding of individual differences in clearance of A. fumigatus from the lung in susceptible patients is close to zero.
Collapse
Affiliation(s)
- Sara Gago
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom
| | - David W Denning
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom.,National Aspergillosis Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom
| |
Collapse
|
11
|
Scheffold A, Schwarz C, Bacher P. Fungus-Specific CD4 T Cells as Specific Sensors for Identification of Pulmonary Fungal Infections. Mycopathologia 2017; 183:213-226. [PMID: 29168073 DOI: 10.1007/s11046-017-0229-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/14/2017] [Indexed: 12/24/2022]
Abstract
Patients with cystic fibrosis (CF) suffer from chronic lung infections, caused by bacterial, viral or fungal pathogens, which determine morbidity and mortality. The contribution of individual pathogens to chronic disease and acute lung exacerbations is often difficult to determine due to the complex composition of the lung microbiome in CF. In particular, the relevance of fungal pathogens in CF airways remains poorly understood due to limitations of current diagnostics to identify the presence of fungal pathogens and to resolve the individual host-pathogen interaction status. T-lymphocytes play an essential role in host defense against pathogens, but also in inappropriate immune reactions such as allergies. They have the capacity to specifically recognize and discriminate the different pathogens and orchestrate a diverse array of effector functions. Thus, the analysis of the fungus-specific T cell status of an individual can in principle provide detailed information about the identity of the fungal pathogen(s) encountered and the actual fungus-host interaction status. This may allow to classify patients, according to appropriate (protective) or inappropriate (pathology-associated) immune reactions against individual fungal pathogens. However, T cell-based diagnostics are currently not part of the clinical routine. The identification and characterization of fungus-specific T cells in health and disease for diagnostic purposes are associated with significant challenges. Recent technological developments in the field of fungus-specific T helper cell detection provide new insights in the host T cell-fungus interaction. In this review, we will discuss basic principles and the potential of T cell-based diagnostics, as well as the perspectives and further needs for use of T cells for improved clinical diagnostics of fungal diseases.
Collapse
Affiliation(s)
- Alexander Scheffold
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, Leibniz Association, Berlin, Germany.
| | - Carsten Schwarz
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Centre Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Bacher
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
12
|
Perisson C, Destruys L, Grenet D, Bassinet L, Derelle J, Sermet-Gaudelus I, Thumerelle C, Prevotat A, Rosner V, Clement A, Corvol H. Omalizumab treatment for allergic bronchopulmonary aspergillosis in young patients with cystic fibrosis. Respir Med 2017; 133:12-15. [PMID: 29173443 DOI: 10.1016/j.rmed.2017.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/11/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Allergic bronchopulmonary aspergillosis (ABPA) is a severe lung disease complication caused by an Aspergillus fumigatus-induced hypersensitivity that affects 2-15% of patients with cystic fibrosis (CF). The mainstay treatment consists of a combination of corticosteroids and antifungals. However, repeated or long-term corticosteroid therapies can lead to serious side effects. The monoclonal anti-IgE antibody, omalizumab, has demonstrated its efficacy in allergic asthma. As ABPA results from a hypersensitivity to a specific allergen, omalizumab might benefit CF patients with ABPA. Therefore, we conducted a retrospective study to investigate the effects of omalizumab on ABPA in CF patients. METHODS We retrospectively analyzed the clinical records of young patients with CF treated with omalizumab for an ABPA in several French CF centers. The clinical data were collected 3 months before the start of omalizumab treatment, at initiation, and every 3 months up to 12 following initiation. These data comprised clinical, biological, nutritional, and functional parameters. RESULTS Eighteen patients were included (mean age: 17.1 ± 5.2 yrs). Under omalizumab was observed a stabilization of the lung function decline associated with a significant decrease in the corticosteroid daily dose (p = 0.0007) and an improvement in the nutritional status (p = 0.01). No serious side effect of omalizumab was reported. CONCLUSIONS This study suggests that omalizumab might be an interesting therapeutic strategy in ABPA, associated with less side effects compared to long-term corticosteroids. Further randomized-controlled trials are needed to ascertain the efficacy of omalizumab in CF patients with ABPA.
Collapse
Affiliation(s)
| | - Leila Destruys
- APHP, Hôpital Trousseau, Cystic Fibrosis Center, Paris, France
| | | | - Laurence Bassinet
- Centre Hospitalier Intercommunal, Cystic Fibrosis Center, Creteil, France
| | - Jocelyne Derelle
- Hôpital D'enfants Vandœuvre-les-Nancy, Cystic Fibrosis Center, Nancy, France
| | | | | | | | - Vincent Rosner
- CHRU Strasbourg, Cystic Fibrosis Center, Strasbourg, France
| | - Annick Clement
- APHP, Hôpital Trousseau, Cystic Fibrosis Center, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMR S933, F-75012, Paris, France
| | - Harriet Corvol
- APHP, Hôpital Trousseau, Cystic Fibrosis Center, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France.
| |
Collapse
|
13
|
Pradenas GA, Myers JN, Torres AG. Characterization of the Burkholderia cenocepacia TonB Mutant as a Potential Live Attenuated Vaccine. Vaccines (Basel) 2017; 5:vaccines5040033. [PMID: 28956836 PMCID: PMC5748600 DOI: 10.3390/vaccines5040033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen prevalent in cystic fibrosis patients, which is particularly difficult to treat, causing chronic and eventually fatal infections. The lack of effective treatment options makes evident the need to develop alternative therapeutic or prophylactic approaches. Vaccines, and live attenuated vaccines, are an unexplored avenue to treat B. cenocepacia infections. Here we constructed and characterized a B. cenocepacia tonB mutant strain, which was unable to actively transport iron, to test whether this single gene deletion mutant (strain renamed GAP001) protected against an acute respiratory B. cenocepacia lethal infection. Here we show that the mutant strain GAP001 is attenuated, and effective at protecting against B. cenocepacia challenge. Intranasal administration of GAP001 to BALB/c mice resulted in almost complete survival with high degree of bacterial clearance.
Collapse
Affiliation(s)
- Gonzalo A Pradenas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Julia N Myers
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
14
|
Fungal Pathogens in CF Airways: Leave or Treat? Mycopathologia 2017; 183:119-137. [PMID: 28770417 DOI: 10.1007/s11046-017-0184-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Chronic airway infection plays an essential role in the progress of cystic fibrosis (CF) lung disease. In the past decades, mainly bacterial pathogens, such as Pseudomonas aeruginosa, have been the focus of researchers and clinicians. However, fungi are frequently detected in CF airways and there is an increasing body of evidence that fungal pathogens might play a role in CF lung disease. Several studies have shown an association of fungi, particularly Aspergillus fumigatus and Candida albicans, with the course of lung disease in CF patients. Mechanistically, in vitro and in vivo studies suggest that an impaired immune response to fungal pathogens in CF airways renders them more susceptible to fungi. However, it remains elusive whether fungi are actively involved in CF lung disease pathologies or whether they rather reflect a dysregulated airway colonization and act as microbial bystanders. A key issue for dissecting the role of fungi in CF lung disease is the distinction of dynamic fungal-host interaction entities, namely colonization, sensitization or infection. This review summarizes key findings on pathophysiological mechanisms and the clinical impact of fungi in CF lung disease.
Collapse
|
15
|
Armstrong-James D, Brown GD, Netea MG, Zelante T, Gresnigt MS, van de Veerdonk FL, Levitz SM. Immunotherapeutic approaches to treatment of fungal diseases. THE LANCET. INFECTIOUS DISEASES 2017; 17:e393-e402. [PMID: 28774700 DOI: 10.1016/s1473-3099(17)30442-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/20/2016] [Accepted: 02/09/2017] [Indexed: 12/15/2022]
Abstract
Fungal infections cause morbidity worldwide and are associated with an unacceptably high mortality despite the availability of antifungal drugs. The incidence of mycoses is rising because of the HIV pandemic and because immunomodulatory drugs are increasingly used to treat autoimmune diseases and cancer. New classes of antifungal drugs have only been partly successful in improving the prognosis for patients with fungal infection. Adjunctive host-directed therapy is therefore believed to be the only option to further improve patient outcomes. Recent advances in the understanding of complex interactions between fungi and host have led to the design and exploration of novel therapeutic strategies in cytokine therapy, vaccines, and cellular immunotherapy, each of which might become viable adjuncts to existing antifungal regimens. In this report, we discuss immunotherapeutic approaches-the rationale behind their design, the challenges in their use, and the progress that is so urgently needed to overcome the devastating effect of fungal diseases.
Collapse
Affiliation(s)
- Darius Armstrong-James
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London, UK.
| | - Gordon D Brown
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Mark S Gresnigt
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
16
|
Overton NL, Simpson A, Bowyer P, Denning DW. Genetic susceptibility to severe asthma with fungal sensitization. Int J Immunogenet 2017; 44:93-106. [PMID: 28371335 DOI: 10.1111/iji.12312] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/04/2017] [Accepted: 02/23/2017] [Indexed: 12/30/2022]
Abstract
Severe asthma is problematic and its pathogenesis poorly understood. Fungal sensitization is common, and many patients with severe asthma with fungal sensitization (SAFS), used to denote this subgroup of asthma, respond to antifungal therapy. We have investigated 325 haplotype-tagging SNPs in 22 candidate genes previously associated with aspergillosis in patients with SAFS, with comparisons in atopic asthmatics and healthy control patients, of whom 47 SAFS, 279 healthy and 152 atopic asthmatic subjects were genotyped successfully. Significant associations with SAFS compared with atopic asthma included Toll-like receptor 3 (TLR3) (p = .009), TLR9 (p = .025), C-type lectin domain family seven member A (dectin-1) (p = .043), interleukin-10 (IL-10) (p = .0010), mannose-binding lectin (MBL2) (p = .007), CC-chemokine ligand 2 (CCL2) (2 SNPs, p = .025 and .041), CCL17 (p = .002), plasminogen (p = .049) and adenosine A2a receptor (p = .024). These associations differ from those found in ABPA in asthma, indicative of contrasting disease processes. Additional and broader genetic association studies in SAFS, combined with experimental work, are likely to contribute to our understanding of different phenotypes of problematic asthma.
Collapse
Affiliation(s)
- N L Overton
- Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, The University of Manchester, Manchester, UK.,Manchester Fungal Infection Group (MFIG), The University of Manchester, Manchester, UK
| | - A Simpson
- Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - P Bowyer
- Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, The University of Manchester, Manchester, UK.,Manchester Fungal Infection Group (MFIG), The University of Manchester, Manchester, UK
| | - D W Denning
- Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, The University of Manchester, Manchester, UK.,Manchester Fungal Infection Group (MFIG), The University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Thronicke A, Heger N, Antweiler E, Krannich A, Roehmel J, Brandt C, Staab D, Tintelnot K, Schwarz C. Allergic bronchopulmonary aspergillosis is associated with pet ownership in cystic fibrosis. Pediatr Allergy Immunol 2016; 27:597-603. [PMID: 27145047 DOI: 10.1111/pai.12590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Late diagnosis of allergic bronchopulmonary aspergillosis (ABPA) is associated with significant lung function decline and morbidity in cystic fibrosis (CF). The association of ABPA and domestic pet ownership in patients with CF has not been elucidated yet. Our objective was to determine the association of ABPA with pet ownership in patients with CF. METHODS Clinical and microbiological data from certified local patient registry were analyzed for 109 patients with CF aged 1-64 years: 55 pet owner and 54 non-pet owners. The primary outcome of the retrospective observational study was the occurrence of ABPA in pet owners and non-pet owners with CF. The free statistical software R was utilized to investigate logistic regression models for association factors. RESULTS Of the 109 patients included in the study, 61 (56%) were female. The mean age of the total group was 25.4 ± 13.2 years. Adjusted analysis revealed that ABPA (OR 5.0227, 95% CI: 1.182-21.340, p = 0.029) was associated with pet ownership in patients with CF. Furthermore, ABPA in pet owners with CF was associated with an increased number of exacerbations (OR 6.446, 95% CI: 1.057-39.328, p = 0.043). Other outcomes did not significantly differ. CONCLUSION Owning a pet was associated with ABPA in patients with CF. Future prospective multicenter longitudinal studies are needed to investigate chronological causality between pet ownership, ABPA development, and pulmonary exacerbations and to determine whether these estimates are generalizable for ABPA susceptible patients beyond CF (asthma, bronchiectasis).
Collapse
Affiliation(s)
- Anja Thronicke
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Center Berlin/Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nikola Heger
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Center Berlin/Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elisabeth Antweiler
- Reference Laboratory for Cryptococcosis, Scedosporiosis and Imported Systemic Mycoses, FG16, Robert Koch Institute, Berlin, Germany
| | - Alexander Krannich
- Biostatistics Unit, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Roehmel
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Center Berlin/Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Brandt
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Center Berlin/Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Doris Staab
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Center Berlin/Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kathrin Tintelnot
- Reference Laboratory for Cryptococcosis, Scedosporiosis and Imported Systemic Mycoses, FG16, Robert Koch Institute, Berlin, Germany
| | - Carsten Schwarz
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Center Berlin/Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
18
|
Öz HH, Hartl D. Innate Immunity in Cystic Fibrosis: Novel Pieces of the Puzzle. J Innate Immun 2016; 8:529-530. [PMID: 27537521 DOI: 10.1159/000448285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Hasan-Halit Öz
- Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
19
|
Ralhan A, Laval J, Lelis F, Ballbach M, Grund C, Hector A, Hartl D. Current Concepts and Controversies in Innate Immunity of Cystic Fibrosis Lung Disease. J Innate Immun 2016; 8:531-540. [PMID: 27362371 PMCID: PMC6738757 DOI: 10.1159/000446840] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by chronic infection and inflammation. The inflammatory response in CF is dominated by the activation of the innate immune system. Bacteria and fungi represent the key pathogens chronically colonizing the CF airways. In response, innate immune pattern recognition receptors, expressed by airway epithelial and myeloid cells, sense the microbial threat and release chemoattractants to recruit large numbers of neutrophils into CF airways. However, neutrophils fail to efficiently clear the invading pathogens, but instead release harmful proteases and oxidants and finally cause tissue injury. Here, we summarize and discuss current concepts and controversies in the field of innate immunity in CF lung disease, facing the ongoing questions of whether inflammation is good or bad in CF and how innate immune mechanisms could be harnessed therapeutically.
Collapse
Affiliation(s)
- Anjali Ralhan
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Julie Laval
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Felipe Lelis
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Marlene Ballbach
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Charlotte Grund
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Andreas Hector
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Dominik Hartl
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
- Immunology, Inflammation and Infectious Diseases (I3) Discovery and Translational Area, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
20
|
Pradenas GA, Ross BN, Torres AG. Burkholderia cepacia Complex Vaccines: Where Do We Go from here? Vaccines (Basel) 2016; 4:vaccines4020010. [PMID: 27092530 PMCID: PMC4931627 DOI: 10.3390/vaccines4020010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/15/2023] Open
Abstract
Burkholderia comprises a wide variety of environmental Gram-negative bacteria. Burkholderia cepacia complex (Bcc) includes several Burkholderia species that pose a health hazard as they are able to cause respiratory infections in patients with chronic granulomatous disease and cystic fibrosis. Due to the intrinsic resistance to a wide array of antibiotics and naturally occurring immune evasion strategies, treatment of Bcc infections often proves to be unsuccessful. To date, limited work related to vaccine development has been performed for Bcc pathogens. In this review, we have gathered key aspects of Bcc research that have been reported in recent years related to vaccine efforts, virulence, immune responses, and animal models, and use this information to inform the research community of areas of opportunity toward development of a viable Bcc vaccine.
Collapse
Affiliation(s)
- Gonzalo A Pradenas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Brittany N Ross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
21
|
Kolwijck E, van de Veerdonk FL. The potential impact of the pulmonary microbiome on immunopathogenesis of Aspergillus-related lung disease. Eur J Immunol 2014; 44:3156-65. [PMID: 25256637 DOI: 10.1002/eji.201344404] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/17/2014] [Accepted: 09/23/2014] [Indexed: 02/04/2023]
Abstract
Aspergillosis is an infection or allergic response caused by fungi of the genus Aspergillus. The most common forms of aspergillosis are allergic bronchopulmonary aspergillosis, chronic pulmonary aspergillosis, and invasive pulmonary aspergillosis. Aspergillus also plays an important role in fungal sensitized asthma. Humans inhale Aspergillus spores every day and when the host is immunocompromised, Aspergillus spp. may cause severe pulmonary disease. There is increasing evidence that the microbiome plays a significant role in immune regulation, chronic inflammatory diseases, metabolism, and other physiological processes, including recovery from the effects of antibiotic treatment. Bacterial microbiome mediated resistance mechanisms probably play a major role in limiting fungal colonization of the lungs, and may therefore prevent humans from contracting Aspergillus-related diseases. In this perspective, we review this emerging area of research and discuss the role of the microbiome in aspergillosis, role of Aspergillus in the microbiome, and the influence of the microbiome on anti-Aspergillus host defense and its role in preventing aspergillosis.
Collapse
Affiliation(s)
- Eva Kolwijck
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
22
|
Hector A, Kröner C, Carevic M, Bakele M, Rieber N, Riethmüller J, Griese M, Zissel G, Hartl D. The chemokine CCL18 characterises Pseudomonas infections in cystic fibrosis lung disease. Eur Respir J 2014; 44:1608-15. [PMID: 25142483 DOI: 10.1183/09031936.00070014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cystic fibrosis (CF) lung disease is characterised by chronic Pseudomonas aeruginosa infection and leukocyte infiltration. Chemokines recruit leukocytes to sites of infection. Gene expression analysis identified the chemokine CCL18 as upregulated in CF leukocytes. We hypothesised that CCL18 characterises infection and inflammation in patients with CF lung disease. Therefore, we quantified CCL18 protein levels in the serum and airway fluids of CF patients and healthy controls, and studied CCL18 protein production by airway cells ex vivo. These studies demonstrated that CCL18 levels were increased in the serum and airway fluids from CF patients compared with healthy controls. Within CF patients, CCL18 levels were increased in P. aeruginosa-infected CF patients. CCL18 levels in the airways, but not in serum, correlated with severity of pulmonary obstruction in CF. Airway cells isolated from P. aeruginosa-infected CF patients produced significantly higher amounts of CCL18 protein compared with airway cells from CF patients without P. aeruginosa infection or healthy controls. Collectively, these studies show that CCL18 levels characterise chronic P. aeruginosa infection and pulmonary obstruction in patients with CF. CCL18 may, thus, serve as a potential biomarker and therapeutic target in CF lung disease.
Collapse
Affiliation(s)
- Andreas Hector
- Dept of Pediatrics I and Interdisciplinary Center for Infectious Diseases, University of Tübingen, Tübingen, Germany Both authors contributed equally
| | - Carolin Kröner
- Dept of Pediatrics, Ludwig-Maximilians-University, Munich, Germany Both authors contributed equally
| | - Melanie Carevic
- Dept of Pediatrics I and Interdisciplinary Center for Infectious Diseases, University of Tübingen, Tübingen, Germany
| | - Martina Bakele
- Dept of Pediatrics I and Interdisciplinary Center for Infectious Diseases, University of Tübingen, Tübingen, Germany
| | - Nikolaus Rieber
- Dept of Pediatrics I and Interdisciplinary Center for Infectious Diseases, University of Tübingen, Tübingen, Germany
| | - Joachim Riethmüller
- Dept of Pediatrics I and Interdisciplinary Center for Infectious Diseases, University of Tübingen, Tübingen, Germany
| | - Matthias Griese
- Dept of Pediatrics, Ludwig-Maximilians-University, Munich, Germany
| | - Gernot Zissel
- Dept of Pneumology, Center for Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Dominik Hartl
- Dept of Pediatrics I and Interdisciplinary Center for Infectious Diseases, University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Denning DW, Pashley C, Hartl D, Wardlaw A, Godet C, Del Giacco S, Delhaes L, Sergejeva S. Fungal allergy in asthma-state of the art and research needs. Clin Transl Allergy 2014; 4:14. [PMID: 24735832 PMCID: PMC4005466 DOI: 10.1186/2045-7022-4-14] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/19/2014] [Indexed: 01/31/2023] Open
Abstract
Sensitization to fungi and long term or uncontrolled fungal infection are associated with poor control of asthma, the likelihood of more severe disease and complications such as bronchiectasis and chronic pulmonary aspergillosis. Modelling suggests that >6.5 million people have severe asthma with fungal sensitizations (SAFS), up to 50% of adult asthmatics attending secondary care have fungal sensitization, and an estimated 4.8 million adults have allergic bronchopulmonary aspergillosis (ABPA). There is much uncertainty about which fungi and fungal allergens are relevant to asthma, the natural history of sensitisation to fungi, if there is an exposure response relationship for fungal allergy, and the pathogenesis and frequency of exacerbations and complications. Genetic associations have been described but only weakly linked to phenotypes. The evidence base for most management strategies in ABPA, SAFS and related conditions is weak. Yet straightforward clinical practice guidelines for management are required. The role of environmental monitoring and optimal means of controlling disease to prevent disability and complications are not yet clear. In this paper we set out the key evidence supporting the role of fungal exposure, sensitisation and infection in asthmatics, what is understood about pathogenesis and natural history and identify the numerous areas for research studies.
Collapse
Affiliation(s)
- David W Denning
- The National Aspergillosis Centre, University Hospital of South Manchester, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK ; Education and Research Centre, UHSM, Southmoor Road, Manchester M23 9LT, UK
| | - Catherine Pashley
- Leicester Institute for Lung Health and Respiratory Biomedical Research Unit, Department of Infection Immunity and Inflammation, University of Leicester, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK
| | - Domink Hartl
- Department of Pediatrics, Infectious Diseases & Immunology, University of Tübingen, Tübingen, Germany
| | - Andrew Wardlaw
- Leicester Institute for Lung Health and Respiratory Biomedical Research Unit, Department of Infection Immunity and Inflammation, University of Leicester, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK
| | - Cendrine Godet
- Department of Infectious Diseases, CHU la Milétrie, Poitiers, France
| | - Stefano Del Giacco
- Department of Medical Sciences "M. Aresu", University of Cagliari, Cagliari, Italy
| | - Laurence Delhaes
- Biology & Diversity of Emerging Eukaryotic Pathogens (BDEEP), Center for Infection and Immunity of Lille (CIIL), INSERM U1019, CNRS UMR8204, IFR142, Lille Pasteur Institute, Lille Nord de France University (EA4547), Lille, France ; Department of Parasitology-Mycology, Regional Hospital Center, Faculty of Medicine, Lille, France
| | - Svetlana Sergejeva
- Translational Immunology Group, Institute of Technology, Tartu University, Tartu, Estonia ; North Estonia Medical Centre, Tallinn, Estonia
| |
Collapse
|
24
|
Lung inflammation in cystic fibrosis: pathogenesis and novel therapies. Clin Biochem 2013; 47:539-46. [PMID: 24380764 DOI: 10.1016/j.clinbiochem.2013.12.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 12/24/2022]
Abstract
Despite remarkable progress following the identification of the causing gene, the final outcome of cystic fibrosis (CF) remains determined mainly by the progressive reduction of lung function. Inflammation of the airways is one of the key elements of the pathogenesis of the disease: it is responsible for the destruction of lung architecture, resulting in progressive loss of respiratory function. Bronchial infection induces an intense inflammatory reaction characterized by a massive invasion of neutrophils, the properties of which seems altered in CF. Moreover, the inflammatory process is also marked by a profuse release of soluble pro-inflammatory mediators, such as interleukin (IL)-6, IL-1β and IL-8 cytokines. In contrast, release of the anti-inflammatory mediator IL-10 is reduced, thus reflecting a pro-/anti-inflammatory imbalance. The inflammation/infection pair seems hard to dissociate, and the origin of the baneful consequences of the persisting excessive inflammatory responses remains to be cleared up: does inflammation follow or rather precede infection? Recent data suggest that uncontrolled inflammation is constitutive in CF. Countering it at early stages of the disease in order to prevent irretrievable damages in lungs remains a major priority in treating patients with CF. In this review, we discuss the usefulness and limitations of mouse models of CF to study the pathogenesis of human lung inflammatory disease, and the development of new potential strategies to reduce the inflammatory burden in the airways.
Collapse
|
25
|
Freihorst J, Paul K, Griese M. Seltene Lungenerkrankungen. PÄDIATRISCHE PNEUMOLOGIE 2013. [PMCID: PMC7123953 DOI: 10.1007/978-3-642-34827-3_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Rieber N, Brand A, Hector A, Graepler-Mainka U, Ost M, Schäfer I, Wecker I, Neri D, Wirth A, Mays L, Zundel S, Fuchs J, Handgretinger R, Stern M, Hogardt M, Döring G, Riethmüller J, Kormann M, Hartl D. Flagellin Induces Myeloid-Derived Suppressor Cells: Implications forPseudomonas aeruginosaInfection in Cystic Fibrosis Lung Disease. THE JOURNAL OF IMMUNOLOGY 2012; 190:1276-84. [DOI: 10.4049/jimmunol.1202144] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Hartl D, Gaggar A, Bruscia E, Hector A, Marcos V, Jung A, Greene C, McElvaney G, Mall M, Döring G. Innate immunity in cystic fibrosis lung disease. J Cyst Fibros 2012; 11:363-82. [PMID: 22917571 DOI: 10.1016/j.jcf.2012.07.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 12/16/2022]
Abstract
Chronic lung disease determines the morbidity and mortality of cystic fibrosis (CF) patients. The pulmonary immune response in CF is characterized by an early and non-resolving activation of the innate immune system, which is dysregulated at several levels. Here we provide a comprehensive overview of innate immunity in CF lung disease, involving (i) epithelial dysfunction, (ii) pathogen sensing, (iii) leukocyte recruitment, (iv) phagocyte impairment, (v) mechanisms linking innate and adaptive immunity and (iv) the potential clinical relevance. Dissecting the complex network of innate immune regulation and associated pro-inflammatory cascades in CF lung disease may pave the way for novel immune-targeted therapies in CF and other chronic infective lung diseases.
Collapse
Affiliation(s)
- D Hartl
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Delhaes L, Frealle E, Pinel C. Serum markers for allergic bronchopulmonary aspergillosis in cystic fibrosis: State of the art and further challenges. Med Mycol 2011; 48 Suppl 1:S77-87. [PMID: 21067334 DOI: 10.3109/13693786.2010.514301] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA), which results from hypersensitivity, primarily to Aspergillus, represents a severe complication in patients suffering from asthma or cystic fibrosis (CF). Since early treatment of ABPA is supposed to prevent long-term damages, ABPA has to be diagnosed promptly. However, this diagnosis is not straightforward due to clinical and radiological features of ABPA overlapping with those of CF. Despite ABPA specific diagnosis criteria proposed by the Cystic Fibrosis Foundation in 2003, making a definitive ABPA diagnosis in CF patients remains a challenge. Recent advances in the immunopathogenesis of ABPA have initiated the development of new serological tests, such as the recently reported detection of specific IgE to recombinant A. fumigatus allergens, or Thymus- and activation-regulated chemokine (TARC / CCL17), both of which are of value in the diagnosis of APBA. We review in this paper the serum markers that can advance ABPA diagnosis in CF patients, ranging from the well known criteria (anti-A. fumigatus IgE, IgG, and precipitins) to the recent biomarkers (IgE towards recombinant A. fumigatus allergens or TARC detection). Taking into account the up-dated physiopathology of ABPA, we discuss their place and their usefulness, especially TARC, to improve early ABPA detection and monitoring in CF patients.
Collapse
Affiliation(s)
- Laurence Delhaes
- University Lille Nord de France, University Hospital Centre, IFR, Institut Pasteur de Lille, France.
| | | | | |
Collapse
|