1
|
Gallo A, Catellani A, Ghilardelli F, Lapris M, Mastroeni C. Review: Strategies and technologies in preventing regulated and emerging mycotoxin co-contamination in forage for safeguarding ruminant health. Animal 2024; 18 Suppl 2:101280. [PMID: 39129068 DOI: 10.1016/j.animal.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Ruminants are often considered less susceptible to mycotoxins than monogastrics, owing to rumen microflora converting mycotoxins to less toxic compounds or several compounds present in the rumen-reticulum compartment, being able to bind the mycotoxin "mother" molecule that make them unavailable for absorption process in the gastro-intestinal tract of host animals. However, if ruminants consume feed contaminated by mycotoxins for long periods, their growth, development, and fertility can be compromised. Among regulated mycotoxins, the most studied and known for their effects are aflatoxins (AFs) AFB1, AFB2, AFG1 and AFG2, as well as the AFM1 for its high importance in dairy sector, deoxynivalenol (DON) and its metabolites 3/15 acetyl-DON and 3-glucoside DON, T-2 and HT-2 toxins, zearalenone, fumonisins, in particular that belong to the B class, and ochratoxin A. Furthermore, because of the emergence of multiple emerging mycotoxins that are detectable in feed utilised in ruminant diets, such as ensiled forage, there is now a growing focus on investigating these compounds by the scientific community to deepen their toxicity for animal health. Despite the enhancement of research, it is remarkable that there is a paucity of in vivo trials, as well as limited studies on nutrient digestibility and the impact of these molecules on rumen and intestinal functions or milk yield and quality. In this review, recent findings regarding the occurrence of regulated and emerging mycotoxins in forage and their possible adverse effects on dairy cattle are described, with special emphasis on animal performance and on rumen functionality.
Collapse
Affiliation(s)
- A Gallo
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy.
| | - A Catellani
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| | - F Ghilardelli
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| | - M Lapris
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| | - C Mastroeni
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| |
Collapse
|
2
|
Wang WH, Li CR, Qin XJ, Yang XQ, Xie SD, Jiang Q, Zou LH, Zhang YJ, Zhu GL, Zhao P. Novel Alkaloids from Aspergillus fumigatus VDL36, an Endophytic Fungus Associated with Vaccinium dunalianum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10970-10980. [PMID: 38708787 DOI: 10.1021/acs.jafc.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Eleven alkaloids (1-11) including seven new ones, 1-7, were isolated from the solid fermentation of Aspergillus fumigatus VDL36, an endophytic fungus isolated from the leaves of Vaccinium dunalianum Wight (Ericaceae), a perennial evergreen shrub distributed across the Southwest regions of China, Myanmar, and Vietnam. Their structures were elucidated on the basis of extensive spectroscopic methods. The isolates were evaluated for in vitro antifungal activities against five phytopathogenic fungi (Fusarium oxysporum, Coriolus versicolor, Fusarium solani, Botrytis cinerea, Fusarium graminearum). As a result, the new compounds fumigaclavine I (1), 13-ethoxycyclotryprostatin A (5), 13-dehydroxycyclotryprostatin A (6), and 12β-hydroxy-13-oxofumitremorgin C (7) exhibited antifungal activities with MIC values of 7.8-62.5 μg/mL which were comparable to the two positive controls ketoconazole (MIC = 7.8-31.25 μg/mL) and carbendazim (MIC = 1.95-7.8 μg/mL). Furthermore, compounds 1 and 5 demonstrated potent protective and curative effects against the tomato gray mold in vivo. Preliminary structure-activity relationships of the tested indole diketopiperazine alkaloids indicate that the introduction of a substituent group at position C-13 enhances their biological activities.
Collapse
Affiliation(s)
- Wei-Hua Wang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong 657000, Yunnan, P. R. China
| | - Chu-Ran Li
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China
| | - Xu-Jie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Xiao-Qin Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China
| | - Si-Da Xie
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China
| | - Qian Jiang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China
| | - Li-Hua Zou
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Guo-Lei Zhu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China
| |
Collapse
|
3
|
Wu YM, Yang XQ, Yang YB, Cai L, He FF, Ding ZT. The antifungal metabolites from coculture of Aspergillus fumigatus and Alternaria alternata associated with Coffea arabica. Nat Prod Res 2024; 38:753-758. [PMID: 37021795 DOI: 10.1080/14786419.2023.2196722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
One new cyclohexenone derivative, asperfumtone A (1) along with six known compounds were obtained from the coculture of Aspergillus fumigatus and Alternaria alternata associated with Coffea arabica. The configuration of 2 was first reported in the research. The structures were determined by extensive spectroscopic analyses, and ECD calculation. Compounds 3, 4 and 7 showed significant antifungal activities against coffee phytopathogens A. alternata and Fusarium incarnatum with MICs of 1 μg/mL. Compounds 1 and 2 showed weak antifungal activities against A. alternata and F. incarnatum with MICs of 32-64 μg/mL.
Collapse
Affiliation(s)
- Ya-Mei Wu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| | - Xue-Qiong Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| | - Ya-Bin Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| | - Le Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| | - Fei-Fei He
- School of Agriculture, Yunnan University, Kunming, People's Republic of China
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
- Yunnan University of Chinese Medicine, Kunming, People's Republic of China
| |
Collapse
|
4
|
Yurchenko AN, Nesterenko LE, Popov RS, Kirichuk NN, Chausova VE, Chingizova EA, Isaeva MP, Yurchenko EA. The Metabolite Profiling of Aspergillus fumigatus KMM4631 and Its Co-Cultures with Other Marine Fungi. Metabolites 2023; 13:1138. [PMID: 37999234 PMCID: PMC10673247 DOI: 10.3390/metabo13111138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
An Aspergillus fumigatus KMM 4631 strain was previously isolated from a Pacific soft coral Sinularia sp. sample and was found to be a source of a number of bioactive secondary metabolites. The aims of this work are the confirmation of this strain' identification based on ITS, BenA, CaM, and RPB2 regions/gene sequences and the investigation of secondary metabolite profiles of Aspergillus fumigatus KMM 4631 culture and its co-cultures with Penicillium hispanicum KMM 4689, Amphichorda sp. KMM 4639, Penicillium sp. KMM 4672, and Asteromyces cruciatus KMM 4696 from the Collection of Marine Microorganisms (PIBOC FEB RAS, Vladivostok, Russia). Moreover, the DPPH-radical scavenging activity, urease inhibition, and cytotoxicity of joint fungal cultures' extracts on HepG2 cells were tested. The detailed UPLC MS qTOF investigation resulted in the identification and annotation of indolediketopiperazine, quinazoline, and tryptoquivaline-related alkaloids as well as a number of polyketides (totally 20 compounds) in the extract of Aspergillus fumigatus KMM 4631. The metabolite profiles of the co-cultures of A. fumigatus with Penicillium hispanicum, Penicillium sp., and Amphichorda sp. were similar to those of Penicillium hispanicum, Penicillium sp., and Amphichorda sp. monocultures. The metabolite profile of the co-culture of A. fumigatus with Asteromyces cruciatus differed from that of each monoculture and may be more promising for the isolation of new compounds.
Collapse
Affiliation(s)
- Anton N. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (L.E.N.); (R.S.P.); (N.N.K.); (V.E.C.); (E.A.C.); (M.P.I.)
| | | | | | | | | | | | | | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (L.E.N.); (R.S.P.); (N.N.K.); (V.E.C.); (E.A.C.); (M.P.I.)
| |
Collapse
|
5
|
El-Dash HA, Yousef NE, Aboelazm AA, Awan ZA, Yahya G, El-Ganiny AM. Optimizing Eco-Friendly Degradation of Polyvinyl Chloride (PVC) Plastic Using Environmental Strains of Malassezia Species and Aspergillus fumigatus. Int J Mol Sci 2023; 24:15452. [PMID: 37895132 PMCID: PMC10607177 DOI: 10.3390/ijms242015452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Worldwide, huge amounts of plastics are being introduced into the ecosystem, causing environmental pollution. Generally, plastic biodegradation in the ecosystem takes hundreds of years. Hence, the isolation of plastic-biodegrading microorganisms and finding optimum conditions for their action is crucial. The aim of the current study is to isolate plastic-biodegrading fungi and explore optimum conditions for their action. Soil samples were gathered from landfill sites; 18 isolates were able to grow on SDA. Only 10 isolates were able to the degrade polyvinyl chloride (PVC) polymer. Four isolates displayed promising depolymerase activity. Molecular identification revealed that three isolates belong to genus Aspergillus, and one isolate was Malassezia sp. Three isolates showed superior PVC-biodegrading activity (Aspergillus-2, Aspergillus-3 and Malassezia) using weight reduction analysis and SEM. Two Aspergillus strains and Malassezia showed optimum growth at 40 °C, while the last strain grew better at 30 °C. Two Aspergillus isolates grew better at pH 8-9, and the other two isolates grow better at pH 4. Maximal depolymerase activity was monitored at 50 °C, and at slightly acidic pH in most isolates, FeCl3 significantly enhanced depolymerase activity in two Aspergillus isolates. In conclusion, the isolated fungi have promising potential to degrade PVC and can contribute to the reduction of environmental pollution in eco-friendly way.
Collapse
Affiliation(s)
- Heba A. El-Dash
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.A.E.-D.); (N.E.Y.); (G.Y.)
| | - Nehal E. Yousef
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.A.E.-D.); (N.E.Y.); (G.Y.)
| | - Abeer A. Aboelazm
- Microbiology and Immunology Department, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Zuhier A. Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Galal Yahya
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.A.E.-D.); (N.E.Y.); (G.Y.)
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Amira M. El-Ganiny
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.A.E.-D.); (N.E.Y.); (G.Y.)
| |
Collapse
|
6
|
Ding H, Wang JP, Deng SP, Gan JL, Li BX, Yao LL, Zhang SQ, Cai L, Ding ZT. A new sesquiterpenoid from the aconitum-derived fungus Aspergillus fumigatus M1. Nat Prod Res 2023; 37:3443-3451. [PMID: 35609146 DOI: 10.1080/14786419.2022.2080207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/27/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
A new bergamotane sesquiterpenoid, fumigatanol (1), along with nine known compounds (2-10) were isolated from the Aconitum-derived fungus Aspergillus fumigatus M1. Their structures were established on the basis of extensive spectroscopic analyses, ECD experiment and NMR computational method. Antibacterial and cytotoxic activities of compound 1 were evaluated and no obvious antibacterial and cytotoxic activities were observed at concentrations of 256 μg/mL and 40.00 μM, respectively.
Collapse
Affiliation(s)
- Hao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Jia-Peng Wang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Si-Ping Deng
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Jun-Li Gan
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Bing-Xian Li
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Ling-Ling Yao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Sheng-Qi Zhang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Le Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
- College of Pharmacy, Dali University, Dali, P.R. China
| |
Collapse
|
7
|
Nicoletti R, Bellavita R, Falanga A. The Outstanding Chemodiversity of Marine-Derived Talaromyces. Biomolecules 2023; 13:1021. [PMID: 37509057 PMCID: PMC10377321 DOI: 10.3390/biom13071021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Fungi in the genus Talaromyces occur in every environment in both terrestrial and marine contexts, where they have been quite frequently found in association with plants and animals. The relationships of symbiotic fungi with their hosts are often mediated by bioactive secondary metabolites, and Talaromyces species represent a prolific source of these compounds. This review highlights the biosynthetic potential of marine-derived Talaromyces strains, using accounts from the literature published since 2016. Over 500 secondary metabolites were extracted from axenic cultures of these isolates and about 45% of them were identified as new products, representing a various assortment of chemical classes such as alkaloids, meroterpenoids, isocoumarins, anthraquinones, xanthones, phenalenones, benzofurans, azaphilones, and other polyketides. This impressive chemodiversity and the broad range of biological properties that have been disclosed in preliminary assays qualify these fungi as a valuable source of products to be exploited for manifold biotechnological applications.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples Federico II, 80100 Napoli, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
8
|
Gill H, Sykes EME, Kumar A, Sorensen JL. Isolation of Bioactive Metabolites from Soil Derived Fungus-Aspergillus fumigatus. Microorganisms 2023; 11:microorganisms11030590. [PMID: 36985164 PMCID: PMC10053833 DOI: 10.3390/microorganisms11030590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Fungi produce numerous secondary metabolites with intriguing biological properties for the health, industrial, and agricultural sectors. Herein, we report the high-yield isolation of phenolic natural products, N-formyl-4-hydroxyphenyl-acetamide 1 (~117 mg/L) and atraric acid 2 (~18 mg/L), from the ethyl acetate extract of the soil-derived fungus, Aspergillus fumigatus. The structures of compounds 1 and 2 were elucidated through the detailed spectroscopic analysis of NMR and LCMS data. These compounds were assayed for their antimicrobial activities. It was observed that compounds 1 and 2 exhibited strong inhibition against a series of fungal strains but only weak antibacterial properties against multi-drug-resistant strains. More significantly, this is the first known instance of the isolation of atraric acid 2 from a non-lichen fungal strain. We suggest the optimization of this fungal strain may exhibit elevated production of compounds 1 and 2, potentially rendering it a valuable source for the industrial-scale production of these natural antimicrobial compounds. Further investigation is necessary to establish the veracity of this hypothesis.
Collapse
Affiliation(s)
- Harman Gill
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ellen M. E. Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - John L. Sorensen
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence:
| |
Collapse
|
9
|
Xu R, Lou Y, Tidu A, Bulet P, Heinekamp T, Martin F, Brakhage A, Li Z, Liégeois S, Ferrandon D. The Toll pathway mediates Drosophila resilience to Aspergillus mycotoxins through specific Bomanins. EMBO Rep 2023; 24:e56036. [PMID: 36322050 PMCID: PMC9827548 DOI: 10.15252/embr.202256036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022] Open
Abstract
Host defense against infections encompasses both resistance, which targets microorganisms for neutralization or elimination, and resilience/disease tolerance, which allows the host to withstand/tolerate pathogens and repair damages. In Drosophila, the Toll signaling pathway is thought to mediate resistance against fungal infections by regulating the secretion of antimicrobial peptides, potentially including Bomanins. We find that Aspergillus fumigatus kills Drosophila Toll pathway mutants without invasion because its dissemination is blocked by melanization, suggesting a role for Toll in host defense distinct from resistance. We report that mutants affecting the Toll pathway or the 55C Bomanin locus are susceptible to the injection of two Aspergillus mycotoxins, restrictocin and verruculogen. The vulnerability of 55C deletion mutants to these mycotoxins is rescued by the overexpression of Bomanins specific to each challenge. Mechanistically, flies in which BomS6 is expressed in the nervous system exhibit an enhanced recovery from the tremors induced by injected verruculogen and display improved survival. Thus, innate immunity also protects the host against the action of microbial toxins through secreted peptides and thereby increases its resilience to infection.
Collapse
Affiliation(s)
- Rui Xu
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| | - Yanyan Lou
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| | - Antonin Tidu
- Université de StrasbourgStrasbourgFrance
- Architecture et Réactivité de l'ARNUPR 9002 du CNRSStrasbourgFrance
| | - Philippe Bulet
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209CNRS UMR 5309GrenobleFrance
- Platform BioPark ArchampsArchampsFrance
| | - Thorsten Heinekamp
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knöll Institute (Leibniz‐HKI)JenaGermany
| | - Franck Martin
- Université de StrasbourgStrasbourgFrance
- Architecture et Réactivité de l'ARNUPR 9002 du CNRSStrasbourgFrance
| | - Axel Brakhage
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knöll Institute (Leibniz‐HKI)JenaGermany
- Institute of MicrobiologyFriedrich Schiller University JenaJenaGermany
| | - Zi Li
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
| | - Samuel Liégeois
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| | - Dominique Ferrandon
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| |
Collapse
|
10
|
Diyaolu OA, Preet G, Fagbemi AA, Annang F, Pérez-Moreno G, Bosch-Navarrete C, Adebisi OO, Oluwabusola ET, Milne BF, Jaspars M, Ebel R. Antiparasitic Activities of Compounds Isolated from Aspergillus fumigatus Strain Discovered in Northcentral Nigeria. Antibiotics (Basel) 2023; 12:antibiotics12010109. [PMID: 36671310 PMCID: PMC9854968 DOI: 10.3390/antibiotics12010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
In this study, we explored a fungal strain UIAU-3F identified as Aspergillus fumigatus isolated from soil samples collected from the River Oyun in Kwara State, Nigeria. In order to explore its chemical diversity, the fungal strain UIAU-3F was cultured in three different fermentation media, which resulted in different chemical profiles, evidenced by LC-ESI-MS-based metabolomics and multivariate analysis. The methanolic extract afforded two known compounds, fumitremorgin C (1) and pseurotin D (2). The in vitro antiparasitic assays of 1 against Trypanosoma cruzi and Plasmodium falciparum showed moderate activity with IC50 values of 9.6 µM and 2.3 µM, respectively, while 2 displayed IC50 values > 50 µM. Molecular docking analysis was performed on major protein targets to better understand the potential mechanism of the antitrypanosomal and antiplasmodial activities of the two known compounds.
Collapse
Affiliation(s)
- Oluwatofunmilayo A. Diyaolu
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
- Correspondence:
| | - Gagan Preet
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Adeshola A. Fagbemi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Lead City University, Ibadan 200005, Nigeria
| | - Frederick Annang
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento 34, Armilla, 18016 Granada, Spain
| | - Guiomar Pérez-Moreno
- Institut de Parasitiologia Biomedicina “Lopez-Neyra”, Consejo Superior de Investigaciones Cientificas (CSIC) Avda. Del Conocimiento 17, Armilla, 18016 Granada, Spain
| | - Cristina Bosch-Navarrete
- Institut de Parasitiologia Biomedicina “Lopez-Neyra”, Consejo Superior de Investigaciones Cientificas (CSIC) Avda. Del Conocimiento 17, Armilla, 18016 Granada, Spain
| | - Olusoji O. Adebisi
- School of Biosciences, Aston University Birmingham, Birmingham B4 7ET, UK
| | - Emmanuel T. Oluwabusola
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Bruce F. Milne
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
- CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Rainer Ebel
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| |
Collapse
|
11
|
Rush TA, Tannous J, Lane MJ, Gopalakrishnan Meena M, Carrell AA, Golan JJ, Drott MT, Cottaz S, Fort S, Ané JM, Keller NP, Pelletier DA, Jacobson DA, Kainer D, Abraham PE, Giannone RJ, Labbé JL. Lipo-Chitooligosaccharides Induce Specialized Fungal Metabolite Profiles That Modulate Bacterial Growth. mSystems 2022; 7:e0105222. [PMID: 36453934 PMCID: PMC9764981 DOI: 10.1128/msystems.01052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Lipo-chitooligosaccharides (LCOs) are historically known for their role as microbial-derived signaling molecules that shape plant symbiosis with beneficial rhizobia or mycorrhizal fungi. Recent studies showing that LCOs are widespread across the fungal kingdom have raised questions about the ecological function of these compounds in organisms that do not form symbiotic relationships with plants. To elucidate the ecological function of these compounds, we investigate the metabolomic response of the ubiquitous human pathogen Aspergillus fumigatus to LCOs. Our metabolomics data revealed that exogenous application of various types of LCOs to A. fumigatus resulted in significant shifts in the fungal metabolic profile, with marked changes in the production of specialized metabolites known to mediate ecological interactions. Using network analyses, we identify specific types of LCOs with the most significant effect on the abundance of known metabolites. Extracts of several LCO-induced metabolic profiles significantly impact the growth rates of diverse bacterial species. These findings suggest that LCOs may play an important role in the competitive dynamics of non-plant-symbiotic fungi and bacteria. This study identifies specific metabolomic profiles induced by these ubiquitously produced chemicals and creates a foundation for future studies into the potential roles of LCOs as modulators of interkingdom competition. IMPORTANCE The activation of silent biosynthetic gene clusters (BGC) for the identification and characterization of novel fungal secondary metabolites is a perpetual motion in natural product discoveries. Here, we demonstrated that one of the best-studied symbiosis signaling compounds, lipo-chitooligosaccharides (LCOs), play a role in activating some of these BGCs, resulting in the production of known, putative, and unknown metabolites with biological activities. This collection of metabolites induced by LCOs differentially modulate bacterial growth, while the LCO standards do not convey the same effect. These findings create a paradigm shift showing that LCOs have a more prominent role outside of host recognition of symbiotic microbes. Importantly, our work demonstrates that fungi use LCOs to produce a variety of metabolites with biological activity, which can be a potential source of bio-stimulants, pesticides, or pharmaceuticals.
Collapse
Affiliation(s)
- Tomás A. Rush
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Joanna Tannous
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Matthew J. Lane
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Alyssa A. Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jacob J. Golan
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Milton T. Drott
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- USDA-ARS Cereal Disease Laboratory, St. Paul, Minnesota, USA
| | - Sylvain Cottaz
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Sébastien Fort
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nancy P. Keller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dale A. Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Daniel A. Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - David Kainer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Richard J. Giannone
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jesse L. Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
12
|
Chen JX, Xia DD, Yang XQ, Yang YB, Ding ZT. The antifeedant and antifungal cryptic metabolites isolated from tobacco endophytes induced by host medium and coculture. Fitoterapia 2022; 163:105335. [DOI: 10.1016/j.fitote.2022.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022]
|
13
|
de Sá JDM, Kumla D, Dethoup T, Kijjoa A. Bioactive Compounds from Terrestrial and Marine-Derived Fungi of the Genus Neosartorya †. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072351. [PMID: 35408769 PMCID: PMC9000665 DOI: 10.3390/molecules27072351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022]
Abstract
Fungi comprise the second most species-rich organism group after that of insects. Recent estimates hypothesized that the currently reported fungal species range from 3.5 to 5.1 million types worldwide. Fungi can grow in a wide range of habitats, from the desert to the depths of the sea. Most develop in terrestrial environments, but several species live only in aquatic habitats, and some live in symbiotic relationships with plants, animals, or other fungi. Fungi have been proved to be a rich source of biologically active natural products, some of which are clinically important drugs such as the β-lactam antibiotics, penicillin and cephalosporin, the immunosuppressant, cyclosporine, and the cholesterol-lowering drugs, compactin and lovastatin. Given the estimates of fungal biodiversity, it is easy to perceive that only a small fraction of fungi worldwide have ever been investigated regarding the production of biologically valuable compounds. Traditionally, fungi are classified primarily based on the structures associated with sexual reproduction. Thus, the genus Neosartorya (Family Trichocomaceae) is the telemorphic (sexual state) of the Aspergillus section known as Fumigati, which produces both a sexual state with ascospores and an asexual state with conidiospores, while the Aspergillus species produces only conidiospores. However, according to the Melbourne Code of nomenclature, only the genus name Aspergillus is to be used for both sexual and asexual states. Consequently, the genus name Neosartorya was no longer to be used after 1 January 2013. Nevertheless, the genus name Neosartorya is still used for the fungi that had already been taxonomically classified before the new rule was in force. Another aspect is that despite the small number of species (23 species) in the genus Neosartorya, and although less than half of them have been investigated chemically, the chemical diversity of this genus is impressive. Many chemical classes of compounds, some of which have unique scaffolds, such as indole alkaloids, peptides, meroterpenes, and polyketides, have been reported from its terrestrial, marine-derived, and endophytic species. Though the biological and pharmacological activities of a small fraction of the isolated metabolites have been investigated due to the available assay systems, they exhibited relevant biological and pharmacological activities, such as anticancer, antibacterial, antiplasmodial, lipid-lowering, and enzyme-inhibitory activities.
Collapse
Affiliation(s)
- Joana D. M. de Sá
- Laboratório de Química Orgânica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Decha Kumla
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Tida Dethoup
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10240, Thailand;
| | - Anake Kijjoa
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Correspondence: ; Tel.: +351-22-042-8331; Fax: +351-22-206-2232
| |
Collapse
|
14
|
Hussein ME, Mohamed OG, El-Fishawy AM, El-Askary HI, El-Senousy AS, El-Beih AA, Nossier ES, Naglah AM, Almehizia AA, Tripathi A, Hamed AA. Identification of Antibacterial Metabolites from Endophytic Fungus Aspergillus fumigatus, Isolated from Albizia lucidior Leaves (Fabaceae), Utilizing Metabolomic and Molecular Docking Techniques. Molecules 2022; 27:molecules27031117. [PMID: 35164382 PMCID: PMC8839868 DOI: 10.3390/molecules27031117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
The rapid spread of bacterial infection caused by Staphylococcus aureus has become a problem to public health despite the presence of past trials devoted to controlling the infection. Thus, the current study aimed to explore the chemical composition of the extract of endophytic fungus Aspergillus fumigatus, isolated from Albizia lucidior leaves, and investigate the antimicrobial activity of isolated metabolites and their probable mode of actions. The chemical investigation of the fungal extract via UPLC/MS/MS led to the identification of at least forty-two metabolites, as well as the isolation and complete characterization of eight reported metabolites. The antibacterial activities of isolated metabolites were assessed against S. aureus using agar disc diffusion and microplate dilution methods. Compounds ergosterol, helvolic acid and monomethyl sulochrin-4-sulphate showed minimal inhibitory concentration (MIC) values of 15.63, 1.95 and 3.90 µg/mL, respectively, compared to ciprofloxacin. We also report the inhibitory activity of the fungal extract on DNA gyrase and topoisomerase IV, which led us to perform molecular docking using the three most active compounds isolated from the extract against both enzymes. These active compounds had the required structural features for S. aureus DNA gyrase and topoisomerase IV inhibition, evidenced via molecular docking.
Collapse
Affiliation(s)
- Mai E. Hussein
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (O.G.M.); (A.M.E.-F.); (H.I.E.-A.); (A.S.E.-S.)
- Correspondence:
| | - Osama G. Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (O.G.M.); (A.M.E.-F.); (H.I.E.-A.); (A.S.E.-S.)
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Ahlam M. El-Fishawy
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (O.G.M.); (A.M.E.-F.); (H.I.E.-A.); (A.S.E.-S.)
| | - Hesham I. El-Askary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (O.G.M.); (A.M.E.-F.); (H.I.E.-A.); (A.S.E.-S.)
| | - Amira S. El-Senousy
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (O.G.M.); (A.M.E.-F.); (H.I.E.-A.); (A.S.E.-S.)
| | - Ahmed A. El-Beih
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt;
| | - Ahmed M. Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.N.); (A.A.A.)
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.N.); (A.A.A.)
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ahmed A. Hamed
- Microbial Chemistry Department, National Research Centre, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt;
| |
Collapse
|
15
|
Wang X, Serrano R, González-Menéndez V, Mackenzie TA, Ramos MC, Frisvad JC, Larsen TO. A Molecular Networking Based Discovery of Diketopiperazine Heterodimers and Aspergillicins from Aspergillus caelatus. JOURNAL OF NATURAL PRODUCTS 2022; 85:25-33. [PMID: 35045259 DOI: 10.1021/acs.jnatprod.1c00526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The number of species in Aspergillus section Flavi has recently increased to 36 and includes some of the most important and well-known species in the genus Aspergillus. Numerous secondary metabolites, especially mycotoxins, have been reported from species such as A. flavus; however many of the more recently described species are less studied from a chemical point of view. This paper describes the use of MS/MS-based molecular networking to investigate the metabolome of A. caelatus leading to the discovery of several new diketopiperazine dimers and aspergillicins. An MS-guided isolation procedure yielded six new compounds, including asperazines D-H (1-5) and aspergillicin H (6). Asperazines G and H are artifacts derived from asperazines E and F formed during the separation process by formic acid. Two known compounds, aspergillicins A and C (7 and 8), were isolated from the same strain. Structures were elucidated by analyzing their HR-MS/MS and NMR spectroscopic data. The absolute configuration of asperazines D-F and aspergillicin H were deduced from the combination of NMR, Marfey's method, and ECD analyses.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs. Lyngby, Denmark
| | - Rachel Serrano
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | | | - Thomas A Mackenzie
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Maria C Ramos
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs. Lyngby, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Lai BL, Zhou HM, Chen ZH, Chen HY, Zhang QW, Tao YW. The crystal structure of C19H20O8. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2021-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C19H20O8, triclinic,
P
1
‾
$P\overline{1}$
(no. 2), a = 7.0708(4) Å, b = 8.1261(4) Å, c = 16.1067(6) Å, α = 81.252(4)°, β = 81.500(4)°, γ = 77.890(4)°, V = 887.88(8) Å3, Z = 2, R
gt
(F) = 0.0418, wR
ref(F
2) = 0.1158, T = 150 K.
Collapse
Affiliation(s)
- Bao-Long Lai
- Department of Pharmacy of Respiratory Disease , The 7th Affiliated Hospital of Sun Yat-Sen University , Shenzhen , Guangdong 518107 , P. R. China
| | - Hai-Ming Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
| | - Zan-Hong Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
| | - Hui-Ying Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
| | - Qin-Wen Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
| | - Yi-Wen Tao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
| |
Collapse
|
17
|
Li ZT, Zeng PY, Chen ZM, Guan WJ, Wang T, Lin Y, Li SQ, Zhang ZJ, Zhan YQ, Wang MD, Tan GB, Li X, Ye F. Exhaled Volatile Organic Compounds for Identifying Patients With Chronic Pulmonary Aspergillosis. Front Med (Lausanne) 2021; 8:720119. [PMID: 34631744 PMCID: PMC8495266 DOI: 10.3389/fmed.2021.720119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Diagnosing chronic pulmonary aspergillosis is a major challenge in clinical practice. The development and validation of a novel, sensitive and specific assay for diagnosing chronic pulmonary aspergillosis is urgently needed. Methods: From April 2018 to June 2019, 53 patients with chronic pulmonary aspergillosis (CPA), 32 patients with community-acquired pneumonia (CAP) and 48 healthy controls were recruited from the First Affiliated Hospital of Guangzhou Medical University. Clinical characteristics and samples were collected at enrollment. All exhaled breath samples were analyzed offline using thermal desorption single-photon ionization time-of-flight mass spectrometry; to analyze the metabolic pathways of the characteristic volatile organic compounds, serum samples were subjected to ultrahigh-performance liquid chromatography. Results: We identified characteristic volatile organic compounds in patients with chronic pulmonary aspergillosis, which mainly consisted of phenol, neopentyl alcohol, toluene, limonene and ethylbenzene. These compounds were assessed using a logistic regression model. The sensitivity and specificity were 95.8 and 96.9% for discriminating patients in the CPA group from those in the CAP group and 95.8 and 97.9% for discriminating patients in the CPA group from healthy controls, respectively. The concentration of limonene (m/z 136) correlated significantly positively with anti-Aspergillus fumigatus IgG antibody titers (r = 0.420, P < 0.01). After antifungal treatment, serum IgG and the concentration of limonene (m/z 136) decreased in the subgroup of patients with chronic pulmonary aspergillosis. Conclusions: We identified VOCs that can be used as biomarkers for differential diagnosis and therapeutic response prediction in patients with chronic pulmonary aspergillosis.
Collapse
Affiliation(s)
- Zheng-Tu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pei-Ying Zeng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhao-Ming Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tong Wang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, China.,Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Guangzhou, China
| | - Ye Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shao-Qiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Juan Zhang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, China.,Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Guangzhou, China.,College of Pharmacy, Hena University of Chinese Medicine, Zhengzhou, China
| | - Yang-Qing Zhan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming-Die Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guo-Bin Tan
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, China.,Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Guangzhou, China.,Guangzhou Hexin Instrument Co., Ltd., Guangzhou, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, China.,Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Guangzhou, China
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Christiansen JV, Isbrandt T, Petersen C, Sondergaard TE, Nielsen MR, Pedersen TB, Sørensen JL, Larsen TO, Frisvad JC. Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Appl Microbiol Biotechnol 2021; 105:8157-8193. [PMID: 34625822 DOI: 10.1007/s00253-021-11597-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Quinones represent an important group of highly structurally diverse, mainly polyketide-derived secondary metabolites widely distributed among filamentous fungi. Many quinones have been reported to have important biological functions such as inhibition of bacteria or repression of the immune response in insects. Other quinones, such as ubiquinones are known to be essential molecules in cellular respiration, and many quinones are known to protect their producing organisms from exposure to sunlight. Most recently, quinones have also attracted a lot of industrial interest since their electron-donating and -accepting properties make them good candidates as electrolytes in redox flow batteries, like their often highly conjugated double bond systems make them attractive as pigments. On an industrial level, quinones are mainly synthesized from raw components in coal tar. However, the possibility of producing quinones by fungal cultivation has great prospects since fungi can often be grown in industrially scaled bioreactors, producing valuable metabolites on cheap substrates. In order to give a better overview of the secondary metabolite quinones produced by and shared between various fungi, mainly belonging to the genera Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium, this review categorizes quinones into families such as emodins, fumigatins, sorbicillinoids, yanuthones, and xanthomegnins, depending on structural similarities and information about the biosynthetic pathway from which they are derived, whenever applicable. The production of these quinone families is compared between the different genera, based on recently revised taxonomy. KEY POINTS: • Quinones represent an important group of secondary metabolites widely distributed in important fungal genera such as Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. • Quinones are of industrial interest and can be used in pharmacology, as colorants and pigments, and as electrolytes in redox flow batteries. • Quinones are grouped into families and compared between genera according to the revised taxonomy.
Collapse
Affiliation(s)
- J V Christiansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - T Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - C Petersen
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - T E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - M R Nielsen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T B Pedersen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - J L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
19
|
Vrinceanu D, Dumitru M, Patrascu OM, Costache A, Papacocea T, Cergan R. Current diagnosis and treatment of rhinosinusal aspergilloma (Review). Exp Ther Med 2021; 22:1264. [PMID: 34603532 PMCID: PMC8453335 DOI: 10.3892/etm.2021.10699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/02/2021] [Indexed: 11/05/2022] Open
Abstract
There are numerous types of sinusitis caused by fungal strains, some of which already colonize the nasal cavity. Mild forms present fungus balls growing inside a preexisting sinus cavity. The invasive type ranges from chronic manifestations to acute aggravated episodes. The latter scenario is encountered in cases with reduced immune responses, such as patients with diabetes, individuals receiving any form of transplant, AIDS cases and chemotherapy patients. Without the control of immunosuppression, the infection is aggravated and extends to the orbit and inside the skull base, regardless of the prompt surgical and medical treatment. This is the most common pathogenic fungus on the nasal sinuses level. It can occasionally enter the sinus cavity during dental procedures. The pathogenesis is enhanced by anaerobic conditions in poorly ventilated sinus cavities. Rhinosinusal aspergilloma has a slow, insidious evolution over months and even years. Our experience revealed the presence of both a dental problem and previous self-administered antibiotic regimens in almost every case. The initial symptoms are common with sinusitis of dental origin, but aspergilloma should be considered when a patient with a competent immune system does not respond to standard antibiotic treatment. The final diagnosis of rhinosinusal aspergilloma is conducted on a pathology sample with silver staining. The bacteriology exam of the sinus secretion rarely reveals a fungus infection; however, as revealed in our clinical experience, there may be coinfection with other multidrug-resistant bacteria. Surgical treatment must establish a wide exposure of the sinus cavity and correct drainage regardless of the external, combined or endoscopic approach. Early diagnosis and emergency surgical debridement along with administering systemic antifungal compounds in some cases represent the key to the successful treatment of invasive aspergilloma.
Collapse
Affiliation(s)
- Daniela Vrinceanu
- ENT Department, Bucharest Emergency University Hospital, 010271 Bucharest, Romania
| | - Mihai Dumitru
- ENT Department, Bucharest Emergency University Hospital, 010271 Bucharest, Romania
| | - Oana Maria Patrascu
- Department of Pathology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Adrian Costache
- Department of Pathology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Toma Papacocea
- Department of Neurosurgery, 'Sf. Pantelimon' Hospital, 021661 Bucharest, Romania
| | - Romica Cergan
- Department of Anatomy, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
20
|
Wang X, Subko K, Kildgaard S, Frisvad JC, Larsen TO. Mass Spectrometry-Based Network Analysis Reveals New Insights Into the Chemodiversity of 28 Species in Aspergillus section Flavi. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:719420. [PMID: 37744124 PMCID: PMC10512371 DOI: 10.3389/ffunb.2021.719420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/12/2021] [Indexed: 09/26/2023]
Abstract
Aspergillus section Flavi includes some of the most famous mycotoxin producing filamentous fungi known to mankind. In recent years a number of new species have been included in section Flavi, however these species have been much less studied from a chemical point of view. In this study, we explored one representative strain of a total of 28 fungal species in section Flavi by systematically evaluating the relationship between taxonomy and secondary metabolites with LC-MS/MS analysis for the first time and dereplication through an in-house database and the Global Natural Product Social Molecular Networking (GNPS) platform. This approach allowed rapid identification of two new cyclopiazonic acid producers (A. alliaceus and A. arachidicola) and two new tenuazonic acid producers (A. arachidicola and A. leporis). Moreover, for the first time we report species from section Flavi to produce fumifungin and sphingofungins B-D. Altogether, this study emphasizes that the chemical diversity of species in genus Aspergillus section Flavi is larger than previously recognized, and especially that understudied species are prolific producers of important mycotoxins such as fumi- and sphingofungins not previously reported from this section. Furthermore, our work demonstrates Global Natural Product Social (GNPS) Molecular Networking as a powerful tool for large-scale chemotaxonomic analysis of closely related species in filamentous fungi.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Karolina Subko
- Food Machinery and Chemical (FMC) Agricultural Solutions, Hørsholm, Denmark
| | - Sara Kildgaard
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jens C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Thomas O. Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
21
|
Boysen JM, Saeed N, Hillmann F. Natural products in the predatory defence of the filamentous fungal pathogen Aspergillus fumigatus. Beilstein J Org Chem 2021; 17:1814-1827. [PMID: 34394757 PMCID: PMC8336654 DOI: 10.3762/bjoc.17.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022] Open
Abstract
The kingdom of fungi comprises a large and highly diverse group of organisms that thrive in diverse natural environments. One factor to successfully confront challenges in their natural habitats is the capability to synthesize defensive secondary metabolites. The genetic potential for the production of secondary metabolites in fungi is high and numerous potential secondary metabolite gene clusters have been identified in sequenced fungal genomes. Their production may well be regulated by specific ecological conditions, such as the presence of microbial competitors, symbionts or predators. Here we exemplarily summarize our current knowledge on identified secondary metabolites of the pathogenic fungus Aspergillus fumigatus and their defensive function against (microbial) predators.
Collapse
Affiliation(s)
- Jana M Boysen
- Junior Research Group Evolution of Microbial Interactions, Leibniz-Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Nauman Saeed
- Junior Research Group Evolution of Microbial Interactions, Leibniz-Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Falk Hillmann
- Junior Research Group Evolution of Microbial Interactions, Leibniz-Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| |
Collapse
|
22
|
Zou R, Wei C, Zhang X, Zhou D, Xu J. Alkaloids from endophytic fungus Aspergillus fumigatus HQD24 isolated from the Chinese mangrove plant Rhizophora mucronata. Nat Prod Res 2021; 36:5069-5073. [PMID: 34180322 DOI: 10.1080/14786419.2021.1916017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chemical investigation of endophytic fungus Aspergillus fumigatus HQD24, isolated from the flower of Rhizophora mucronata led to the isolation of eight alkaloids, including pyripyropene A (1), 1,11-dideacetyl-pyripyropene A (2), pyripyropene E (3), chaetominine (4), tryptoquivaline J (5), fumitremorgin C (6), 1-acetyl-β-carboline (7), and nicotinic acid (8). Their structures were unambiguously elucidated on the basis of extensive spectroscopic data and comparison with the data of literature. Compound 2 was known as a synthetic product and isolated as a natural product for the first time. The immunosuppressive and cytotoxic activities of all isolated compounds were evaluated.
Collapse
Affiliation(s)
- Renjian Zou
- Hainan Provincial Fine Chemical Engineering Research Center, School of Chemical Engineering and Technology, Hainan University, Haikou, P.R. China
| | - Chengwen Wei
- Hainan Provincial Fine Chemical Engineering Research Center, School of Chemical Engineering and Technology, Hainan University, Haikou, P.R. China
| | - Xuexia Zhang
- Hainan Provincial Fine Chemical Engineering Research Center, School of Chemical Engineering and Technology, Hainan University, Haikou, P.R. China
| | - Dongdong Zhou
- Hainan Provincial Fine Chemical Engineering Research Center, School of Chemical Engineering and Technology, Hainan University, Haikou, P.R. China
| | - Jing Xu
- Hainan Provincial Fine Chemical Engineering Research Center, School of Chemical Engineering and Technology, Hainan University, Haikou, P.R. China
| |
Collapse
|
23
|
Co-Occurrence of Regulated and Emerging Mycotoxins in Corn Silage: Relationships with Fermentation Quality and Bacterial Communities. Toxins (Basel) 2021; 13:toxins13030232. [PMID: 33806727 PMCID: PMC8004697 DOI: 10.3390/toxins13030232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022] Open
Abstract
Sixty-four corn silages were characterized for chemicals, bacterial community, and concentrations of several fungal metabolites. Silages were grouped in five clusters, based on detected mycotoxins, and they were characterized for being contaminated by (1) low levels of Aspergillus- and Penicillium-mycotoxins; (2) low levels of fumonisins and other Fusarium-mycotoxins; (3) high levels of Aspergillus-mycotoxins; (4) high levels of non-regulated Fusarium-mycotoxins; (5) high levels of fumonisins and their metabolites. Altersetin was detected in clusters 1, 3, and 5. Rugulusovin or brevianamide F were detected in several samples, with the highest concentration in cluster 3. Emodin was detected in more than 50.0% of samples of clusters 1, 3 and 5, respectively. Kojic acid occurred mainly in clusters 1 and 2 at very low concentrations. Regarding Fusarium mycotoxins, high occurrences were observed for FB3, FB4, FA1, whereas the average concentrations of FB6 and FA2 were lower than 12.4 µg/kg dry matter. Emerging Fusarium-produced mycotoxins, such as siccanol, moniliformin, equisetin, epiequisetin and bikaverin were detected in the majority of analyzed corn silages. Pestalotin, oxaline, phenopirrozin and questiomycin A were detected at high incidences. Concluding, this work highlighted that corn silages could be contaminated by a high number of regulated and emerging mycotoxins.
Collapse
|
24
|
Rocha MC, Fabri JHTM, Silva LP, Angolini CFF, Bertolini MC, da Cunha AF, Valiante V, Goldman GH, Fill TP, Malavazi I. Transcriptional Control of the Production of Aspergillus fumigatus Conidia-Borne Secondary Metabolite Fumiquinazoline C Important for Phagocytosis Protection. Genetics 2021; 218:6168429. [PMID: 33705521 DOI: 10.1093/genetics/iyab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/28/2021] [Indexed: 02/04/2023] Open
Abstract
Aspergillus fumigatus produces diverse secondary metabolites whose biological functions and regulation remain to be understood. Despite the importance of the conidia for this fungus, the role of the conidia-born metabolite fumiquinazoline C (FqC) is unclear. Here, we describe a dual function of the cell-wall integrity pathway in regulating FqC biosynthesis dictated by the MAPK kinase MpkA, which phosphorylates one of the nonribosomal peptide synthetases enzymes of the cluster (FmqC), and the transcription factor RlmA, which directly regulates the expression of fmq genes. Another level of crosstalk between the FqC regulation and the cell physiology is described since the deletion of the stress-responsive transcription factor sebA provokes derepression of the fmq cluster and overproduction of FqC. Thus, we describe a mechanism by which A. fumigatus controls FqC biosynthesis orchestrated by MpkA-RlmA and SebA and hence enabling survival and adaptation to the environmental niche, given that FqC is a deterrent of ameba predation.
Collapse
Affiliation(s)
- Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - João Henrique Tadini Marilhano Fabri
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Lilian Pereira Silva
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia, Instituto de Química de Araraquara, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Vito Valiante
- Leibniz Research Group Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Gustavo Henrique Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Taicia Pacheco Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
25
|
Oyedeji AB, Green E, Adebiyi JA, Ogundele OM, Gbashi S, Adefisoye MA, Oyeyinka SA, Adebo OA. Metabolomic approaches for the determination of metabolites from pathogenic microorganisms: A review. Food Res Int 2021; 140:110042. [PMID: 33648268 DOI: 10.1016/j.foodres.2020.110042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/04/2020] [Accepted: 12/13/2020] [Indexed: 12/30/2022]
Abstract
Metabolomics is a high precision analytical approach to obtaining detailed information of varieties of metabolites produced in biological systems, including foods. This study reviews the use of metabolomic approaches such as liquid chromatography mass spectrometry (LCMS), gas chromatography mass spectrometry (GC-MS), matrix assisted laser desorption /ionization tandem time of flight mass spectrometry (MALDI-TOF-MS) and nuclear magnetic resonance (NMR) for investigating the presence of foodborne pathogens and their metabolites. Pathogenic fungi and their notable metabolites (mycotoxins) have been studied more extensively using metabolomics as compared to bacteria, necessitating further studies in this regard. Nevertheless, such identified fungal and bacteria metabolites could be used as biomarkers for a more rapid detection of these pathogens in food. Other important compounds detected through metabolomics could also be correlated to functionality of these pathogenic strains, determined by the composition of the foods in which they exist, thereby providing insights into their metabolism. Considering the prevalence of these food pathogens, metabolomics still has potentials in the determination of food-borne pathogenic microorganisms especially for the determination of pathogenic bacteria toxins and is expected to generate research interests for further studies and applications.
Collapse
Affiliation(s)
- Ajibola Bamikole Oyedeji
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa.
| | - Ezekiel Green
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Janet Adeyinka Adebiyi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Opeolu Mayowa Ogundele
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Martins Ajibade Adefisoye
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Samson Adeoye Oyeyinka
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa.
| |
Collapse
|
26
|
Jiang C, Lv G, Tu Y, Cheng X, Duan Y, Zeng B, He B. Applications of CRISPR/Cas9 in the Synthesis of Secondary Metabolites in Filamentous Fungi. Front Microbiol 2021; 12:638096. [PMID: 33643273 PMCID: PMC7905030 DOI: 10.3389/fmicb.2021.638096] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Filamentous fungi possess the capacity to produce a wide array of secondary metabolites with diverse biological activities and structures, such as lovastatin and swainsonine. With the advent of the post-genomic era, increasing amounts of cryptic or uncharacterized secondary metabolite biosynthetic gene clusters are continually being discovered. However, owing to the longstanding lack of versatile, comparatively simple, and highly efficient genetic manipulation techniques, the broader exploration of industrially important secondary metabolites has been hampered thus far. With the emergence of CRISPR/Cas9-based genome editing technology, this dilemma may be alleviated, as this advanced technique has revolutionized genetic research and enabled the exploitation and discovery of new bioactive compounds from filamentous fungi. In this review, we introduce the CRISPR/Cas9 system in detail and summarize the latest applications of CRISPR/Cas9-mediated genome editing in filamentous fungi. We also briefly introduce the specific applications of the CRISPR/Cas9 system and CRISPRa in the improvement of secondary metabolite contents and discovery of novel biologically active compounds in filamentous fungi, with specific examples noted. Additionally, we highlight and discuss some of the challenges and deficiencies of using the CRISPR/Cas9-based genome editing technology in research on the biosynthesis of secondary metabolites as well as future application of CRISPR/Cas9 strategy in filamentous fungi are highlighted and discussed.
Collapse
Affiliation(s)
- Chunmiao Jiang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Gongbo Lv
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaojie Cheng
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yitian Duan
- School of Information, Renmin University of China, Beijing, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China.,College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
27
|
Triastuti A, Haddad M, Barakat F, Mejia K, Rabouille G, Fabre N, Amasifuen C, Jargeat P, Vansteelandt M. Dynamics of Chemical Diversity during Co-Cultures: An Integrative Time-Scale Metabolomics Study of Fungal Endophytes Cophinforma mamane and Fusarium solani. Chem Biodivers 2021; 18:e2000672. [PMID: 33289281 DOI: 10.1002/cbdv.202000672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/07/2020] [Indexed: 11/07/2022]
Abstract
A rapid and efficient metabolomic study of Cophinforma mamane and Fusarium solani co-cultivation in time-series based analysis was developed to study metabolome variations during their fungal interactions. The fungal metabolomes were studied through the integration of four metabolomic tools: MS-DIAL, a chromatographic deconvolution of liquid-chromatography-mass spectrometry (LC/MS); MS-FINDER, a structure-elucidation program with a wide range metabolome database; GNPS, an effective method to organize MS/MS fragmentation spectra, and MetaboAnalyst, a comprehensive web application for metabolomic data analysis and interpretation. Co-cultures of C. mamane and F. solani induced different patterns of metabolite production over 10 days of incubation and induced production of five de novo compounds not occurring in monocultures. These results emphasize that co-culture in time-frame analysis is an interesting method to unravel hidden metabolome in the investigation of fungal chemodiversity.
Collapse
Affiliation(s)
- Asih Triastuti
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, 31400, Toulouse, France.,Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, 55584, Indonesia
| | - Mohamed Haddad
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, 31400, Toulouse, France
| | - Fatima Barakat
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, 31400, Toulouse, France
| | - Kember Mejia
- Instituto de Investigaciones de la Amazonía Peruana, Avenida Abelardo Quiñonez Km. 4.5, Iquitos, 1600, Peru
| | - Gabriel Rabouille
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, 31400, Toulouse, France
| | - Nicolas Fabre
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, 31400, Toulouse, France
| | - Carlos Amasifuen
- Facultad de Ingeniería Civil y Ambiental [FICIAM], Escuela de Ingeniería Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza [UNTRM, Chachapoyas, 01001, Peru
| | - Patricia Jargeat
- Laboratoire Evolution et Diversité Biologique UMR 5174, Université de Toulouse, CNRS, IRD, UPS, 31062, Toulouse, France
| | | |
Collapse
|
28
|
Fungal Bioactive Anthraquinones and Analogues. Toxins (Basel) 2020; 12:toxins12110714. [PMID: 33198270 PMCID: PMC7698144 DOI: 10.3390/toxins12110714] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022] Open
Abstract
This review, covering the literature from 1966 to the present (2020), describes naturally occurring fungal bioactive anthraquinones and analogues biosynthesized by the acetate route and concerning several different functionalized carbon skeletons. Hydrocarbons, lipids, sterols, esters, fatty acids, derivatives of amino acids, and aromatic compounds are metabolites belonging to other different classes of natural compounds and are generated by the same biosynthetic route. All of them are produced by plant, microorganisms, and marine organisms. The biological activities of anthraquinones and analogues comprise phytotoxic, antibacterial, antiviral, anticancer, antitumor, algicide, antifungal, enzyme inhibiting, immunostimulant, antiplatelet aggregation, cytotoxic, and antiplasmodium activities. The review also covers some practical industrial applications of anthraquinones.
Collapse
|
29
|
Perspectives of Microbial Metabolites as Pesticides in Agricultural Pest Management. REFERENCE SERIES IN PHYTOCHEMISTRY 2020. [DOI: 10.1007/978-3-319-96397-6_44] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Guruceaga X, Perez-Cuesta U, Abad-Diaz de Cerio A, Gonzalez O, Alonso RM, Hernando FL, Ramirez-Garcia A, Rementeria A. Fumagillin, a Mycotoxin of Aspergillus fumigatus: Biosynthesis, Biological Activities, Detection, and Applications. Toxins (Basel) 2019; 12:E7. [PMID: 31861936 PMCID: PMC7020470 DOI: 10.3390/toxins12010007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022] Open
Abstract
Fumagillin is a mycotoxin produced, above all, by the saprophytic filamentous fungus Aspergillus fumigatus. This mold is an opportunistic pathogen that can cause invasive aspergillosis, a disease that has high mortality rates linked to it. Its ability to adapt to environmental stresses through the production of secondary metabolites, including several mycotoxins (gliotoxin, fumagillin, pseurotin A, etc.) also seem to play an important role in causing these infections. Since the discovery of the A. fumigatus fumagillin in 1949, many studies have focused on this toxin and in this review we gather all the information currently available. First of all, the structural characteristics of this mycotoxin and the different methods developed for its determination are given in detail. Then, the biosynthetic gene cluster and the metabolic pathway involved in its production and regulation are explained. The activity of fumagillin on its target, the methionine aminopeptidase type 2 (MetAP2) enzyme, and the effects of blocking this enzyme in the host are also described. Finally, the applications that this toxin and its derivatives have in different fields, such as the treatment of cancer and its microsporicidal activity in the treatment of honeybee hive infections with Nosema spp., are reviewed. Therefore, this work offers a complete review of all the information currently related to the fumagillin mycotoxin secreted by A. fumigatus, important because of its role in the fungal infection process but also because it has many other applications, notably in beekeeping, the treatment of infectious diseases, and in oncology.
Collapse
Affiliation(s)
- Xabier Guruceaga
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (X.G.); (U.P.-C.); (A.A.-D.d.C.); (F.L.H.)
| | - Uxue Perez-Cuesta
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (X.G.); (U.P.-C.); (A.A.-D.d.C.); (F.L.H.)
| | - Ana Abad-Diaz de Cerio
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (X.G.); (U.P.-C.); (A.A.-D.d.C.); (F.L.H.)
| | - Oskar Gonzalez
- FARMARTEM Group, Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (O.G.); (R.M.A.)
| | - Rosa M. Alonso
- FARMARTEM Group, Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (O.G.); (R.M.A.)
| | - Fernando Luis Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (X.G.); (U.P.-C.); (A.A.-D.d.C.); (F.L.H.)
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (X.G.); (U.P.-C.); (A.A.-D.d.C.); (F.L.H.)
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (X.G.); (U.P.-C.); (A.A.-D.d.C.); (F.L.H.)
| |
Collapse
|
31
|
Vassaux A, Meunier L, Vandenbol M, Baurain D, Fickers P, Jacques P, Leclère V. Nonribosomal peptides in fungal cell factories: from genome mining to optimized heterologous production. Biotechnol Adv 2019; 37:107449. [PMID: 31518630 DOI: 10.1016/j.biotechadv.2019.107449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Fungi are notoriously prolific producers of secondary metabolites including nonribosomal peptides (NRPs). The structural complexity of NRPs grants them interesting activities such as antibiotic, anti-cancer, and anti-inflammatory properties. The discovery of these compounds with attractive activities can be achieved by using two approaches: either by screening samples originating from various environments for their biological activities, or by identifying the related clusters in genomic sequences thanks to bioinformatics tools. This genome mining approach has grown tremendously due to recent advances in genome sequencing, which have provided an incredible amount of genomic data from hundreds of microbial species. Regarding fungal organisms, the genomic data have revealed the presence of an unexpected number of putative NRP-related gene clusters. This highlights fungi as a goldmine for the discovery of putative novel bioactive compounds. Recent development of NRP dedicated bioinformatics tools have increased the capacity to identify these gene clusters and to deduce NRPs structures, speeding-up the screening process for novel metabolites discovery. Unfortunately, the newly identified compound is frequently not or poorly produced by native producers due to a lack of expression of the related genes cluster. A frequently employed strategy to increase production rates consists in transferring the related biosynthetic pathway in heterologous hosts. This review aims to provide a comprehensive overview about the topic of NRPs discovery, from gene cluster identification by genome mining to the heterologous production in fungal hosts. The main computational tools and methods for genome mining are herein presented with an emphasis on the particularities of the fungal systems. The different steps of the reconstitution of NRP biosynthetic pathway in heterologous fungal cell factories will be discussed, as well as the key factors to consider for maximizing productivity. Several examples will be developed to illustrate the potential of heterologous production to both discover uncharacterized novel compounds predicted in silico by genome mining, and to enhance the productivity of interesting bio-active natural products.
Collapse
Affiliation(s)
- Antoine Vassaux
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France
| | - Loïc Meunier
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Micheline Vandenbol
- TERRA Teaching and Research Centre, Microbiologie et Génomique, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Patrick Fickers
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Philippe Jacques
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Valérie Leclère
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France.
| |
Collapse
|
32
|
Kjærbølling I, Mortensen UH, Vesth T, Andersen MR. Strategies to establish the link between biosynthetic gene clusters and secondary metabolites. Fungal Genet Biol 2019; 130:107-121. [DOI: 10.1016/j.fgb.2019.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/26/2019] [Accepted: 06/02/2019] [Indexed: 01/01/2023]
|
33
|
Perspectives of Microbial Metabolites as Pesticides in Agricultural Pest Management. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-76887-8_44-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Abdel-Razek AS, Hamed A, Frese M, Sewald N, Shaaban M. Penicisteroid C: New polyoxygenated steroid produced by co-culturing of Streptomyces piomogenus with Aspergillus niger. Steroids 2018; 138:21-25. [PMID: 29902496 DOI: 10.1016/j.steroids.2018.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 10/28/2022]
Abstract
Penicisteroid C, a new polyoxygenated steroid was isolated from co-cultivation of Streptomyces piomogenus AS63D and Aspergillus niger using solid-state fermentation on rice medium. Additional diverse eleven known metabolites were identified: Fumigaclavine C, fumiquinazoline C, physcion, methylsulochrin, methyllinoleate, glycerol linoleate, cerebroside A, thymine, adenine, thymidine and adenosine. The structure of penicisteroid C was determined by HRESIMS, 1D and 2D NMR data. The antimicrobial and in vitro cytotoxic activities of the microbial extract and penicisteroid C were reported as well.
Collapse
Affiliation(s)
- Ahmed S Abdel-Razek
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany; Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, El-Buhouth St. 33, Dokki, Cairo 12622, Egypt
| | - Abdelaaty Hamed
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany; Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Marcel Frese
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
| | - Mohamed Shaaban
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany; Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, El-Buhouth St. 33, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
35
|
Savelieff MG, Pappalardo L, Azmanis P. The current status of avian aspergillosis diagnoses: Veterinary practice to novel research avenues. Vet Clin Pathol 2018; 47:342-362. [DOI: 10.1111/vcp.12644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Lucia Pappalardo
- Department of Biology, Chemistry and Environmental Sciences; American University of Sharjah; Sharjah United Arab Emirates
| | - Panagiotis Azmanis
- Dubai Falcon Hospital/Wadi Al Safa Wildlife Center; Dubai United Arab Emirates
| |
Collapse
|
36
|
Bhatia SK, Bhatia RK, Choi YK, Kan E, Kim YG, Yang YH. Biotechnological potential of microbial consortia and future perspectives. Crit Rev Biotechnol 2018; 38:1209-1229. [PMID: 29764204 DOI: 10.1080/07388551.2018.1471445] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Design of a microbial consortium is a newly emerging field that enables researchers to extend the frontiers of biotechnology from a pure culture to mixed cultures. A microbial consortium enables microbes to use a broad range of carbon sources. It provides microbes with robustness in response to environmental stress factors. Microbes in a consortium can perform complex functions that are impossible for a single organism. With advancement of technology, it is now possible to understand microbial interaction mechanism and construct consortia. Microbial consortia can be classified in terms of their construction, modes of interaction, and functions. Here we discuss different trends in the study of microbial functions and interactions, including single-cell genomics (SCG), microfluidics, fluorescent imaging, and membrane separation. Community profile studies using polymerase chain-reaction denaturing gradient gel electrophoresis (PCR-DGGE), amplified ribosomal DNA restriction analysis (ARDRA), and terminal restriction fragment-length polymorphism (T-RFLP) are also reviewed. We also provide a few examples of their possible applications in areas of biopolymers, bioenergy, biochemicals, and bioremediation.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,b Institute for Ubiquitous Information Technology and Application , Konkuk University , Seoul , South Korea
| | - Ravi Kant Bhatia
- c Department of Biotechnology , Himachal Pradesh University , Shimla , India
| | - Yong-Keun Choi
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,d Texas A&M AGRILIFE Research & Extension Center , Texas A&M University , Stephenville , TX , USA
| | - Eunsung Kan
- d Texas A&M AGRILIFE Research & Extension Center , Texas A&M University , Stephenville , TX , USA
| | - Yun-Gon Kim
- e Department of Chemical Engineering , Soongsil University , Seoul , South Korea
| | - Yung-Hun Yang
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,b Institute for Ubiquitous Information Technology and Application , Konkuk University , Seoul , South Korea
| |
Collapse
|
37
|
Lind AL, Lim FY, Soukup AA, Keller NP, Rokas A. An LaeA- and BrlA-Dependent Cellular Network Governs Tissue-Specific Secondary Metabolism in the Human Pathogen Aspergillus fumigatus. mSphere 2018; 3:e00050-18. [PMID: 29564395 PMCID: PMC5853485 DOI: 10.1128/msphere.00050-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/21/2018] [Indexed: 12/17/2022] Open
Abstract
Biosynthesis of many ecologically important secondary metabolites (SMs) in filamentous fungi is controlled by several global transcriptional regulators, like the chromatin modifier LaeA, and tied to both development and vegetative growth. In Aspergillus molds, asexual development is regulated by the BrlA > AbaA > WetA transcriptional cascade. To elucidate BrlA pathway involvement in SM regulation, we examined the transcriptional and metabolic profiles of ΔbrlA, ΔabaA, and ΔwetA mutant and wild-type strains of the human pathogen Aspergillus fumigatus. We find that BrlA, in addition to regulating production of developmental SMs, regulates vegetative SMs and the SrbA-regulated hypoxia stress response in a concordant fashion to LaeA. We further show that the transcriptional and metabolic equivalence of the ΔbrlA and ΔlaeA mutations is mediated by an LaeA requirement preventing heterochromatic marks in the brlA promoter. These results provide a framework for the cellular network regulating not only fungal SMs but diverse cellular processes linked to virulence of this pathogen. IMPORTANCE Filamentous fungi produce a spectacular variety of small molecules, commonly known as secondary or specialized metabolites (SMs), which are critical to their ecologies and lifestyles (e.g., penicillin, cyclosporine, and aflatoxin). Elucidation of the regulatory network that governs SM production is a major question of both fundamental and applied research relevance. To shed light on the relationship between regulation of development and regulation of secondary metabolism in filamentous fungi, we performed global transcriptomic and metabolomic analyses on mutant and wild-type strains of the human pathogen Aspergillus fumigatus under conditions previously shown to induce the production of both vegetative growth-specific and asexual development-specific SMs. We find that the gene brlA, previously known as a master regulator of asexual development, is also a master regulator of secondary metabolism and other cellular processes. We further show that brlA regulation of SM is mediated by laeA, one of the master regulators of SM, providing a framework for the cellular network regulating not only fungal SMs but diverse cellular processes linked to virulence of this pathogen.
Collapse
Affiliation(s)
- Abigail L. Lind
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Fang Yun Lim
- Department of Medical Microbiology & Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Alexandra A. Soukup
- Department of Genetics, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Nancy P. Keller
- Department of Medical Microbiology & Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Antonis Rokas
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
38
|
Hosoe T, Ishikawa K, Wakana D, Itabashi T, Takeda H, Yaguchi T, Kawai KI. Four Cyclodipeptides, Asnovolenins A-B and Asnovozines A-B, from Aspergillus novofumigatus. HETEROCYCLES 2018. [DOI: 10.3987/com-18-13902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Hymery N, Puel O, Tadrist S, Canlet C, Le Scouarnec H, Coton E, Coton M. Effect of PR toxin on THP1 and Caco-2 cells: an in vitro study. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2017.2196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Penicillium roqueforti produces mycotoxins including PR toxin, which is a food and feed contaminant. In this study, PR toxin was purified from culture material of the Penicillium roqueforti F43-1 strain. Toxic effects were evaluated in undifferentiated human Caco-2 intestinal epithelial cells and THP-1 monocytic immune cells. To understand the mechanisms involved in PR-toxin toxicity, cell death and pro-inflammatory gene expression were studied. In addition, PR toxin degradation was assessed. Cytotoxicity studies showed a dose-dependent effect of PR toxin and the calculated mean cytotoxic concentration (IC50) concentrations were for Caco-2 and THP-1 cells >12.5 and 0.83 μM, respectively. Gene expression studies showed that tumour necrosis factor-α expression was significantly increased after 24 h exposure to 312 μM PR toxin. PR toxin induced necrosis on THP-1 cells after 3 h exposure. In the cell culture system, the PR toxin showed a 10-fold reduction in PR toxin concentration within 48 h, indicating that PR toxin was degraded by THP-1. To conclude, PR toxin appears to be one of the most cytotoxic P. roqueforti mycotoxins on Caco-2 and/or THP-1 cells and induces in THP-1 cells both necrosis and an inflammatory response.
Collapse
Affiliation(s)
- N. Hymery
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - O. Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - S. Tadrist
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - C. Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, 31027 Toulouse Cedex, France
| | - H. Le Scouarnec
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - E. Coton
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - M. Coton
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| |
Collapse
|
40
|
Abstract
Aspergillus section Restricti together with sister section Aspergillus (formerly Eurotium) comprises xerophilic species, that are able to grow on substrates with low water activity and in extreme environments. We adressed the monophyly of both sections within subgenus Aspergillus and applied a multidisciplinary approach for definition of species boundaries in sect. Restricti. The monophyly of sections Aspergillus and Restricti was tested on a set of 102 isolates comprising all currently accepted species and was strongly supported by Maximum likelihood (ML) and Bayesian inferrence (BI) analysis based on β-tubulin (benA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) loci. More than 300 strains belonging to sect. Restricti from various isolation sources and four continents were characterized by DNA sequencing, and 193 isolates were selected for phylogenetic analyses and phenotypic studies. Species delimitation methods based on multispecies coalescent model were employed on DNA sequences from four loci, i.e., ID region of rDNA (ITS + 28S), CaM, benA and RPB2, and supported recognition of 21 species, including 14 new. All these species were also strongly supported in ML and BI analyses. All recognised species can be reliably identified by all four examined genetic loci. Phenotype analysis was performed to support the delimitation of new species and includes colony characteristics on seven cultivation media incubated at several temperatures, growth on an osmotic gradient (six media with NaCl concentration from 0 to 25 %) and analysis of morphology including scanning electron microscopy. The micromorphology of conidial heads, vesicle dimensions, temperature profiles and growth parameters in osmotic gradient were useful criteria for species identification. The vast majority of species in sect. Restricti produce asperglaucide, asperphenamate or both in contrast to species in sect. Aspergillus. Mycophenolic acid was detected for the first time in at least six members of the section. The ascomata of A. halophilicus do not contain auroglaucin, epiheveadride or flavoglaucin which are common in sect. Aspergillus, but shares the echinulins with sect. Aspergillus.
Collapse
Key Words
- Aspergillus canadensis Visagie, Yilmaz, F. Sklenar & Seifert
- Aspergillus clavatophorus F. Sklenar, S.W. Peterson & Hubka
- Aspergillus destruens Zalar, F. Sklenar, S.W. Peterson & Hubka
- Aspergillus domesticus F. Sklenar, Houbraken, Zalar & Hubka
- Aspergillus glabripes F. Sklenar, Ž. Jurjević & Hubka
- Aspergillus hordei F. Sklenar, S.W. Peterson & Hubka
- Aspergillus infrequens F. Sklenar, S.W. Peterson & Hubka
- Aspergillus magnivesiculatus F. Sklenar, Zalar, Ž. Jurjević & Hubka
- Aspergillus pachycaulis F. Sklenar, S.W. Peterson, Ž. Jurjević & Hubka
- Aspergillus penicillioides
- Aspergillus pseudogracilis F. Sklenar, Ž. Jurjević & Hubka
- Aspergillus restrictus
- Aspergillus reticulatus F. Sklenar, Ž. Jurjević, S.W. Peterson & Hubka
- Aspergillus salinicola Zalar, F. Sklenar, Visagie & Hubka
- Aspergillus tardicrescens F. Sklenar, Houbraken, Zalar, & Hubka
- Aspergillus villosus F. Sklenar, S.W. Peterson & Hubka
- Eurotium
- food spoilage
- indoor fungi
- linear discriminant analysis
- multigene phylogeny
- multispecies coalescent model
- sick building syndrome
- xerophilic fungi
Collapse
|
41
|
|
42
|
Manfiolli AO, de Castro PA, dos Reis TF, Dolan S, Doyle S, Jones G, Riaño Pachón DM, Ulaş M, Noble LM, Mattern DJ, Brakhage AA, Valiante V, Silva-Rocha R, Bayram O, Goldman GH. Aspergillus fumigatusprotein phosphatase PpzA is involved in iron assimilation, secondary metabolite production, and virulence. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12770] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/28/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023]
Affiliation(s)
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| | - Stephen Dolan
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Sean Doyle
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Gary Jones
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Diego M. Riaño Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas São Paulo Brazil
| | - Mevlüt Ulaş
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | | | - Derek J. Mattern
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute; Jena Germany
- University of Jena; Jena Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute; Jena Germany
- University of Jena; Jena Germany
| | - Vito Valiante
- Leibniz Research Group-Biobricks of Microbial Natural Product Syntheses; Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute; Jena Germany
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| | - Ozgur Bayram
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| |
Collapse
|
43
|
Volatile Organic Compounds: Upcoming Role in Diagnosis of Invasive Mould Infections. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0284-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
A Nonredundant Phosphopantetheinyl Transferase, PptA, Is a Novel Antifungal Target That Directs Secondary Metabolite, Siderophore, and Lysine Biosynthesis in Aspergillus fumigatus and Is Critical for Pathogenicity. mBio 2017; 8:mBio.01504-16. [PMID: 28720735 PMCID: PMC5516258 DOI: 10.1128/mbio.01504-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Secondary metabolites are key mediators of virulence for many pathogens. Aspergillus fumigatus produces a vast array of these bioactive molecules, the biosynthesis of which is catalyzed by nonribosomal peptide synthetases (NRPSs) or polyketide synthases (PKSs). Both NRPSs and PKSs harbor carrier domains that are primed for acceptance of secondary metabolic building blocks by a phosphopantetheinyl transferase (P-pant). The A. fumigatus P-pant PptA has been shown to prime the putative NRPS Pes1 in vitro and has an independent role in lysine biosynthesis; however, its role in global secondary metabolism and its impact on virulence has not been described. Here, we demonstrate that PptA has a nonredundant role in the generation of the vast majority of detectable secondary metabolites in A. fumigatus, including the immunomodulator gliotoxin, the siderophores triacetylfusarinine C (TAFC) and ferricrocin (FC), and dihydroxy naphthalene (DHN)-melanin. We show that both the lysine and iron requirements of a pptA null strain exceed those freely available in mammalian tissues and that loss of PptA renders A. fumigatus avirulent in both insect and murine infection models. Since PptA lacks similarity to its mammalian orthologue, we assert that the combined role of this enzyme in both primary and secondary metabolism, encompassing multiple virulence determinants makes it a very promising antifungal drug target candidate. We further exemplify this point with a high-throughput fluorescence polarization assay that we developed to identify chemical inhibitors of PptA function that have antifungal activity.IMPORTANCE Fungal diseases are estimated to kill between 1.5 and 2 million people each year, which exceeds the global mortality estimates for either tuberculosis or malaria. Only four classes of antifungal agents are available to treat invasive fungal infections, and all suffer pharmacological shortcomings, including toxicity, drug-drug interactions, and poor bioavailability. There is an urgent need to develop a new class of drugs that operate via a novel mechanism of action. We have identified a potential drug target, PptA, in the fungal pathogen Aspergillus fumigatus PptA is required to synthesize the immunotoxic compound gliotoxin, DHN-melanin, which A. fumigatus employs to evade detection by host cells, the amino acid lysine, and the siderophores TAFC and FC, which A. fumigatus uses to scavenge iron. We show that strains lacking the PptA enzyme are unable to establish an infection, and we present a method which we use to identify novel antifungal drugs that inactivate PptA.
Collapse
|
45
|
Abstract
Oxidative cyclizations are important transformations that occur widely during natural product biosynthesis. The transformations from acyclic precursors to cyclized products can afford morphed scaffolds, structural rigidity, and biological activities. Some of the most dramatic structural alterations in natural product biosynthesis occur through oxidative cyclization. In this Review, we examine the different strategies used by nature to create new intra(inter)molecular bonds via redox chemistry. This Review will cover both oxidation- and reduction-enabled cyclization mechanisms, with an emphasis on the former. Radical cyclizations catalyzed by P450, nonheme iron, α-KG-dependent oxygenases, and radical SAM enzymes are discussed to illustrate the use of molecular oxygen and S-adenosylmethionine to forge new bonds at unactivated sites via one-electron manifolds. Nonradical cyclizations catalyzed by flavin-dependent monooxygenases and NAD(P)H-dependent reductases are covered to show the use of two-electron manifolds in initiating cyclization reactions. The oxidative installations of epoxides and halogens into acyclic scaffolds to drive subsequent cyclizations are separately discussed as examples of "disappearing" reactive handles. Last, oxidative rearrangement of rings systems, including contractions and expansions, will be covered.
Collapse
Affiliation(s)
- Man-Cheng Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Yi Zou
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, 443 Via Ortega, Stanford, CA 94305
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
46
|
Weber J, Valiante V, Nødvig CS, Mattern DJ, Slotkowski RA, Mortensen UH, Brakhage AA. Functional Reconstitution of a Fungal Natural Product Gene Cluster by Advanced Genome Editing. ACS Synth Biol 2017; 6:62-68. [PMID: 27611015 DOI: 10.1021/acssynbio.6b00203] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Filamentous fungi produce varieties of natural products even in a strain dependent manner. However, the genetic basis of chemical speciation between strains is still widely unknown. One example is trypacidin, a natural product of the opportunistic human pathogen Aspergillus fumigatus, which is not produced among different isolates. Combining computational analysis with targeted gene editing, we could link a single nucleotide insertion in the polyketide synthase of the trypacidin biosynthetic pathway and reconstitute its production in a nonproducing strain. Thus, we present a CRISPR/Cas9-based tool for advanced molecular genetic studies in filamentous fungi, exploiting selectable markers separated from the edited locus.
Collapse
Affiliation(s)
- Jakob Weber
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
- Institute
of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Vito Valiante
- Leibniz
Research Group − Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Christina S. Nødvig
- Eukaryotic
Molecular Cell Biology, Section for Eukaryotic Biotechnology, Department
of Systems Biology, Technical University of Denmark, Søltofts
Plads, 2800 Kongens
Lyngby, Denmark
| | - Derek J. Mattern
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
- Institute
of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Rebecca A. Slotkowski
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Uffe H. Mortensen
- Eukaryotic
Molecular Cell Biology, Section for Eukaryotic Biotechnology, Department
of Systems Biology, Technical University of Denmark, Søltofts
Plads, 2800 Kongens
Lyngby, Denmark
| | - Axel A. Brakhage
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
- Institute
of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
47
|
Novák J, Sokolová L, Lemr K, Pluháček T, Palyzová A, Havlíček V. Batch-processing of imaging or liquid-chromatography mass spectrometry datasets and De Novo sequencing of polyketide siderophores. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:768-775. [PMID: 27956353 DOI: 10.1016/j.bbapap.2016.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 11/18/2022]
Abstract
The open-source and cross-platform software CycloBranch was utilized for dereplication of organic compounds from mass spectrometry imaging imzML datasets and its functions were illustrated on microbial siderophores. The pixel-to-pixel batch-processing was analogous to liquid chromatography mass spectrometry data. Each data point represented here by accurate m/z values and the corresponding ion intensities was matched against integrated compound libraries. The fine isotopic structure matching was also embedded into CycloBranch dereplication process. The siderophores' characterization from single-pixel mass spectra was further supported by their de novo sequencing. New ketide building block library was utilized by CycloBranch to characterize the siderophores in images and mixtures and nomenclature of fragment ion series of linear and cyclic polyketide siderophores was proposed. The software is freely available at http://ms.biomed.cas.cz/cyclobranch. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Jiří Novák
- Institute of Microbiology of the ASCR, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Lucie Sokolová
- Institute of Microbiology of the ASCR, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Karel Lemr
- Institute of Microbiology of the ASCR, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Tomáš Pluháček
- Institute of Microbiology of the ASCR, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Andrea Palyzová
- Institute of Microbiology of the ASCR, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Vladimír Havlíček
- Institute of Microbiology of the ASCR, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
48
|
Regulation of Secondary Metabolism by the Velvet Complex Is Temperature-Responsive in Aspergillus. G3-GENES GENOMES GENETICS 2016; 6:4023-4033. [PMID: 27694115 PMCID: PMC5144971 DOI: 10.1534/g3.116.033084] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sensing and responding to environmental cues is critical to the lifestyle of filamentous fungi. How environmental variation influences fungi to produce a wide diversity of ecologically important secondary metabolites (SMs) is not well understood. To address this question, we first examined changes in global gene expression of the opportunistic human pathogen, Aspergillus fumigatus, after exposure to different temperature conditions. We found that 11 of the 37 SM gene clusters in A. fumigatus were expressed at higher levels at 30° than at 37°. We next investigated the role of the light-responsive Velvet complex in environment-dependent gene expression by examining temperature-dependent transcription profiles in the absence of two key members of the Velvet protein complex, VeA and LaeA. We found that the 11 temperature-regulated SM gene clusters required VeA at 37° and LaeA at both 30 and 37° for wild-type levels of expression. Interestingly, four SM gene clusters were regulated by VeA at 37° but not at 30°, and two additional ones were regulated by VeA at both temperatures but were substantially less so at 30°, indicating that the role of VeA and, more generally of the Velvet complex, in the regulation of certain SM gene clusters is temperature-dependent. Our findings support the hypothesis that fungal secondary metabolism is regulated by an intertwined network of transcriptional regulators responsive to multiple environmental factors.
Collapse
|
49
|
Abstract
Species belonging to Aspergillus section Cervini are characterised by radiate or short columnar, fawn coloured, uniseriate conidial heads. The morphology of the taxa in this section is very similar and isolates assigned to these species are frequently misidentified. In this study, a polyphasic approach was applied using morphological characters, extrolite data, temperature profiles and partial BenA, CaM and RPB2 sequences to examine the relationships within this section. Based on this taxonomic approach the section Cervini is resolved in ten species including six new species: A. acidohumus, A. christenseniae, A. novoguineensis, A. subnutans, A. transcarpathicus and A. wisconsinensis. A dichotomous key for the identification is provided.
Collapse
Affiliation(s)
- A J Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China; CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - J Varga
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - X Z Jiang
- R&D Centre, Novozymes China, No. 14, Xinxi Road, Shangdi Zone, Haidian District, Beijing, 100085, PR China
| | - R A Samson
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
50
|
Kocsubé S, Perrone G, Magistà D, Houbraken J, Varga J, Szigeti G, Hubka V, Hong SB, Frisvad J, Samson R. Aspergillus is monophyletic: Evidence from multiple gene phylogenies and extrolites profiles. Stud Mycol 2016; 85:199-213. [PMID: 28082760 PMCID: PMC5220211 DOI: 10.1016/j.simyco.2016.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aspergillus is one of the economically most important fungal genera. Recently, the ICN adopted the single name nomenclature which has forced mycologists to choose one name for fungi (e.g. Aspergillus, Fusarium, Penicillium, etc.). Previously two proposals for the single name nomenclature in Aspergillus were presented: one attributes the name "Aspergillus" to clades comprising seven different teleomorphic names, by supporting the monophyly of this genus; the other proposes that Aspergillus is a non-monophyletic genus, by preserving the Aspergillus name only to species belonging to subgenus Circumdati and maintaining the sexual names in the other clades. The aim of our study was to test the monophyly of Aspergilli by two independent phylogenetic analyses using a multilocus phylogenetic approach. One test was run on the publicly available coding regions of six genes (RPB1, RPB2, Tsr1, Cct8, BenA, CaM), using 96 species of Penicillium, Aspergillus and related taxa. Bayesian (MrBayes) and Ultrafast Maximum Likelihood (IQ-Tree) and Rapid Maximum Likelihood (RaxML) analyses gave the same conclusion highly supporting the monophyly of Aspergillus. The other analyses were also performed by using publicly available data of the coding sequences of nine loci (18S rRNA, 5,8S rRNA, 28S rRNA (D1-D2), RPB1, RPB2, CaM, BenA, Tsr1, Cct8) of 204 different species. Both Bayesian (MrBayes) and Maximum Likelihood (RAxML) trees obtained by this second round of independent analyses strongly supported the monophyly of the genus Aspergillus. The stability test also confirmed the robustness of the results obtained. In conclusion, statistical analyses have rejected the hypothesis that the Aspergilli are non-monophyletic, and provided robust arguments that the genus is monophyletic and clearly separated from the monophyletic genus Penicillium. There is no phylogenetic evidence to split Aspergillus into several genera and the name Aspergillus can be used for all the species belonging to Aspergillus i.e. the clade comprising the subgenera Aspergillus, Circumdati, Fumigati, Nidulantes, section Cremei and certain species which were formerly part of the genera Phialosimplex and Polypaecilum. Section Cremei and the clade containing Polypaecilum and Phialosimplex are proposed as new subgenera of Aspergillus. The phylogenetic analysis also clearly shows that Aspergillus clavatoflavus and A. zonatus do not belong to the genus Aspergillus. Aspergillus clavatoflavus is therefore transferred to a new genus Aspergillago as Aspergillago clavatoflavus and A. zonatus was transferred to Penicilliopsis as P. zonata. The subgenera of Aspergillus share similar extrolite profiles indicating that the genus is one large genus from a chemotaxonomical point of view. Morphological and ecophysiological characteristics of the species also strongly indicate that Aspergillus is a polythetic class in phenotypic characters.
Collapse
Affiliation(s)
- S. Kocsubé
- Dept. of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - D. Magistà
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - J. Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - J. Varga
- Dept. of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - G. Szigeti
- Dept. of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - V. Hubka
- Department of Botany, Charles University in Prague, Prague, Czech Republic
| | - S.-B. Hong
- Korean Agricultural Culture Collection, National Institute of Agricultural Science, 166, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - R.A. Samson
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| |
Collapse
|