1
|
Barata IS, Rueff J, Kranendonk M, Esteves F. Pleiotropy of Progesterone Receptor Membrane Component 1 in Modulation of Cytochrome P450 Activity. J Xenobiot 2024; 14:575-603. [PMID: 38804287 PMCID: PMC11130977 DOI: 10.3390/jox14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is one of few proteins that have been recently described as direct modulators of the activity of human cytochrome P450 enzymes (CYP)s. These enzymes form a superfamily of membrane-bound hemoproteins that metabolize a wide variety of physiological, dietary, environmental, and pharmacological compounds. Modulation of CYP activity impacts the detoxification of xenobiotics as well as endogenous pathways such as steroid and fatty acid metabolism, thus playing a central role in homeostasis. This review is focused on nine main topics that include the most relevant aspects of past and current PGRMC1 research, focusing on its role in CYP-mediated drug metabolism. Firstly, a general overview of the main aspects of xenobiotic metabolism is presented (I), followed by an overview of the role of the CYP enzymatic complex (IIa), a section on human disorders associated with defects in CYP enzyme complex activity (IIb), and a brief account of cytochrome b5 (cyt b5)'s effect on CYP activity (IIc). Subsequently, we present a background overview of the history of the molecular characterization of PGRMC1 (III), regarding its structure, expression, and intracellular location (IIIa), and its heme-binding capability and dimerization (IIIb). The next section reflects the different effects PGRMC1 may have on CYP activity (IV), presenting a description of studies on the direct effects on CYP activity (IVa), and a summary of pathways in which PGRMC1's involvement may indirectly affect CYP activity (IVb). The last section of the review is focused on the current challenges of research on the effect of PGRMC1 on CYP activity (V), presenting some future perspectives of research in the field (VI).
Collapse
Affiliation(s)
- Isabel S. Barata
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| |
Collapse
|
2
|
Sugiyama N, Uehara O, Kawano Y, Paudel D, Morikawa T, Nakamoto N, Kato S, Takayama T, Nagasawa T, Miura H, Abiko Y, Furuichi Y. Ingenuity pathway analysis of gingival epithelial cells stimulated with estradiol and progesterone. J Oral Biosci 2024; 66:26-34. [PMID: 37949170 DOI: 10.1016/j.job.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Periodontal disease is a risk factor for preterm delivery, and elevated female hormone levels during pregnancy promote hormone-dependent periodontopathogenic bacterial growth and gingivitis. Although the saliva of pregnant women contains female hormones at elevated levels, their effects on the gingiva are poorly understood. Therefore, in this study, we investigated the effects of estradiol and progesterone stimulation on gingival epithelial cells via ingenuity pathway analysis. METHODS Human gingival epithelial progenitors were cultured in a CnT-Prime medium; 17β-estradiol (E2) and progesterone (P4) were used as the reagents. Cells treated with dimethyl sulfoxide alone were used as the control group. Cells in the control and experimental groups were incubated for 12 h. RNA was extracted from the cultured cells, RNA-Seq was performed, and pathway analysis was conducted. RESULTS Differentially expressed genes were detected for 699 (over 2-fold increase) and 348 (decrease) genes in group E2 and for 1448 (increase) and 924 (decrease) genes in group P4 compared with those in the control group (FDR <0.05, n = 4). The z-scores of the pathways suggest that E2 and P4 increased the activity of the wound healing signaling pathway. The activation of this pathway was higher in the E2 and P4 groups than that in the control group. CONCLUSIONS The results of this study suggest that estradiol and progesterone may affect gingival homeostasis and wound healing.
Collapse
Affiliation(s)
- Nodoka Sugiyama
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health, Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061-0293, Japan.
| | - Osamu Uehara
- Division of Disease Controlrol and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061- 0293, Japan
| | - Yutaka Kawano
- Department of Gastroenterology and Oncology Tokushima University Graduate School of Biomedical Sciences, Tokushima, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Durga Paudel
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757, Ishikari- Tobetsu, Kanazawa, Hokkaido, 061-0293, Japan
| | - Tetsuro Morikawa
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061-0293, Japan
| | - Norihiro Nakamoto
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health, Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061-0293, Japan
| | - Satsuki Kato
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health, Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061-0293, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology Tokushima University Graduate School of Biomedical Sciences, Tokushima, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Toshiyuki Nagasawa
- Division of Advanced Clinical Education, Department of Integrated Dental Education, School of Dentistry, Health, Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061-0293, Japan
| | - Hiroko Miura
- Division of Disease Controlrol and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061- 0293, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061-0293, Japan.
| | - Yasushi Furuichi
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health, Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061-0293, Japan
| |
Collapse
|
3
|
Gnanasekaran R, Aickareth J, Hawwar M, Sanchez N, Croft J, Zhang J. CmPn/CmP Signaling Networks in the Maintenance of the Blood Vessel Barrier. J Pers Med 2023; 13:jpm13050751. [PMID: 37240921 DOI: 10.3390/jpm13050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) arise when capillaries within the brain enlarge abnormally, causing the blood-brain barrier (BBB) to break down. The BBB serves as a sophisticated interface that controls molecular interactions between the bloodstream and the central nervous system. The neurovascular unit (NVU) is a complex structure made up of neurons, astrocytes, endothelial cells (ECs), pericytes, microglia, and basement membranes, which work together to maintain blood-brain barrier (BBB) permeability. Within the NVU, tight junctions (TJs) and adherens junctions (AJs) between endothelial cells play a critical role in regulating the permeability of the BBB. Disruptions to these junctions can compromise the BBB, potentially leading to a hemorrhagic stroke. Understanding the molecular signaling cascades that regulate BBB permeability through EC junctions is, therefore, essential. New research has demonstrated that steroids, including estrogens (ESTs), glucocorticoids (GCs), and metabolites/derivatives of progesterone (PRGs), have multifaceted effects on blood-brain barrier (BBB) permeability by regulating the expression of tight junctions (TJs) and adherens junctions (AJs). They also have anti-inflammatory effects on blood vessels. PRGs, in particular, have been found to play a significant role in maintaining BBB integrity. PRGs act through a combination of its classic and non-classic PRG receptors (nPR/mPR), which are part of a signaling network known as the CCM signaling complex (CSC). This network couples both nPR and mPR in the CmPn/CmP pathway in endothelial cells (ECs).
Collapse
Affiliation(s)
- Revathi Gnanasekaran
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Justin Aickareth
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Majd Hawwar
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Nickolas Sanchez
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jacob Croft
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
4
|
Ruan X, Mueck AO. The WHO claims estrogens are 'carcinogenic': is this true? Climacteric 2023; 26:263-270. [PMID: 37068508 DOI: 10.1080/13697137.2023.2196002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Estrogens are in the list of carcinogenic chemicals from the World Health Organization (WHO). However, estrogens require additional factors such as stromal factors or progestogens to increase the ratio of proliferation/apoptosis for initiation of replication errors and consequent mutations to occur. These mutations require at least 5-10 years to develop into clinically detectable cancer, whereby this review is focused on breast cancer. The US National Cancer Institute highlighted a second mechanism of carcinogenicity: certain estrogen metabolites are capable of inducing DNA damage, even in low concentration. They can be assessed in the tissue and circulation. However, those deleterious reactions require excessive unrestricted oxidative cell stress, for example in industrial areas with heavy pollution. We have shown that this can be avoided using transdermal instead of oral estradiol treatment, especially important in smokers. The spectrum of metabolites is also influenced by other exogenous factors such as nutrition, physical activity and certain diseases. Reduction of breast cancer risk as demonstrated in the Women's Health Initiative (WHI) was explained by pro-apoptotic estrogen effects working after a certain 'time gap'. In addition, certain estrogen metabolites are carcinoprotective, if no genetic polymorphisms would impair their beneficial activities. Thus, since additional factors are required for both main pathways of carcinogenicity and because estrogens can even have carcinoprotective effects, we cannot agree with the statement from the WHO.
Collapse
Affiliation(s)
- X Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Department of Women's Health, Research Centre for Women's Health and University Women's Hospital of Tuebingen, University Hospitals of Tuebingen, Tuebingen, Germany
| | - A O Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Department of Women's Health, Research Centre for Women's Health and University Women's Hospital of Tuebingen, University Hospitals of Tuebingen, Tuebingen, Germany
| |
Collapse
|
5
|
Abstract
Progesterone receptor membrane component (PGRMC) proteins play important roles in tumor growth, progression, and chemoresistance, of which PGRMC1 is the best characterized. The ancestral member predates the evolution of metazoans, so it is perhaps not surprising that many of the purported actions of PGRMC proteins are rooted in fundamental metabolic processes such as proliferation, apoptosis, and DNA damage responses. Despite mediating some of the actions of progesterone (P4) and being fundamentally required for female fertility, PGRMC1 and PGRMC2 are broadly expressed in most tissues. As such, these proteins likely have both progesterone-dependent and progesterone-independent functions. It has been proposed that PGRMC1 acquired the ability to mediate P4 actions over evolutionary time through acquisition of its cytochrome b5-like heme/sterol-binding domain. Diverse reproductive and nonreproductive diseases associate with altered PGRMC1 expression, epigenetic regulation, or gene silencing mechanisms, some of which include polycystic ovarian disease, premature ovarian insufficiency, endometriosis, Alzheimer disease, and cancer. Although many studies have been completed using transformed cell lines in culture or in xenograft tumor approaches, recently developed transgenic model organisms are offering new insights in the physiological actions of PGRMC proteins, as well as pathophysiological and oncogenic consequences when PGRMC expression is altered. The purpose of this mini-review is to provide an overview of PGRMC proteins in cancer and to offer discussion of where this field must go to solidify PGRMC proteins as central contributors to the oncogenic process.
Collapse
Affiliation(s)
- James K Pru
- Correspondence: James K. Pru, PhD, Program in Reproductive Biology, Department of Animal Science, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
6
|
Xu X, Ruan X, Ju R, Wang Z, Yang Y, Cheng J, Gu M, Mueck AO. Progesterone Receptor Membrane Component-1 May Promote Survival of Human Brain Microvascular Endothelial Cells in Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2022; 37:15333175221109749. [PMID: 35730360 PMCID: PMC10581101 DOI: 10.1177/15333175221109749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cerebrovascular changes occur in Alzheimer's disease (AD). The progesterone receptor membrane component-1 (PGRMC1) is a well identified hormone receptor with multiple functions in AD. This study aims to explore the involvement of PGRMC1 in the regulation of vascular endothelial function, providing new therapy options for AD. Single-cell sequencing revealed that the expression of PGRMC1 is lower in AD. By bioinformatics analysis, we found PGRMC1 was associated with regulation of cell proliferation, angiogenesis and etc. To understand the functional significance of PGRMC1, knockdown and overexpression were performed using human brain microvascular endothelial cells (HBMVECs), respectively. Cell proliferation assay, migration assay, tube formation assay were performed in experiments. We demonstrated that the overexpression of PGRMC1 promoted the cellular processes associated with endothelia cell proliferation, migration, and angiogenesis, significantly. In conclusion, PGRMC1 may contribute to the modulation of HBMVECs function in AD. This finding may offer novel targets for AD treatment.
Collapse
Affiliation(s)
- Xin Xu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiangyan Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
- Research Centre for Women’s Health and University Women’s Hospital of Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Rui Ju
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zhikun Wang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yu Yang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jiaojiao Cheng
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Muqing Gu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Alfred O. Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
- Research Centre for Women’s Health and University Women’s Hospital of Tuebingen, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
7
|
Xia Z, Xiao J, Chen Q. Solving the Puzzle: What Is the Role of Progestogens in Neovascularization? Biomolecules 2021; 11:1686. [PMID: 34827682 PMCID: PMC8615949 DOI: 10.3390/biom11111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Ovarian sex steroids can modulate new vessel formation and development, and the clarification of the underlying mechanism will provide insight into neovascularization-related physiological changes and pathological conditions. Unlike estrogen, which mainly promotes neovascularization through activating classic post-receptor signaling pathways, progesterone (P4) regulates a variety of downstream factors with angiogenic or antiangiogenic effects, exerting various influences on neovascularization. Furthermore, diverse progestins, the synthetic progesterone receptor (PR) agonists structurally related to P4, have been used in numerous studies, which could contribute to unequal actions. As a result, there have been many conflicting observations in the past, making it difficult for researchers to define the exact role of progestogens (PR agonists including naturally occurring P4 and synthetic progestins). This review summarizes available evidence for progestogen-mediated neovascularization under physiological and pathological circumstances, and attempts to elaborate their functional characteristics and regulatory patterns from a comprehensive perspective.
Collapse
Affiliation(s)
| | | | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha 410008, China; (Z.X.); (J.X.)
| |
Collapse
|
8
|
Molecular Characterization of Membrane Steroid Receptors in Hormone-Sensitive Cancers. Cells 2021; 10:cells10112999. [PMID: 34831222 PMCID: PMC8616056 DOI: 10.3390/cells10112999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide, and its development is a result of the complex interaction of genetic factors, environmental cues, and aging. Hormone-sensitive cancers depend on the action of one or more hormones for their development and progression. Sex steroids and corticosteroids can regulate different physiological functions, including metabolism, growth, and proliferation, through their interaction with specific nuclear receptors, that can transcriptionally regulate target genes via their genomic actions. Therefore, interference with hormones’ activities, e.g., deregulation of their production and downstream pathways or the exposition to exogenous hormone-active substances such as endocrine-disrupting chemicals (EDCs), can affect the regulation of their correlated pathways and trigger the neoplastic transformation. Although nuclear receptors account for most hormone-related biologic effects and their slow genomic responses are well-studied, less-known membrane receptors are emerging for their ability to mediate steroid hormones effects through the activation of rapid non-genomic responses also involved in the development of hormone-sensitive cancers. This review aims to collect pre-clinical and clinical data on these extranuclear receptors not only to draw attention to their emerging role in cancer development and progression but also to highlight their dual role as tumor microenvironment players and potential candidate drug targets.
Collapse
|
9
|
Study of the Relationship between Sigma Receptor Expression Levels and Some Common Sigma Ligand Activity in Cancer Using Human Cancer Cell Lines of the NCI-60 Cell Line Panel. Biomedicines 2021; 9:biomedicines9010038. [PMID: 33466391 PMCID: PMC7824900 DOI: 10.3390/biomedicines9010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/27/2023] Open
Abstract
Sigma (σ) receptors have attracted great interest since they are implicated in various cellular functions and biological processes and diseases, including various types of cancer. The receptor family consists of two subtypes: sigma-1 (σ1) and sigma-2 (σ2). Both σ receptor subtypes have been proposed as therapeutic targets for various types of cancers, and many studies have provided evidence that their selective ligands (agonists and antagonists) exhibit antiproliferative and cytotoxic activity. Still, the precise mechanism of action of both σ receptors and their ligands remains unclear and needs to be elucidated. In this study, we aimed to simultaneously determine the expression levels of both σ receptor subtypes in several human cancer cell lines. Additionally, we investigated the in vitro antiproliferative activity of some widely used σ1 and σ2 ligands against those cell lines to study the relationship between σ receptor expression levels and σ ligand activity. Finally, we ran the NCI60 COMPARE algorithm to further elucidate the cytotoxic mechanism of action of the selected σ ligands studied herein.
Collapse
|
10
|
Association of circulating Progesterone Receptor Membrane Component-1 (PGRMC1) with breast tumor characteristics and comparison with known tumor markers. ACTA ACUST UNITED AC 2020; 27:183-193. [PMID: 31876619 DOI: 10.1097/gme.0000000000001436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Progesterone receptor membrane component-1 (PGRMC1) expressed in breast cancer tissue has been suggested to predict a worse prognosis. The aim of this study was to assess for the first time if blood concentrations of PGRMC1 are also associated with receptor status, tumor diameter, grading, and lymphatic status. The second aim was comparison with known tumor markers. METHODS A total of 372 women, including 278 patients with invasive breast cancer, 65 with benign breast disease, and 29 healthy women (control), were recruited. PGRMC1 blood concentrations were measured by a recently developed enzyme-linked immunosorbant assay, and were correlated to predictive tumor characteristics and compared with serum carcinoembryonic antigen (CEA), CA125, and CA153. RESULTS PGRMC1 levels in the cancer group were significantly higher than in the control and benign group and increased with higher cancer stages (P < 0.05). PGRMC1 concentrations in the estrogen receptor (ER)+/progesterone receptor (PR)+ group were higher than in the ER-/PR- group, related to larger tumor diameter and the presence of lymph node metastasis (P < 0.05). Multivariable linear regression analysis was used to control the confounding factors. Tumor diameter, lymphatic metastasis, and ER (but not PR) were positively associated with PGRMC1 (P < 0.05). The receiver-operating characteristic curve (ROC) analysis was used to assess area under the curve (AUC). AUC was 87.9% for stages III+IV and 80.8% for stages I+II (P < 0.01). ROC did not find significant effects on AUC for CA125, only significant for CEA and CA153 for stages III+IV. CONCLUSION As PGRMC1 levels are positively associated with breast tumor characteristics known to predict a worse diagnosis, PGRMC1 may be valuable as a new tumor marker, and superior to CEA, C125, and CA153. Because of the positive association with ER-expression, PGRMC1 may interact with this receptor.
Collapse
|
11
|
Cantonero C, Salido GM, Rosado JA, Redondo PC. PGRMC1 Inhibits Progesterone-Evoked Proliferation and Ca 2+ Entry Via STIM2 in MDA-MB-231 Cells. Int J Mol Sci 2020; 21:ijms21207641. [PMID: 33076541 PMCID: PMC7589959 DOI: 10.3390/ijms21207641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) has been shown to regulate some cancer hallmarks. Progesterone (P4) evokes intracellular calcium (Ca2+) changes in the triple-negative breast cancer cell lines (MDA-MB-231, MDA-MB-468, and BT-20) and in other breast cancer cell lines like the luminal MCF7 cells. PGRMC1 expression is elevated in MDA-MB-231 and MCF7 cells as compared to non-tumoral MCF10A cell line, and PGRMC1 silencing enhances P4-evoked Ca2+ mobilization. Here, we found a new P4-dependent Ca2+ mobilization pathway in MDA-MB-231 cells and other triple-negative breast cancer cells, as well as in MCF7 cells that involved Stromal interaction molecule 2 (STIM2), Calcium release-activated calcium channel protein 1 (Orai1), and Transient Receptor Potential Channel 1 (TRPC1). Stromal interaction molecule 1 (STIM1) was not involved in this novel Ca2+ pathway, as evidenced by using siRNA STIM1. PGRMC1 silencing reduced the negative effect of P4 on cell proliferation and cell death in MDA-MB-231 cells. In line with the latter observation, Nuclear Factor of Activated T-Cells 1 (NFAT1) nuclear accumulation due to P4 incubation for 48 h was enhanced in cells transfected with the small hairpin siRNA against PGRMC1 (shPGRMC1). These results provide evidence for a novel P4-evoked Ca2+ entry pathway that is downregulated by PGRMC1.
Collapse
|
12
|
Classical and Non-Classical Progesterone Signaling in Breast Cancers. Cancers (Basel) 2020; 12:cancers12092440. [PMID: 32867363 PMCID: PMC7563480 DOI: 10.3390/cancers12092440] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Much emphasis is placed on estrogen (E2) and estrogen receptor (ER) signaling as most research is focused on understanding E2 and ER’s ability to enhance proliferative signals in breast cancers. Progesterone (P4) is important for normal mammary gland development, function and menstrual control. However, P4 and its receptors (PRs) in breast cancer etiology continue to be understudied and its role in breast cancer remains controversial. The Women’s Health Initiative (WHI) clinical trial clearly demonstrated the importance of progestogens in breast cancer development. P4 has historically been associated with classical-signaling through nuclear receptors, however non-classical P4 signaling via membrane receptors has been described. Progestogens have the ability to bind to nuclear and membrane receptors and studies have demonstrated that both can promote breast cancer cell proliferation and breast tumor growth. In this review, we attempt to understand the classical and non-classical signaling role of P4 in breast cancers because both nuclear and membrane receptors could become viable therapeutic options for breast cancer patients.
Collapse
|
13
|
Thejer BM, Adhikary PP, Teakel SL, Fang J, Weston PA, Gurusinghe S, Anwer AG, Gosnell M, Jazayeri JA, Ludescher M, Gray LA, Pawlak M, Wallace RH, Pant SD, Wong M, Fischer T, New EJ, Fehm TN, Neubauer H, Goldys EM, Quinn JC, Weston LA, Cahill MA. PGRMC1 effects on metabolism, genomic mutation and CpG methylation imply crucial roles in animal biology and disease. BMC Mol Cell Biol 2020; 21:26. [PMID: 32293262 PMCID: PMC7160964 DOI: 10.1186/s12860-020-00268-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/20/2020] [Indexed: 01/08/2023] Open
Abstract
Background Progesterone receptor membrane component 1 (PGRMC1) is often elevated in cancers, and exists in alternative states of phosphorylation. A motif centered on PGRMC1 Y180 was evolutionarily acquired concurrently with the embryological gastrulation organizer that orchestrates vertebrate tissue differentiation. Results Here, we show that mutagenic manipulation of PGRMC1 phosphorylation alters cell metabolism, genomic stability, and CpG methylation. Each of several mutants elicited distinct patterns of genomic CpG methylation. Mutation of S57A/Y180/S181A led to increased net hypermethylation, reminiscent of embryonic stem cells. Pathways enrichment analysis suggested modulation of processes related to animal cell differentiation status and tissue identity, as well as cell cycle control and ATM/ATR DNA damage repair regulation. We detected different genomic mutation rates in culture. Conclusions A companion manuscript shows that these cell states dramatically affect protein abundances, cell and mitochondrial morphology, and glycolytic metabolism. We propose that PGRMC1 phosphorylation status modulates cellular plasticity mechanisms relevant to early embryological tissue differentiation.
Collapse
Affiliation(s)
- Bashar M Thejer
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,Department of Biology, College of Science, University of Wasit, Kut, Wasit, Iraq
| | - Partho P Adhikary
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,Present Address: Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Sarah L Teakel
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Johnny Fang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Paul A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia.,School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Saliya Gurusinghe
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Ayad G Anwer
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia.,Present Address: The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, 2052, Australia
| | - Martin Gosnell
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia.,Quantitative (Biotechnology) Pty. Ltd., ABN 17 165 684 186, Australia
| | - Jalal A Jazayeri
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Marina Ludescher
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, Dusseldorf, Germany
| | - Lesley-Ann Gray
- Australian Genome Research Facility Ltd., Victorian Comprehensive Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Michael Pawlak
- NMI TT Pharmaservices, Protein Profiling, 72770 Reutlingen, Germany
| | - Robyn H Wallace
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Sameer D Pant
- School of Animal and Veterinary Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Marie Wong
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Tamas Fischer
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Elizabeth J New
- University of Sydney, School of Chemistry, Sydney, NSW, 2006, Australia
| | - Tanja N Fehm
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, Dusseldorf, Germany
| | - Hans Neubauer
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, Dusseldorf, Germany
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia.,Present Address: The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, 2052, Australia
| | - Jane C Quinn
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia.,Faculty of Science, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia.,School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia. .,ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
14
|
Trabert B, Sherman ME, Kannan N, Stanczyk FZ. Progesterone and Breast Cancer. Endocr Rev 2020; 41:5568276. [PMID: 31512725 PMCID: PMC7156851 DOI: 10.1210/endrev/bnz001] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 09/06/2019] [Indexed: 12/31/2022]
Abstract
Synthetic progestogens (progestins) have been linked to increased breast cancer risk; however, the role of endogenous progesterone in breast physiology and carcinogenesis is less clearly defined. Mechanistic studies using cell culture, tissue culture, and preclinical models implicate progesterone in breast carcinogenesis. In contrast, limited epidemiologic data generally do not show an association of circulating progesterone levels with risk, and it is unclear whether this reflects methodologic limitations or a truly null relationship. Challenges related to defining the role of progesterone in breast physiology and neoplasia include: complex interactions with estrogens and other hormones (eg, androgens, prolactin, etc.), accounting for timing of blood collections for hormone measurements among cycling women, and limitations of assays to measure progesterone metabolites in blood and progesterone receptor isotypes (PRs) in tissues. Separating the individual effects of estrogens and progesterone is further complicated by the partial dependence of PR transcription on estrogen receptor (ER)α-mediated transcriptional events; indeed, interpreting the integrated interaction of the hormones may be more essential than isolating independent effects. Further, many of the actions of both estrogens and progesterone, particularly in "normal" breast tissues, are driven by paracrine mechanisms in which ligand binding to receptor-positive cells evokes secretion of factors that influence cell division of neighboring receptor-negative cells. Accordingly, blood and tissue levels may differ, and the latter are challenging to measure. Given conflicting data related to the potential role of progesterone in breast cancer etiology and interest in blocking progesterone action to prevent or treat breast cancer, we provide a review of the evidence that links progesterone to breast cancer risk and suggest future directions for filling current gaps in our knowledge.
Collapse
Affiliation(s)
- Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Mark E Sherman
- Health Sciences Research, Mayo Clinic, Jacksonville, Florida
| | - Nagarajan Kannan
- Laboratory of Stem Cell and Cancer Biology, Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Frank Z Stanczyk
- Departments of Obstetrics and Gynecology, and Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
15
|
Roberto D, Selvarajah S, Park PC, Berman D, Venkateswaran V. Functional validation of metabolic genes that distinguish Gleason 3 from Gleason 4 prostate cancer foci. Prostate 2019; 79:1777-1788. [PMID: 31503357 DOI: 10.1002/pros.23903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gleason grade is among the most powerful clinicopathological classification systems used to assess risk of lethal potential in prostate cancer, yet its biologic basis is poorly understood. Notably, pure low-grade cancers, comprised predominantly of Gleason pattern 3 (G3) are typically indolent, with lethal potential emerging with the progression of higher-grade Gleason patterns 4 (G4) or 5. One of the hallmarks of more aggressive cancer phenotypes is the stereotyped set of metabolic characteristics that transformed cells acquire to facilitate unregulated growth. In the present study, we profiled expression signatures of metabolic genes that are differentially expressed between G3 and G4 cancer foci and investigated the functional role of two of the profiled genes, PGRMC1 and HSD17B4, in prostate cancer cells. METHODS Gene expression profiling was conducted using 32 G3 and 32 G4 cancer foci from patients with 3+3 and ≥4+3 tumors, respectively. A 95-gene Nanostring probe set was used to probe genes associated with energy metabolism. Two out of five genes (PGRMC1 and HSD17B4) that significantly distinguish between G3 and G4 were functionally validated in vitro using established prostate cancer cells (PC3, DU145). Expression of PGRMC1 and HSD17B4 was knocked down and subsequent studies were performed to analyze cell proliferation, migration, invasion, and apoptosis. Mechanistic studies that explored the epidermal growth factor receptor (EGFR) pathway were performed by Western blot. RESULTS Multivariate analysis identified five metabolic genes that were differentially expressed between G3 and G4 stroma (P < .05). Functional validation studies revealed that knockdown of PGRMC1 and HSD17B4 significantly decreased cell proliferation, migration, and invasion, and increased apoptosis in PC3 and DU145 cells. Mechanistic studies showed that these effects, after PGRMC1 knockdown, were possibly mediated through alterations in downstream components of the EGFR, protein kinase B, and nuclear factor kappa-light-chain-enhancer of activated B cells pathways. CONCLUSION The following study provides evidence supporting the use of metabolic genes PGRMC1 and HSD17B4 as a prognostic biomarker for the distinction between G3 and G4 prostate cancers.
Collapse
Affiliation(s)
- Domenica Roberto
- Department of Surgery (Urology), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Shamini Selvarajah
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Paul C Park
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - David Berman
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Vasundara Venkateswaran
- Department of Surgery (Urology), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Ruan X, Gu M, Cai G, Zhao Y, Wang L, Li X, Mueck AO. Progestogens and PGRMC1-dependent breast cancer tumor growth: An in-vitro and xenograft study. Maturitas 2019; 123:1-8. [DOI: 10.1016/j.maturitas.2019.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/21/2019] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
|
17
|
Li X, Ruan X, Gu M, Mueck AO. PGRMC1 can trigger estrogen-dependent proliferation of breast cancer cells: estradiol vs. equilin vs. ethinylestradiol. Climacteric 2019; 22:483-488. [PMID: 30862292 DOI: 10.1080/13697137.2019.1582624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective: Previous studies have shown that progesterone receptor membrane component 1 (PGRMC1) expressed in breast cancer tissue can predict a worse prognosis for breast cancer patients. Moreover, we demonstrated that PGRMC1 can increase the proliferation of progestogens. However, the role of PGRMC1 in terms of estrogen-induced proliferation and comparing different estrogens is still unclear. Methods: Non-transfected and PGRMC1-transfected T-47D cells were stimulated with estradiol (E2), with equilin (EQ), or with ethinylestradiol (EE) at 1, 10, and 100 nmol/l. Increase of proliferation was compared with a control (without estrogens) and with the estrogen-induced stimulation in empty vector cells vs. PGRMC1-transfected cells. Results: The empty vector cells showed significant proliferation (12-15%) with all three estrogens only at the highest concentration, with no relevant differences between the estrogens. PGRMC1-transfected cells showed about three-fold higher proliferation (29-66%), whereby E2 elicited the strongest and EE the lowest proliferating effects, significantly lower compared to E2 and also compared to EQ. No significant differences were seen between E2 and EQ. Conclusions: PGRMC1 increases strongly the estrogen-dependent breast cell proliferation. The proliferating effects of EE may be lower compared to E2 and EQ. This could have importance in comparing hormone therapy and contraception. Thus, PGRMC1 not only could predict the risk using progestogens but also of different estrogens.
Collapse
Affiliation(s)
- X Li
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China
| | - X Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China.,Department of Women's Health, University Women's Hospital and Research Center for Women's Health, University of Tuebingen , Tuebingen , Germany
| | - M Gu
- Department of Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China
| | - A O Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China.,Department of Women's Health, University Women's Hospital and Research Center for Women's Health, University of Tuebingen , Tuebingen , Germany
| |
Collapse
|
18
|
Nicholson HE, Alsharif WF, Comeau AB, Mesangeau C, Intagliata S, Mottinelli M, McCurdy CR, Bowen WD. Divergent Cytotoxic and Metabolically Stimulative Functions of Sigma-2 Receptors: Structure-Activity Relationships of 6-Acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[ d]oxazol-2(3 H)-one (SN79) Derivatives. J Pharmacol Exp Ther 2018; 368:272-281. [PMID: 30530624 DOI: 10.1124/jpet.118.253484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/26/2018] [Indexed: 11/22/2022] Open
Abstract
Sigma-2 receptors, recently identified as TMEM97, have been implicated in cancer and neurodegenerative disease. Structurally distinct sigma-2 receptor ligands induce cell death in tumor cells, linking sigma-2 receptors to apoptotic pathways. Recently, we reported that sigma-2 receptors can also stimulate glycolytic hallmarks, effects consistent with a prosurvival function and upregulation in cancer cells. Both apoptotic and metabolically stimulative effects were observed with compounds related to the canonical sigma-2 antagonist SN79. Here we investigate a series of 6-substituted SN79 analogs to assess the structural determinants governing these divergent effects. Substitutions on the benzoxazolone ring of the core SN79 structure resulted in high-affinity sigma-2 receptor ligands (K i = 0.56-17.9 nM), with replacement of the heterocyclic oxygen by N-methyl (producing N-methylbenzimidazolones) generally decreasing sigma-1 affinity and a sulfur substitution (producing benzothiazolones) imparting high affinity at both subtypes, lowering subtype selectivity. Substitution at the 6-position with COCH3, NO2, NH2, or F resulted in ligands that were not cytotoxic. Five of these ligands induced an increase in metabolic activity, as measured by increased reduction of MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) in human SK-N-SH neuroblastoma cells, further supporting a role for sigma-2 receptors in metabolism. Substitution with 6-isothiocyanate resulted in ligands that were sigma-2 selective and that irreversibly bound to the sigma-2 receptor, but not to the sigma-1 receptor. These ligands induced cell death upon both acute and continuous treatment (EC50 = 7.6-32.8 μM), suggesting that irreversible receptor binding plays a role in cytotoxicity. These ligands will be useful for further study of these divergent roles of sigma-2 receptors.
Collapse
Affiliation(s)
- Hilary E Nicholson
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island (H.E.N., A.B.C., W.D.B.); Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (W.F.A., C.M., C.R.M.); and Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (S.I., M.M., C.R.M.)
| | - Walid F Alsharif
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island (H.E.N., A.B.C., W.D.B.); Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (W.F.A., C.M., C.R.M.); and Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (S.I., M.M., C.R.M.)
| | - Anthony B Comeau
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island (H.E.N., A.B.C., W.D.B.); Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (W.F.A., C.M., C.R.M.); and Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (S.I., M.M., C.R.M.)
| | - Christophe Mesangeau
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island (H.E.N., A.B.C., W.D.B.); Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (W.F.A., C.M., C.R.M.); and Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (S.I., M.M., C.R.M.)
| | - Sebastiano Intagliata
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island (H.E.N., A.B.C., W.D.B.); Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (W.F.A., C.M., C.R.M.); and Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (S.I., M.M., C.R.M.)
| | - Marco Mottinelli
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island (H.E.N., A.B.C., W.D.B.); Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (W.F.A., C.M., C.R.M.); and Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (S.I., M.M., C.R.M.)
| | - Christopher R McCurdy
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island (H.E.N., A.B.C., W.D.B.); Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (W.F.A., C.M., C.R.M.); and Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (S.I., M.M., C.R.M.)
| | - Wayne D Bowen
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island (H.E.N., A.B.C., W.D.B.); Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (W.F.A., C.M., C.R.M.); and Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (S.I., M.M., C.R.M.)
| |
Collapse
|
19
|
Sigma-2 Receptor/TMEM97 and PGRMC-1 Increase the Rate of Internalization of LDL by LDL Receptor through the Formation of a Ternary Complex. Sci Rep 2018; 8:16845. [PMID: 30443021 PMCID: PMC6238005 DOI: 10.1038/s41598-018-35430-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
CRISPR/Cas gene studies were conducted in HeLa cells where either PGRMC1, TMEM97 or both proteins were removed via gene editing. A series of radioligand binding studies, confocal microscopy studies, and internalization of radiolabeled or fluorescently tagged LDL particles were then conducted in these cells. The results indicate that PGRMC1 knockout (KO) did not reduce the density of binding sites for the sigma-2 receptor (σ2R) radioligands, [125I]RHM-4 or [3H]DTG, but a reduction in the receptor affinity of both radioligands was observed. TMEM97 KO resulted in a complete loss of binding of [125I]RHM-4 and a significant reduction in binding of [3H]DTG. TMEM97 KO and PGRMC1 KO resulted in an equal reduction in the rate of uptake of fluorescently-tagged or 3H-labeled LDL, and knocking out both proteins did not result in a further rate of reduction of LDL uptake. Confocal microscopy and Proximity Ligation Assay studies indicated a clear co-localization of LDLR, PGRMC1 and TMEM97. These data indicate that the formation of a ternary complex of LDLR-PGRMC1-TMEM97 is necessary for the rapid internalization of LDL by LDLR.
Collapse
|
20
|
Ruan X, Mueck AO. The choice of progestogen for HRT in menopausal women: breast cancer risk is a major issue. Horm Mol Biol Clin Investig 2018; 37:hmbci-2018-0019. [PMID: 30120909 DOI: 10.1515/hmbci-2018-0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 04/11/2018] [Indexed: 11/15/2022]
Abstract
Doctors and patients fear the risk of breast cancer when using hormone replacement therapy (HRT). This review focuses on the choice of progestogen for HRT in menopausal. The Women's Health Initiative (WHI) has been the only large double-blind placebo-controlled study testing the risk of breast cancer (BC) using HRT. No increased risk using estrogen (E)-only was seen, there was a significant decrease in mortality due to BC after the use of HRT which persisted during the recent 18-year follow-up of the WHI. In contrast in the combined arm the risk increased. In about 20 observational studies using mostly medroxyprogesterone acetate (MPA) or estradiol-norethisterone acetate (NETA) an increased BC-risk was observed comparable with the WHI. Only for natural progestogen, progesterone and for dydrogesterone (retro-isomer of progesterone) was no increased risk seen for up to 5-8 years, when compared directly with other progestogens, but for longer treatment an increased risk cannot be excluded. In contrast, the mortality due to BC after use of E-only and combined HRT decreased in about a dozen observational studies, and was very recently confirmed in a Finnish study evaluating 490,000 women using estradiol (E2) plus different progestogens. There have been already more than 70 studies evaluating the risk of BC during HRT, and still there are many open questions. Therefore, this review covers our own and other experimental research which could answer important questions. Experimental research has demonstrated that certain synthetic progestogens, but not progesterone and to some extent also not dydrogesterone, can accelerate the proliferation of breast cancer cells in vitro and in animal studies via special cell membrane components which we recently also detected in patients with BC, and we found differences comparing all available synthetic progestogens. Derived from these mechanisms future research may provide screening for patients at risk and predict the prognosis of possible BC.
Collapse
Affiliation(s)
- Xiangyan Ruan
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.,University Hospitals of Tübingen, Department of Women's Health, Tübingen, Germany
| | - Alfred O Mueck
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.,University Hospitals of Tübingen, Department of Women's Health, Tübingen, Germany
| |
Collapse
|
21
|
Terzaghi L, Luciano AM, Dall'Acqua PC, Modina SC, Peluso JJ, Lodde V. PGRMC1 localization and putative function in the nucleolus of bovine granulosa cells and oocytes. Reproduction 2018; 155:273-282. [PMID: 29339453 DOI: 10.1530/rep-17-0534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2023]
Abstract
Progesterone receptor membrane component-1 (PGRMC1) is a highly conserved multifunctional protein that is found in numerous systems, including reproductive system. Interestingly, PGRMC1 is expressed at several intracellular locations, including the nucleolus. The aim of this study is to investigate the functional relationship between PGRMC1 and nucleolus. Immunofluorescence experiments confirmed PGRMC1's nucleolar localization in cultured bovine granulosa cells (bGC) and oocytes. Additional experiments conducted on bGC revealed that PGRMC1 co-localizes with nucleolin (NCL), a major nucleolar protein. Furthermore, small interfering RNA (RNAi)-mediated gene silencing experiments showed that when PGRMC1 expression was depleted, NCL translocated from the nucleolus to the nucleoplasm. Similarly, oxidative stress induced by hydrogen peroxide (H2O2) treatment, reduced PGRMC1 immunofluorescent signal in the nucleolus and increased NCL nucleoplasmic signal, when compared to non-treated cells. Although PGRMC1 influenced NCL localization, a direct interaction between these two proteins was not detected using in situ proximity ligation assay. This suggests the involvement of additional molecules in mediating the co-localization of PGRMC1 and nucleolin. Since nucleolin translocates into the nucleoplasm in response to various cellular stressors, PGRMC1's ability to regulate its localization within the nucleolus is likely an important component of mechanism by which cells response to stress. This concept is consistent with PGRMC1's well-described ability to promote ovarian cell survival and provides a rationale for future studies on PGRMC1, NCL and the molecular mechanism by which these two proteins protect against the adverse effect of cellular stressors, including oxidative stress.
Collapse
Affiliation(s)
- Laura Terzaghi
- Department of HealthAnimal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, Milan, Italy
| | - Alberto Maria Luciano
- Department of HealthAnimal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, Milan, Italy
| | - Priscila C Dall'Acqua
- School of Agricultural and Veterinarian SciencesSão Paulo State University (UNESP), Jaboticabal, Brazil
| | - Silvia C Modina
- Department of HealthAnimal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, Milan, Italy
| | - John J Peluso
- Department of Obstetrics and GynecologyUniversity of Connecticut Health Center, Farmington, Connecticut, USA
| | - Valentina Lodde
- Department of HealthAnimal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, Milan, Italy
| |
Collapse
|
22
|
The presence of a membrane-bound progesterone receptor induces growth of breast cancer with norethisterone but not with progesterone: A xenograft model. Maturitas 2017; 102:26-33. [DOI: 10.1016/j.maturitas.2017.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 11/20/2022]
|
23
|
Cahill MA, Medlock AE. Thoughts on interactions between PGRMC1 and diverse attested and potential hydrophobic ligands. J Steroid Biochem Mol Biol 2017; 171:11-33. [PMID: 28104494 DOI: 10.1016/j.jsbmb.2016.12.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 01/05/2023]
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1) is located in many different subcellular locations with many different attested and probably location-specific functions. PGRMC1 was recently identified in the mitochondrial outer membrane where it interacts with ferrochelatase, the last enzyme in the heme synthetic pathway. It has been proposed that PGRMC1 may act as a chaperone to shuttle newly synthesized heme from the mitochondrion to cytochrome P450 (cyP450) enzymes. Here we consider potential roles that PGRMC1 may play in transferring heme, and other small hydrophobic ligands such as cholesterol and steroids, between the hydrophobic compartment of the membrane lipid bilayer interior to aqueous proteins, and perhaps to the membranes of other organelles. We review the synthesis and roles of especially PGRMC1- and cyP450-bound heme, the sources and transport of cholesterol, the involvement of PGRMC1 in cholesterol regulation, and the production of the first progestogen pregnenolone from cholesterol. We also show by clustering by inferred models of evolution (CLIME) analysis that PGRMC1 and related proteins exhibit co-evolution with a series of cyP450 enzymes, as well as a group of mitochondrial proteins lacking in several parasitic protist groups. Altogether, PGRMC1 is implicated with important roles in sterol synthesis and energy regulation that are dispensable in certain parasites. Some novel hypothetical models for PGRMC1 function are proposed to direct future investigative research.
Collapse
Affiliation(s)
- Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, 30602-1111, USA
| |
Collapse
|
24
|
Clark NC, Pru CA, Yee SP, Lydon JP, Peluso JJ, Pru JK. Conditional Ablation of Progesterone Receptor Membrane Component 2 Causes Female Premature Reproductive Senescence. Endocrinology 2017; 158:640-651. [PMID: 28005395 PMCID: PMC5460782 DOI: 10.1210/en.2016-1701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/21/2016] [Indexed: 01/04/2023]
Abstract
The nonclassical progesterone receptors progesterone receptor membrane component (PGRMC) 1 and PGRMC2 have been implicated in regulating cell survival of endometrial and ovarian cells in vitro and are abundantly expressed in these cell types. The objective of this study was to determine if Pgrmc1 and Pgrmc2 are essential for normal female reproduction. To accomplish this objective, Pgrmc1 and/or Pgrmc2 floxed mice (Pgrmc2fl/fl and Pgrmc1/2fl/fl) were crossed with Pgr-cre mice, which resulted in the conditional ablation of Pgrmc1 and/or Pgrmc2 from female reproductive tissues (i.e.,Pgrmc2d/d and Pgrmc1/2d/d mice). A breeding trial revealed that conditional ablation of Pgrmc2 initially led to subfertility, with Pgrmc2d/d female mice producing 47% fewer pups/litter than Pgrmc2fl/fl mice (P = 0.001). Pgrmc2d/d mice subsequently underwent premature reproductive senescence by parities 2 to 5, producing 37.8% fewer litters overall during the trial compared with Pgrmc2fl/fl mice (P = 0.020). Similar results were observed with Pgrmc1/2d/d mice. Based on ovarian morphology and serum P4, the subfertility/infertility was not due to faulty ovulation or luteal insufficiency. Rather an analysis of midgestation implantation sites revealed that postimplantation embryonic death was the major cause of the subfertility/infertility. As with our previous report of Pgrmc1d/d mice, Pgrmc2d/d and Pgrmc1/2d/d mice developed endometrial cysts consistent with accelerated aging of this tissue. Given the timing of postimplantation embryonic demise, uterine decidualization may be disrupted in mice deficient in PGRMC2 or PGRMC1/2. Overall, this study revealed that Pgrmc1 and/or Pgrmc2 are required for the maintenance of uterine histoarchitecture and normal female reproductive lifespan.
Collapse
Affiliation(s)
- Nicole C. Clark
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164;
| | - Cindy A. Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164;
| | - Siu-Pok Yee
- Departments of Cell Biology and Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut 06030; and
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - John J. Peluso
- Departments of Cell Biology and Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut 06030; and
| | - James K. Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164;
| |
Collapse
|
25
|
Ruan X, Zhang Y, Mueck AO, Willibald M, Seeger H, Fehm T, Brucker S, Neubauer H. Increased expression of progesterone receptor membrane component 1 is associated with aggressive phenotype and poor prognosis in ER-positive and negative breast cancer. Menopause 2017; 24:203-209. [DOI: 10.1097/gme.0000000000000739] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Cahill MA, Jazayeri JA, Catalano SM, Toyokuni S, Kovacevic Z, Richardson DR. The emerging role of progesterone receptor membrane component 1 (PGRMC1) in cancer biology. Biochim Biophys Acta Rev Cancer 2016; 1866:339-349. [PMID: 27452206 DOI: 10.1016/j.bbcan.2016.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023]
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is a multi-functional protein with a heme-binding moiety related to that of cytochrome b5, which is a putative progesterone receptor. The recently solved PGRMC1 structure revealed that heme-binding involves coordination by a tyrosinate ion at Y113, and induces dimerization which is stabilized by hydrophobic stacking of heme on adjacent monomers. Dimerization is required for association with cytochrome P450 (cyP450) enzymes, which mediates chemoresistance to doxorubicin and may be responsible for PGRMC1's anti-apoptotic activity. Here we review the multiple attested involvement of PGRMC1 in diverse functions, including regulation of cytochrome P450, steroidogenesis, vesicle trafficking, progesterone signaling and mitotic spindle and cell cycle regulation. Its wide range of biological functions is attested to particularly by its emerging association with cancer and progesterone-responsive female reproductive tissues. PGRMC1 exhibits all the hallmarks of a higher order nexus signal integration hub protein. It appears capable of acting as a detector that integrates information from kinase/phosphatase pathways with heme and CO levels and probably redox status.
Collapse
Affiliation(s)
- Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Jalal A Jazayeri
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Susan M Catalano
- Cognition Therapeutics Inc., Pittsburgh, PA 15203, United States
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
27
|
Clark NC, Friel AM, Pru CA, Zhang L, Shioda T, Rueda BR, Peluso JJ, Pru JK. Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors. Cancer Biol Ther 2016; 17:262-71. [PMID: 26785864 DOI: 10.1080/15384047.2016.1139240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Triple negative breast cancers (TNBCs) are highly aggressive and grow in response to sex steroid hormones despite lacking expression of the classical estrogen (E2) and progesterone (P4) receptors. Since P4 receptor membrane component 1 (PGRMC1) is expressed in breast cancer tumors and is known to mediate P4-induced cell survival, this study was designed to determine the expression of PGRMC1 in TNBC tumors and the involvement of PGRMC1 in regulating proliferation and survival of TNBC cells in vitro and the growth of TNBC tumors in vivo. For the latter studies, the MDA-MB-231 (MDA) cell line derived from TNBC was used. These cells express PGRMC1 but lack expression of the classical P4 receptor. A lentiviral-based shRNA approach was used to generate a stably transfected PGRMC1-deplete MDA line for comparison to the PGRMC1-intact MDA line. The present studies demonstrate that PGRMC1: 1) is expressed in TNBC cells; 2) mediates the ability of P4 to suppress TNBC cell mitosis in vitro; 3) is required for P4 to reduce the apoptotic effects of doxorubicin in vitro; and 4) facilitates TNBC tumor formation and growth in vivo. Taken together, these findings indicate that PGRMC1 plays an important role in regulating the growth and survival of TNBC cells in vitro and ultimately in the formation and development of these tumors in vivo. Thus, PGRMC1 may be a therapeutic target for TNBCs.
Collapse
Affiliation(s)
- Nicole C Clark
- a Department of Animal Sciences , School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman , WA , USA
| | - Anne M Friel
- b Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Cindy A Pru
- a Department of Animal Sciences , School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman , WA , USA
| | - Ling Zhang
- b Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Toshi Shioda
- c Massachusetts General Hospital Cancer Center and Harvard Medical School , Charlestown , MA , USA
| | - Bo R Rueda
- b Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - John J Peluso
- d Departments of Obstetrics and Gynecology and Cell Biology , University of Connecticut Health Center , Farmington , CT , USA
| | - James K Pru
- a Department of Animal Sciences , School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman , WA , USA
| |
Collapse
|
28
|
Zhang Y, Ruan X, Willibald M, Seeger H, Fehm T, Neubauer H, Mueck AO. May progesterone receptor membrane component 1 (PGRMC1) predict the risk of breast cancer? Gynecol Endocrinol 2016; 32:58-60. [PMID: 26303031 DOI: 10.3109/09513590.2015.1078303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Our and other studies have pointed on an important role of progesterone receptor membrane component 1 (PGRMC1) in development of breast cancer, especially in hormone therapy. To investigate if PGRMC1 could be used to predict the risk for getting breast cancer, we assessed in tissues of patients with primary invasive breast cancer, if the expression of PGRMC1 may be associated with the expression of estrogen receptor alpha (ERα), progesterone receptor (PR), and ki67. METHODS Samples from 109 patients with breast cancer between the years 2008 and 2014 were obtained with the patients' consent. Each sample was evaluated for the ERα, PR, Ki67, and PGRMC1 expression by immunohistochemistry using serial sections from the ame paraffin block comparing malignant tissue to benign tissue. RESULTS Expression of PGRMC1 is increased in tumor area compared with non-cancerous tissue and positively correlates with ERα expression (OR = 1.42 95%CI 1.06-1.91, p = 0.02). No association was obtained between expression of PGRMC1 and PR or Ki67. CONCLUSION It can be suggested that women with breast epithelium highly expressing PGRMC1 and in interaction with ERα may have an increased risk to develop breast cancer, especially when treated with hormone therapy.
Collapse
Affiliation(s)
- Ying Zhang
- a Department of Gynecological Endocrinology , Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China
| | - Xiangyan Ruan
- a Department of Gynecological Endocrinology , Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China
- b Department of Endocrinology and Menopause , University Women's Hospital of Tuebingen , Tuebingen , Germany , and
| | - Marina Willibald
- c Department of Gynecology and Obstetrics , University Women's Hospital of Duesseldorf , Duesseldorf , Germany
| | - Harald Seeger
- b Department of Endocrinology and Menopause , University Women's Hospital of Tuebingen , Tuebingen , Germany , and
| | - Tanja Fehm
- c Department of Gynecology and Obstetrics , University Women's Hospital of Duesseldorf , Duesseldorf , Germany
| | - Hans Neubauer
- c Department of Gynecology and Obstetrics , University Women's Hospital of Duesseldorf , Duesseldorf , Germany
| | - Alfred O Mueck
- a Department of Gynecological Endocrinology , Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China
- b Department of Endocrinology and Menopause , University Women's Hospital of Tuebingen , Tuebingen , Germany , and
| |
Collapse
|
29
|
Nicholson H, Mesangeau C, McCurdy CR, Bowen WD. Sigma-2 Receptors Play a Role in Cellular Metabolism: Stimulation of Glycolytic Hallmarks by CM764 in Human SK-N-SH Neuroblastoma. J Pharmacol Exp Ther 2015; 356:232-43. [PMID: 26574517 DOI: 10.1124/jpet.115.228387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/13/2015] [Indexed: 11/22/2022] Open
Abstract
Sigma-2 receptors are attractive antineoplastic targets due to their ability to induce apoptosis and their upregulation in rapidly proliferating cancer cells compared with healthy tissue. However, this role is inconsistent with overexpression in cancer, which is typically associated with upregulation of prosurvival factors. Here, we report a novel metabolic regulatory function for sigma-2 receptors. CM764 [6-acetyl-3-(4-(4-(2-amino-4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one] binds with Ki values of 86.6 ± 2.8 and 3.5 ± 0.9 nM at the sigma-1 and sigma-2 receptors, respectively. CM764 increased reduction of MTT [3-[4,5 dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide] in human SK-N-SH neuroblastoma compared with untreated cells, an effect not due to proliferation. This effect was attenuated by five different sigma antagonists, including CM572 [3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-6-isothiocyanatobenzo[d]oxazol-2(3H)-one], which has no significant affinity for sigma-1 receptors. This effect was also observed in MG-63 osteosarcoma and HEK293T cells, indicating that this function is not exclusive to neuroblastoma or to cancer cells. CM764 produced an immediate, robust, and transient increase in cytosolic calcium, consistent with sigma-2 receptor activation. Additionally, we observed an increase in the total NAD(+)/NADH level and the ATP level in CM764-treated SK-N-SH cells compared with untreated cells. After only 4 hours of treatment, basal levels of reactive oxygen species were reduced by 90% in cells treated with CM764 over untreated cells, and HIF1α and VEGF levels were increased after 3-24 hours of treatment. These data indicate that sigma-2 receptors may play a role in induction of glycolysis, representing a possible prosurvival function for the sigma-2 receptor that is consistent with its upregulation in cancer cells compared with healthy tissue.
Collapse
Affiliation(s)
- Hilary Nicholson
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island (H.N., W.D.B.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., C.R.M.)
| | - Christophe Mesangeau
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island (H.N., W.D.B.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., C.R.M.)
| | - Christopher R McCurdy
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island (H.N., W.D.B.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., C.R.M.)
| | - Wayne D Bowen
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island (H.N., W.D.B.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., C.R.M.)
| |
Collapse
|
30
|
Mueck AO, Ruan X. Benefits and risks during HRT: main safety issue breast cancer. Horm Mol Biol Clin Investig 2015; 5:105-16. [PMID: 25961246 DOI: 10.1515/hmbci.2011.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 02/18/2011] [Indexed: 11/15/2022]
Abstract
To assess the benefits and risks during hormone replacement therapy (HRT) in postmenopausal women, the only placebo-controlled study testing clinical endpoints with high statistical power has been the Women's Health Initiative (WHI). Although this trial, conducted mainly in older high-risk women, might not reflect the practical conditions for the normal use of HRT, the WHI for the first time provides the main risks in relative as well as in absolute numbers, which are venous thromboembolism and breast cancer, and in older women also myocardial infarction and stroke. Proven benefits such as treatment of climacteric symptoms, reduction of osteoporotic fractures and decrease of colon cancer risk seem to be only important for younger women, because only with early start of HRT cardiovascular risks can be reduced. Reduction of cardiovascular risks can be achieved using transdermal HRT, which, however, was not tested in a placebo-controlled study design similar to that in the WHI. This review focuses on the results of the WHI, comparing different age groups, and in general especially on the main fear of women, risk of breast cancer, which has been defined as a special project between two universities, a close collaboration of a German and Chinese research group.
Collapse
|
31
|
Neubauer H, Chen R, Schneck H, Knorrp T, Templin MF, Fehm T, Cahill MA, Seeger H, Yu Q, Mueck AO. New insight on a possible mechanism of progestogens in terms of breast cancer risk. Horm Mol Biol Clin Investig 2015; 6:185-92. [PMID: 25961254 DOI: 10.1515/hmbci.2010.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/13/2010] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Progestogens influence mammary gland development and probably breast cancer tumorigenesis by regulating a broad spectrum of physiological processes. We investigated receptor membrane-initiated actions of progestogens in MCF-7 breast cancer cells overexpressing progesterone receptor membrane component 1 (PGRMC1). DESIGN MCF-7 cells were stably transfected with PGRMC1 expression plasmid (MCF-7/PGRMC1-3HA) and overexpression of PGRMC1 was verified by immune fluorescent analysis and Western blot. To test the effects of progestogens on cell proliferation, MCF-7 and MCF-7/PGRMC1-3HA cells were stimulated with a membrane-impermeable progesterone: BSA-fluorescein-isothiocyanate conjugate (P4-BSA-FITC), unconjugated progesterone (P4), medroxyprogesterone acetate (MPA), norethisterone (NET) and drospirenone (DRSP). Furthermore, reverse phase protein technology was applied to identify modified downstream signaling. RESULTS Progesterone did not elicit any proliferative effect on MCF-7/PGRMC1-3HA cells. By contrast, P4-BSA-FITC, DRSP, MPA and NET significantly triggered proliferation of MCF-7/PGRMC1-3HA cells, the effect being more pronounced for NET. Almost no effect of progestogens on proliferation was observed in MCF-7 cells. In MCF-7/PGRMC1-3HA cells, expression of Erk1/2 was significantly reduced by 40% compared to MCF-7 cells. CONCLUSIONS Our data indicate that PGRMC1 mediates a progestogen-dependent proliferative signal in MCF-7 cells. Of significant interest is that progesterone and synthetic progestins that are used for hormone therapy are different in their proliferative effects on MCF-7 and MCF-7/PGRMC1-3HA cells. Progesterone appears to act neutrally, whereas MPA, NET and DRSP trigger proliferation and thus might increase breast cancer risk. The data presented are very important in terms of the positive results of progestogens and breast cancer risk in clinical studies so far.
Collapse
|
32
|
Identification of up- and down-regulated proteins in doxorubicin-resistant uterine cancer cells: Reticulocalbin-1 plays a key role in the development of doxorubicin-associated resistance. Pharmacol Res 2014; 90:1-17. [DOI: 10.1016/j.phrs.2014.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 01/09/2023]
|
33
|
Risiko von Brustkrebs unter „hormone replacement therapy“. GYNAKOLOGISCHE ENDOKRINOLOGIE 2014. [DOI: 10.1007/s10304-013-0627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Mueck AO, Ruan X, Seeger H, Fehm T, Neubauer H. Genomic and non-genomic actions of progestogens in the breast. J Steroid Biochem Mol Biol 2014; 142:62-7. [PMID: 23994274 DOI: 10.1016/j.jsbmb.2013.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 08/07/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022]
Abstract
Evidence is growing that progestogens may enhance breast cancer risk under hormone therapy in the postmenopause or hormonal contraception. However, differences may exist within the progestogen class and certain progestogens may have a higher potency in terms of breast cancer risk. The mechanism(s) by which these progestogens might influence breast cancer risk appear to be mediated via genomic and/or non-genomic effects triggered by activated progestogen receptors. In general, regulation of gene expression by progestogen receptors seems to be a multifactorial process involving both actions which often converge. In the present review, we describe the known genomic and non-genomic effects in the breast, especially focusing on the progestins. This article is part of a Special Issue entitled 'Menopause'.
Collapse
Affiliation(s)
- A O Mueck
- University Women's Hospital, Tübingen, Germany.
| | - X Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics&Gynecology Hospital, Capital Medical University, Beijing, China
| | - H Seeger
- University Women's Hospital, Tübingen, Germany
| | - T Fehm
- Department of Gynecology and Obstetrics, University Düsseldorf, Germany
| | - H Neubauer
- Department of Gynecology and Obstetrics, University Düsseldorf, Germany
| |
Collapse
|
35
|
Thomas P, Pang Y, Dong J. Enhancement of cell surface expression and receptor functions of membrane progestin receptor α (mPRα) by progesterone receptor membrane component 1 (PGRMC1): evidence for a role of PGRMC1 as an adaptor protein for steroid receptors. Endocrinology 2014; 155:1107-19. [PMID: 24424068 PMCID: PMC3929737 DOI: 10.1210/en.2013-1991] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A variety of functions have been proposed for progesterone receptor membrane component 1 (PGRMC1), including acting as a component of a membrane progestin receptor and as an adaptor protein. Here we show that stable overexpression of human PGRMC1 in nuclear progesterone receptor (PR)-negative breast cancer cell lines causes increased expression of PGRMC1 and membrane progesterone receptor α (mPRα) on cell membranes that is associated with increased specific [(3)H]progesterone binding. The membrane progestin binding affinity and specificity were characteristic of mPRα, with a Kd of 4.7 nM and high affinity for the mPR-specific agonist, Org OD 02-0, and low affinity for corticosteroids. Progestin treatment caused activation of G proteins, further evidence for increased expression of functional mPRs on PGRMC1-transfected cell membranes. Immunocytochemical and coimmunoprecipitation studies showed a close association of PGRMC1 with mPRα in cell membranes. Transfection of PGRMC1 into spontaneously immortalized rat granulosa cells was associated with membrane expression of PGRMC1 and mPRα as well as antiapoptotic effects of progestins that were abolished after cotransfection with small interfering RNA for mPRα. These data demonstrate that PGRMC1 can act as an adaptor protein, transporting mPRα to the cell surface, and that the progestin binding and apoptotic functions previously ascribed to PGRMC1 are dependent on cell surface expression of mPRα. Collectively, the results suggest PGRMC1 and mPRα are components of a membrane progesterone receptor protein complex. Increased expression of estrogen receptor β was also observed in the membranes of PGRMC1-transfected cells, suggesting that PGRMC1 can act as an adaptor protein for multiple classes of steroid receptors.
Collapse
Affiliation(s)
- Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas 78373
| | | | | |
Collapse
|
36
|
Overexpression of progesterone receptor membrane component 1: possible mechanism for increased breast cancer risk with norethisterone in hormone therapy. Menopause 2014; 20:504-10. [PMID: 23615641 DOI: 10.1097/gme.0b013e3182755c97] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Clinical trials have demonstrated an increased risk of breast cancer during estrogen/norethisterone (NET) therapy. With this in mind, the effects of estrogen/NET combination on the proliferation of breast cancer cells overexpressing the progesterone receptor membrane component 1 (PGRMC1) were examined. The same combination was used for the first time in a mouse xenograft model to determine its effects on tumor development. METHODS MCF-7 cells were stably transfected with PGRMC1 expression plasmid (WT-12 cells) or empty vector control (pcDNA-3HA). NET, medroxyprogesterone acetate (MPA), and progesterone were tested alone and sequentially and continuously combined with estradiol (E2). Six-week-old nude mice were inoculated with E2 pellets 24 hours before the injection of tumor cells into both flanks (n = 5-6 mice per group). After 8 days, animals were inoculated with a NET pellet or with placebo pellets, and tumor volumes were recorded twice a week. RESULTS NET alone significantly increased the proliferation of WT-12 cells, MPA was effective only at the two highest concentrations, and progesterone had no effect. The twofold to threefold E2-induced increase (10 M) was not significantly influenced by the addition of the various progestogens. In contrast, 10 M E2 had no effect; however, addition of MPA and NET triggered a significant proliferative response. In vivo, a sequential combination of NET and E2 also significantly increased the tumor growth of WT-12 cells; empty vector cells did not respond to NET. CONCLUSIONS We have demonstrated for the first time that an E2/NET combination increases the proliferation of PGRMC1-overexpressing breast cancer cells, both in vivo and in vitro. Our results suggest that undetected tumor cells overexpressing PGRMC1 may be more likely to develop into frank tumor cells in women undergoing E2/NET hormone therapy.
Collapse
|
37
|
Li JM, Chou HC, Wang SH, Wu CL, Chen YW, Lin ST, Chen YH, Chan HL. Hyaluronic acid-dependent protection against UVB-damaged human corneal cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:429-449. [PMID: 23813585 DOI: 10.1002/em.21794] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
Within ultraviolet radiation, ultraviolet B (UVB) is the most energetic and damaging to humans. At the protein level, UVB irradiation downregulates the expression of antioxidant enzymes leading to the accumulation of reactive oxygen species (ROS). Due to lacking of a global analysis of UVB-modulated corneal proteome, we investigate in vitro the mechanism of UVB-induced corneal damage to determine whether hyaluronic acid (HA) is able to reduce UVB irradiation-induced injury in human corneal epithelial cells. Accordingly, human corneal epithelial cell lines (HCE-2) were irradiated with UVB, followed by incubation with low molecular weight HA (LMW-HA, 100 kDa) or high molecular weight HA (HMW-HA, 1,000 kDa) to investigate the physiologic protection of HMW-HA in UVB-induced corneal injury, and to perform a global proteomic analysis. The data demonstrated that HA treatment protects corneal epithelial cells in the UVB-induced wound model, and that the molecular weight of HA is a crucial factor. Only HMW-HA significantly reduces the UVB-induced cytotoxic effects in corneal cells and increases cell migration and wound-healing ability. In addition, proteomic analysis showed that HMW-HA might modulate cytoskeleton regulation, signal transduction, biosynthesis, redox regulation, and protein folding to stimulate wound healing and to prevent these UVB-damaged cells from cell death. Further studies evidenced membrane-associated progesterone receptor component 1 (mPR) and malate dehydrogenase (MDH2) play essential roles in protecting corneal cells from UVB irradiation. This study reports on UVB-modulated cellular proteins that might play an important role in UVB-induced corneal cell injury and show HMW-HA to be a potential substance for protecting corneal cells from UVB-induced injury.
Collapse
Affiliation(s)
- Ji-Min Li
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Neubauer H, Ma Q, Zhou J, Yu Q, Ruan X, Seeger H, Fehm T, Mueck AO. Possible role of PGRMC1 in breast cancer development. Climacteric 2013; 16:509-13. [PMID: 23758160 DOI: 10.3109/13697137.2013.800038] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hormone therapy may increase the risk of breast cancer. Thus, especially the addition of synthetic progestins may play a decisive role according to the results of clinical studies. Overexpression of a special receptor, i.e. the progesterone receptor membrane component-1 (PGRMC1), may offer a potential new pathway to explain the observed increase in breast cancer risk in the combined arm of the Women's Health Initiative. PGRMC1 is expressed in breast cancer tissue and may be important in tumorigenesis. The expression of PGRMC1 in breast cancer tissue is significantly different from that in normal mammary glands. Certain synthetic progestins can increase the proliferation of PGRMC1-overexpressing breast cancer cells and may thus be involved in tumorigenesis, while progesterone and certain synthetic progestins such as nomegestrol or chlormadinone acetate react neutrally. Our investigations point towards an important role of estrogen receptor-α in the signaling cascade, resulting in the proliferative effect induced by progestins. Thus, activation of PGRMC1 may explain the increased breast cancer risk observed during treatment with certain progestins. Very recently, PGRMC1 was investigated in serum samples of lung cancer patients and matched healthy patients; significantly higher concentrations were shown in the cancer patients. Therefore, PGRMC1 might be a predictor for other cancers as well but, according to clinical trials, its importance for a possible screening tool, particularly for breast cancer risk during hormone therapy, seems of interest.
Collapse
Affiliation(s)
- H Neubauer
- University Women's Hospital , Düsseldorf , Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lin ST, Lo YW, Chang SJ, Wang WC, Chang MDT, Lyu PC, Chen YW, Chou HC, Chan HL. Redox-proteomic analysis of doxorubicin resistance-induced altered thiol activity in uterine carcinoma. J Pharm Biomed Anal 2013; 78-79:1-8. [DOI: 10.1016/j.jpba.2013.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/16/2013] [Accepted: 01/19/2013] [Indexed: 10/27/2022]
|
40
|
Luciano AM, Franciosi F, Lodde V, Tessaro I, Corbani D, Modina SC, Peluso JJ. Oocytes isolated from dairy cows with reduced ovarian reserve have a high frequency of aneuploidy and alterations in the localization of progesterone receptor membrane component 1 and aurora kinase B. Biol Reprod 2013; 88:58. [PMID: 23325810 DOI: 10.1095/biolreprod.112.106856] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Oocytes isolated from cows of reproductive age with reduced antral follicle counts (AFC) have a diminished capacity of embryonic development, which may be related to alterations in the mechanism that directs the proper segregation of chromosomes. Because we demonstrated that progesterone receptor membrane component 1 (PGRMC1) is involved in chromosome congression and metaphase II (MII) plate formation, the present study was designed to determine 1) if the decrease in oocyte developmental competence observed in dairy cows with a reduced AFC is due to a higher incidence of aneuploidy and 2) whether alterations in PGRMC1 contributes to the incidence of aneuploidy. Oocytes from ovaries with reduced AFC and age-matched controls were matured in vitro and the occurrence of aneuploidy determined as well as the mRNA level and localization of PGRMC1. Although oocytes from ovaries with reduced AFC were capable of undergoing meiosis in vitro, these oocytes showed a 3-fold increase in aneuploidy compared to oocytes isolated from control ovaries (P < 0.05). Although Pgrmc1 mRNA levels were not altered, PGRMC1 and aurora kinase B (AURKB) failed to localize to precise focal points on MII chromosomes of oocytes from ovaries with reduced AFC. Furthermore, when oocytes of control ovaries were cultured with an inhibitor of AURKB activity, their MII plate was disrupted and PGRMC1 was not properly localized to the chromosomes. These results suggest that alterations in PGRMC1 and/or AURKB localization account in part for the increased aneuploidy and low development competence of oocytes from ovaries with reduced AFC.
Collapse
Affiliation(s)
- Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Schneck H, Ruan X, Seeger H, Cahill MA, Fehm T, Mueck AO, Neubauer H. Membrane-receptor initiated proliferative effects of dienogest in human breast cancer cells. Gynecol Endocrinol 2013; 29:160-3. [PMID: 23116217 DOI: 10.3109/09513590.2012.730572] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES Dienogest (DNG) is already used in hormone therapy, since recently being also the progestogenic component of the first estradiol based contraceptive pill. Data on breast cancer risk are currently not available. Progesterone receptor membrane component 1 (PGRMC1) is highly expressed in tissues of breast cancer patients and has already been proposed as a predictor for breast cancer risk. METHODS MCF-7 cells overexpressing PGRMC1 were stimulated with DNG, medroxyprogesterone acetate (MPA), norethisterone (NET) and progesterone (P) as well as sequentially and continuously combined with estradiol (E2). RESULTS DNG and MPA alone elicited a significant proliferation at 10⁻⁶ and 10⁻⁵ M. NET increased cell proliferation at all concentrations tested whereas P showed no effect. E2 alone elicited a significant increase at 10⁻¹⁰ M, no effect was seen at 10⁻¹² M. Addition of the progestins (10⁻⁶ M) to E2 at 10⁻¹⁰ M had, compared to E2 only, no additional proliferating effect. However, at the low E2 concentration, DNG, MPA and NET significantly increased the E2-stimulated cell proliferation. CONCLUSION DNG increased proliferation alone and in combination with low E2 concentrations. Thus a progestogen-derived breast cancer risk in the presence of low E2 concentrations cannot be excluded at least in women overexpressing PGRMC1.
Collapse
|
42
|
Ruan X, Schneck H, Schultz S, Fehm T, Cahill MA, Seeger H, Chen R, Yu Q, Mueck AO, Neubauer H. Nomegestrol acetate sequentially or continuously combined to estradiol did not negatively affect membrane-receptor associated progestogenic effects in human breast cancer cells. Gynecol Endocrinol 2012; 28:863-6. [PMID: 22494101 DOI: 10.3109/09513590.2012.671396] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Recently the first monophasic contraceptive pill containing estradiol has been developed which is thought to be a milestone in contraception. Nomegestrol acetate (NOM) is the progestogenic component. Progesterone receptor membrane component 1 (PGRMC1) is highly expressed in the tissue of breast cancer patients, and can predict a progestogen dependent risk of breast cancer. METHODS MCF-7 cells were transfected with PGRMC1 expression plasmid, and were stimulated with estradiol (E2, 10(-12) and 10(-10) M). NOM, progesterone (P), medroxyprogesterone acetate (MPA) and norethisterone (NET) (each 10(-7) M) were added sequentially or continuously. RESULTS E2 at 10(-10) M elicited a significant increase of cell proliferation from 150 to 200%. No effect was seen at 10(-12) M. Addition of the progestogens to E2 at 10(-10) M had no significant effect. However, at an E2 10(-12) M, NET significantly stimulated cell proliferation more pronounced in the continuous combined model. No effect was seen for NOM, P and MPA. The E2/NET combined effect could be abrogated by the addition of an estrogen receptor (ER) antagonist. CONCLUSION Since NOM did not increase proliferation it may be concluded that it will be neutral in terms of breast cancer risk when combined with E2 at least in women overexpressing PGRMC1.
Collapse
Affiliation(s)
- Xiangyan Ruan
- Beijing Ob/Gyn Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lin ST, Chou HC, Chang SJ, Chen YW, Lyu PC, Wang WC, Chang MDT, Chan HL. Proteomic analysis of proteins responsible for the development of doxorubicin resistance in human uterine cancer cells. J Proteomics 2012; 75:5822-47. [DOI: 10.1016/j.jprot.2012.07.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 07/16/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
|
44
|
Ruan X, Neubauer H, Yang Y, Schneck H, Schultz S, Fehm T, Cahill MA, Seeger H, Mueck AO. Progestogens and membrane-initiated effects on the proliferation of human breast cancer cells. Climacteric 2012; 15:467-72. [PMID: 22335423 DOI: 10.3109/13697137.2011.648232] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Evidence is accumulating that progestogens may play a crucial role in the development of breast cancer under contraception and hormone therapy in reproductive and menopausal women. Progesterone receptor membrane component 1 (PGRMC1) expressed in breast cancer may be important in tumorigenesis and thus may increase breast cancer risk. The aim of this project was to investigate the influence of progesterone and nine synthetic progestins on MCF-7 breast cancer cells overexpressing PGRMC1. METHODS MCF-7 cells were stably transfected with PGRMC1 expression plasmid (WT-12). To test the effects of progestogerone (P) and the synthetic progestins chlormadinone acetate (CMA), desogestrel (DSG), drospirenone (DRSP), dydrogesterone (DYD), levonorgestrel (LNG), medroxyprogesterone acetate (MPA), nomegestrol (NOM) and norethisterone (NET) on cell proliferation, MCF-7 and WT-12 cells were stimulated with different concentrations (0.01-1 µmol/l). RESULTS In MCF-7 cells, DRSP, DSG, DYD, LNG and NET increased the proliferation at 1 µmol/l, the effect being highest for NET with about 20%. In WT-12 cells, the same progestins, but additionally MPA, showed a significant increase, which was much higher (30-245%) than in MCF-7 cells. Here again, NET showed the highest proliferative effect. No effect was found for CMA, NOM and P. CONCLUSION Some synthetic progestins trigger a proliferative response of PGRMC1-overexpressed MCF-7 cancer cells. The effect of progestogens on breast cancer tumorigenesis may clearly depend on the specific pharmacology of the various synthetic progestins.
Collapse
Affiliation(s)
- X Ruan
- Beijing Ob/Gyn Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The presence of a membrane-bound progesterone receptor sensitizes the estradiol-induced effect on the proliferation of human breast cancer cells. Menopause 2011; 18:845-50. [PMID: 21532513 DOI: 10.1097/gme.0b013e31820e5ac5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Breast cancer risk is still an important topic regarding hormone therapy as well as oral contraception. Evidence that progestogens may play a crucial role is accumulating. Progesterone receptor membrane component 1 (PGRMC1) expressed in breast cancer may be important in tumorigenesis and thus may increase breast cancer risk. The aim of this project was to investigate the influence of different estradiol (E2) concentrations and the addition of two progestogens on MCF-7 breast cancer cells overexpressing PGRMC1. METHODS MCF-7 cells were stably transfected with PGRMC1 expression plasmid (MCF-7/PGRMC1-3HA [WT-12]). To test the effects of E2 and progestogens on cell proliferation, MCF-7 and WT-12 cells were stimulated with different concentrations of E2 (10 and 10 M) alone and in combination with progesterone and medroxyprogesterone acetate (each 10 M). RESULTS E2 elicited a concentration-dependent proliferative effect on both cell lines, which was much more pronounced in WT-12 cells (50% vs 200%). This effect could be completely abrogated by the addition of the E2 antagonist fulvestrant. Addition of progesterone had no influence on the E2-induced effect, whereas medroxy-progesterone acetate enhanced the E2-induced effect at a low E2 concentration, which was, again, more pronounced in the WT-12 cells. The figures were between 20% and 40% in MCF-7 and between 60% and 250% in WT-12 cells. CONCLUSIONS Overexpression of PGRMC1 sensitizes the proliferative response of the MCF-7 breast cancer cell line to estradiol. The effect of progestogens on breast cancer tumorigenesis may depend on the specific progestogen used for hormone therapy or oral contraception.
Collapse
|
46
|
Medikamentöse Therapiemöglichkeiten in der Menopause. GYNAKOLOGISCHE ENDOKRINOLOGIE 2011. [DOI: 10.1007/s10304-011-0413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Can the increase in breast cancer observed in the estrogen plus progestin arm of the Women's Health Initiative trial be explained by progesterone receptor membrane component 1? Menopause 2011; 18:833-4. [DOI: 10.1097/gme.0b013e3182260321] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
48
|
Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site. Nat Commun 2011; 2:380. [PMID: 21730960 PMCID: PMC3624020 DOI: 10.1038/ncomms1386] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 06/09/2011] [Indexed: 01/11/2023] Open
Abstract
The sigma-2 receptor, whose gene remains to be cloned, has been validated as a biomarker for tumor cell proliferation. Here we report the use of a novel photoaffinity probe, WC-21, to identify the sigma-2 receptor binding site. WC-21, a sigma-2 ligand containing both a photoactive moiety azide and a fluorescein isothiocyanate group, irreversibly labels sigma-2 receptors in rat liver; the membrane-bound protein was then identified as PGRMC1 (progesterone receptor membrane component-1). Immunocytochemistry reveals that both PGRMC1 and SW120, a fluorescent sigma-2 receptor ligand, colocalizes with molecular markers of the endoplasmic reticulum and mitochondria in HeLa cells. Overexpression and knockdown of the PGRMC1 protein results in an increase and a decrease in binding of a sigma-2 selective radioligand, respectively. The identification of the putative sigma-2 receptor binding site as PGRMC1 should stimulate the development of unique imaging agents and cancer therapeutics that target the sigma-2 receptor/PGRMC1 complex.
Collapse
|
49
|
Xie Y, Bruce A, He L, Wei F, Tao L, Tang D. CYB5D2 enhances HeLa cells survival of etoposide-induced cytotoxicity. Biochem Cell Biol 2011; 89:341-50. [PMID: 21639828 DOI: 10.1139/o11-004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome b5 domain containing 2 (CYB5D2) (neuferricin) belongs to the family of membrane-associated progesterone receptors (MAPRs). MAPRs affect multiple cellular processes, including proliferation, differentiation, and survival. Consistent with these observations, we report here that CYB5D2 enhances HeLa cells survival of etoposide (ETOP)-mediated cytotoxicity. Overexpression of CYB5D2 enhanced the survival of HeLa cells compared with HeLa cells transfected with empty vector (EV) upon ETOP treatment. As ETOP initiates ATM-dependent DNA damage response (DDR), we were able to show that CYB5D2 did not affect ETOP-induced DDR. In line with these observations, CYB5D2 did not protect HeLa cells from UV-induced cytotoxicity. Additionally, CYB5D2 had no effects on TNFα-induced apoptosis. Collectively, CYB5D2 enhances HeLa cell survival of ETOP-induced cytotoxicity with some specificity. CYB5D2 contains a cytochrome b5 (cyt-b5) domain and a transmembrane (TM) motif. Both domains are required for CYB5D2-mediated protection of HeLa cells from ETOP-induced cytotoxicity. In an effort to search for the underlying mechanisms, we have profiled gene expression between HeLa-CYB5D2 and HeLa-EV cells. Although ectopic CYB5D2 does not massively alter gene expression, the expression of several transcripts was affected more than 2-fold, suggesting that they may contribute to CYB5D2-mediated HeLa cell survival of ETOP treatment.
Collapse
Affiliation(s)
- Yanyun Xie
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Fu XD, Russo E, Zullino S, Genazzani AR, Simoncini T. Sex steroids and breast cancer metastasis. Horm Mol Biol Clin Investig 2010; 3:383-9. [PMID: 25961210 DOI: 10.1515/hmbci.2010.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 10/19/2010] [Indexed: 11/15/2022]
Abstract
Sex steroids, particularly estrogen and progesterone, promote normal breast tissue growth and differentiation. Prolonged exposure of estrogen and/or progesterone is considered a risk factor for breast cancer carcinogenesis, and the effects of sex steroids on breast cancer metastasis are controversial. Emerging evidence indicates that sex steroids regulate breast cancer metastatic processes via nongenomic and genomic mechanisms. Through the regulation of actin-binding proteins estrogen and progesterone rapidly provoke actin cytoskeleton reorganization in breast cancer cells, leading to formation of membrane structures facilitating breast cancer cell migration and invasion. In addition, steroid receptors interact and trans-activate receptor tyrosine kinases (including epidermal growth factor receptor and insulin-like growth factor receptor), resulting in growth factor-like effects that promote cancer cell invasive behavior. Moreover, sex steroids regulate the expression of metastasis-associated molecules, such as E-cadherin, matrix metalloproteinases, growth factors, chemokines and their receptors, leading to epithelial-to-mesenchymal-like transition. However, there is also evidence that sex steroids and their receptors protect against breast cancer cell invasiveness through distinct mechanisms. Here, we present an overview of the currently identified actions of sex steroids on breast cancer metastasis and their potential clinical implications.
Collapse
|