1
|
Colucci F, Stefanelli S, Contaldi E, Gozzi A, Marchetti A, Pugliatti M, Laudisi M, Antenucci P, Capone JG, Gragnaniello D, Sensi M. Cognition in Patients with Spinocerebellar Ataxia 1 (SCA1) and 2 (SCA2): A Neurophysiological and Neuropsychological Approach. J Clin Med 2024; 13:4880. [PMID: 39201022 PMCID: PMC11355496 DOI: 10.3390/jcm13164880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Background/Objectives: Cognitive impairment in spinocerebellar ataxia patients has been reported since the early-disease stage. We aimed to assess cognitive differences in SCA1 and SCA2 patients. Methods: We performed neuropsychological (NPS) and neurophysiological (auditory event-related potentials, aERPs) assessments in 16 SCA1 and 18 SCA2 consecutive patients. Furthermore, clinical information (age at onset, disease duration, motor disability) was collected. Results: NPS tests yielded scores in the normal range in both groups but with lower scores in the Frontal Assessment Battery (p < 0.05) and Visual Analogue Test for Anosognosia for motor impairment (p < 0.05) in SCA1, and the Trail Making Test (p < 0.01), Raven's progressive matrices (p < 0.01), Stroop (p < 0.05), and emotion attribution tests (p < 0.05) in SCA2. aERPs showed lower N100 amplitude (p < 0.01) and prolonged N200 latency (p < 0.01) in SCA1 compared with SCA2. Clinically, SCA2 had more severe motor disability than SCA1 in the Assessment and Rating of Ataxia Scale. Conclusions: SCA2 showed more significant difficulties in attentional, visuospatial, and emotional function, and greater motor impairment. In contrast, SCA1 showed less cognitive flexibility/phasic ability, probably affected by a more severe degree of dysarthria. The same group revealed less neural activity during nonconscious attentional processing (N100-N200 data), suggesting greater involvement of sensory pathways in discriminating auditory stimuli. NFS did not correlate with NPS findings, implying an independent relationship. However, the specific role of the cerebellum and cerebellar symptoms in NPS test results deserves more focus.
Collapse
Affiliation(s)
- Fabiana Colucci
- Clinical Neurology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (A.G.); (A.M.); (M.P.); (M.L.); (P.A.)
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS, Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Sara Stefanelli
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero-Universitaria S. Anna, 44124 Ferrara, Italy; (S.S.); (J.G.C.); (D.G.); (M.S.)
| | - Elena Contaldi
- Centro Parkinson e Parkinsonismi, ASST Gaetano Pini-CTO, 20122 Milan, Italy;
| | - Andrea Gozzi
- Clinical Neurology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (A.G.); (A.M.); (M.P.); (M.L.); (P.A.)
| | - Alessia Marchetti
- Clinical Neurology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (A.G.); (A.M.); (M.P.); (M.L.); (P.A.)
| | - Maura Pugliatti
- Clinical Neurology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (A.G.); (A.M.); (M.P.); (M.L.); (P.A.)
| | - Michele Laudisi
- Clinical Neurology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (A.G.); (A.M.); (M.P.); (M.L.); (P.A.)
| | - Pietro Antenucci
- Clinical Neurology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (A.G.); (A.M.); (M.P.); (M.L.); (P.A.)
| | - Jay Guido Capone
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero-Universitaria S. Anna, 44124 Ferrara, Italy; (S.S.); (J.G.C.); (D.G.); (M.S.)
| | - Daniela Gragnaniello
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero-Universitaria S. Anna, 44124 Ferrara, Italy; (S.S.); (J.G.C.); (D.G.); (M.S.)
| | - Mariachiara Sensi
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero-Universitaria S. Anna, 44124 Ferrara, Italy; (S.S.); (J.G.C.); (D.G.); (M.S.)
| |
Collapse
|
2
|
Dujardin K, Tard C, Diglé E, Herlin V, Mutez E, Davion JB, Wissocq A, Delforge V, Kuchcinski G, Huin V. Cognitive Impairment Is Part of the Phenotype of Cerebellar Ataxia, Neuropathy, Vestibular Areflexia Syndrome (CANVAS). Mov Disord 2024; 39:892-897. [PMID: 38480525 DOI: 10.1002/mds.29750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/13/2024] [Accepted: 02/05/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Little is known about the impact of the cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) on cognition. OBJECTIVE Our objective was to determine the frequency and severity of cognitive impairment in RFC1-positive patients and describe the pattern of deficits. METHODS Participants underwent a comprehensive neuropsychological assessment. Volume of the cerebellum and its lobules was measured in those who underwent a 3 Tesla-magnetic resonance scan. RESULTS Twenty-one patients underwent a complete assessment, including 71% scoring lower than the cutoff at the Montreal Cognitive assessment and 71% having a definite cerebellar cognitive affective/Schmahmann syndrome. Three patients had dementia and seven met the criteria of mild cognitive impairment. Severity of cognitive impairment did not correlate with severity of clinical manifestations. Performance at memory and visuospatial functions tests negatively correlated with the severity of cerebellar manifestations. CONCLUSION Cognitive manifestations are frequent in RFC1-related disorders. They should be included in the phenotype and screened systematically. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kathy Dujardin
- University Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France
- CHU-Lille, Neurology and Movement Disorders Department, Lille, France
| | - Céline Tard
- University Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France
- CHU-Lille, Center of Reference for Neuromuscular Diseases, Lille, France
| | - Emily Diglé
- CHU-Lille, Neurology and Movement Disorders Department, Lille, France
| | - Virginie Herlin
- CHU-Lille, Neurology and Movement Disorders Department, Lille, France
| | - Eugénie Mutez
- University Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France
- CHU-Lille, Neurology and Movement Disorders Department, Lille, France
| | - Jean-Baptiste Davion
- University Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France
- CHU-Lille, Center of Reference for Neuromuscular Diseases, Lille, France
| | - Anna Wissocq
- CHU Lille, Department of Toxicology and Genopathies, UF Neurobiology, Lille, France
| | - Violette Delforge
- University Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France
| | - Gregory Kuchcinski
- University Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France
- Neuroradiology Department, CHU-Lille, Lille, France
| | - Vincent Huin
- University Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France
- CHU Lille, Department of Toxicology and Genopathies, UF Neurobiology, Lille, France
| |
Collapse
|
3
|
Shin JH, Kim H, Lee SY, Yoon WT, Park SW, Park S, Yoo D, Lee JY. Impaired cognitive flexibility and disrupted cognitive cerebellum in degenerative cerebellar ataxias. Brain Commun 2024; 6:fcae064. [PMID: 38454963 PMCID: PMC10919478 DOI: 10.1093/braincomms/fcae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/27/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
There is a clinically unmet need for a neuropsychological tool that reflects the pathophysiology of cognitive dysfunction in cerebellar degeneration. We investigated cognitive flexibility in degenerative cerebellar ataxia patients and aim to identify the pathophysiological correlates of cognitive dysfunction in relation to cerebellar cognitive circuits. We prospectively enrolled degenerative cerebellar ataxia patients with age-matched healthy controls who underwent 3 T 3D and resting-state functional MRI. All 56 participants were evaluated with the Scale for Assessment and Rating of Ataxia and neuropsychological tests including the Wisconsin Card Sorting Test, Trail Making Test, Montreal Cognitive Assessment and Mini-Mental State Examination. From MRI scans, we analysed the correlation of whole-brain volume and cortico-cerebellar functional connectivity with the Wisconsin Card Sorting Test performances. A total of 52 participants (29 ataxia patients and 23 healthy controls) were enrolled in this study. The Wisconsin Card Sorting Test scores (total error percentage, perseverative error percentage, non-perseverative error percentage and categories completed), Trail Making Test A and Montreal Cognitive Assessment were significantly impaired in ataxia patients (P < 0.05) compared to age-matched healthy controls. The Wisconsin Card Sorting Test error scores showed a significant correlation with the ataxia score (P < 0.05) controlling for age and sex. In volumetric analysis, the cerebellar right crus I, II, VIIb and VIII atrophy correlated with non-perseverative error percentage in the ataxia group. In functional connectivity analysis, the connectivity between crus I, II and VIIb of the cerebellum and bilateral superior parietal and superior temporal gyrus was significantly altered in ataxia patients. The functional connectivity between left crus II and VIIb of the cerebellum and dorsolateral prefrontal and superior frontal/parietal cortices showed a positive correlation with perseverative error percentage. The connectivity between left crus VIIb and pontine nucleus/middle cerebellar peduncle showed a significant negative correlation with non-perseverative error percentage in the ataxia group. The impaired cognitive flexibility represented by the Wisconsin Card Sorting Test was significantly impaired in degenerative cerebellar ataxia patients and correlated with disease severity. The Wisconsin Card Sorting Test performance reflects hypoactivity of the cognitive cerebellum and disrupted cortico-cerebellar connectivity in non-demented patients with degenerative cerebellar ataxia.
Collapse
Affiliation(s)
- Jung Hwan Shin
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul 07061, South Korea
- Department of Neurology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul 07061, South Korea
- Department of Neurology, Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | - So Yeon Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul 07061, South Korea
| | - Won Tae Yoon
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, South Korea
| | - Sun-Won Park
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul 07061, South Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Sangmin Park
- Department of Neurology, Eulji University Hospital, Eulji University School of Medicine, Daejeon 35233, South Korea
| | - Dallah Yoo
- Department of Neurology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul 05278, South Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul 07061, South Korea
| |
Collapse
|
4
|
Simona K, Veronika M, Zahinoor I, Martin V. Neuropsychiatric symptoms in spinocerebellar ataxias and Friedreich ataxia. Neurosci Biobehav Rev 2023; 150:105205. [PMID: 37137435 DOI: 10.1016/j.neubiorev.2023.105205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/05/2023]
Abstract
Apart from its role in motor coordination, the importance of the cerebellum in cognitive and affective processes has been recognized in the past few decades. Spinocerebellar ataxias (SCA) and Friedreich ataxia (FRDA) are rare neurodegenerative diseases of the cerebellum presenting mainly with a progressive loss of gait and limb coordination, dysarthria, and other motor disturbances, but also a range of cognitive and neuropsychiatric symptoms. This narrative review summarizes the current knowledge on neuropsychiatric impairment in SCA and FRDA. We discuss the prevalence, clinical features and treatment approaches in the most commonly reported domains of depression, anxiety, apathy, agitation and impulse dyscontrol, and psychosis. Since these symptoms have a considerable impact on patients' quality of life, we argue that further research is mandated to improve the detection and treatment options of neuropsychiatric co-morbidities in ataxia patients.
Collapse
Affiliation(s)
- Karamazovova Simona
- Center of Hereditary Ataxias, Department of Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, Prague, Czech Republic
| | - Matuskova Veronika
- Center of Hereditary Ataxias, Department of Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, Prague, Czech Republic.
| | - Ismail Zahinoor
- Departments of Psychiatry, Clinical Neurosciences, and Community Health Sciences, Cumming School of Medicine; Hotchkiss Brain Institute and O'Brien Institute of Public Health, University of Calgary, Calgary, Alberta, Canada
| | - Vyhnalek Martin
- Center of Hereditary Ataxias, Department of Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Electrophysiological and neuropsychological assessment of cognition in spinocerebellar ataxia type 1 patients: a pilot study. Neurol Sci 2023; 44:1597-1606. [PMID: 36639526 PMCID: PMC10102071 DOI: 10.1007/s10072-022-06597-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Event-related potentials (ERPs) reflect cognitive processing: negative early components (N100, N200) are involved in the sensory and perceptual processing of a stimulus, whereas late positive component P300 requires conscious attention. Both neuropsychological and affective disorders are present in patients with spinocerebellar ataxia type 1 (SCA1), but the underlying mechanisms need further clarification. MATERIALS AND METHODS In this pilot study, we assessed cognitive processing by recording auditory ERPs in 16 consecutive SCA1 patients and 16 healthy controls (HC) matched for age and sex. Motor and nonmotor symptoms were evaluated using the Scale for the Assessment and Rating of Ataxia (SARA) and an extensive neuropsychological battery. ERPs were recorded using an oddball paradigm, and peak latency and amplitude of N100, N200, and P300 were measured in the averaged responses to target tones. RESULTS We found in SCA1 significantly increased latencies of N200 and P300 (p=0.033, p=0.007) and decreased amplitudes of N100 and P300 (p=0.024, p=0.038) compared with HC. Furthermore, P300 latency had the highest AUC in the discrimination of SCA1 in ROC analysis. The expansion of trinucleotide repeats correlated with P300 latency (r=-0.607, p=0.048), whereas both P300 and N100 amplitudes correlated with the severity of motor symptoms (r=-0.692, p=0.003; r=-0.621; p=0.010). Significant correlations between P300 latency and the scores of Emotion Attribution Task (r=-0.633, p=0.027), as well as between N200 latency and the scores of Frontal Assessment Battery and Stroop test (r=-0.520, p=0.047; r=0.538, p=0.039), were observed. CONCLUSIONS This research provides for the first time an extensive characterization of ERPs as useful electrophysiological markers to identify early cognitive dysfunction in SCA1.
Collapse
|
6
|
Shimamoto T, Uchino K, Mori A, Nojima K, Iiyama J, Misumi Y, Ueda M, Uchino M. Effects of Intensive Exercise on Cognitive Dysfunction in Patients With Pure Cerebellar Degeneration: A Single-Arm Pilot Study. Ann Rehabil Med 2022; 46:263-273. [DOI: 10.5535/arm.22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Objective To clarify the profile of cognitive dysfunction and the effects of intensive exercise in spinocerebellar degeneration (SCD).Methods We enrolled 60 healthy controls and 16 patients with purely cerebellar type SCD without gait disturbance or organic changes other than cerebellar changes. To assess cognitive function, we evaluated the participants using the Mini-Mental State Examination (MMSE), Frontal Assessment Battery (FAB), and Montreal Cognitive Assessment-Japanese (MoCA-J) at admission and after intensive exercise.Results Compared to the controls, SCD patients showed significant cognitive decline. As a result of intensive exercise, significant improvements in motor and cognitive functions were observed: the MMSE score improved from 27.7±1.9 to 29.0±1.3 points (p<0.001); the FAB score improved from 14.8±2.2 to 15.8±2.0 points (p=0.002); and the MoCA-J score improved from 24.6±2.2 to 26.7±1.9 points (p<0.001). For sub-scores, significant improvements were noted in serial 7, lexical fluency, motor series, and delayed recall.Conclusion Our study indicates that intensive exercise can be effective not only for motor dysfunction but also for cognitive dysfunction (Clinical Trial Registration No. UMIN-CTR: UMIN000040079).
Collapse
|
7
|
Frazier MR, Hoffman LJ, Popal H, Sullivan-Toole H, Olino TM, Olson IR. A missing link in affect regulation: the cerebellum. Soc Cogn Affect Neurosci 2022; 17:1068-1081. [PMID: 35733348 PMCID: PMC9714429 DOI: 10.1093/scan/nsac042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/05/2022] [Accepted: 06/21/2022] [Indexed: 01/12/2023] Open
Abstract
The cerebellum is one-third the size of the cerebrum yet holds twice the number of neurons. Historically, its sole function was thought to be in the calibration of smooth movements through the creation and ongoing modification of motor programs. This traditional viewpoint has been challenged by findings showing that cerebellar damage can lead to striking changes in non-motor behavior, including emotional changes. In this manuscript, we review the literature on clinical and subclinical affective disturbances observed in individuals with lesions to the cerebellum. Disorders include pathological laughing and crying, bipolar disorder, depression and mixed mood changes. We propose a theoretical model based on cerebellar connectivity to explain how the cerebellum calibrates affect. We conclude with actionable steps for future researchers to test this model and improve upon the limitations of past literature.
Collapse
Affiliation(s)
| | - Linda J Hoffman
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Haroon Popal
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | | | - Thomas M Olino
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Ingrid R Olson
- Correspondence should be addressed to Ingrid R. Olson, Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA. E-mail:
| |
Collapse
|
8
|
Goldman JG, Holden SK. Cognitive Syndromes Associated With Movement Disorders. Continuum (Minneap Minn) 2022; 28:726-749. [PMID: 35678400 DOI: 10.1212/con.0000000000001134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW This article reviews the recognition and management of cognitive syndromes in movement disorders, including those with parkinsonism, chorea, ataxia, dystonia, and tremor. RECENT FINDINGS Cognitive and motor syndromes are often intertwined in neurologic disorders, including neurodegenerative diseases such as Parkinson disease, atypical parkinsonian syndromes, Huntington disease, and other movement disorders. Cognitive symptoms often affect attention, working memory, and executive and visuospatial functions preferentially, rather than language and memory, but heterogeneity can be seen in the various movement disorders. A distinct cognitive syndrome has been recognized in patients with cerebellar syndromes. Appropriate recognition and screening for cognitive changes in movement disorders may play a role in achieving accurate diagnoses and guiding patients and their families regarding progression and management decisions. SUMMARY In the comprehensive care of patients with movement disorders, recognition of cognitive syndromes is important. Pharmacologic treatments for the cognitive syndromes, including mild cognitive impairment and dementia, in these movement disorders lag behind the therapeutics available for motor symptoms, and more research is needed. Patient evaluation and management require a comprehensive team approach, often linking neurologists as well as neuropsychologists, psychologists, psychiatrists, social workers, and other professionals.
Collapse
|
9
|
Cerebellum and Emotion Recognition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:41-51. [DOI: 10.1007/978-3-030-99550-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
OUP accepted manuscript. Arch Clin Neuropsychol 2022; 37:904-915. [DOI: 10.1093/arclin/acac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
|
11
|
Gok-Dursun E, Gultekin-Zaim OB, Tan E, Unal-Cevik I. Cognitive impairment and affective disorder: A rare presentation of cerebellar stroke. Clin Neurol Neurosurg 2021; 206:106690. [PMID: 34022689 DOI: 10.1016/j.clineuro.2021.106690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
The awareness of the "Cerebellar Cognitive Affective Syndrome" (CCAS) as a clinical entity is emerging. The CCAS is characterized by impaired executive functions, linguistic skills, visuospatial cognition and personality change. Here we report a 56-year-old, male teacher who developed acute psychomotor retardation, low energy level, infrequent speech, and mild cognitive decline. Two months before admission, he was initially diagnosed as depression, and later misdiagnosed as encephalitis, which misled him to receive high-dose intravenous steroids and antimicrobial drugs. The Brain MRI revealed multiple posterior cerebellar infarcts predominantly at the lobules VII and VIII. The standard neuropsychological tests were unremarkable; however, the CCAS Scale confirmed the diagnosis. The treatment of depression and secondary prevention of stroke was conducted. In cases that present with features of cognitive and affective disorders but with mild voluntary motor or without typical cerebellar features, the role of posterior cerebellar and vermian pathologies should be considered. The CCAS Scale is an appropriate screening tool to detect these patients and provides a framework for evidence-based treatment.
Collapse
Affiliation(s)
- Ece Gok-Dursun
- Hacettepe University, Faculty of Medicine, Department of Neurology, Ankara, Turkey
| | | | - Ersin Tan
- Hacettepe University, Faculty of Medicine, Department of Neurology, Ankara, Turkey
| | - Isin Unal-Cevik
- Hacettepe University, Faculty of Medicine, Department of Neurology, Ankara, Turkey.
| |
Collapse
|
12
|
Stezin A, Bhardwaj S, Hegde S, Jain S, Bharath RD, Saini J, Pal PK. Cognitive impairment and its neuroimaging correlates in spinocerebellar ataxia 2. Parkinsonism Relat Disord 2021; 85:78-83. [PMID: 33756405 DOI: 10.1016/j.parkreldis.2021.02.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Cognitive impairment (CI) is reported but is poorly explored in spinocerebellar ataxia 2 (SCA2). This study was undertaken to evaluate and classify cognitive impairment in patients with SCA2 and to identify their grey matter (GM) correlates. METHODS We evaluated the neurocognitive profile of 35 SCA2 and 30 age-, gender- and education-matched healthy controls using tests for attention, executive functions, learning and memory, language and fluency, and visuomotor constructive ability. Patients were classified into SCA2 with and without CI based on normative data from population and healthy controls. Furthermore, patients with CI were sub-classified based on the number of impaired domains into multi-domain CI (≥3 domains; MDCI) and limited domain CI (≤2 domains; LDCI). The underlying GM changes were identified using voxel based morphometry. RESULTS The mean age at onset, duration of disease, and ataxia score was 28.7 ± 8.51 years, 66.7 ± 44.1 months, and 16.1 ± 4.9 points, respectively. CI was present in 71.4% of SCA2 subjects (MDCI: 42.7%; LDCI: 28.5%). Patients with CI had significant atrophy of the posterior cerebellum, sensorimotor cortex, and superior frontal gyrus (FWE p-value <0.05). Patients with MDCI had significant GM atrophy of the angular gyrus compared to LDCI (FWE p-value <0.05). CONCLUSION Patients with CI had significant GM involvement of the posterior cerebellum and frontal lobe, suggestive of impairment in the cerebello-fronto-cortical circuitry.
Collapse
Affiliation(s)
- Albert Stezin
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India; Clinical Neurosciences, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Sujas Bhardwaj
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Shantala Hegde
- Clinical Neuropsychology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Sanjeev Jain
- Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Rose Dawn Bharath
- Neuroimaging and Interventional Radiology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Jitender Saini
- Neuroimaging and Interventional Radiology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
13
|
Schmahmann JD. Emotional disorders and the cerebellum: Neurobiological substrates, neuropsychiatry, and therapeutic implications. HANDBOOK OF CLINICAL NEUROLOGY 2021; 183:109-154. [PMID: 34389114 DOI: 10.1016/b978-0-12-822290-4.00016-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The notion that the cerebellum is devoted exclusively to motor control has been replaced by a more sophisticated understanding of its role in neurological function, one that includes cognition and emotion. Early clinical reports, as well as physiological and behavioral studies in animal models, raised the possibility of a nonmotor role for the cerebellum. Anatomical studies demonstrate cerebellar connectivity with the distributed neural circuits linked with autonomic, sensorimotor, vestibular, associative, and limbic/paralimbic brain areas. Identification of the cerebellar cognitive affective syndrome in adults and children underscored the clinical relevance of the role of the cerebellum in cognition and emotion. It opened new avenues of investigation into higher-order deficits that accompany the ataxias and other cerebellar diseases, as well as the contribution of cerebellar dysfunction to neuropsychiatric and neurocognitive disorders. Brain imaging studies have demonstrated the complexity of cerebellar functional topography, revealing a double representation of the sensorimotor cerebellum in the anterior lobe and lobule VIII and a triple cognitive representation in the cerebellar posterior lobe, as well as representation in the cerebellum of the intrinsic connectivity networks identified in the cerebral hemispheres. This paradigm shift in thinking about the cerebellum has been advanced by the theories of dysmetria of thought and the universal cerebellar transform, harmonizing the dual anatomic realities of homogeneously repeating cerebellar cortical microcircuitry set against the heterogeneous and topographically arranged cerebellar connections with extracerebellar structures. This new appreciation of cerebellar incorporation into circuits that subserve cognition and emotion mandates a deeper understanding of the cerebellum by practitioners in behavioral neurology and neuropsychiatry because it impacts the understanding and diagnosis of disorders of emotion and intellect and has potential for novel cerebellar-based approaches to therapy.
Collapse
Affiliation(s)
- Jeremy D Schmahmann
- Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
14
|
Taskiran-Sag A, Uzuncakmak Uyanik H, Uyanik SA, Oztekin N. Prospective investigation of cerebellar cognitive affective syndrome in a previously non-demented population of acute cerebellar stroke. J Stroke Cerebrovasc Dis 2020; 29:104923. [PMID: 32689613 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022] Open
Abstract
OBJECTIVE In this prospective study, we aimed to investigate the presence and evolution of cerebellar cognitive affective syndrome in a cohort of isolated cerebellar stroke with no known cognitive or psychiatric impairment. We tried to distinguish the unconfounded effect of cerebellar lesions on neuropsychological processing. METHODS After a meticulous exclusion procedure based on possible confounders, we recruited 14 patients and 13 age-matched healthy controls to the study, prospectively. All of the patients had a detailed initial neuropsychological assessment at the first week and a follow-up assessment at the 4th month after stroke. RESULTS The prevalence of cognitive or behavioral-affective abnormalities in our cohort were 86% and 64% respectively. The patients exhibited mild and transient affective-behavioral abnormalities except for depressive symptoms that persisted in the subacute stage. They scored lower in general cognitive performance as revealed by mini mental test (p=0.001). Memory, executive functions, attention and working memory, central processing speed, and linguistic abilities were impaired (p<0.001; p=0.001; p=0.007; p=0.05; p<0.001 respectively). Improvement was evident only in memory domain of the cognitive functions in the subacute stage. Cognitive impairment was more likely with a medial or posterolateral infarct (p=0.014). Behavioral-affective abnormalities were not associated with a specific location in our cohort. Age seemed to negatively correlate with the recovery in general cognitive performance on the follow-up. CONCLUSIONS These findings show that acute denervation of cerebellocortical projections leads to mild affective-behavioral abnormalities, and full-blown cerebellar cognitive affective syndrome is rare. However, cognition was significantly affected after an acute cerebellar infarct even in a previously healthy, non-demented pure population.
Collapse
Affiliation(s)
- Aslihan Taskiran-Sag
- Department of Neurology, Ankara Numune Training and Research Hospital, Sihhiye, 06100 Ankara, Turkey.
| | - Handan Uzuncakmak Uyanik
- Department of Neurology, Kartal Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey
| | - Sadik Ahmet Uyanik
- Department of Radiology, Faculty of Medicine, Istanbul Okan University, Istanbul, Turkey
| | - Nese Oztekin
- Department of Neurology, Ankara Numune Training and Research Hospital, Sihhiye, 06100 Ankara, Turkey
| |
Collapse
|
15
|
Argyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, Molinari M, Stoodley CJ, Van Overwalle F, Ivry RB, Schmahmann JD. The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper. CEREBELLUM (LONDON, ENGLAND) 2020; 19:102-125. [PMID: 31522332 PMCID: PMC6978293 DOI: 10.1007/s12311-019-01068-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sporadically advocated over the last two centuries, a cerebellar role in cognition and affect has been rigorously established in the past few decades. In the clinical domain, such progress is epitomized by the "cerebellar cognitive affective syndrome" ("CCAS") or "Schmahmann syndrome." Introduced in the late 1990s, CCAS reflects a constellation of cerebellar-induced sequelae, comprising deficits in executive function, visuospatial cognition, emotion-affect, and language, over and above speech. The CCAS thus offers excellent grounds to investigate the functional topography of the cerebellum, and, ultimately, illustrate the precise mechanisms by which the cerebellum modulates cognition and affect. The primary objective of this task force paper is thus to stimulate further research in this area. After providing an up-to-date overview of the fundamental findings on cerebellar neurocognition, the paper substantiates the concept of CCAS with recent evidence from different scientific angles, promotes awareness of the CCAS as a clinical entity, and examines our current insight into the therapeutic options available. The paper finally identifies topics of divergence and outstanding questions for further research.
Collapse
Affiliation(s)
| | - Kim van Dun
- Rehabilitation Research Center REVAL, UHasselt, Hasselt, Belgium
| | - Michael Adamaszek
- Clinical and Cognitive Neurorehabilitation, Center of Neurology and Neurorehabilitation, Klinik Bavaria Kreischa, An der Wolfsschlucht 1-2, 01703 Kreischa, Germany
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, 6000 Charleroi, Belgium
- Department of Neurosciences, University of Mons, 7000 Mons, Belgium
| | - Marcella Masciullo
- SPInal REhabilitation Lab (SPIRE), IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Marco Molinari
- Neuro-Robot Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | | | | | - Richard B. Ivry
- Department of Psychology, University of California, Berkeley, CA USA
| | - Jeremy D. Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
16
|
Argyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, Molinari M, Stoodley CJ, Van Overwalle F, Ivry RB, Schmahmann JD. The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper. CEREBELLUM (LONDON, ENGLAND) 2019. [PMID: 31522332 DOI: 10.1007/s12311‐019‐01068‐8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sporadically advocated over the last two centuries, a cerebellar role in cognition and affect has been rigorously established in the past few decades. In the clinical domain, such progress is epitomized by the "cerebellar cognitive affective syndrome" ("CCAS") or "Schmahmann syndrome." Introduced in the late 1990s, CCAS reflects a constellation of cerebellar-induced sequelae, comprising deficits in executive function, visuospatial cognition, emotion-affect, and language, over and above speech. The CCAS thus offers excellent grounds to investigate the functional topography of the cerebellum, and, ultimately, illustrate the precise mechanisms by which the cerebellum modulates cognition and affect. The primary objective of this task force paper is thus to stimulate further research in this area. After providing an up-to-date overview of the fundamental findings on cerebellar neurocognition, the paper substantiates the concept of CCAS with recent evidence from different scientific angles, promotes awareness of the CCAS as a clinical entity, and examines our current insight into the therapeutic options available. The paper finally identifies topics of divergence and outstanding questions for further research.
Collapse
Affiliation(s)
| | - Kim van Dun
- Rehabilitation Research Center REVAL, UHasselt, Hasselt, Belgium
| | - Michael Adamaszek
- Clinical and Cognitive Neurorehabilitation, Center of Neurology and Neurorehabilitation, Klinik Bavaria Kreischa, An der Wolfsschlucht 1-2, 01703, Kreischa, Germany
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, 6000, Charleroi, Belgium.,Department of Neurosciences, University of Mons, 7000, Mons, Belgium
| | - Marcella Masciullo
- SPInal REhabilitation Lab (SPIRE), IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Marco Molinari
- Neuro-Robot Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | | | | | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Slapik M, Kronemer SI, Morgan O, Bloes R, Lieberman S, Mandel J, Rosenthal L, Marvel C. Visuospatial Organization and Recall in Cerebellar Ataxia. THE CEREBELLUM 2019; 18:33-46. [PMID: 29949096 DOI: 10.1007/s12311-018-0948-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Poor visuospatial skills can disrupt activities of daily living. The cerebellum has been implicated in visuospatial processing, and patients with cerebellar injury often exhibit poor visuospatial skills, as measured by impaired memory for the figure within the Rey-Osterrieth complex figure task (ROCF). Visuospatial skills are an inherent aspect of the ROCF; however, figure organization (i.e., the order in which the figure is reconstructed by the participant) can influence recall ability. The objective of this study was to examine and compare visuospatial and organization skills in people with cerebellar ataxia. We administered the ROCF to patients diagnosed with cerebellar ataxia and healthy controls. The cerebellar ataxia group included patients that carried a diagnosis of spinocerebellar ataxia (any subtype), autosomal dominant cerebellar ataxia, or cerebellar ataxia with unknown etiology. Primary outcome measures were organization and recall performance on the ROCF, with supplemental information derived from cognitive tests of visuospatial perception, working memory, processing speed, and motor function. Cerebellar ataxia patients revealed impaired figure organization relative to that of controls. Figure copy was impaired in the patients, but their subsequent recall performance was normal, suggesting compensation from initial organization and copying strategies. In controls, figure organization predicted recall performance, but this relationship was not observed in the patients. Instead, processing speed predicted patients' recall accuracy. Supplemental tasks indicated that visual perception was intact in the cerebellar ataxia group and that performance deficits were more closely tied to organization strategies than with visuospatial skills.
Collapse
Affiliation(s)
- Mitchell Slapik
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
| | | | - Owen Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
| | - Ryan Bloes
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
| | - Seth Lieberman
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jordan Mandel
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
| | - Liana Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
| | - Cherie Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA.
| |
Collapse
|
18
|
The cerebellum and cognition. Neurosci Lett 2019; 688:62-75. [DOI: 10.1016/j.neulet.2018.07.005] [Citation(s) in RCA: 425] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023]
|
19
|
Rentiya ZS, Jung BC, Bae J, Liszewski CM, Fishman A, Du AX, Margolis RL, Ying SH. Selective Patterns of Cognitive Impairment in Spinocerebellar Ataxia Type 6 and Idiopathic Late-Onset Cerebellar Ataxia. Arch Clin Neuropsychol 2018; 33:427-436. [PMID: 28961751 DOI: 10.1093/arclin/acx077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/08/2017] [Indexed: 11/14/2022] Open
Abstract
Purpose To determine cognitive impairment patterns in patients with spinocerebellar ataxia type 6 (SCA6) compared to patients with idiopathic late-onset cerebellar ataxia (ILOCA). Methods Neurocognitive testing was conducted on 21 SCA6, nine ILOCA, and 27 controls subjects. Intergroup differences were assessed using the Wilcoxon signed-ranked test or Student's t-test. Principal component analysis (PCA) was performed on nine cognitive variables, and Hotelling's T-squared test assessed group-specific differences. Pearson's correlations assessed changes in cognitive performance and disease progression. Intra-group differences among SCA6 were examined in a post-hoc analysis. Results SCA6 and ILOCA patients showed impairment in visuo-spatial executive function, phonemic verbal fluency, and semantic-verb word generation. ILOCA showed impairment in mental flexibility/response inhibition, verbal learning, semantic-noun verbal fluency, and forward numerical working memory. Within the first three principal components, SCA6 and ILOCA differed from controls and from each other. Verbal working and immediate visuo-spatial memory correlated with disease duration for SCA6. For ILOCA, Mini-Mental Status Exam and RCF copy correlated with disease duration. Conclusion Differing patterns of cognitive dysfunction were seen in SCA6 and ILOCA. PCA suggested that distinct SCA6 subgroups may exist, SCA61 with significant ILOCA overlap in several cognitive deficits, and SCA62 showing deficits in visuo-spatial performance only.
Collapse
Affiliation(s)
| | - Brian C Jung
- Johns Hopkins University School of Medicine, Baltimore, USA.,University of California Irvine School of Medicine, Irvine, USA
| | - Junun Bae
- Johns Hopkins University School of Medicine, Baltimore, USA.,Lake Erie College of Osteopathic Medicine, Erie, USA
| | - Christine M Liszewski
- Johns Hopkins University School of Medicine, Baltimore, USA.,Michigan State University School of Medicine, East Lansing, USA
| | - Ann Fishman
- Johns Hopkins University School of Medicine, Baltimore, USA
| | - Annie X Du
- Johns Hopkins University School of Medicine, Baltimore, USA
| | | | - Sarah H Ying
- Johns Hopkins University School of Medicine, Baltimore, USA.,Worldwide Research and Development, Pfizer, Incorporated, New York, USA
| |
Collapse
|
20
|
Cervetto S, Abrevaya S, Martorell Caro M, Kozono G, Muñoz E, Ferrari J, Sedeño L, Ibáñez A, García AM. Action Semantics at the Bottom of the Brain: Insights From Dysplastic Cerebellar Gangliocytoma. Front Psychol 2018; 9:1194. [PMID: 30050490 PMCID: PMC6052139 DOI: 10.3389/fpsyg.2018.01194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022] Open
Abstract
Recent embodied cognition research shows that access to action verbs in shallow-processing tasks becomes selectively compromised upon atrophy of the cerebellum, a critical motor region. Here we assessed whether cerebellar damage also disturbs explicit semantic processing of action pictures and its integration with ongoing motor responses. We evaluated a cognitively preserved 33-year-old man with severe dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease), encompassing most of the right cerebellum and the posterior part of the left cerebellum. The patient and eight healthy controls completed two semantic association tasks (involving pictures of objects and actions, respectively) that required motor responses. Accuracy results via Crawford’s modified t-tests revealed that the patient was selectively impaired in action association. Moreover, reaction-time analysis through Crawford’s Revised Standardized Difference Test showed that, while processing of action concepts involved slower manual responses in controls, no such effect was observed in the patient, suggesting that motor-semantic integration dynamics may be compromised following cerebellar damage. Notably, a Bayesian Test for a Deficit allowing for Covariates revealed that these patterns remained after covarying for executive performance, indicating that they were not secondary to extra-linguistic impairments. Taken together, our results extend incipient findings on the embodied functions of the cerebellum, offering unprecedented evidence of its crucial role in processing non-verbal action meanings and integrating them with concomitant movements. These findings illuminate the relatively unexplored semantic functions of this region while calling for extensions of motor cognition models.
Collapse
Affiliation(s)
- Sabrina Cervetto
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina.,Departamento de Educación Física y Salud, Instituto Superior de Educación Física, Universidad de la República, Montevideo, Uruguay
| | - Sofía Abrevaya
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Miguel Martorell Caro
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Giselle Kozono
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Edinson Muñoz
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Jesica Ferrari
- Neuropsychiatry Department, Institute of Cognitive Neurology, Buenos Aires, Argentina
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council, Buenos Aires, Argentina.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile.,Centre of Excellence in Cognition and its Disorders, Australian Research Council (ARC), Sydney, NSW, Australia
| | - Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council, Buenos Aires, Argentina.,Faculty of Education, National University of Cuyo, Mendoza, Argentina
| |
Collapse
|
21
|
Lindsay E, Storey E. Cognitive Changes in the Spinocerebellar Ataxias Due to Expanded Polyglutamine Tracts: A Survey of the Literature. Brain Sci 2017; 7:brainsci7070083. [PMID: 28708110 PMCID: PMC5532596 DOI: 10.3390/brainsci7070083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
The dominantly-inherited ataxias characterised by expanded polyglutamine tracts—spinocere bellar ataxias (SCAs) 1, 2, 3, 6, 7, 17, dentatorubral pallidoluysian atrophy (DRPLA) and, in part, SCA 8—have all been shown to result in various degrees of cognitive impairment. We survey the literature on the cognitive consequences of each disorder, attempting correlation with their published neuropathological, magnetic resonance imaging (MRI) and clinical features. We suggest several psychometric instruments for assessment of executive function, whose results are unlikely to be confounded by visual, articulatory or upper limb motor difficulties. Finally, and with acknowledgement of the inadequacies of the literature to date, we advance a tentative classification of these disorders into three groups, based on the reported severity of their cognitive impairments, and correlated with their neuropathological topography and MRI findings: group 1—SCAs 6 and 8—mild dysexecutive syndrome based on disruption of cerebello-cortical circuitry; group 2—SCAs 1, 2, 3, and 7—more extensive deficits based largely on disruption of striatocortical in addition to cerebello-cerebral circuitry; and group 3—SCA 17 and DRPLA—in which cognitive impairment severe enough to cause a dementia syndrome is a frequent feature.
Collapse
Affiliation(s)
- Evelyn Lindsay
- Department of Medicine (Neuroscience), Monash University (Alfred Hospital Campus), Commercial Road, Melbourne, VIC 3004, Australia.
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University (Alfred Hospital Campus), Commercial Road, Melbourne, VIC 3004, Australia.
| |
Collapse
|
22
|
Robertson EE, Hall DA, McAsey AR, O'Keefe JA. Fragile X-associated tremor/ataxia syndrome: phenotypic comparisons with other movement disorders. Clin Neuropsychol 2016; 30:849-900. [PMID: 27414076 PMCID: PMC7336900 DOI: 10.1080/13854046.2016.1202239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/12/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The purpose of this paper is to review the typical cognitive and motor impairments seen in fragile X-associated tremor/ataxia syndrome (FXTAS), essential tremor (ET), Parkinson disease (PD), spinocerebellar ataxias (SCAs), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP) in order to enhance diagnosis of FXTAS patients. METHODS We compared the cognitive and motor phenotypes of FXTAS with each of these other movement disorders. Relevant neuropathological and neuroimaging findings are also reviewed. Finally, we describe the differences in age of onset, disease severity, progression rates, and average lifespan in FXTAS compared to ET, PD, SCAs, MSA, and PSP. We conclude with a flow chart algorithm to guide the clinician in the differential diagnosis of FXTAS. RESULTS By comparing the cognitive and motor phenotypes of FXTAS with the phenotypes of ET, PD, SCAs, MSA, and PSP we have clarified potential symptom overlap while elucidating factors that make these disorders unique from one another. In summary, the clinician should consider a FXTAS diagnosis and testing for the Fragile X mental retardation 1 (FMR1) gene premutation if a patient over the age of 50 (1) presents with cerebellar ataxia and/or intention tremor with mild parkinsonism, (2) has the middle cerebellar peduncle (MCP) sign, global cerebellar and cerebral atrophy, and/or subcortical white matter lesions on MRI, or (3) has a family history of fragile X related disorders, intellectual disability, autism, premature ovarian failure and has neurological signs consistent with FXTAS. Peripheral neuropathy, executive function deficits, anxiety, or depression are supportive of the diagnosis. CONCLUSIONS Distinct profiles in the cognitive and motor domains between these movement disorders may guide practitioners in the differential diagnosis process and ultimately lead to better medical management of FXTAS patients.
Collapse
Affiliation(s)
- Erin E Robertson
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
| | - Deborah A Hall
- b Department of Neurological Sciences , Rush University , Chicago , IL , USA
| | - Andrew R McAsey
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
| | - Joan A O'Keefe
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
- b Department of Neurological Sciences , Rush University , Chicago , IL , USA
| |
Collapse
|
23
|
Abstract
Our goal was to improve spinocerebellar ataxia type 2 (SCA2) cognitive profile characterization by testing the hypothesis that strategy, planning and rule acquisition capacities are affected in SCA2. Forty one patients with SCA2 were evaluated with the Spatial Working Memory (SWM), the Stockings of Cambridge (SOC), and the Intra-Extra Dimensional Shift (IED) tests of the Executive module of the Cambridge Neuropsychological Testing Automated Battery (CANTAB). Paired Associates Learning (PAL) and Delayed Matching to Sample (DMS) from the CANTAB memory module were also assessed to corroborate previous findings. Motor deterioration was measured using the Scale for the Assessment and Rating of Ataxia (SARA). We found significant SCA2 related deficits in strategy, planning, and rule acquisition. Our results also corroborated significant memory deficits in these patients with SCA2. Further analysis also showed that patients with large motor deterioration had poorer associative learning and spatial planning scores. Patients with SCA2 show strategy, planning, and rule acquisition deficits as revealed with the CANTAB battery. These deficits should be noted when planning an effective therapy for these patients.
Collapse
|
24
|
Mercadillo RE, Galvez V, Díaz R, Paredes L, Velázquez-Moctezuma J, Hernandez-Castillo CR, Fernandez-Ruiz J. Social and Cultural Elements Associated with Neurocognitive Dysfunctions in Spinocerebellar Ataxia Type 2 Patients. Front Psychiatry 2015; 6:90. [PMID: 26113822 PMCID: PMC4462049 DOI: 10.3389/fpsyt.2015.00090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/27/2015] [Indexed: 11/30/2022] Open
Abstract
Spinocerebellar Ataxia Type 2 (SCA2) is a rare genetic disorder producing cerebellar degeneration and affecting motor abilities. Neuroimaging studies also show neurodegeneration in subcortical and cortical regions related to emotional and social processes. From social neuroscience, it is suggested that motor and social abilities can be influenced by particular cultural dynamics so, culture is fundamental to understand the effect of brain-related alterations. Here, we present the first analysis about the cultural elements related to the SCA2 disorder in 15 patients previously evaluated with neuroimaging and psychometric instruments, and their nuclear relationships distributed in six geographical and cultural regions in Mexico. Ethnographic records and photographic and video archives about the quotidian participant's routine were obtained from the patients, their relatives and their caregivers. The information was categorized and interpreted taking into consideration cultural issues and patients' medical files. Our analyses suggest that most of the participants do not understand the nature of the disease and this misunderstanding favors magic and non-medical explanations. Patients' testimonies suggest a decrease in pain perception as well as motor alterations that may be related to interoceptive dysfunctions. Relatives' testimonies indicate patients' lack of social and emotional interests that may be related to frontal, temporal, and cerebellar degeneration. In general, participants use their religious beliefs to deal with the disease and only a few of them trust the health system. Patients and their families are either openly rejected and ignored, tolerated or even helped by their community accordingly to different regional traits. We propose that ethnography can provide social representations to understand the patients' alterations, to formulate neurobiological hypotheses, to develop neurocognitive interventions, and to improve the medical approach to the disease.
Collapse
Affiliation(s)
- Roberto Emmanuele Mercadillo
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City , Mexico ; Consejo Nacional de Ciencia y Tecnología-Cátedras , Mexico City , Mexico ; Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Unidad Iztapalapa , Mexico City , Mexico
| | - Víctor Galvez
- Posgrado en Neuroetología, Universidad Veracruzana , Xalapa , Mexico
| | - Rosalinda Díaz
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Lorena Paredes
- Facultad de Psicología, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Javier Velázquez-Moctezuma
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Unidad Iztapalapa , Mexico City , Mexico
| | - Carlos R Hernandez-Castillo
- Consejo Nacional de Ciencia y Tecnología-Cátedras , Mexico City , Mexico ; Instituto de Neuroetología, Universidad Veracruzana , Xalapa , Mexico
| | - Juan Fernandez-Ruiz
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City , Mexico ; Posgrado en Neuroetología, Universidad Veracruzana , Xalapa , Mexico ; Facultad de Psicología, Universidad Veracruzana , Xalapa , Mexico
| |
Collapse
|
25
|
Mercadillo RE, Galvez V, Díaz R, Hernández-Castillo CR, Campos-Romo A, Boll MC, Pasaye EH, Fernandez-Ruiz J. Parahippocampal gray matter alterations in Spinocerebellar Ataxia Type 2 identified by voxel based morphometry. J Neurol Sci 2014; 347:50-8. [DOI: 10.1016/j.jns.2014.09.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/20/2014] [Accepted: 09/12/2014] [Indexed: 11/26/2022]
|
26
|
FTLD-ALS of TDP-43 type and SCA2 in a family with a full ataxin-2 polyglutamine expansion. Acta Neuropathol 2014; 128:597-604. [PMID: 24718895 DOI: 10.1007/s00401-014-1277-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/29/2014] [Indexed: 12/13/2022]
Abstract
Polyglutamine expansions in the ataxin-2 gene (ATXN2) cause autosomal dominant spinocerebellar ataxia type 2 (SCA2), but have recently also been associated with amyotrophic lateral sclerosis (ALS). We present clinical and pathological features of a family in which a pathological ATXN2 expansion led to frontotemporal lobar degeneration with ALS (FTLD-ALS) in the index case, but typical SCA2 in a son, and compare the neuropathology with a case of typical SCA2. The index case shares the molecular signature of SCA2 with prominent polyglutamine and p62-positive intranuclear neuronal inclusions mainly in the pontine nuclei, while harbouring more pronounced neocortical and spinal TDP-43 pathology. We conclude that ATXN2 mutations can cause not only ALS, but also a neuropathological overlap syndrome of SCA2 and FTLD presenting clinically as pure FTLD-ALS without ataxia. The cause of the phenotypic heterogeneity remains unexplained, but the presence of a CAA-interrupted CAG repeat in the FTLD case in this family suggests that one potential mechanism may be variation in repeat tract composition between members of the same family.
Collapse
|
27
|
Fancellu R, Paridi D, Tomasello C, Panzeri M, Castaldo A, Genitrini S, Soliveri P, Girotti F. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol 2014; 260:3134-43. [PMID: 24122064 DOI: 10.1007/s00415-013-7138-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
Abstract
The role of the cerebellum in cognition, both in healthy subjects and in patients with cerebellar diseases, is debated. Neuropsychological studies in spinocerebellar ataxia type 1 (SCA1) and type 2 (SCA2) demonstrated impairments in executive functions, verbal memory, and visuospatial performances, but prospective evaluations are not available. Our aims were to assess progression of cognitive and psychiatric functions in patients with SCA1 and SCA2 in a longitudinal study. We evaluated at baseline 20 patients with SCA1, 22 patients with SCA2 and 17 matched controls. Two subgroups of patients (9 SCA1, 11 SCA2) were re-evaluated after 2 years. We tested cognitive functions (Mini Mental State Examination, digit span, Corsi span, verbal memory, attentional matrices, modified Wisconsin Card Sorting Test, Raven Progressive Matrices, Benton test, phonemic and semantic fluency), psychiatric status (Scales for Assessment of Negative and Positive Symptoms, Hamilton Depression and Anxiety Scales), neurological conditions (Scale for Assessment and Rating of Ataxia), and functional abilities (Unified Huntington Disease Rating Scale–part IV). At baseline, SCA1 and SCA2 patients had significant deficits compared to controls, mainly in executive functions (phonemic and semantic fluencies, attentional matrices); SCA2 showed further impairment in visuospatial and visuoperceptive tests (Raven matrices, Benton test, Corsi span). Both SCA groups had higher depression and negative symptoms, particularly apathy, compared to controls. After 2 years, motor and functional disability worsened, while only attentive performances deteriorated in SCA2. This longitudinal study showed dissociation in progression of motor disability and cognitive impairment, suggesting that in SCA1 and SCA2 motor and cognitive functions might be involved with different progression rates.
Collapse
|
28
|
Feng L, Chen DB, Hou L, Huang LH, Lu SY, Liang XL, Li XH. Cognitive impairment in native Chinese with spinocerebellar ataxia type 3. Eur Neurol 2014; 71:262-70. [PMID: 24525517 DOI: 10.1159/000357404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 11/17/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Previous studies have shown cognitive impairment in patients with spinocerebellar ataxia type 3 (SCA3). However, there is a lack of data on Chinese patients with SCA3. METHOD We investigated 22 native Chinese with SCA3 and 18 controls matched for age, education as well as mental status. Cognitive assessments were carefully carried out to measure verbal fluency, memory, attention, executive function, visuospatial and visuoconstructive functions. RESULTS The most common impairments of cognition in native Chinese with SCA3 were disruption of phonemic verbal fluency and frontal executive dysfunction. Deficits in semantic fluency were detected in about 31.8% patients. Impaired visuospatial function and verbal memory were also found in native Chinese with SCA3. The degree of ataxia, CAG repeat length and education were found to correlate with cognitive performance. Multivariate binary logistic regression suggested that an oculomotor disorder and depression are predictors of cognitive impairment. CONCLUSION Native Chinese with SCA3 had cognitive impairment of frontal executive function, temporal and parietal functions. An oculomotor disorder might be an index of cognitive dysfunction.
Collapse
Affiliation(s)
- Li Feng
- Department of Neurology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | | | | | | | | | | | | |
Collapse
|
29
|
Impaired temporal processing of tactile and proprioceptive stimuli in cerebellar degeneration. PLoS One 2013; 8:e78628. [PMID: 24244328 PMCID: PMC3823840 DOI: 10.1371/journal.pone.0078628] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/13/2013] [Indexed: 12/03/2022] Open
Abstract
Performance of timed motor sequences relies on the cerebellum and basal ganglia, which integrate proprioceptive information during the motor task and set internal timing mechanisms. Accordingly, these structures are also involved in other temporal processes, such as the discrimination of the different afferent information in the domain of time. In the present study we tested temporal processing of proprioceptive and tactile stimuli in 20 patients with neurodegenerative cerebellar ataxia and 20 age- and sex-matched healthy subjects. Tactile temporal discrimination threshold was defined as the value at which subjects recognized the two stimuli as asynchronous. Temporal discrimination movement threshold of the first dorsal interosseous and flexor carpi radialis was defined as the shortest interval between two paired electrical stimuli in which the subjects blindfolded perceived two separate index finger abductions and wrist flexions. Both tactile and movement temporal discrimination thresholds were higher in patients with cerebellar ataxia. No correlation was found with disease duration and severity. Our study demonstrates that temporal processing of tactile and proprioceptive stimuli is impaired in patients with cerebellar neurodegeneration and highlights the involvement of cerebellum in temporal processing of somatosensory stimuli of different type.
Collapse
|
30
|
Linking coordinative and executive dysfunctions to atrophy in spinocerebellar ataxia 2 patients. Brain Struct Funct 2011; 216:275-88. [DOI: 10.1007/s00429-011-0310-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/13/2011] [Indexed: 01/20/2023]
|