1
|
Patel A, Pauzuolyte V, Ingham NJ, Leong YC, Berger W, Steel KP, Sowden JC. Rescue of cochlear vascular pathology prevents sensory hair cell loss in Norrie disease. Proc Natl Acad Sci U S A 2024; 121:e2322124121. [PMID: 39585982 PMCID: PMC11626139 DOI: 10.1073/pnas.2322124121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/11/2024] [Indexed: 11/27/2024] Open
Abstract
Variants in the gene NDP cause Norrie disease, a severe dual-sensory disorder characterized by congenital blindness due to disrupted retinal vascular development and progressive hearing loss accompanied by sensory hair cell death. NDP encodes the secreted signaling molecule norrin. The role of norrin in the cochlea is incompletely understood. We investigated whether the Norrie disease cochlear pathology can be ameliorated in an Ndp-knockout (Ndp-KO) mouse model by conditional activation of stabilized β-catenin in vascular endothelial cells. We hypothesized that in the cochlea microvasculature, β-catenin is the primary downstream intracellular effector of norrin binding to endothelial cell surface receptors and that restoration of this signaling pathway is sufficient to prevent sensory hair cell death and hearing loss. We show that tamoxifen induction of Cdh5CreERT2;Ctnnb1flex3/+;Ndp-KO mice stabilizing β-catenin in vascular endothelial cells alone rescued defects in cochlear vascular barrier function, restored dysregulated expression of endothelial cell disease biomarkers (Cldn5, Abcb1a, Slc7a1, and Slc7a5), and prevented progressive outer hair cell death and hearing loss. Single-cell transcriptome profiling of human cochleas showed NDP expression by fibrocytes and glial cells while receptor gene expression (FZD4, TSPAN12, LRP5, and LRP6) coincided in vascular endothelial cells. Our findings support the conclusion that vascular endothelial cells are a primary target of norrin signaling in the cochlea of mice and humans and restoration of β-catenin regulation of target gene expression within cochlear endothelial cells is sufficient to maintain a cochlear microenvironment critical for hair cell survival.
Collapse
MESH Headings
- Animals
- Mice
- Mice, Knockout
- Cochlea/metabolism
- Cochlea/pathology
- Cochlea/blood supply
- beta Catenin/metabolism
- beta Catenin/genetics
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/pathology
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/pathology
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Spasms, Infantile/metabolism
- Spasms, Infantile/genetics
- Spasms, Infantile/pathology
- Blindness/genetics
- Blindness/metabolism
- Blindness/prevention & control
- Blindness/pathology
- Blindness/congenital
- Eye Proteins/metabolism
- Eye Proteins/genetics
- Endothelial Cells/metabolism
- Humans
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Genetic Diseases, X-Linked/pathology
- Disease Models, Animal
- Signal Transduction
- Retinal Degeneration/metabolism
- Retinal Degeneration/pathology
- Retinal Degeneration/genetics
- Retinal Degeneration/prevention & control
- Nervous System Diseases
Collapse
Affiliation(s)
- Aara Patel
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, University College London, and National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, LondonWC1N 1EH, United Kingdom
| | - Valda Pauzuolyte
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, University College London, and National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, LondonWC1N 1EH, United Kingdom
| | - Neil J. Ingham
- Wolfson Sensory, Pain and Regeneration Centre, King’s College, LondonSE1 1UL, United Kingdom
| | - Yeh Chwan Leong
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, University College London, and National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, LondonWC1N 1EH, United Kingdom
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics and Zurich Center for Integrative Human Physiology, and Neuroscience Center Zurich, University and ETH Zurich, University of Zürich, Zurich8057, Switzerland
| | - Karen P. Steel
- Wolfson Sensory, Pain and Regeneration Centre, King’s College, LondonSE1 1UL, United Kingdom
| | - Jane C. Sowden
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, University College London, and National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, LondonWC1N 1EH, United Kingdom
| |
Collapse
|
2
|
Cortés-González V, Rodriguez-Morales M, Ataliotis P, Mayer C, Plaisancié J, Chassaing N, Lee H, Rozet JM, Cavodeassi F, Fares Taie L. Homozygosity for a hypomorphic mutation in frizzled class receptor 5 causes syndromic ocular coloboma with microcornea in humans. Hum Genet 2024; 143:1509-1521. [PMID: 39503780 DOI: 10.1007/s00439-024-02712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024]
Abstract
Ocular coloboma (OC) is a congenital disorder caused by the incomplete closure of the embryonic ocular fissure. OC can present as a simple anomaly or, in more complex forms, be associated with additional ocular abnormalities. It can occur in isolation or as part of a broader syndrome, exhibiting considerable genetic heterogeneity. Diagnostic yield for OC remains below 30%, indicating the need for further genetic exploration. Mutations in the Wnt receptor FZD5, which is expressed throughout eye development, have been linked to both isolated and complex forms of coloboma. These mutations often result in a dominant-negative effect, where the mutated FZD5 protein disrupts WNT signaling by sequestering WNT ligands. Here, we describe a case of syndromic bilateral OC with additional features such as microcornea, bone developmental anomalies, and mild intellectual disability. Whole exome sequencing revealed a homozygous rare missense variant in FZD5. Consistent with a loss-of-function effect, overexpressing of fzd5 mRNA harboring the missense variant in zebrafish embryos does not influence embryonic development, whereas overexpression of wild-type fzd5 mRNA results in body axis duplications. However, in vitro TOPFlash assays revealed that the missense variant only caused partial loss-of-function, behaving as a hypomorphic mutation. We further showed that the mutant protein still localized to the cell membrane and maintained proper conformation when modeled in silico, suggesting that the impairment lies in signal transduction. This hypothesis is further supported by the fact that the variant affects a highly conserved amino acid known to be crucial for protein-protein interactions.
Collapse
Affiliation(s)
- Vianney Cortés-González
- Departamento de Genética, Asociación Para Evitar la Ceguera en México, Vicente García Torres No. 46 Barrio San Lucas, Coyoacán, Mexico City, C.P. 04030, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel Rodriguez-Morales
- Departamento de Genética, Asociación Para Evitar la Ceguera en México, Vicente García Torres No. 46 Barrio San Lucas, Coyoacán, Mexico City, C.P. 04030, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paris Ataliotis
- School of Health and Medical Sciences, City St. George's University of London, London, SW17 0RE, UK
| | - Claudine Mayer
- Complex Systems and Translational Bioinformatics (CSTB), ICube Laboratory, UMR7357, University of Strasbourg, 1 rue Eugène Boeckel, Strasbourg, 67000, France
- Faculté des Sciences, Université Paris Cité, UFR Sciences du Vivant, Paris, 75013, France
| | - Julie Plaisancié
- Laboratoire de Référence (LBMR) des Anomalies Malformatives de l'oeil, Institut Fédératif de Biologie (IFB), CHU Toulouse, Toulouse, France
- Centre de Référence des Affections Rares en Génétique Ophtalmologique, CARGO, site constitutif, CHU Toulouse, Toulouse, France
| | - Nicolas Chassaing
- Laboratoire de Référence (LBMR) des Anomalies Malformatives de l'oeil, Institut Fédératif de Biologie (IFB), CHU Toulouse, Toulouse, France
- Centre de Référence des Affections Rares en Génétique Ophtalmologique, CARGO, site constitutif, CHU Toulouse, Toulouse, France
| | - Hane Lee
- 3billion Inc., Seoul, South Korea
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, Paris, 75015, France
| | - Florencia Cavodeassi
- School of Health and Medical Sciences, City St. George's University of London, London, SW17 0RE, UK.
| | - Lucas Fares Taie
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, Paris, 75015, France.
| |
Collapse
|
3
|
Hoem G, Pastore A, Bratland E, Christoffersen T, Stornaiuolo M, Douzgou S. Severe isolated exudative vitreoretinopathy caused by biallelic FZD4 variants. Clin Genet 2024; 105:661-665. [PMID: 38361102 DOI: 10.1111/cge.14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Familial exudative vitreoretinopathy (FEVR) is linked to disruption of the Norrin/Frizzled-4 signaling pathway, which plays an important role in retinal angiogenesis. Severe or complete knock-down of proteins in the pathway also causes syndromic forms of the condition. Both heterozygous and biallelic pathogenic variants in the FZD4 gene, encoding the pathway's key protein frizzled-4, are known to cause FEVR. However, it is not clear what effect different FZD4 variants have, and whether extraocular features should be expected in those with biallelic pathogenic FZD4 variants. Biallelic FZD4 variants were found in a young boy with isolated, severe FEVR. His parents were heterozygous for one variant each and reported normal vision. In-vitro studies of the two variants, demonstrated that it was the combination of the two which led to severe inhibition of the Norrin/Frizzled-4 pathway. Our observations demonstrate that biallelic FZD4-variants are associated with a severe form of FEVR, which does not necessarily include extraocular features. In addition, variants causing severe FEVR in combination, may have no or minimal effect in heterozygous parents as non-penetrance is also a major feature in dominant FZD4-FEVR disease. This underscores the importance of genetic testing of individuals and families with FEVR.
Collapse
Affiliation(s)
- Gry Hoem
- Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Arianna Pastore
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Eirik Bratland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Terje Christoffersen
- Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
- Department of Ophthalmology, University Hospital of North Norway, Tromsø, Norway
| | | | - Sofia Douzgou
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
4
|
Qu N, Li W, Han DM, Gao JY, Yang ZT, Jiang L, Liu TB, Chen YX, Jiang XS, Zhou L, Wu JH, Huang X. Mutation spectrum in a cohort with familial exudative vitreoretinopathy. Mol Genet Genomic Med 2022; 10:e2021. [PMID: 35876299 PMCID: PMC9482396 DOI: 10.1002/mgg3.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/06/2021] [Accepted: 07/08/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose To expand the mutation spectrum of patients with familial exudative vitreoretinopathy (FEVR) disease. Participants 74 probands (53 families and 21 sporadic probands) with familial exudative vitreoretinopathy (FEVR) disease and their available family members (n = 188) were recruited for sequencing. Methods Panel‐based targeted screening was performed on all subjects. Before sanger sequencing, variants of LRP5, NDP, FZD4, TSPAN12, ZNF408, KIF11, RCBTB1, JAG1, and CTNNA1 genes were verified by a series of bioinformatics tools and genotype–phenotype co‐segregation analysis. Results 40.54% (30/74) of the probands were sighted to possess at least one etiological mutation of the nine FEVR‐causative genes. The etiological mutation detection rate was 37.74% (20/53) in family‐attainable probands while 47.62% (10/21) in sporadic cases. The diagnosis rate of patients in the early‐onset subgroup (≤5 years old, 45.4%) is higher than that of the children or adolescence‐onset subgroup (6–16 years old, 42.1%) and the late‐onset subgroup (≥17 years old, 39.4%). A total of 36 etiological mutations were identified in this study, comprising 26 novel mutations and 10 reported mutations. LRP5 was the most prevalent mutant gene among the 36 mutation types with a percentage of 41.67% (15/36). Followed by FZD4 (10/36, 27.78%), TSPAN12 (5/36, 13.89%), NDP (4/36, 11.11%), KIF11 (1/36, 2.78%), and RCBTB1 (1/36, 2.78%). Among these mutations, 63.89% (23/36) were missense mutations, 25.00% (9/36) were frameshift mutations, 5.56% (2/36) were splicing mutations, 5.56% (2/36) were nonsense mutations. Moreover, the clinical pathogenicity of these variants was defined according to American College of Medical Genetics (ACMG) and genomics guidelines: 41.67% (15/36) were likely pathogenic variants, 27.78% (10/36) pathogenic variants, 30.55% (11/36) variants of uncertain significance. No etiological mutations discovered in the ZNF408, JAG1, and CTNNA1 genes in this FEVR cohort. Conclusions We systematically screened nine FEVR disease‐associated genes in a cohort of 74 Chinese probands with FEVR disease. With a detection rate of 40.54%, 36 etiological mutations of six genes were authenticated in 30 probands, including 26 novel mutations and 10 reported mutations. The most prevalent mutated gene is LRP5, followed by FZD4, TSPAN12, NDP, KIF11, and RCBTB1. In total, a de novo mutation was confirmed. Our study significantly clarified the mutation spectrum of variants bounded up to FEVR disease.
Collapse
Affiliation(s)
- Ning Qu
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dong-Ming Han
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Yu Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Tao Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Jiang
- Department of Ophthalmology, Laizhou City People's Hospital, Yantai, China
| | - Tian-Bin Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Xian Chen
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiao-Sen Jiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Zhou
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ji-Hong Wu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Xin Huang
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
5
|
Wawrzynski J, Patel A, Badran A, Dowell I, Henderson R, Sowden JC. Spectrum of Mutations in NDP Resulting in Ocular Disease; a Systematic Review. Front Genet 2022; 13:884722. [PMID: 35651932 PMCID: PMC9149367 DOI: 10.3389/fgene.2022.884722] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Aims and Rationale: The inner retina is supplied by three intraretinal capillary plexi whereas the outer retina is supplied by the choroidal circulation: NDP is essential for normal intraretinal vascularisation. Pathogenic variants in NDP (Xp11.3) may result in either a severe retinal phenotype associated with hearing loss (Norrie Disease) or a moderate retinal phenotype (Familial Exudative Vitreoretinopathy, FEVR). However, little is known about whether the nature or location of the NDP variant is predictive of severity. In this systematic review we summarise all reported NDP variants and draw conclusions about whether the nature of the NDP variant is predictive of the severity of the resulting ocular pathology and associated hearing loss and intellectual disability. Findings: 201 different variants in the NDP gene have been reported as disease-causing. The pathological phenotype that may result from a disease-causing NDP variant is quite diverse but generally comprises a consistent cluster of features (retinal hypovascularisation, exudation, persistent foetal vasculature, tractional/exudative retinal detachment, intellectual disability and hearing loss) that vary predictably with severity. Previous reviews have found no clear pattern in the nature of NDP mutations that cause either FEVR or Norrie disease, with the exception that mutations affecting cysteine residues have been associated with Norrie Disease and that visual loss amongst patients with Norrie disease tends to be more severe if the NDP mutation results in an early termination of translation as opposed to a missense related amino acid change. A key limitation of previous reviews has been variability in the case definition of Norrie disease and FEVR amongst authors. We thus reclassified patients into two groups based only on the severity of their retinal disease. Of the reported pathogenic variants that have been described in more than one patient, we found that any given variant caused an equivalent severity of retinopathy each time it was reported with very few exceptions. We therefore conclude that specific NDP mutations generally result in a consistent retinal phenotype each time they arise. Reports by different authors of the same variant causing either FEVR or Norrie disease conflict primarily due to variability in the authors' respective case definitions rather than true differences in disease severity.
Collapse
Affiliation(s)
- James Wawrzynski
- UCL Great Ormond Street Institute of Child Health, National Institute for Health and Care Research, University College London, London, United Kingdom
- Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Aara Patel
- UCL Great Ormond Street Institute of Child Health, National Institute for Health and Care Research, University College London, London, United Kingdom
| | - Abdul Badran
- UCL Great Ormond Street Institute of Child Health, National Institute for Health and Care Research, University College London, London, United Kingdom
| | | | - Robert Henderson
- UCL Great Ormond Street Institute of Child Health, National Institute for Health and Care Research, University College London, London, United Kingdom
- Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Jane C. Sowden
- UCL Great Ormond Street Institute of Child Health, National Institute for Health and Care Research, University College London, London, United Kingdom
- Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
6
|
Abstract
RATIONALE The case with congenital macular coloboma and cataract was rarely reported, and the pathogenic gene of the disease is still not clear. Moreover, it is difficult to improve the visual acuity of the eye with this disease. PATIENT CONCERNS An 11-year-old boy presented low visual acuity and horizontal nystagmus in both eyes. Ophthalmologic examination showed the patient with bilateral congenital coloboma and cataract. The visual acuity of the patient improved slightly after cataract surgery. Heterozygous mutations of frizzled-4 (FZD4) and nucleotide-binding oligomerization domain-containing protein 2 (NOD2) were identified by next-generation sequencing in this case. DIAGNOSIS Congenital macular coloboma and cataract of both eyes. INTERVENTIONS We performed the standard phacoemulsification and intraocular lens implantation on both eyes of the patient for the treatment of congenital cataract, and then followed up the fundus lesions regularly. OUTCOMES Cataract surgery may improve the visual acuity of the eyes with congenital macular coloboma and cataract at some degree, but the vision of this patient was still very poor postoperatively. Furthermore, the heterozygous mutations of FZD4 and NOD2 were found in this patient. LESSONS Cataract surgery may improve the visual acuity of the eyes with congenital macular coloboma and cataract at some degree, and heterozygous mutations of FZD4 and NOD2 may be involved in the occurrence of congenital macular coloboma and cataract.
Collapse
Affiliation(s)
- Canwei Zhang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, PR China
| | - Peng Wu
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, PR China
| | - Luping Wang
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Jing Gao
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, PR China
| | - Xudong Huang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, PR China
| | - Yaqin Jiang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, PR China
| |
Collapse
|
7
|
Interplay of the Norrin and Wnt7a/Wnt7b signaling systems in blood-brain barrier and blood-retina barrier development and maintenance. Proc Natl Acad Sci U S A 2018; 115:E11827-E11836. [PMID: 30478038 DOI: 10.1073/pnas.1813217115] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
β-Catenin signaling controls the development and maintenance of the blood-brain barrier (BBB) and the blood-retina barrier (BRB), but the division of labor and degree of redundancy between the two principal ligand-receptor systems-the Norrin and Wnt7a/Wnt7b systems-are incompletely defined. Here, we present a loss-of-function genetic analysis of postnatal BBB and BRB maintenance in mice that shows striking threshold and partial redundancy effects. In particular, the combined loss of Wnt7a and Norrin or Wnt7a and Frizzled4 (Fz4) leads to anatomically localized BBB defects that are far more severe than observed with loss of Wnt7a, Norrin, or Fz4 alone. In the cerebellum, selective loss of Wnt7a in glia combined with ubiquitous loss of Norrin recapitulates the phenotype observed with ubiquitous loss of both Wnt7a and Norrin, implying that glia are the source of Wnt7a in the cerebellum. Tspan12, a coactivator of Norrin signaling in the retina, is also active in BBB maintenance but is less potent than Norrin, consistent with a model in which Tspan12 enhances the amplitude of the Norrin signal in vascular endothelial cells. Finally, in the context of a partially impaired Norrin system, the retina reveals a small contribution to BRB development from the Wnt7a/Wnt7b system. Taken together, these experiments define the extent of CNS region-specific cooperation for several components of the Norrin and Wnt7a/Wnt7b systems, and they reveal substantial regional heterogeneity in the extent to which partially redundant ligands, receptors, and coactivators maintain the BBB and BRB.
Collapse
|
8
|
Heon E, Kim G, Qin S, Garrison JE, Tavares E, Vincent A, Nuangchamnong N, Scott CA, Slusarski DC, Sheffield VC. Mutations in C8ORF37 cause Bardet Biedl syndrome (BBS21). Hum Mol Genet 2016; 25:2283-2294. [PMID: 27008867 DOI: 10.1093/hmg/ddw096] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/17/2016] [Indexed: 01/18/2023] Open
Abstract
Bardet Biedl syndrome (BBS) is a multisystem genetically heterogeneous ciliopathy that most commonly leads to obesity, photoreceptor degeneration, digit anomalies, genito-urinary abnormalities, as well as cognitive impairment with autism, among other features. Sequencing of a DNA sample from a 17-year-old female affected with BBS did not identify any mutation in the known BBS genes. Whole-genome sequencing identified a novel loss-of-function disease-causing homozygous mutation (K102*) in C8ORF37, a gene coding for a cilia protein. The proband was overweight (body mass index 29.1) with a slowly progressive rod-cone dystrophy, a mild learning difficulty, high myopia, three limb post-axial polydactyly, horseshoe kidney, abnormally positioned uterus and elevated liver enzymes. Mutations in C8ORF37 were previously associated with severe autosomal recessive retinal dystrophies (retinitis pigmentosa RP64 and cone-rod dystrophy CORD16) but not BBS. To elucidate the functional role of C8ORF37 in a vertebrate system, we performed gene knockdown in Danio rerio and assessed the cardinal features of BBS and visual function. Knockdown of c8orf37 resulted in impaired visual behavior and BBS-related phenotypes, specifically, defects in the formation of Kupffer's vesicle and delays in retrograde transport. Specificity of these phenotypes to BBS knockdown was shown with rescue experiments. Over-expression of human missense mutations in zebrafish also resulted in impaired visual behavior and BBS-related phenotypes. This is the first functional validation and association of C8ORF37 mutations with the BBS phenotype, which identifies BBS21. The zebrafish studies hereby show that C8ORF37 variants underlie clinically diagnosed BBS-related phenotypes as well as isolated retinal degeneration.
Collapse
Affiliation(s)
- Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, M5G 1X8 Canada Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, M5G 1X8 Canada Program of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, M5G 1X8 Canada
| | - Gunhee Kim
- Department of Pediatrics, Division of Medical Genetics, Wynn Institute for Vision Research, Carver College of Medicine
| | - Sophie Qin
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, M5G 1X8 Canada
| | - Janelle E Garrison
- Department of Pediatrics, Division of Medical Genetics, Wynn Institute for Vision Research, Carver College of Medicine
| | - Erika Tavares
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, M5G 1X8 Canada
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, M5G 1X8 Canada Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, M5G 1X8 Canada
| | | | - C Anthony Scott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics, Wynn Institute for Vision Research, Carver College of Medicine
| |
Collapse
|