1
|
Zhang W, Wang Y, Tang Q, Li Z, Sun J, Zhao Z, Jiao D. PAX2 mediated upregulation of ESPL1 contributes to cisplatin resistance in bladder cancer through activating the JAK2/STAT3 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6889-6901. [PMID: 38573552 DOI: 10.1007/s00210-024-03061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Extra spindle-polar body like 1 (ESPL1) is associated with the development of a variety of cancers, including bladder cancer, and is closely related to chemoresistance. In this study, we aimed to reveal the role of ESPL1 in bladder cancer progression and cisplatin (DDP) resistance. First, ESPL1 was found to be highly expressed in tumor tissues and cells of bladder cancer, and more highly expressed in cisplatin resistant tumor tissues or cells. The binding of PAX2 in ESPL1 promoter region was predicted by Jaspar database and verified by Ch-IP analysis and the luciferase reporter gene assay. Next, cisplatin-resistant T24 cells (T24/DDP) were established and transfected with ESPL1 siRNA (si-ESPL1) or overexpression vector (pcDNA-ESPL1) or co-transfected with PAX2 siRNA (si-PAX2) or overexpression vector (pcDNA-PAX2), and then treated with DDP or AG490, an inhibitor of JAK2. The results showed that silencing ESPL1 significantly reduced T24/DDP cell viability, colony formation and invasion, enhanced sensitivity to DDP, and induced cell apoptosis. Silencing PAX2 decreased ESPL1 expression, enhanced sensitivity to DDP, and induced apoptosis of T24/DDP cells, and inhibited activation of JAK2/STAT3 pathway. Overexpressing ESPL1 reversed the effect of PAX2 silencing on T24/DDP cells, while AG490 counteracted the reversal effect of overexpressing ESPL1. Finally, a xenograft tumor model was established and found that silencing ESPL1 or DDP treatment inhibited tumor growth, while silencing ESPL1 combined with DDP treatment had the best effect. In summary, this study suggested that PAX2-mediated ESPL1 transcriptional activation enhanced cisplatin resistance in bladder cancer by activating JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Urology, Tangdu Hospital, the Air Force Medical University, 1 Xinsi Road, Baqiao District, Xi'an, 710038, Shannxi Province, China
| | - Yong Wang
- Department of Urology, Tangdu Hospital, the Air Force Medical University, 1 Xinsi Road, Baqiao District, Xi'an, 710038, Shannxi Province, China
| | - Qisheng Tang
- Department of Urology, Tangdu Hospital, the Air Force Medical University, 1 Xinsi Road, Baqiao District, Xi'an, 710038, Shannxi Province, China
| | - Zhenyu Li
- Department of Urology, Tangdu Hospital, the Air Force Medical University, 1 Xinsi Road, Baqiao District, Xi'an, 710038, Shannxi Province, China
| | - Jinbo Sun
- Department of Urology, General Hospital of Central Theater Command of Chinese People's Liberation Army, 627 Wuluo Road, Wuchang District, Wuhan, 430070, Hubei Province, China.
| | - Zhiguang Zhao
- Department of Urology, Tangdu Hospital, the Air Force Medical University, 1 Xinsi Road, Baqiao District, Xi'an, 710038, Shannxi Province, China.
| | - Dian Jiao
- Department of Urology, Tangdu Hospital, the Air Force Medical University, 1 Xinsi Road, Baqiao District, Xi'an, 710038, Shannxi Province, China.
| |
Collapse
|
2
|
Bou-Gharios J, Noël G, Burckel H. Preclinical and clinical advances to overcome hypoxia in glioblastoma multiforme. Cell Death Dis 2024; 15:503. [PMID: 39003252 PMCID: PMC11246422 DOI: 10.1038/s41419-024-06904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common adult primary brain tumor. The standard clinical treatment of GBM includes a maximal surgical resection followed by concomitant radiotherapy (RT) and chemotherapy sessions with Temozolomide (TMZ) in addition to adjuvant TMZ cycles. Despite the severity of this protocol, GBM is highly resistant and recurs in almost all cases while the protocol remains unchanged since 2005. Limited-diffusion or chronic hypoxia has been identified as one of the major key players driving this aggressive phenotype. The presence of hypoxia within the tumor bulk contributes to the activation of hypoxia signaling pathway mediated by the hypoxia-inducing factors (HIFs), which in turn activate biological mechanisms to ensure the adaptation and survival of GBM under limited oxygen and nutrient supply. Activated downstream pathways are involved in maintaining stem cell-like phenotype, inducing mesenchymal shift, invasion, and migration, altering the cellular and oxygen metabolism, and increasing angiogenesis, autophagy, and immunosuppression. Therefore, in this review will discuss the recent preclinical and clinical approaches that aim at targeting tumor hypoxia to enhance the response of GBM to conventional therapies along with their results and limitations upon clinical translation.
Collapse
Affiliation(s)
- Jolie Bou-Gharios
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 rue de la porte de l'Hôpital, 67000, Strasbourg, France
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative Multimodal Imaging In Healthcare (IMIS), UMR 7357, University of Strasbourg, 4 rue Kirschleger, 67000, Strasbourg, France
| | - Georges Noël
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 rue de la porte de l'Hôpital, 67000, Strasbourg, France
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative Multimodal Imaging In Healthcare (IMIS), UMR 7357, University of Strasbourg, 4 rue Kirschleger, 67000, Strasbourg, France
- Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Department of Radiation Oncology, 17 rue Albert Calmette, 67200, Strasbourg, France
| | - Hélène Burckel
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 rue de la porte de l'Hôpital, 67000, Strasbourg, France.
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative Multimodal Imaging In Healthcare (IMIS), UMR 7357, University of Strasbourg, 4 rue Kirschleger, 67000, Strasbourg, France.
| |
Collapse
|
3
|
Regulatory mechanism of icariin in cardiovascular and neurological diseases. Biomed Pharmacother 2023; 158:114156. [PMID: 36584431 DOI: 10.1016/j.biopha.2022.114156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) and neurological diseases are widespread diseases with substantial rates of morbidity and mortality around the world. For the past few years, the preventive effects of Chinese herbal medicine on CVDs and neurological diseases have attracted a great deal of attention. Icariin (ICA), the main constituent of Epimedii Herba, is a flavonoid. It has been shown to provide neuroprotection, anti-tumor, anti-osteoporosis, and cardiovascular protection. The endothelial protection, anti-inflammatory, hypolipidemic, antioxidative stress, and anti-apoptosis properties of ICA can help stop the progression of CVDs and neurological diseases. Therefore, our review summarized the known mechanisms and related studies of ICA in the prevention and treatment of cardio-cerebrovascular diseases (CCVDs), to better understand its therapeutic potential.
Collapse
|
4
|
Xu S, Zhang N, Cao L, Liu L, Deng H, Hua S, Zhang Y. Tetramethylpyrazine Attenuates Oxygen-glucose Deprivation-induced Neuronal Damage through Inhibition of the HIF-1α/BNIP3 Pathway: from Network Pharmacological Finding to Experimental Validation. Curr Pharm Des 2023; 29:543-554. [PMID: 36790003 DOI: 10.2174/1381612829666230215100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 02/16/2023]
Abstract
AIMS A network pharmacological analysis combined with experimental validation was used to investigate the neuroprotective mechanism of the natural product Tetramethylpyrazine(TMP). BACKGROUND Protecting neurons is critical for acute ischemic stroke treatment. Tetramethylpyrazine is a bioactive component extracted from Chuanxiong. The neuroprotective potential of TMP has been reported, but a systematic analysis of its mechanism has not been performed. OBJECTIVE Based on the hints of network pharmacology and bioinformatics analysis, the mechanism by which TMP alleviates oxygen-glucose deprivation-induced neuronal damage through inhibition of the HIF-1α/BNIP3 pathway was verified. METHOD In this study, we initially used network pharmacology and bioinformatics analyses to elucidate the mechanisms involved in TMP's predictive targets on a system level. The HIF-1α/BNIP3 pathway mediating the cellular response to hypoxia and apoptosis was considered worthy of focus in the bioinformatic analysis. An oxygen-glucose deprivation (OGD)-induced PC12 cell injury model was established for functional and mechanical validation. Cell viability, lactate dehydrogenase leakage, intracellular reactive oxygen species, percentage of apoptotic cells, and Caspase-3 activity were determined to assess the TMP's protective effects. Transfection with siRNA/HIF-1α or pcDNA/HIF-1α plasmids to silence or overexpress hypoxia-inducible factor 1α(HIF-1α). The role of HIF-1α in OGD-injured cells was observed first. After that, TMP's regulation of the HIF-1α/BNIP3 pathway was investigated. The pcDNA3.1/HIF-1α-positive plasmids were applied in rescue experiments. RESULT The results showed that TMP dose-dependently attenuated OGD-induced cell injury. The expression levels of HIF-1α, BNIP3, and the Bax/Bcl-2 increased significantly with increasing OGD duration. Overexpression of HIF-1α decreased cell viability, increased BNIP3 expression, and Bax/Bcl-2 ratio; siRNA-HIF-1α showed the opposite effect. TMP treatment suppressed HIF-1α, BNIP3 expression, and the Bax/Bcl-2 ratio and was reversed by HIF-1α overexpression. CONCLUSION Our study shows that TMP protects OGD-damaged PC12 cells by inhibiting the HIF-1α/BNIP3 pathway, which provides new insights into the mechanism of TMP and its neuroprotective potential.
Collapse
Affiliation(s)
- Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Nannan Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Dongcheng District Community Health Service Management Center, Beijing, China
| | - Lanlan Cao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Lu Liu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Binhai New Area Hospital of TCM. Tian Jin, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Deng
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Shengyu Hua
- Institute of traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Hao DC, Xu LJ, Zheng YW, Lyu HY, Xiao PG. Mining Therapeutic Efficacy from Treasure Chest of Biodiversity and Chemodiversity: Pharmacophylogeny of Ranunculales Medicinal Plants. Chin J Integr Med 2022; 28:1111-1126. [PMID: 35809180 PMCID: PMC9282152 DOI: 10.1007/s11655-022-3576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Ranunculales, comprising of 7 families that are rich in medicinal species frequently utilized by traditional medicine and ethnomedicine, represents a treasure chest of biodiversity and chemodiversity. The phylogenetically related species often have similar chemical profile, which makes them often possess similar therapeutic spectrum. This has been validated by both ethnomedicinal experiences and pharmacological investigations. This paper summarizes molecular phylogeny, chemical constituents, and therapeutic applications of Ranunculales, i.e., a pharmacophylogeny study of this representative medicinal order. The phytochemistry/metabolome, ethnomedicine and bioactivity/pharmacology data are incorporated within the phylogenetic framework of Ranunculales. The most studied compounds of this order include benzylisoquinoline alkaloid, flavonoid, terpenoid, saponin and lignan, etc. Bisbenzylisoquinoline alkaloids are especially abundant in Berberidaceae and Menispermaceae. The most frequent ethnomedicinal uses are arthritis, heat-clearing and detoxification, carbuncle-abscess and sore-toxin. The most studied bioactivities are anticancer/cytotoxic, antimicrobial, and anti-inflammatory activities, etc. The pharmacophylogeny analysis, integrated with both traditional and modern medicinal uses, agrees with the molecular phylogeny based on chloroplast and nuclear DNA sequences, in which Ranunculales is divided into Ranunculaceae, Berberidaceae, Menispermaceae, Lardizabalaceae, Circaeasteraceae, Papaveraceae, and Eupteleaceae families. Chemical constituents and therapeutic efficacy of each taxonomic group are reviewed and the underlying connection between phylogeny, chemodiversity and clinical uses is revealed, which facilitate the conservation and sustainable utilization of Ranunculales pharmaceutical resources, as well as developing novel plant-based pharmacotherapy.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Li-Jia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Yu-Wei Zheng
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Huai-Yu Lyu
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Boyang C, Yuexing L, Yiping Y, Haiyang Y, Lingjie Z, Liancheng G, Xufei Z, Jie Z, Yunzhi C. Mechanism of Epimedium intervention in heart failure based on network pharmacology and molecular docking technology. Medicine (Baltimore) 2022; 101:e32059. [PMID: 36451478 PMCID: PMC9704970 DOI: 10.1097/md.0000000000032059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
To analyze the pharmacological mechanism of Epimedium in regulating heart failure (HF) based on the network pharmacology method, and to provide a reference for the clinical application of Epimedium in treating HF. Obtaining the main active ingredients and their targets of Epimedium through TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) database. Access to major HF targets through Genecards, OMIM, PharmGKB, Therapeutic Target Database, Drug Bank database. Protein interaction analysis using String platform and construction of PPI network. Subsequently, Cytoscape software was used to construct the "Epimedium active ingredient-heart failure target" network. Finally, the molecular docking is verified through the Systems Dock Web Site. The core active ingredients of Epimedium to regulate HF are quercetin, luteolin, kaempferol, etc. The core targets are JUN, MYC, TP53, HIF1A, ESR1, RELA, MAPK1, etc. Molecular docking validation showed better binding activity of the major targets of HF to the core components of Epimedium. The biological pathways that Epimedium regulates HF mainly act on lipid and atherosclerotic pathways, PI3K-Akt signaling pathway, and chemoattractant-receptor activation. And its molecular functions are mainly DNA-binding transcription factor binding, RNA polymerase II-specific DNA-binding transcription factor binding, and neurotransmitter receptor activity. This study reveals the multi-component, multi-target and multi-pathway mechanism of action of Epimedium in regulating mental failure, and provides a basis for the clinical development and utilization of Epimedium to intervene in HF.
Collapse
Affiliation(s)
- Chen Boyang
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Li Yuexing
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yan Yiping
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yu Haiyang
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhao Lingjie
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Guan Liancheng
- Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhang Xufei
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhao Jie
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chen Yunzhi
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- *Correspondence: Yunzhi Chen, School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China (e-mail: )
| |
Collapse
|
7
|
Jangra A, Verma M, Kumar D, Chandrika C, Rachamalla M, Dey A, Dua K, Jha SK, Ojha S, Alexiou A, Kumar D, Jha NK. Targeting Endoplasmic Reticulum Stress using Natural Products in Neurological Disorders. Neurosci Biobehav Rev 2022; 141:104818. [DOI: 10.1016/j.neubiorev.2022.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
|
8
|
Zeng CY, Wang XF, Hua FZ. HIF-1α in Osteoarthritis: From Pathogenesis to Therapeutic Implications. Front Pharmacol 2022; 13:927126. [PMID: 35865944 PMCID: PMC9294386 DOI: 10.3389/fphar.2022.927126] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a common age-related joint degenerative disease. Pain, swelling, brief morning stiffness, and functional limitations are its main characteristics. There are still no well-established strategies to cure osteoarthritis. Therefore, better clarification of mechanisms associated with the onset and progression of osteoarthritis is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Chondrocytes exist in a hypoxic environment, and HIF-1α plays a vital role in regulating hypoxic response. HIF-1α responds to cellular oxygenation decreases in tissue regulating survival and growth arrest of chondrocytes. The activation of HIF-1α could regulate autophagy and apoptosis of chondrocytes, decrease inflammatory cytokine synthesis, and regulate the chondrocyte extracellular matrix environment. Moreover, it could maintain the chondrogenic phenotype that regulates glycolysis and the mitochondrial function of osteoarthritis, resulting in a denser collagen matrix that delays cartilage degradation. Thus, HIF-1α is likely to be a crucial therapeutic target for osteoarthritis via regulating chondrocyte inflammation and metabolism. In this review, we summarize the mechanism of hypoxia in the pathogenic mechanisms of osteoarthritis, and focus on a series of therapeutic treatments targeting HIF-1α for osteoarthritis. Further clarification of the regulatory mechanisms of HIF-1α in osteoarthritis may provide more useful clues to developing novel osteoarthritis treatment strategies.
Collapse
Affiliation(s)
- Chu-Yang Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi-Feng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| | - Fu-Zhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| |
Collapse
|
9
|
Zheng J, Liao Y, Xu Y, Mo Z. Icariin attenuates ischemic stroke through suppressing inflammation mediated by endoplasmic reticulum stress signaling pathway in rats. Clin Exp Pharmacol Physiol 2022; 49:719-730. [PMID: 35451526 DOI: 10.1111/1440-1681.13645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
Abstract
Ischemic stroke possesses the characteristics of high incidence, high disability, and high mortality. Icariin (ICA) is a flavonoid extracted from the traditional Chinese medicine Epimedium. The protective effect of ICA on ischemic stroke is worthy to be further studied. In this study, male Sprague-Dawley rats were randomly divided into the following seven groups: sham, model, ICA low-dose (10 mg/kg), ICA medium-dose (20 mg/kg), ICA high-dose (40 mg/kg), positive control drug (12 mg/kg nimodipine) and endoplasmic reticulum stress induction (0.16 mg/kg tunicamycin) groups. The model of cerebral ischemia-reperfusion injury in the rats, including 2 h ischemia and 24 h reperfusion, was accomplished by applying the method of transient middle cerebral artery occlusion (MCAO). At 24 h reperfusion, neurological deficits, brain water content, pathological damage of brain tissues, the expression of inflammation-related targets, and the signal pathway-related proteins were explored. Compared with the model group, ICA significantly improved neurological deficits, brain edema and pathological damage after MCAO. In addition, ICA increased neuron survival, reduced microglial activation and expression of IL-1β, alleviating the inflammatory damage caused by ischemic stroke. Moreover, ICA suppressed the expressions of glucose-regulated protein 78 (GRP78), inositol requiring enzyme-1 α (IRE1α), phospho-IRE1α (p-IRE1α), protein kinase RNA-like ER kinase (PERK), phospho-PERK (p-PERK), spliced XBP1 (XBP1s), unspliced XBP1 (XBP1u), thioredoxin-interacting protein (TXNIP), NLRP3, and caspase-1. These results suggested that ICA offers neuroprotection against ischemic stroke by inhibiting ER stress-mediated inflammation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jie Zheng
- Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yuling Liao
- Zhangshu Traditional Chinese Medicine Industry Research Institute, Yichun, Jiangxi, China
| | - Yuanyuan Xu
- Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Zhentao Mo
- Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| |
Collapse
|
10
|
Mo ZT, Zheng J, Liao YL. Icariin inhibits the expression of IL-1β, IL-6 and TNF-α induced by OGD/R through the IRE1/XBP1s pathway in microglia. PHARMACEUTICAL BIOLOGY 2021; 59:1473-1479. [PMID: 34711127 PMCID: PMC8555556 DOI: 10.1080/13880209.2021.1991959] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Icariin (ICA), a flavonol glycoside extracted from Epimedium brevicornum Maxim (Berberidaceae), has been proven to inhibit inflammatory response in ischaemic rats in our laboratory's previous work. However, its underlying mechanism is still unclear. OBJECTIVE This study investigates the effects of ICA on endoplasmic reticulum (ER) stress mediated inflammation induced by cerebral ischaemia-reperfusion (I/R) injury in vitro. MATERIALS AND METHODS The primary cultured microglia were treated with oxygen-glucose deprivation (OGD) for 2 h followed by a 24 h reoxygenation. ICA (0.37, 0.74 and 1.48 μmol/L) administration was performed 1 h prior OGD and acting through 2 h OGD. The control group was cultured in normal conditions. At 24 h after reoxygenation, the expression of IRE1α, XBP1u, XBP1s, NLRP3 and caspase-1 was detected by western blotting (WB) and quantitative real-time (qRT) PCR; the expression of p-IRE1α was examined by WB; the expression of IL-1β, IL-6 and TNF-α was measured by WB and enzyme-linked immunosorbent assay (ELISA). RESULTS ICA (0.37, 0.74 and 1.48 μmol/L) reduced the ratio of p-IRE1α/IRE1α, the mRNA level of IRE1α, the expression of XBP1u, XBP1s, NLRP3, caspase-1 at both the mRNA and protein level expression of IL-1β, IL-6 and TNF-α in OGD/R injured microglia. Overexpression of IRE1 significantly reversed the effects of ICA. DISCUSSION AND CONCLUSIONS These results suggested that ICA might decrease the expression of IL-1β, IL-6 and TNF-α by inhibiting IRE1/XBP1s pathway. The anti-inflammatory effect of ICA may provide a potential therapeutic strategy for the treatment of brain injury after stroke.
Collapse
Affiliation(s)
- Zhen-Tao Mo
- Department of Pharmacology of Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Jie Zheng
- Department of Pharmacology of Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yu-ling Liao
- Department of Pharmacology of Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
11
|
Zhao PC, Xu SN, Huang ZS, Jiang GW, Deng PC, Zhang YM. Hyperbaric oxygen via mediating SIRT1-induced deacetylation of HMGB1 improved cReperfusion inj/reperfusion injury. Eur J Neurosci 2021; 54:7318-7331. [PMID: 34523745 DOI: 10.1111/ejn.15458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022]
Abstract
Ischemic stroke leads to severe neurological dysfunction in adults. Hyperbaric oxygen (HBO) induces tolerance to cReperfusion inj/reperfusion (I/R) injury. Therefore, our aims were to investigate whether SIRT1 participates in regulatingin the neuro-protective effect of HBO in a cerebral I/R model and its mechanism. Mice N2a cells were used to construct an oxygen deprivation/reperfusion (OGD/R) model to simulate in vitro brain I/R injury and to evaluate the role of HBO in OGD/R stimulated cells. Cell proliferation was detected using MTT, and apoptosis was determined by flow cytometry. ELISA was used to measure the concentration of TNF-α, IL-1β and IL-6 related inflammatory factors. RT-qPCR and western blot assays were performed to test the expression of SIRT1. Immunoprecipitation was used to detect acetylation of HMGB1. Expression of SIRT1 was obviously reduced after OGD/R treatment in N2a cells, while SIRT1 was obviously enhanced in HBO treated cells. Moreover, knockdown of SIRT1 induced neuro-inflammation damage in cells and HBO effectively improved the inflammatory response in OGD/R treated cells by affecting SIRT1 levels. Furthermore, HBO induced the deacetylation of HMGB1 via regulating SIRT1. Interestingly, HBO via regulating the SIRT1-induced HMGB1 deacetylation and suppressing MMP-9 improved ischemic brain injury. HBO regulated ischemic brain injury via regulation of SIRT1-induced HMGB1 deacetylation, making it a potential treatment for ischemic brain injury treatment.
Collapse
Affiliation(s)
- Peng-Cheng Zhao
- Department of Neurosurgery, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui Province, China.,Clinical College, Anhui Medical University, Hefei, Anhui Province, China
| | - Shao-Nian Xu
- Department of Neurosurgery, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui Province, China
| | - Zhen-Shan Huang
- Department of Neurosurgery, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui Province, China
| | - Guo-Wei Jiang
- Department of Neurosurgery, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui Province, China
| | - Peng-Cheng Deng
- Department of Neurosurgery, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui Province, China
| | - Yong-Ming Zhang
- Department of Neurosurgery, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui Province, China
| |
Collapse
|
12
|
Singh S, Nagalakshmi D, Sharma KK, Ravichandiran V. Natural antioxidants for neuroinflammatory disorders and possible involvement of Nrf2 pathway: A review. Heliyon 2021; 7:e06216. [PMID: 33659743 PMCID: PMC7890213 DOI: 10.1016/j.heliyon.2021.e06216] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
The transcription factor Nrf2 (nuclear factor-erythroid 2 p45-related factor 2) play a crucial role in cellular redox and metabolic system. Activation of Nrf2 may be an effective therapeutic approach for neuroinflammatory disorders, through activation of antioxidant defences system, lower the inflammation, line up the mitochondrial function, and balancing of protein homeostasis. Various recent studies revealed that many of active substance obtained from plants have been found to activate the Nrf2 and to exert neuroprotective effects in various experimental models, raising the possibility that activation of Nrf2 may be an effective therapeutic approaches for neuroinflammatory disorders. The objective of this review was to evaluate the neuroprotective property of natural substance against neuroinflammatory disorders by reviewing the studies done till today. The outcomes of various in vitro and in vivo examinations have shown that natural compounds producing neuroprotective effects in neuronal system via activation of Nrf2. Herein, we also reviewed the studies to understand the role of Nrf2 for curing CNS disorders. Here we can conclude, herbal/natural moieties having potency to fight and prevent from neuroinflammatory disorders due to their abilities to activate Nrf2 pathway.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Devarapati Nagalakshmi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - K K Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| |
Collapse
|
13
|
Icariin promotes the repair of PC12 cells by inhibiting endoplasmic reticulum stress. BMC Complement Med Ther 2021; 21:69. [PMID: 33607999 PMCID: PMC7896365 DOI: 10.1186/s12906-021-03233-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 01/31/2021] [Indexed: 11/17/2022] Open
Abstract
Background Endoplasmic reticulum stress (ERS) is one of the main mechanisms of spinal cord injury (SCI) pathology and can affect the physiological state of neurons. Icariin (ICA), the main pharmacological component of Epimedium, can relieve the symptoms of patients with SCI and has obvious protective effects on neurons through ERS. Methods PC12 cells were induced to differentiate into neurons by nerve growth factor and identified by flow cytometry. Cell proliferation was detected by CCK8 method, cell viability was detected by SRB assay, apoptosis was detected by flow cytometry and microstructure of ER was observed by transmission electron microscope. Western blot was used to detect the protein expression of CHOP and Grp78, and qPCR was used to detect the mRNA expression of CHOP and Grp78. Results The results of CCK8, SRB and flow cytometry showed that ICA could relieve ERS and reduce apoptosis of PC12 cells. The results of transmission microscope showed that ICA could reduce apoptosis of PC12 cells caused by ERS. The results of Western blot and q-PCR showed that ICA could inhibit ERS by down-regulating the expression of CHOP and Grp78. Conclusions ICA can inhibit ERS and promote the repair of PC12 cells by down-regulating the expression of CHOP and Grp78. ICA has the potential to promote the recovery of spinal cord injury. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03233-1.
Collapse
|
14
|
Yeh HF, Li TF, Tsai CH, Wu PW, Huang YH, Huang WJ, Chen FJ, Hwang SJ, Chen FP, Wu TP. The effects of a Chinese herbal medicine (VGHBPH0) on patients with benign prostatic hyperplasia: A pilot study. J Chin Med Assoc 2020; 83:967-971. [PMID: 32649417 PMCID: PMC7526580 DOI: 10.1097/jcma.0000000000000384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The current Western medicine treatment options for benign prostatic hyperplasia (BPH) have various degrees of documented effectiveness. However, the uses of these interventions are limited to specific patient populations or have certain side effects that interfere with patient quality of life. This study evaluated the clinical effects of a Chinese herbal medicine (CHM) on patients with BPH. METHODS This was a single-arm pilot study. Twenty BPH patients were enrolled, and they were required to take the investigated CHM three times a day for 8 weeks, along with their Western medicine. Patients returned to clinics as scheduled and completing international prostate symptoms scores (IPSS), aging male symptoms score, international index of erectile function, and body constitution questionnaire of traditional Chinese medicine. Uroflowmetry and sonography were also applied to evaluate the changes in urinary velocity and post-voiding residual urine volume from the baseline to the end of the study. RESULTS The mean IPSS total score was significantly decreased by 2.5 points after 8 weeks of treatment with the CHM (from 17.5 to 15.0, p = 0.03). The mean IPSS voiding subscore was decreased by 1.7 points (from 10.1 to 8.4, p = 0.02), and the mean incomplete emptying subscore was decreased by 0.8 points (from 2.9 to 2.1, p = 0.02), with both decreases being statistically significant. A descending trend in the post-voiding residual urine volume was also observed (from 52.9 to 30.8 mL, p = 0.07). CONCLUSION This trial indicated that the add-on CHM treatment (VGHBPH0) might be a potential treatment for improving the lower urinary tract symptoms of BPH patients.
Collapse
Affiliation(s)
- Hsin-Fu Yeh
- Department of Family Medicine, St. Martin De Porres Hospital, Chiayi, Taiwan, ROC
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Tsai-Feng Li
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Cheng-Hung Tsai
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Pei-Wen Wu
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Hsiu Huang
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - William J. Huang
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Fun-Jou Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan, ROC
| | - Shinn-Jang Hwang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fang-Pey Chen
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Address correspondence. Dr. Fang-Pey Chen, Center for Traditional Chinese Medicine, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail address: (F.-P. Chen)
| | - Ta-Peng Wu
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Address correspondence. Dr. Fang-Pey Chen, Center for Traditional Chinese Medicine, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail address: (F.-P. Chen)
| |
Collapse
|
15
|
Li J, He W, Wang Y, Zhao J, Zhao X. miR-103a-3p alleviates oxidative stress, apoptosis, and immune disorder in oxygen-glucose deprivation-treated BV2 microglial cells and rats with cerebral ischemia-reperfusion injury by targeting high mobility group box 1. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1296. [PMID: 33209876 PMCID: PMC7661898 DOI: 10.21037/atm-20-5856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Cerebral ischemia-reperfusion injury (CI/R) is among the most common diseases affecting the central nervous system. Due to the poor efficacy and adverse side effects of the drugs used to treat CI/R in clinical trials, a new treatment strategy is urgently needed. In this study, we aimed to investigate whether miR-103a-3p alleviates CI/R in vivo and vitro and to explore the relevant mechanisms. Methods BV2 microglial cells underwent oxygen-glucose deprivation (OGD) treatment to imitate the pathophysiology of CI/R in vitro. A middle cerebral artery occlusion (MCAO) rat model was established to imitate the pathophysiology of CI/R in vivo. The expression levels of miR-103a-3p and HMGB1 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot. Flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, enzyme-linked immunosorbent assay (ELISA), and hematoxylin and eosin (H&E) and Nissl staining were used to evaluated apoptosis, oxidative stress, inflammatory response, and histopathology, respectively. Results OGD-stimulated BV2 microglial cells and brain tissues with CI/R had low expression of miR-103a-3p but high expression of high mobility group box 1 (HMGB1). As expected, miR-103a-3p and HMGB1 had a targeting relationship. Overexpression of HMGB1 enhanced the the levels of interleukin (IL)-1 beta, tumor necrosis factor-alpha (TNF-α) and malondialdehyde (MDA), but reduced the content of superoxide dismutase (SOD), IL-4, and IL-10, in vitro. Moreover, high expression of HMGB1 aggravated the brain injury of the model rats, and increased the secretion of inflammatory factors, exacerbated oxidative stress, and further induced tissue apoptosis in the brain tissue. Importantly, these effects of HMGB1 overexpression were partly reversed by miR-103a-3p overexpression on HMGB1 interference. Conclusions HMGB1 is targeted by miR-103a-3p, which may be a new strategy in the treatment of CI/R.
Collapse
Affiliation(s)
- Jianshe Li
- Department of Neurology, Xinxiang Central Hospital, Xinxiang, China
| | - Wenlong He
- Department of Neurology, Xinxiang Central Hospital, Xinxiang, China
| | - Yan Wang
- Department of Neurology, The Third Affiliated Hospital of Xinxiang Medical College, Xinxiang, China
| | - Jianting Zhao
- Department of Neurology, Xinxiang Central Hospital, Xinxiang, China
| | - Xinli Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, China
| |
Collapse
|
16
|
Zhang T, Qiu F. Icariin Protects Mouse Insulinoma Min6 Cell Function by Activating the PI3K/AKT Pathway. Med Sci Monit 2020; 26:e924453. [PMID: 32885795 PMCID: PMC7491232 DOI: 10.12659/msm.924453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Type 2 diabetes (T2D) is characterized by β-cell dysfunction and insulin resistance. Icariin (ICA), a flavonoid from Epimedium, possesses anti-diabetic and anti-inflammatory properties. However, it is unclear whether ICA acts on pancreatic β-cells. The present study was designed to explore the effects and latent mechanism of ICA on uric acid (UA)-stimulated pancreatic β-cell dysfunction. Material/Methods Min6 cells were exposed to various concentrations of ICA for 24 h, and cell viability was assessed by MTT assays. Min6 cells were treated with ICA for 2 h, followed by 5 mg/dl UA for 24 h, and cell viability, apoptosis, apoptosis-associated protein levels and insulin secretion were assessed by MTT, flow cytometry, western blotting and glucose-stimulated insulin secretion assays, respectively. The effects of ICA and UA on the PI3K/Akt pathway were also analyzed by western blotting, as were the effects of the specific PI3K/Akt inhibitor LY294002. Results ICA was not cytotoxic toward Min6 cells. UA decreased Min6 cell viability, enhanced cell apoptosis and levels of cleaved caspase-3, and reduced pro-caspase3 levels and insulin secretion, with all of these effects reversed by ICA in a dose-dependent manner. UA inhibited the PI3K/AKT pathway, an effect reversed by ICA treatment. The specific PI3K/Akt inhibitor LY294002, however, reversed these effects of ICA on UA-treated Min6 cells. Conclusions ICA protected Min6 cell function, an effect likely mediated by the PI3K pathway. ICA may inhibit the progression of diabetes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Fen Qiu
- Teaching Experiment Training Center, Guangxi University of Chinese Medicine, Nanning, Guangxi, China (mainland)
| |
Collapse
|
17
|
Ying W, Zhang Y, Gao W, Cai X, Wang G, Wu X, Chen L, Meng Z, Zheng Y, Hu B, Lin X. Hollow Magnetic Nanocatalysts Drive Starvation-Chemodynamic-Hyperthermia Synergistic Therapy for Tumor. ACS NANO 2020; 14:9662-9674. [PMID: 32709200 DOI: 10.1021/acsnano.0c00910] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic hyperthermia therapy (MHT) has been considered as an excellent alternative for treatment of deep tumor tissue; however, up-regulation of heat shock proteins (HSPs) impairs its hyperthermal therapeutic effect. Reactive oxygen species (ROS) and competitive consumption of ATP are important targets that can block excessive HSP generation. We developed a magnetic nanocatalytic system comprised of glucose oxidase (GOD)-loaded hollow iron oxide nanocatalysts (HIONCs) to drive starvation-chemodynamic-hyperthermia synergistic therapy for tumor treatment. The Fe2+ present in HIONCs contributed to ROS generation via the Fenton reaction, relieving thermo-resistance and inducing cell apoptosis by chemodynamic action. The Fenton effect was enhanced through the conditions created by increased MHT-related temperature, GOD-mediated H2O2 accumulation, and elevated tumor microenvironment acidity. The HIONCs catalase-like activity facilitated conversion of H2O2 to oxygen, thereby replenishing the oxygen levels. We further demonstrated that locally injected HIONCs-GOD effectively inhibited tumor growth in PC3 tumor-bearing mice. This study presents a multifunctional nanocarrier system driving starvation-chemodynamic-magnetic-thermal synergistic therapy via ROS and oxygen modulation for prostate tumor treatment.
Collapse
Affiliation(s)
- Weiwei Ying
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
- Department of Ultrasound, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Yang Zhang
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Wei Gao
- Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xiaojun Cai
- Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Gang Wang
- Department of Ultrasound, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Xiafang Wu
- Department of Ultrasound, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Lei Chen
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Zheying Meng
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Bing Hu
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
- Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xianfang Lin
- Department of Ultrasound, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| |
Collapse
|
18
|
Mo ZT, Liao YL, Zheng J, Li WN. Icariin protects neurons from endoplasmic reticulum stress-induced apoptosis after OGD/R injury via suppressing IRE1α-XBP1 signaling pathway. Life Sci 2020; 255:117847. [PMID: 32470450 DOI: 10.1016/j.lfs.2020.117847] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 01/23/2023]
Abstract
Icariin (ICA), a flavonol glycoside isolated from Epimedium, has been considered as a potential alternative therapy for ischemic stroke. However, the protective mechanisms of ICA on cerebral ischemia-reperfusion (I/R) are not fully illuminated yet. The effects of ICA on ER stress and inflammatory response which were involved in the pathological process of cerebral I/R were investigated in vitro. Microglia and neurons were subjected to OGD/R. ICA was administrated to microglia 1 h before OGD and maintained 2 h throughout OGD. At 24 h after reoxygenation, the protein expression of IL-1 β, IL-6, TNF-α in the supernatant of microglia was measured using ELISA assay; neuronal apoptosis was assessed by TUNEL staining; and cell viability was detected using CKK-8 assay; the expression of IRE1α, XBP1u, XBP1s, and cleaved caspase-3 in neurons was examined by western blotting and qRT-PCR; the expression of p-IRE1α in neurons was detected by western blotting. We found that OGD/R induced the expression of IL-1 β, IL-6, TNF-α in the supernatant of microglia; OGD/R and these proinflammatory cytokines promoted the mRNA as well as protein expression of XBP1u, XBP1s and cleaved caspase-3, increased the ratio of p-IRE1α/IRE1α, as well as apoptosis, and decreased cell viability in primary cortical neurons, while ICA reversed the levels of the above factors. IRE1 overexpression enhanced ER stress as well as apoptosis, and impaired the protective effects of ICA. These results suggested that ICA can inhibit apoptosis in neurons after OGD/R through IRE1/XBP1 signaling pathway beside its anti-inflammatory effect.
Collapse
Affiliation(s)
- Zhen-Tao Mo
- Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China.
| | - Yu-Ling Liao
- Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China
| | - Jie Zheng
- Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China
| | - Wen-Na Li
- Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China
| |
Collapse
|
19
|
Zhao DY, Yu DD, Ren L, Bi GR. Ligustilide protects PC12 cells from oxygen-glucose deprivation/reoxygenation-induced apoptosis via the LKB1-AMPK-mTOR signaling pathway. Neural Regen Res 2020; 15:473-481. [PMID: 31571659 PMCID: PMC6921349 DOI: 10.4103/1673-5374.266059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy has been shown to have a protective effect against brain damage. Ligustilide (LIG) is a bioactive substance isolated from Ligusticum chuanxiong, a traditional Chinese medicine. LIG has a neuroprotective effect; however, it is unclear whether this neuroprotective effect involves autophagy. In this study, PC12 cells were treated with 1 × 10–5–1 × 10–9 M LIG for 0, 3, 12 or 24 hours, and cell proliferation was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Treatment with 1 × 10–6 M LIG for 3 hours had the greatest effect on cell proliferation, and was therefore used for subsequent experiments. PC12 cells were pre-treated with 1 × 10–6 M LIG for 3 hours, cultured in 95% N2/5% CO2 in Dulbecco’s modified Eagle’s medium without glucose or serum for 4 hours, and then cultured normally for 16 hours, to simulate oxygen-glucose deprivation/reoxygenation (OGD/R). Cell proliferation was assessed with the MTS assay. Apoptosis was detected by flow cytometry. The expression levels of apoptosis-related proteins, Bcl-2 and Bax, autophagy-related proteins, Beclin 1 and microtubule-associated protein l light chain 3B (LC3-II), and liver kinase B1 (LKB1)-5′-adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) signaling pathway-related proteins were assessed by western blot assay. Immunofluorescence staining was used to detect LC3-II expression. Autophagosome formation was observed by electron microscopy. LIG significantly decreased apoptosis, increased Bcl-2, Beclin 1 and LC3-II expression, decreased Bax expression, increased LC3-II immunoreactivity and the number of autophagosomes, and activated the LKB1-AMPK-mTOR signaling pathway in PC12 cells exposed to OGD/R. The addition of the autophagy inhibitor 3-methyladenine or dorsomorphin before OGD/R attenuated the activation of the LKB1-AMPK-mTOR signaling pathway in cells treated with LIG. Taken together, our findings show that LIG promotes autophagy and protects PC12 cells from apoptosis induced by OGD/R via the LKB1-AMPK-mTOR signaling pathway.
Collapse
Affiliation(s)
- Dan-Yang Zhao
- Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; The First People's Hospital of Shenyang, Shenyang, Liaoning Province, China
| | - Dong-Dong Yu
- The First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Li Ren
- The First People's Hospital of Shenyang, Shenyang, Liaoning Province, China
| | - Guo-Rong Bi
- Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
20
|
Zheng Y, Zhu G, He J, Wang G, Li D, Zhang F. Icariin targets Nrf2 signaling to inhibit microglia-mediated neuroinflammation. Int Immunopharmacol 2019; 73:304-311. [PMID: 31128530 DOI: 10.1016/j.intimp.2019.05.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022]
Abstract
Microglia-mediated neuroinflammation is an important contributor to the pathogenesis of neurodegenerative diseases. Inhibition of neuroinflammation has been proved to be effective in neurodegenerative diseases treatment. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a key mediator of endogenous inducible defense systems in the body. In response to oxidative stress, Nrf2 translocates to the nucleus and binds to specific DNA sites termed as anti-oxidant response elements to initiate transcription of cytoprotective genes, such as hemeoxygenase-1 (HO-1) and nicotinamide adenine dinucleotide phosphate: quinine oxidoreductase-1 (NQO1). However, insufficient Nrf2 activation has been closely associated with the progress of neurodegenerative diseases. New findings have linked activation of Nrf2 signaling to anti-inflammatory effects. Icariin (ICA), a natural compound derived from Herba Epimedii, possesses amounts of pharmacological activities, such as anti-aging, anti-oxidation and anti-inflammatory effects. Recent studies have confirmed that ICA exerted neuroprotection against neurodegenerative diseases. However, the mechanisms underlying ICA-mediated neuroprotection were not fully understood. In the present study, microglia BV-2 cell lines were performed to investigate the anti-neuroinflammatory effects of ICA and the mechanisms of actions. Results showed that ICA suppressed lipopolysaccharide (LPS)-induced microglial pro-inflammatory factors production. In addition, activation of Nrf2 signaling pathway participated in ICA-mediated anti-neuroinflammation, as evidenced by the following observations. First, Nrf2 siRNA reversed ICA-reduced microglial activation and pro-inflammatory factors release. Second, a selective inhibitor of HO-1 abolished ICA-mediated anti-neuroinflammatory actions. This study will give us an insight into the potential of Nrf2 and neuroinflammation in terms of opening up an alternative therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yaxin Zheng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guofu Zhu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingyi He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guoqing Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Daidi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
21
|
Zhu L, Li D, Chen C, Wang G, Shi J, Zhang F. Activation of Nrf2 signaling by Icariin protects against 6-OHDA-induced neurotoxicity. Biotechnol Appl Biochem 2019; 66:465-471. [PMID: 30892727 DOI: 10.1002/bab.1743] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/15/2019] [Indexed: 01/29/2023]
Abstract
Nerve damage is the main pathogenesis of neurodegenerative diseases. Recently, in search for a promising therapeutic target that could stop neurodegenerative diseases progression, the antioxidant signaling pathway regulated by transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) has attracted new hopes. Icariin (ICA) exhibited a battery of pharmacological properties, including antioxidation, anti-aging, and anti-inflammation activities. Recent studies indicate ICA conferred neuroprotection against brain ischemic injury and neurodegenerative diseases. However, the mechanisms underlying ICA-mediated neuroprotection remain unelucidated. This study aimed at analyzing whether ICA evoked neuroprotection against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in PC12 cells and the mechanisms of action. ICA protected against 6-OHDA-induced neuronal damage, accompanied by the inhibition of cell apoptosis through the marked decreases in the Bax/Bcl-2 ratio, cytochrome c release, and caspase-3 cleavage. In addition, the activation of Nrf2 signaling pathway was responsible for ICA-mediated neuroprotection. First, ICA relieved reactive oxygen species accumulation and increased superoxide dismutase generation via the activation of Nrf2 signaling. Second, Nrf2 knockdown by siRNA reversed ICA-mediated neuroprotection. Together, these results suggested ICA-mediated neuroprotection might be attributable to the activation of Nrf2 pathway via antioxidative signaling pathways.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - DaiDi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Ce Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - GuoQing Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - JingShan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| |
Collapse
|
22
|
Jin J, Wang H, Hua X, Chen D, Huang C, Chen Z. An outline for the pharmacological effect of icariin in the nervous system. Eur J Pharmacol 2018; 842:20-32. [PMID: 30342950 DOI: 10.1016/j.ejphar.2018.10.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/13/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Icariin is a major active component of the traditional herb Epimedium, also known as Horny Goat Weed. It has been extensively studied throughout the past several years and is known to exert anti-oxidative, anti-neuroinflammatory, and anti-apoptotic effects. It is now being considered as a potential therapeutic agent for a wide variety of disorders, ranging from neoplasm to cardiovascular disease. More recent studies have shown that icariin exhibits potential preventive and/or therapeutic effects in the nervous system. For example, icariin can prevent the production of amyloid β (1-42) and inhibit the expression of amyloid precursor protein (APP) and β-site APP cleaving enzyme 1 (BACE-1) in animal models of Alzheimer's disease (AD). Icariin has been shown to mitigate pro-inflammatory responses of microglia in culture and in animal models of cerebral ischemia, depression, Parkinson's disease (PD), and multiple sclerosis (MS). Icariin also prevents the neurotoxicity induced by hydrogen peroxide (H2O2), endoplasmic reticulum (ER) stress, ibotenic acid, and homocysteine. In addition, icariin is implicated in facilitating learning and memory in both normal aging animals and disease models. To date, we still have no consolidated source of knowledge about the pharmacological effects of icariin in the nervous system, though its roles in other tissues have been reviewed in recent years. Here, we summarize the pharmacological development of icariin as well as its possible mechanisms in prevention and/or therapy of disorders afflicting the nervous system in hope of expanding the knowledge about the preventive and/or therapeutic effect of icariin in brain disorders.
Collapse
Affiliation(s)
- Jie Jin
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes lane, Piscataway, 08854 New Jersey, United States
| | - Xiaoying Hua
- Department of Pharmacology, Wuxi Ninth People's Hospital, #999 Liangxi Road, Wu xi, Jiangsu 226001, China
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China.
| |
Collapse
|
23
|
Li ZR, Yang L, Zhen J, Zhao Y, Lu ZN. Nobiletin protects PC12 cells from ERS-induced apoptosis in OGD/R injury via activation of the PI3K/AKT pathway. Exp Ther Med 2018; 16:1470-1476. [PMID: 30116396 DOI: 10.3892/etm.2018.6330] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Nobiletin (NOB) possesses multiple pharmacological effects, but its anti-apoptotic property has acquired a great deal of attention. Endoplasmic reticulum (ER) stress (ERS)-induced apoptosis acts as the pivotal aetiology in neuronal oxygen-glucose deprivation and reoxygenation (OGD/R) injury. The aim of this study focused on whether NOB exerts neuro-protective effects on OGD/R injury by repressing ERS-induced apoptosis. The PC12 neuronal cell line was subjected to 4 h OGD and 24 h reoxygenation following NOB treatment. A PI3K/AKT inhibitor (LY294002) was added during the mechanistic experiments. Cell viability, lactate dehydrogenase (LDH) release and apoptosis were determined. Western blotting was used to measure protein expression levels. The results showed that OGD/R caused neuronal damageas exhibited by the increase in LDH release and the reduction of cellular viability. Moreover, ERS-induced apoptosis was markedly stimulated by OGD/R in PC12 cells, as evidenced by the elevation in the apoptotic rate and protein levels of C/EBP homologous protein/glucose-regulated protein-78. However, NOB administration significantly reversed neuronal damage and the ERS-induced apoptosis in response to OGD/R injury. Mechanistic detections showed that the neuron-favorable and ERS-repressing contributions of NOB were, in part, a result of the activation of the PI3K/AKT pathway, which was validated by a specific PI3K/AKT inhibitor (LY294002). Therefore, NOB protects PC12 cells from ERS-induced apoptosis in OGD/R injury mainly through enhancement of the PI3K/AKT pathway, which may provide a novel therapeutic avenue for the prevention of cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zi-Ru Li
- Department of Internal Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lei Yang
- Department of Internal Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin Zhen
- Department of Internal Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Zhao
- Department of Internal Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zu-Neng Lu
- Department of Internal Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
24
|
Neuroprotective Effects of Bioactive Compounds and MAPK Pathway Modulation in "Ischemia"-Stressed PC12 Pheochromocytoma Cells. Brain Sci 2018; 8:brainsci8020032. [PMID: 29419806 PMCID: PMC5836051 DOI: 10.3390/brainsci8020032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/24/2018] [Accepted: 02/02/2018] [Indexed: 02/08/2023] Open
Abstract
This review surveys the efforts taken to investigate in vitro neuroprotective features of synthetic compounds and cell-released growth factors on PC12 clonal cell line temporarily deprived of oxygen and glucose followed by reoxygenation (OGD/R). These cells have been used previously to mimic some of the properties of in vivo brain ischemia-reperfusion-injury (IRI) and have been instrumental in identifying common mechanisms such as calcium overload, redox potential, lipid peroxidation and MAPKs modulation. In addition, they were useful for establishing the role of certain membrane penetrable cocktails of antioxidants as well as potential growth factors which may act in neuroprotection. Pharmacological mechanisms of neuroprotection addressing modulation of the MAPK cascade and increased redox potential by natural products, drugs and growth factors secreted by stem cells, in either undifferentiated or nerve growth factor-differentiated PC12 cells exposed to ischemic conditions are discussed for future prospects in neuroprotection studies.
Collapse
|