1
|
Rath P, Prakash D, Ranjan A, Chauhan A, Jindal T, Alamri S, Alamri T, Harakeh S, Haque S. Modulation of Insulin Resistance by Silybum marianum Leaves, and its Synergistic Efficacy with Gymnema sylvestre, Momordica charantia, Trigonella-foenum graecum Against Protein Tyrosine Phosphatase 1B. Biotechnol Genet Eng Rev 2024; 40:3805-3827. [PMID: 36641593 DOI: 10.1080/02648725.2022.2162236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/18/2022] [Indexed: 01/16/2023]
Abstract
Prolonged insulin resistance is considered one of the reasons for Type 2 Diabetes Mellitus. Upregulation of Protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signalling, has been well studied as a key regulator in prognosis to insulin resistance. It has been widely studied as a desirable molecular therapeutic target. The study aimed to evaluate the efficacy of leaf extract of the medicinal plants Silybum marianum on the inhibition of PTP1B activity. It also explored the synergistic effect with extracts of Gymnema sylvestre (leaves), Momordica charantia (seeds), and Trigonella foenum graecum (seeds). The S. marianum leaves showed dose-dependent inhibition of PTP1B ranging from 9.48-47.95% (25-1000 μg mL-1). Assay with individual plant extracts showed comparatively lesser inhibition of PTP1B as compared to metformin as a control (38% inhibition). However, a synergistic effect showed nearly 45% PTP1B inhibition (higher than metformin) after the assay was done with selected four plant extracts in combination. The effect of leaf extracts of S. marianum was studied for glucose uptake efficiency in yeast cell lines which was found to be increased by 23% as compared to the control (without extract). Metformin improves glucose upake by yeast cells by ~15-31%. GC-MS analysis revealed 23 phytochemicals, some of which possessed anti-diabetic properties. A dose-dependent increase in antioxidant activity of S. marianum leaves extracts was observed (40-53%). The findings of the study highlighted the presence of various phytochemicals in leaves extracts that are effective against PTP1B inhibition and may help in reinvigorating drug development.
Collapse
Affiliation(s)
- Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Dhan Prakash
- Amity Institute of Herbal Research and Studies, Amity University Noida, Noida, Uttar Pradesh, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Sultan Alamri
- Consultant Family Medicine, Ministry of Health, Jeddah, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia Yousef Abdul Lateef Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
2
|
Yang J, Tan A, Li T, Chen H. Irisin alleviates the pyroptosis of β cells in T2DM by inhibiting NLRP3 inflammasome through regulating miR-19b-3p/SOCS3/STAT3 axis mediated autophagy. IUBMB Life 2024. [PMID: 39143849 DOI: 10.1002/iub.2907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/25/2024] [Indexed: 08/16/2024]
Abstract
The purpose of this study was to analyze the mechanism by which irisin affects β-cell pyroptosis in type 2 diabetes mellitus (T2DM). The in vivo T2DM model was established by raised with high-fat diet and intraperitoneally injection of streptozocin. Min6 cells were divided into four groups: negative control (NC), high glucose (HG), HG + irisin, and HG + irisin+3-MA. The cell viability was determined by CCK-8 assay. Dual-luciferase gene reporter assay was conducted to confirm the binding between miR-19b-3p and SOCS3. The expression level of FNDC5 and GSDMD was visualized using the immunofluorescence assay. The protein level of FNDC5, Beclin1, LC3II/I, NLRP3, cleaved-caspase-1, GSDMD-N, STAT3, p-STAT3, and SOCS3 was determined by Western blotting. The secretion of irisin, lactate dehydrogenase (LDH), and insulin was checked by ELISA. In vivo results showed that pathological changes in islet tissues with declined number of β cells, elevated FBG value, decreased FIN and HOMA-β value, elevated autophagy-associated proteins expressions, and activated NLRP3 signaling in T2DM mice, which were dramatically reversed by FNDC5 overexpression. Furthermore, the declined level of miR-19b-3p and p-STAT3, as well as the upregulation of SOCS3, was greatly rescued by FNDC5 overexpression. The in vitro data confirmed the binding site between SOCS3 and miR-19b-3p. SOCS3 was downregulated and p-STAT3 was upregulated in miR-19b-3p mimic-treated Min6 cells. In HG-stimulated Min6 cells, the elevated cell viability, increased production of insulin, decreased release of LDH, and inactivated NLRP3 signaling induced by irisin were abolished by miR-19b-3p inhibitor and STAT3 inhibitor. The increased level of autophagy-related proteins and activated SOCS3/STAT3 axis induced by irisin in HG-stimulated Min6 cells were abolished by miR-19b-3p inhibitor. The inhibitory effect of irisin against NLRP3 signaling in HG-stimulated Min6 cells was abrogated by 3-MA. In conclusion, irisin alleviated the pyroptosis of β cells in T2DM by inhibiting NLRP3 signaling through miR-19b-3p/SOCS3/STAT3 axis mediated autophagy.
Collapse
Affiliation(s)
- Jingjing Yang
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Anjun Tan
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Tianrong Li
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Hewen Chen
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
3
|
Sivakumar A, Thanu AS, Vishnumukkala T, KSV ABG, K Shetty J, Jagadeesan S, Gopalakrishna PK. Management of diabetes mellitus using medicinal plants: A review. Bioinformation 2024; 20:705-710. [PMID: 39309571 PMCID: PMC11414330 DOI: 10.6026/973206300200705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetes mellitus has a global impact affecting 422 million individuals and leading to significant health complications. This makes it a pressing global health concern. Present treatments prioritize alleviating symptoms; however, it is imperative to adopt a multitarget strategy. Herbal medicines, which have been historically employed in traditional medicine, have undergone animal experiments to assess their efficacy in reducing or preventing the disease. Known data shows that the phytochemicals found in medicinal plants have anti-hypoglycemic properties. Hence, we review the therapeutic properties of Withania somnifera, Trigonella foenum-graecum, Moringa oliefera, Memmordica charantia and Allium sativa.
Collapse
Affiliation(s)
- Anupa Sivakumar
- Human Biology Division, School of Medicine, IMU University, Kuala Lumpur, Malaysia
| | - Amardev Singh Thanu
- Human Biology Division, School of Medicine, IMU University, Kuala Lumpur, Malaysia
| | | | - Angu Bala Ganesh KSV
- Department of Anatomy, Gujarat Adani Institute of Medical Sciences, Bhuj, Gujarat, India
| | - Jeevan K Shetty
- Department of Biochemistry, School of Medicine, Royal College of Surgeons in Ireland (RCSI) Bahrain, Muharraq, Bahrain
| | - Saravanan Jagadeesan
- Department of Anatomy, School of Medicine, Lakeside Campus, Taylor's University, Selangor, Malaysia
| | | |
Collapse
|
4
|
Zhang X, Zhao Y, Song Y, Miao M. Effects of Momordica charantia L. supplementation on glycemic control and lipid profile in type 2 diabetes mellitus patients: A systematic review and meta-analysis of randomized controlled trials. Heliyon 2024; 10:e31126. [PMID: 38784554 PMCID: PMC11112315 DOI: 10.1016/j.heliyon.2024.e31126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Background and aims Momordica charantia L. (M. charantia) has been traditionally utilized as a medicinal intervention for managing type 2 diabetes mellitus (T2DM). The current study was designed to offer a GRADE-assessed systematic review and meta-analysis of randomized controlled trials (RCTs) examining the impact of M. Charantia intake on glycemic indexes and the lipid profile of patients with T2DM. Methods A comprehensive search was conducted across several databases, including PubMed, EMBASE, Web of Science, and Cochrane Library, from the inception of each database until April 22, 2023. The Hartung-Knapp adjustment was applied to ensure conservative summary estimates with broad confidence intervals. Results A total of eight trials involving 423 patients with T2DM were included in this study. Compared to the control group, the intake of M. charantia supplementation resulted in significant reductions in fasting blood glucose (FBG) (WMD: -0.85 mmol/L; 95%CI: -1.44, -0.26; p = 0.005; I2 = 73.4 %), postprandial glucose (PPG) (WMD: -2.28 mmol/L; 95%CI: -3.35, -1.21; p = 0.000; I2 = 66.9 %), glycosylated hemoglobin A1c (HbA1c) (WMD: -0.38 %; 95%CI: -0.53, -0.23; p = 0.000; I2 = 37.6 %), and total cholesterol (TC) (WMD: -0.38 mmol/L; 95%CI: -0.70, -0.07; p = 0.017; I2 = 63.6 %). These results remained statistically significant even after applying the Hartung-Knapp adjustment. However, no significant differences were observed in terms of triglyceride (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Conclusions The findings of this study suggest that M. charantia could serve as a potential alternative for individuals with T2DM, particularly those with elevated total cholesterol levels. However, further high-quality studies are necessary to validate these results.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yinan Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yagang Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
5
|
Seifi S, Nazari SE, Avan A, Khalili-tanha N, Babaei F, Soleimanpour S, Asgharzadeh F, Hajzadeh MAR, Khazaei M, Marjani A. The therapeutic potential of Wild Bitter Melon to ameliorate muscle atrophy in a murine model. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:388-401. [PMID: 39086863 PMCID: PMC11287028 DOI: 10.22038/ajp.2024.24011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/30/2023] [Indexed: 08/02/2024]
Abstract
Objective Muscle atrophy due to immobility is a common complication of many diseases and a consequence of therapeutic processes. Immobility and inactivity have been shown to be associated with increased inflammation. The aim of this study was to investigate the therapeutic potential of Wild Bitter Melon (WBM) (Momordica charantia Linn) on muscle atrophy due to immobility in a mouse model. Materials and Methods This study was performed in two phases of atrophy and recovery on male BALB/c mice which were divided into 3 groups: control, immobilized, and experimental. The treatment period with WBM at a dose of 400 mg/kg daily by gavage was 17 days, including 7 days of being immobilized and 10 days of recovery. At the end of each phase, half of the mice from each group were examined regarding the four limb grip strength, and then histological and biochemical analyses were done. Results The tissue level of malondialdehyde (MDA) oxidative stress index in the atrophy phase in the atrophy group (5.4567±0.522) nmol/g compared to the control group (3.455±0.065) nmol significantly (p 0.001) <) increased. Also, the tissue level of MDA in the WBM group (3.87±0.035) showed a significant decrease compared to the atrophy group (p<0.01). The strength percentage of four limbs in the mice of the treatment group (-23.46±2.45) was significantly higher than that of the atrophy group (-30.60±3.15) at the end of the atrophy phase. Conclusion The results suggest that the use of WBM reduces the degree of inflammation, oxidative stress and muscle damage, as well as muscle atrophy, which may improve the muscle atrophy in mice.
Collapse
Affiliation(s)
- Sima Seifi
- Metabolic Disorders Research Center, Department of Biochemistry and Biophysics, Golestan University of Medical Sciences Gorgan, Golestan, Iran
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
- Equal first author
| | - Seyedeh Elnaz Nazari
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Equal first author
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research center, Mashhad University of Medical Sciences, Mashhad, Iran
- Equal first author
| | - Nima Khalili-tanha
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Babaei
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mousa-al-reza Hajzadeh
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdoljalal Marjani
- Metabolic Disorders Research Center, Department of Biochemistry and Biophysics, Golestan University of Medical Sciences Gorgan, Golestan, Iran
| |
Collapse
|
6
|
Parasher M, Pandey DK, Manhas RK. Traditionally used anti-diabetic plants in Kathua district of Union Territory of Jammu and Kashmir, India. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117087. [PMID: 37683931 DOI: 10.1016/j.jep.2023.117087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Madhvi Parasher
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India; Department of Botany, Govt. Degree College, Marh, 181206, Jammu, JKUT, India.
| | - Devendra Kumar Pandey
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - R K Manhas
- Department of Botany, Govt. Degree College, Basohli, 184201, JKUT, India.
| |
Collapse
|
7
|
Zhou Y, Xu B. New insights into anti-diabetes effects and molecular mechanisms of dietary saponins. Crit Rev Food Sci Nutr 2023; 63:12372-12397. [PMID: 35866515 DOI: 10.1080/10408398.2022.2101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) is a long-term metabolic disorder that manifests as chronic hyperglycemia and impaired insulin, bringing a heavy load on the global health care system. Considering the inevitable side effects of conventional anti-diabetic drugs, saponins-rich natural products exert promising therapeutic properties to serve as safer and more cost-effective alternatives for DM management. Herein, this review systematically summarized the research progress on the anti-diabetic properties of dietary saponins and their underlying molecular mechanisms in the past 20 years. Dietary saponins possessed the multidirectional anti-diabetic capabilities by concurrent regulation of various signaling pathways, such as IRS-1/PI3K/Akt, AMPK, Nrf2/ARE, NF-κB-NLRP3, SREBP-1c, and PPARγ, in liver, pancreas, gut, and skeletal muscle. However, the industrialization and commercialization of dietary saponin-based drugs are confronted with a significant challenge due to the low bioavailability and lack of the standardization. Hence, in-depth evaluations in pharmacological profile, function-structure interaction, drug-signal pathway interrelation are essential for developing dietary saponins-based anti-diabetic treatments in the future.
Collapse
Affiliation(s)
- Yifan Zhou
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| |
Collapse
|
8
|
Wang Z, Feng S, Li Q, Song Z, He J, Yang S, Yan C, Ling H. Dihydromyricetin alleviates hippocampal ferroptosis in type 2 diabetic cognitive impairment rats via inhibiting the JNK-inflammatory factor pathway. Neurosci Lett 2023; 812:137404. [PMID: 37482219 DOI: 10.1016/j.neulet.2023.137404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is frequently associated with diabetic cognitive impairment (DCI), and recent studies have shown a strong association between DCI and hippocampal ferroptosis. In this study, we administered dihydromyricetin (DHM) or JNK inhibitor SP600125, to T2DM rats and monitored changes in blood glucose levels, conducted behavioral tests, and detected changes in JNK, inflammatory factors and ferroptosis-related indicators. Our findings demonstrated that T2DM rats displayed signs of cognitive impairment (CI), with ferrozine assays indicating elevated iron content in the hippocampus. Concurrently, there was an increase in p-JNK activity and inflammatory factors IL-6 and TNF-α in the hippocampal region of these rats. Furthermore, we observed elevated levels of Fe2+, MDA, ROS, LPO, and ACSL4, along with a decrease in GPX4 and GSH, suggesting the occurrence of hippocampal ferroptosis. SP600125 application reversed these changes in the T2DM rats, although it exhibited no significant effects in the control group. Treatment with high and low doses of DHM led to a reduction in p-JNK expression, inflammatory factor-related proteins, and iron accumulation in the hippocampal region, effectively alleviating hippocampal ferroptosis in T2DM rats. No notable effects of DHM were observed in the control group. To conclude, our study suggests that DHM can potentially alleviate hippocampal ferroptosis of T2DM cognitive impairment rats, primarily by suppressing the JNK-inflammatory factor pathway in the hippocampus.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China; School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Shuidong Feng
- Department of Social Medicine and Health Service Management, School of Public Health, University of South China, Hengyang 421001, Hunan, China
| | - Qi Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Zhenjiang Song
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Jianqin He
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Sisi Yang
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Canqun Yan
- The Health Management Center, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Hongyan Ling
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
9
|
Zhang X, Zhang L, Zhang B, Liu K, Sun J, Li Q, Zhao L. Herbal tea, a novel adjuvant therapy for treating type 2 diabetes mellitus: A review. Front Pharmacol 2022; 13:982387. [PMID: 36249806 PMCID: PMC9561533 DOI: 10.3389/fphar.2022.982387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic, endocrine disease characterized by persistent hyperglycemia. Several studies have shown that herbal tea improves glucose metabolism disorders in patients with T2DM. This study summarizes the published randomized controlled trials (RCTs) on herbal tea as a adjuvant therapy for treating T2DM and found that herbal teas have potential add-on effects in lowering blood glucose levels. In addition, we discussed the polyphenol contents in common herbal teas and their possible adverse effects. To better guide the application of herbal teas, we further summarized the hypoglycemic mechanisms of common herbal teas, which mainly involve: 1) improving insulin resistance, 2) protecting islet β-cells, 3) anti-inflammation and anti-oxidation, 4) inhibition of glucose absorption, and 5) suppression of gluconeogenesis. In conclusion, herbal tea, as a novel adjuvant therapy for treating T2DM, has the potential for further in-depth research and product development.
Collapse
Affiliation(s)
- Xiangyuan Zhang
- Department of Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Lili Zhang
- Department of Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Boxun Zhang
- Department of Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Liu
- Department of Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Sun
- Graduate College, Changchun University of Traditional Chinese Medicine, Jilin, China
| | - Qingwei Li
- Department of Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Qingwei Li, ; Linhua Zhao,
| | - Linhua Zhao
- Department of Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Qingwei Li, ; Linhua Zhao,
| |
Collapse
|
10
|
Saadati S, Naseri K, Asbaghi O, Abhari K, Zhang P, Li HB, Gan RY. Nigella sativa supplementation improves cardiometabolic indicators in population with prediabetes and type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Front Nutr 2022; 9:977756. [PMID: 36034891 PMCID: PMC9403837 DOI: 10.3389/fnut.2022.977756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Nigella sativa (N. sativa) from the family Ranunculaceae has medicinal properties. Previous studies have reported promising findings showing that N. sativa may benefit cardiometabolic health; however, current evidence on its cardiometabolic effects on those with prediabetes and type 2 diabetes mellitus (T2DM) is still unclear. Hence, we conducted a systematic review and meta-analysis to assess the efficacy of N. sativa on cardiometabolic parameters in population with prediabetes and T2DM. Methods PubMed/Medline, ISI Web of Science, Scopus, and Cochrane library were systematically searched up to June 20, 2022. Meta-analyses using random-effects models were used. Results Eleven randomized controlled trials (RCTs) were included in the meta-analysis. N. sativa intervention resulted in significant changes in fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), c-reactive protein (CRP), and malondialdehyde (MDA), without overall changes in glucose levels after oral glucose tolerance test (OGTT), fasting insulin, homeostatic model assessment of insulin resistance (HOMA-IR), triglyceride, high-density lipoprotein cholesterol (HDL-C), and body mass index (BMI) when compared with the control group. In subgroup analyses, N. sativa supplementation enhanced serum levels of HDL-C in subjects with baseline HDL-C lower than 40 mg/dL. Furthermore, HOMA-IR and BMI values decreased in the N. sativa-supplemented group compared with the control group, when the length of follow-up was more than 8 weeks and the dose was more than 1 g/day for N. sativa supplementation, respectively. Conclusion Our findings indicate that N. sativa supplementation may effectively improve cardiometabolic profiles in individuals with prediabetes and T2DM.
Collapse
Affiliation(s)
- Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Kaveh Naseri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khadijeh Abhari
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, National Agricultural Science and Technology Center, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
11
|
Gasparini P, Garofolo IC, Telles MM, Oyama LM, Veneza VDM, Moura Veiga TA, Flor Silveira VL, Caperuto LC. Bauhinia forficata link extract attenuates insulin resistance by preserving glucose uptake in gastrocnemius muscle. Nat Prod Res 2022; 37:2031-2036. [PMID: 35997243 DOI: 10.1080/14786419.2022.2113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Bioactive metabolites from Bauhinia forficata Link (Bf extract) hold therapeutic potential for type 2 diabetes mellitus (T2DM) but the mechanism remains poorly understood. This study aimed to test the extract from Bf leaves obtained by decoction on the prevention of T2DM in vivo. The Bf extract was tested on a streptozotocin-induced T2DM mouse model fed on a high-fat diet. The insulin resistance was attenuated in T2DM animals supplemented with Bf extract, which indicates glucose intolerance reduction and p-AKT/AKT ratio preservation in the gastrocnemius muscle. These observations suggested that Bf extract enhanced glucose uptake. Nevertheless, there was no preservation in β-cell insulin secretion in Bf extract-treated T2DM mice. Interestingly, the Bf extract reduced body weight gain without affecting total energy intake. Hence, Bf extract has a hypoglycemic effect which could attenuate the development of insulin resistance.
Collapse
Affiliation(s)
- Patricia Gasparini
- Departamento de Ciências Biológicas; Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF); Universidade Federal de São Paulo; Diadema, Brazil
| | - Ingrid Candido Garofolo
- Departamento de Ciências Biológicas; Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF); Universidade Federal de São Paulo; Diadema, Brazil
| | - Monica Marques Telles
- Departamento de Ciências Biológicas; Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF); Universidade Federal de São Paulo; Diadema, Brazil
| | - Lila Missae Oyama
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Viviane de Mello Veneza
- Departamento de Química; Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF); Universidade Federal de São Paulo, Diadema, Brazil
| | - Thiago André Moura Veiga
- Departamento de Química; Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF); Universidade Federal de São Paulo, Diadema, Brazil
| | - Vera Lucia Flor Silveira
- Departamento de Ciências Biológicas; Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF); Universidade Federal de São Paulo; Diadema, Brazil
| | - Luciana Chagas Caperuto
- Departamento de Ciências Biológicas; Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF); Universidade Federal de São Paulo; Diadema, Brazil
| |
Collapse
|
12
|
The Efficacy of Ginseng (Panax) on Human Prediabetes and Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14122401. [PMID: 35745129 PMCID: PMC9227417 DOI: 10.3390/nu14122401] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Results from different clinical trials on the effects of ginseng on prediabetes and type 2 diabetes (T2DM) are still inconsistent. To fill this knowledge gap, we investigated the overall effects of ginseng supplementation on improving cardiometabolic biomarkers among these patients. A systematic literature search was conducted on PubMed/MEDLINE, Scopus, Web of Science, and Cochrane library. A random-effect model was applied to estimate the weighted mean difference and 95% CI for each outcome. Overall, 20 eligible RCTs were included. Meta-analyses revealed that ginseng supplementation significantly reduced serum concentration of FPG, TC, IL-6, and HOMA-IR values. It also increased HR and TNF-α levels. Ginseng supplementation changed HOMA-IR and HDL-C significantly based on dose and changed HOMA-IR and LDL-C significantly based on study duration in a non-linear fashion. Furthermore, meta-regression analyses indicated a linear relationship between ginseng dose and absolute changes in HDL-C. Moreover, subgroup analyses showed that ginseng supplementation changed TC and LDL-C when the supplementation dose was ≥2 g/day. Our findings suggest that ginseng supplementation may be an effective strategy for improving cardiometabolic profiles in individuals with prediabetes and T2DM.
Collapse
|
13
|
Méril-Mamert V, Ponce-Mora A, Sylvestre M, Lawrence G, Bejarano E, Cebrián-Torrejón G. Antidiabetic Potential of Plants from the Caribbean Basin. PLANTS 2022; 11:plants11101360. [PMID: 35631785 PMCID: PMC9146409 DOI: 10.3390/plants11101360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders characterized by hyperglycemia, insulin insufficiency or insulin resistance, and many issues, including vascular complications, glycative stress and lipid metabolism dysregulation. Natural products from plants with antihyperglycemic, hypolipidemic, pancreatic protective, antioxidative, and insulin-like properties complement conventional treatments. Throughout this review, we summarize the current status of knowledge of plants from the Caribbean basin traditionally used to manage DM and treat its sequelae. Seven plants were chosen due to their use in Caribbean folk medicine. We summarize the antidiabetic properties of each species, exploring the pharmacological mechanisms related to their antidiabetic effect reported in vitro and in vivo. We propose the Caribbean flora as a source of innovative bioactive phytocompounds to treat and prevent DM and DM-associated complications.
Collapse
Affiliation(s)
- Vanessa Méril-Mamert
- Laboratoire COVACHIM-M2E EA 3592, Université des Antilles, CEDEX, 97157 Pointe-à-Pitre, France; (V.M.-M.); (M.S.); (G.L.)
| | - Alejandro Ponce-Mora
- Department of Biomedical Sciences, School of Health Sciences and Veterinary, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain;
| | - Muriel Sylvestre
- Laboratoire COVACHIM-M2E EA 3592, Université des Antilles, CEDEX, 97157 Pointe-à-Pitre, France; (V.M.-M.); (M.S.); (G.L.)
| | - Genica Lawrence
- Laboratoire COVACHIM-M2E EA 3592, Université des Antilles, CEDEX, 97157 Pointe-à-Pitre, France; (V.M.-M.); (M.S.); (G.L.)
| | - Eloy Bejarano
- Department of Biomedical Sciences, School of Health Sciences and Veterinary, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain;
- Correspondence: (E.B.); (G.C.-T.); Tel.: +96-136-90-00 (ext. 64541) (E.B.); +96-136-90-00 (ext. 64315) (G.C.-T.)
| | - Gerardo Cebrián-Torrejón
- Laboratoire COVACHIM-M2E EA 3592, Université des Antilles, CEDEX, 97157 Pointe-à-Pitre, France; (V.M.-M.); (M.S.); (G.L.)
- Correspondence: (E.B.); (G.C.-T.); Tel.: +96-136-90-00 (ext. 64541) (E.B.); +96-136-90-00 (ext. 64315) (G.C.-T.)
| |
Collapse
|
14
|
Dong W, Zhao Y, Hao Y, Sun G, Huo J, Wang W. Integrated molecular biology and metabonomics approach to understand the mechanism underlying reduction of insulin resistance by corn silk decoction. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114756. [PMID: 34666141 DOI: 10.1016/j.jep.2021.114756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/02/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corn silk is composed of the style and stigma of Zea mays L. Its medical value was first reported in "Southern Yunnan Materia Medica" in the Ming Dynasty. It was considered to be a heat-clearing and diuretic drug. In "Zhejiang Folk Herbal Medicine," the following has been reported: "Corn silk needs one liang. Decoction in water can cure diabetes." Recent studies have shown that corn silk can lower blood sugar levels; however, to date, corn silk has undergone simple pharmacodynamic evaluations, with both its degree and mechanism of action remaining unclear. AIM OF THE STUDY This study aimed to investigate the mechanism of action of corn silk, with respect to having antioxidative ability, reducing insulin resistance, and having a hypoglycemic effect. MATERIALS AND METHODS In this study, a type 2 diabetes mellitus (T2DM) rat model was established via a high sugar and high fat diet combined with streptozotocin (35 mg/kg) administration. Wistar rats were administered corn silk decoction and metformin via gavage for four weeks, and the fasting blood glucose (FBG) and body weight were measured every two weeks. After the experiment, the insulin level, insulin index, and glycogen content were determined. Hematoxylin-eosin staining was used to observe the morphological changes of the skeletal muscle tissue in rats. The levels of malondialdehyde and superoxide dismutase in the serum and skeletal muscle were detected, and the mRNA content and protein levels of key proteins in the JNK-IRS-GLUT4 signaling pathway were determined using real-time quantitative polymerase chain reaction and western blotting. Then, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, combined with multiple statistical analyses, was used to identify potential biomarkers in the serum of T2DM rats, for determining the key metabolic pathways responsible for the action of corn silk. RESULTS The results showed that corn silk could reduce FBG, insulin level, and glycogen content in T2DM rats; reduce the level of oxidative stress in serum and skeletal muscle; restore the pathological structure of skeletal muscle; inhibit the phosphorylation of c-Jun N-terminal kinase (JNK) and insulin receptor substrate (IRS) in skeletal muscle; and upregulate the expression of glucose transporter type 4 (GLUT4) for transport of glucose and to reduce insulin resistance. Moreover, metabonomic analysis elucidated that corn silk could significantly affect 26 biomarkers (such as pentosidine, palmitic acid, lysoPC, and p-Cresol sulfate) and metabolic pathways (such as phenylalanine metabolism, phospholipid metabolism, bile acid metabolism, and biosynthesis of unsaturated fatty acids). CONCLUSION The interaction between endogenous metabolites and proteins in signaling pathways was analyzed using metabonomics and molecular biology methods. Corn silk inhibited JNK-IRS-GLUT4 signal transduction in skeletal muscle via antioxidative effects, by increasing the sensitivity of peripheral tissue to insulin, by reducing insulin resistance, and through hypoglycemic effects.
Collapse
Affiliation(s)
- Wenting Dong
- College of Pharmacy, Harbin University of Commerce, No.138, Tongda Street, Daoli District, Harbin, Heilongjiang, China; Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, No.72 Xiang'an Street, Xiangfang District, Harbin, Heilongjiang, China.
| | - Yuanyuan Zhao
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, No.72 Xiang'an Street, Xiangfang District, Harbin, Heilongjiang, China.
| | - Yiming Hao
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, Liaoning, China.
| | - Guodong Sun
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, No.72 Xiang'an Street, Xiangfang District, Harbin, Heilongjiang, China.
| | - Jinhai Huo
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, No.72 Xiang'an Street, Xiangfang District, Harbin, Heilongjiang, China.
| | - Weiming Wang
- College of Pharmacy, Harbin University of Commerce, No.138, Tongda Street, Daoli District, Harbin, Heilongjiang, China; Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, No.72 Xiang'an Street, Xiangfang District, Harbin, Heilongjiang, China.
| |
Collapse
|
15
|
Liu Z, Qu CY, Li JX, Wang YF, Li W, Wang CZ, Wang DS, Song J, Sun GZ, Yuan CS. Hypoglycemic and Hypolipidemic Effects of Malonyl Ginsenosides from American Ginseng ( Panax quinquefolius L.) on Type 2 Diabetic Mice. ACS OMEGA 2021; 6:33652-33664. [PMID: 34926913 PMCID: PMC8675029 DOI: 10.1021/acsomega.1c04656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
American ginseng (Panax quinquefolius L.) is popularly consumed as traditional herbal medicine and health food for the treatment of type 2 diabetes mellitus (T2DM). Malonyl ginsenosides (MGR) are the main natural ginsenosides in American ginseng. However, whether the malonyl ginsenosides in P. quinquefolius (PQ-MGR) possess antidiabetic effects has not been explored yet. In this study, the antidiabetic effects and the underlying mechanism of PQ-MGR in high-fat diet/streptozotocin (HFD/STZ)-induced T2DM mice were investigated. The chemical composition was analyzed by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Our results showed that 14 malonyl ginsenosides were identified in the PQ-MGR. Among them, the content of m-Rb1 represented about 77.4% of the total malonyl ginsenosides. After a 5-week experiment, the PQ-MGR significantly reduced the fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), nonesterified fatty acid (NEFA), alanine transaminase (ALT), and aspartate transaminase (AST) levels and improved glucose tolerance and insulin resistance. Furthermore, Western blot analysis demonstrated that the protein expressions of p-PI3K, p-AKT, p-AMPK, p-ACC, PPARγ, and GLUT4 in the liver and skeletal muscle were significantly upregulated after PQ-MGR treatment. In contrast, the protein expressions of p-IRS1 and p-JNK were significantly downregulated. Our results revealed that PQ-MGR could ameliorate glucose and lipid metabolism and insulin resistance in T2DM via regulation of the insulin receptor substrate-1/phosphoinositide3-kinase/protein-kinase B (IRS1/PI3K/Akt) and AMP-activated protein kinase/acetyl-CoA carboxylase (AMPK/ACC) pathways. These findings suggest that PQ-MGR may be used as an antidiabetic candidate drug for T2DM treatment.
Collapse
Affiliation(s)
- Zhi Liu
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- Institute
of Agricultural Modernization, Jilin Agricultural
University, Changchun 130118, China
| | - Chun-Yuan Qu
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Jia-Xin Li
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Yan-Fang Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Wei Li
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Chong-Zhi Wang
- Tang
Center for Herbal Medicine Research and The Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| | - Dong-Sheng Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Jia Song
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Guang-Zhi Sun
- Institute
of Agricultural Modernization, Jilin Agricultural
University, Changchun 130118, China
| | - Chun-Su Yuan
- Tang
Center for Herbal Medicine Research and The Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
16
|
Zepeda-Peña AC, Gurrola-Díaz CM, Domínguez-Rosales JA, García-López PM, Pizano-Andrade JC, Hernández-Nazará ZH, Vargas-Guerrero B. Effect of Lupinus rotundiflorus gamma conglutin treatment on JNK1 gene expression and protein activation in a rat model of type 2 diabetes. PHARMACEUTICAL BIOLOGY 2021; 59:374-380. [PMID: 33784492 PMCID: PMC8018548 DOI: 10.1080/13880209.2021.1893757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/05/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Gamma conglutin (Cγ) from lupine species represents a potential complementary treatment for type 2 diabetes mellitus (T2DM) because of its hypoglycaemic effect. However, its underlying mechanism of action is not fully known. OBJECTIVE To evaluate whether Cγ from Lupinus rotundiflorus M. E. Jones (Fabaceae) modulates c-Jun N-terminal kinase 1 (JNK1) expression and activation in a T2DM rat model. MATERIALS AND METHODS Gamma conglutin isolated from L. rotundiflorus seeds was characterized by SDS-PAGE. Fifteen Wistar rats with streptozotocin-induced T2DM (HG) were randomized into three groups (n = 5): vehicle administration (HG-Ctrl), oral treatment with Cγ (120 mg/kg/day) (HG-Lr) for one week, and treatment with metformin (300 mg/kg/day) (HG-Met); a healthy group (Ctrl, n = 5) was included as control. The levels of glucose and biomarkers of renal and hepatic function were measured pre- and post-treatment. Hepatic Jnk1 expression and phosphorylation of JNK1 were evaluated by qRT-PCR and western blot, respectively. RESULTS Oral treatment with either Cγ or metformin reduced serum glucose level to 86.30 and 74.80 mg/dL, respectively (p ˂ 0.05), from the basal levels. Jnk1 expression was 0.65- and 0.54-fold lower (p ˂ 0.05) in the HG-Lr and HG-Met groups, respectively, than in HG-Ctrl. Treatment with Cγ decreased JNK1 phosphorylation. However, Cγ did not change the levels of kidney and liver biomarkers. DISCUSSION AND CONCLUSIONS Treatment with Cγ from L. rotundiflorus inhibited Jnk1 expression, in vivo, suggesting JNK1 as a potential therapeutic target in diabetes and revealing one mechanism underlying the hypoglycaemic effect of lupine Cγ. Nevertheless, further studies are required.
Collapse
Affiliation(s)
- Andrea Catalina Zepeda-Peña
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Carmen Magdalena Gurrola-Díaz
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - José Alfredo Domínguez-Rosales
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Pedro Macedonio García-López
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, México
| | - Juan Carlos Pizano-Andrade
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, México
| | - Zamira Helena Hernández-Nazará
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Belinda Vargas-Guerrero
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
17
|
Gao Y, Li X, Huang Y, Chen J, Qiu M. Bitter Melon and Diabetes Mellitus. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ya Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| | - Xian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| | - Yanjie Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| | - Jianchao Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| |
Collapse
|
18
|
Liu Y, Mu S, Chen W, Liu S, Cong Y, Liu J, Jia N. Saponins of Momordica charantia increase insulin secretion in INS-1 pancreatic β-cells via the PI3K/Akt/FoxO1 signaling pathway. ENDOCRINOL DIAB NUTR 2021; 68:329-337. [PMID: 34556263 DOI: 10.1016/j.endien.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022]
Abstract
Saponins are the main bioactive substances with anti-hyperglycemic activities of Momordica charantia. This study aimed to verify the effects of M. charantia saponins on insulin secretion and explore the potential underlying mechanisms in INS-1 pancreatic β-cells. We injured INS-1 cells with 33.3mM glucose and then treated them with saponins. Saponins improved cell morphology and viability as demonstrated by inverted microscopy and CCK8 detection and significantly increased insulin secretion in a concentration-dependent manner as shown by ELISA. Thus, we obtained the optimal concentration for the subsequent experiments. Potential mechanisms were explored by immunofluorescence, western blotting, and RT-qPCR techniques. First, saponins increased the mRNA and protein levels of IRS-2 but decreased the serine 731 phosphorylation level of IRS-2. Moreover, saponins increased the phosphorylation of Akt protein and decreased the protein level of FoxO1, which were both reversed by the PI3K inhibitor ly294002. Furthermore, saponins increased the protein level of the downstream molecule and insulin initiating factor PDX-1, which was also reversed by ly294002. Saponins also increased Akt and PDX-1 mRNA and decreased FoxO1 mRNA, which were both reversed by ly294002. Saponins increased glucose-stimulated insulin secretion (GSIS) and intracellular insulin content, which were reversed by ly294002, as determined by ELISA. The immunofluorescence results also confirmed this tendency. In conclusion, our findings improve our understanding of the function of saponins in INS-1 pancreatic β-cells and suggest that saponins may increase insulin secretion via the PI3K/Akt/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Yufan Liu
- Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shumin Mu
- Department of Endocrinology, Hospital Affiliated to Shandong Traditional Chinese Medicine University, Jinan, China.
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Shiyin Liu
- First Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuxuan Cong
- Department of Endocrinology, Weihai Hospital of Traditional Chinese Medicine, Weihai, China
| | - Jiajia Liu
- Department of Endocrinology, People's Hospital of Gaotang County, Liaocheng, China
| | - Ning Jia
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
19
|
Choudhary U, Sabikhi L, Kapila S. Double emulsion-based mayonnaise encapsulated with bitter gourd extract exhibits improvement in vivo anti-diabetic action in STZ induced rats. 3 Biotech 2021; 11:363. [PMID: 34290946 PMCID: PMC8260699 DOI: 10.1007/s13205-021-02910-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/24/2021] [Indexed: 11/24/2022] Open
Abstract
Bitter gourd contains charantin (steroidal saponins), insulin-like peptides, and alkaloids, which contribute to its hypoglycemic ability. The study aims to evaluate effects of anti-diabetic potential of bitter gourd (Momordica charantia) encapsulated double emulsion-based functional mayonnaise on the normal and streptozotocin-induced type 2 diabetes in albino male Wister rats. The rats were allocated into seven groups: a control group fed with synthetic diet (NC), two non-diabetic groups (NCM and NFM) and four diabetic-induced groups (DC, DCM, DFM, and DCMB) for 8 weeks and then analyzed for the various biochemical parameters. The results of this study revealed significant (p < 0.05) anti-diabetic potential in streptozotocin-induced diabetic male albino Wistar rats with decrease in blood glucose and HbA1c, increase in body weight, hemoglobin, and plasma insulin.
Collapse
Affiliation(s)
- Urmila Choudhary
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Latha Sabikhi
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| |
Collapse
|
20
|
Aktaş İ, Mehmet Gür F. Hepato-protective effects of thymoquinone and beta-aminoisobutyric acid in streptozocin induced diabetic rats. Biotech Histochem 2021; 97:67-76. [PMID: 34281431 DOI: 10.1080/10520295.2021.1949041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We investigated the hepato-protective effects of thymoquinone (TQ) and beta-aminoisobutyric acid (BAIBA). We used five groups of 8-week-old male rats: untreated control group, streptozotocin (STZ) diabetic group, STZ + TQ group, STZ + BAIBA group, and STZ + TQ + BAIBA group. After experimental diabetes mellitus (DM) was established using STZ, TQ was given to the STZ + TQ group, BAIBA to the STZ + BAIBA group, and TQ and BAIBA to the STZ + TQ + BAIBA group. In the STZ group, body weight, relative liver weight, and glutathione, blood albumin and insulin levels were decreased compared to the control. Also, water and food consumption, tumor necrosis factor-α expression, malondialdehyde, blood glucose, alanine aminotransferase, aspartate aminotransferase and gamma glutamyl transferase levels were increased the STZ group compared to the control group. In the STZ group, sinusoid congestion and dilation, monocyte and lymphocyte infiltration and microvesicular steatosis were observed in the liver tissue. Pathological changes caused by DM were reduced significantly in the STZ + TQ, STZ + BAIBA and STZ + TQ + BAIBA groups. The protective effect of BAIBA was greater than for TQ; the greatest protective effect was observed following combined use of TQ + BAIBA. We suggest that our findings for the STZ + TQ, STZ + BAIBA and STZ + TQ + BAIBA groups were due to the antioxidant effects of TQ and BAIBA. TQ and BAIBA appear to be potential therapeutic agents for ameliorating hepatic damage due to DM.
Collapse
Affiliation(s)
- İbrahim Aktaş
- Department of Pharmacology, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| | - Fatih Mehmet Gür
- Department of Histology and Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| |
Collapse
|
21
|
Zhu YX, Hu HQ, Zuo ML, Mao L, Song GL, Li TM, Dong LC, Yang ZB, Ali Sheikh MS. Effect of oxymatrine on liver gluconeogenesis is associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation. Biomed Rep 2021; 15:56. [PMID: 34007449 PMCID: PMC8120346 DOI: 10.3892/br.2021.1432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
An increase in liver gluconeogenesis is an important pathological phenomenon in type 2 diabetes mellitus (T2DM) and oxymatrine is an effective natural drug used for T2DM treatment. The present study aimed to explore the effect of oxymatrine on gluconeogenesis and elucidate the underlying mechanism. Male Sprague-Dawley rats were treated with a high-fat diet and streptozotocin for 4 weeks to induce T2DM, and HepG2 cells were treated with 55 mM glucose to simulate T2DM in vitro. T2DM rats were treated with oxymatrine (10 or 20 mg/kg weight) or metformin for 4 weeks, and HepG2 cells were treated with oxymatrine (0.1 or 1 µM), metformin (0.1 µM), or oxymatrine combined with MK-2206 (AKT inhibitor) for 24 h. Fasting blood glucose and insulin sensitivity of rats were measured to evaluate insulin resistance. Glucose production and uptake ability were measured to evaluate gluconeogenesis in HepG2 cells, and the expression of related genes was detected to explore the molecular mechanism. Additionally, the body weight, liver weight and liver index were measured and hematoxylin and eosin staining was performed to evaluate the effects of the disease. The fasting glucose levels of T2DM rats was 16.5 mmol/l, whereas in the control rats, it was 6.1 mmol/l. Decreased insulin sensitivity (K-value, 0.2), body weight loss (weight, 300 g), liver weight gain, liver index increase (value, 48) and morphological changes were observed in T2DM rats, accompanied by reduced AKT phosphorylation, and upregulated expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). High-glucose treatment significantly increased glucose production and decreased glucose uptake in HepG2 cells, concomitant with a decrease in AKT phosphorylation and increase of PEPCK and G6Pase expression. In vivo, oxymatrine dose-dependently increased the sensitivity of T2DM rats to insulin, increased AKT phosphorylation and decreased PEPCK and G6Pase expression in the liver, and reversed the liver morphological changes. In vitro, oxymatrine dose-dependently increased AKT phosphorylation and glucose uptake of HepG2 cells subjected to high-glucose treatment, which was accompanied by inhibition of the expression of the gluconeogenesis-related genes, PEPCK and G6Pase. MK-2206 significantly inhibited the protective effects of oxymatrine in high-glucose-treated cells. These data indicated that oxymatrine can effectively prevent insulin resistance and gluconeogenesis, and its mechanism may be at least partly associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation in the liver.
Collapse
Affiliation(s)
- Yu-Xian Zhu
- The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China.,College of Medicine, Hunan Normal University Changsha, Hunan 410000, P.R. China
| | - Hai-Qing Hu
- The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Mei-Ling Zuo
- The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Li Mao
- Department of Basic Medicine, Changsha Health Vocational College, Changsha, Hunan 410600, P.R. China
| | - Gui-Lin Song
- The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China.,Institute of Emergency and Critical Care Medicine of Changsha, Changsha, Hunan 410006, P.R. China
| | - Tao-Ming Li
- The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Li-Chen Dong
- The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Zhong-Bao Yang
- The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China.,Institute of Emergency and Critical Care Medicine of Changsha, Changsha, Hunan 410006, P.R. China
| | - Md Sayed Ali Sheikh
- Internal Medicine Department, Cardiology, College of Medicine, Al Jouf University, Sakaka, Al Jouf 72388, Saudi Arabia
| |
Collapse
|
22
|
Peter EL, Nagendrappa PB, Hilonga S, Tuyiringire N, Ashuro E, Kaligirwa A, Sesaazi CD. Pharmacological reflection of plants traditionally used to manage diabetes mellitus in Tanzania. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113715. [PMID: 33358853 DOI: 10.1016/j.jep.2020.113715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The increasing national prevalence of diabetes mellitus (DM) and its complications have overstretched the health care system in Tanzania and influenced patients to use herbal medicines as alternative therapeutic strategies. Therefore, an urgent need exists to validate the safety and efficacy of plants used locally. AIM OF THE STUDY To identify plants used for the management of DM in Tanzania and analyses their pharmacological, phytochemistry, and safety evidence with a special focus on the mechanism of action. METHODS Researchers searched Medline, web of science, and Scopus for published articles. Also, specialized herbarium documents of Muhimbili Institute of traditional medicine were reviewed. Articles were assessed for relevance, quality, and taxonomical accuracy before being critically reviewed. RESULTS We identified 62 plant species used locally for DM management. Moringa oleifera Lam. and Cymbopogon citratus (D.C) stapf were the most mentioned. Fifty-four phytochemicals from 13 species had DM activities. These were mainly; polyphenolics, phytosterols, and triterpenoids. Extracts, fractions, and pure compounds from 18 species had in vitro antidiabetic activities of which 14 had α-glucosidase and α-amylase inhibition effects. The most studied -Momordica charantia L. increased; glucose uptake and adiponectin release in 3T3-L1 adipocytes, insulin secretion, insulin receptor substrate-1 (IRS-1), GLUT-4 translocation, and GLP-1 secretion; and inhibited protein tyrosine phosphatase 1 B (PTP1B). Preclinical studies reported 30 species that lower plasma glucose with molecular targets in the liver, skeletal muscles, adipose tissues, pancreases, and stomach. While three species; Aspilia mossambiscensis (Oliv.) Willd, Caesalpinia bonduc (L.) Roxb, and Phyllanthus amarus Schumach. & Thonn. had mild toxicity in animals, 33 had no report of their efficacy in DM management or toxicity. CONCLUSION Local communities in Tanzania use herbal medicine for the management of DM. However, only a fraction of such species has scientific evidence. A. mossambiscensis, C. bonduc., and P. amarus had mild toxicity in animals. Together, our findings call for future researches to focus on in vitro, in vivo, and phytochemical investigation of plant species for which their use in DM among the local communities in Tanzania have not been validated.
Collapse
Affiliation(s)
- Emanuel L Peter
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Prakash B Nagendrappa
- Centre for Local Health Traditions & Policy, The University of Trans-disciplinary Health Sciences and Technology, Bengaluru, India.
| | - Samson Hilonga
- Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Naasson Tuyiringire
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Efrata Ashuro
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Anita Kaligirwa
- Department of Pharmacology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Crispin Duncan Sesaazi
- Department of Pharmaceutical Sciences, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| |
Collapse
|
23
|
The triterpenoids of the bitter gourd (Momordica Charantia) and their pharmacological activities: A review. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Effects of 22 traditional anti-diabetic medicinal plants on DPP-IV enzyme activity and glucose homeostasis in high-fat fed obese diabetic rats. Biosci Rep 2021; 41:227539. [PMID: 33416077 PMCID: PMC7823188 DOI: 10.1042/bsr20203824] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
The present study investigated the effects of hot water extracts of 22 medicinal plants used traditionally to treat diabetes on Dipeptidyl peptidase-IV (DPP-IV) activity both in vitro and in vivo in high-fat fed (HFF) obese-diabetic rats. Fluorometric assay was employed to determine the DPP-IV activity. For in vivo studies, HFF obese-diabetic rats were fasted for 6 h and blood was sampled at different times before and after the oral administration of the glucose alone (18 mmol/kg body weight) or with either of the four most active plant extracts (250 mg/5 ml/kg, body weight) or established DPP-IV inhibitors (10 μmol/5 ml/kg). DPP-IV inhibitors: sitagliptin, vildagliptin and diprotin A, decreased enzyme activity by a maximum of 95-99% (P<0.001). Among the 22 natural anti-diabetic plants tested, AnogeissusLatifolia exhibited the most significant (P<0.001) inhibitory activity (96 ± 1%) with IC50 and IC25 values of 754 and 590 μg/ml. Maximum inhibitory effects of other extracts: Aegle marmelos, Mangifera indica, Chloropsis cochinchinensis, Trigonella foenum-graecum and Azadirachta indica were (44 ±7%; 38 ± 4%; 31±1%; 28±2%; 27±2%, respectively). A maximum of 45% inhibition was observed with >25 μM concentrations of selected phytochemicals (rutin). A.latifolia, A. marmelos, T. foenum-graecum and M. indica extracts improved glucose tolerance, insulin release, reduced DPP-IV activity and increased circulating active GLP-1 in HFF obese-diabetic rats (P<0.05-0.001). These results suggest that ingestion of selected natural anti-diabetic plants, in particular A. latifolia, A. marmelos, T. foenum-graecum and M. indica can substantially inhibit DPP-IV and improve glucose homeostasis, thereby providing a useful therapeutic approach for the treatment of T2DM.
Collapse
|
25
|
Liu Z, Gong J, Huang W, Lu F, Dong H. The Effect of Momordica charantia in the Treatment of Diabetes Mellitus: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3796265. [PMID: 33510802 PMCID: PMC7826218 DOI: 10.1155/2021/3796265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022]
Abstract
In recent years, many studies of Momordica charantia (MC) in the treatment of diabetes mellitus (DM) and its complications have been reported. This article reviewed the effect and mechanism of MC against diabetes, including the results from in vitro and in vivo experiments and clinical trials. The common side effects of MC were also summarized. We hope that it might open up new ideas for further mechanism exploration and clinical application as well as provide a scientific theoretical basis for the development of drugs or foods derived from MC.
Collapse
Affiliation(s)
- Zhuo Liu
- Grade 2016 of Integrated Traditional Chinese and Western Clinical Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenya Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Plant Extracts for Type 2 Diabetes: From Traditional Medicine to Modern Drug Discovery. Antioxidants (Basel) 2021; 10:antiox10010081. [PMID: 33435282 PMCID: PMC7827314 DOI: 10.3390/antiox10010081] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the largest public health problems worldwide. Insulin resistance-related metabolic dysfunction and chronic hyperglycemia result in devastating complications and poor prognosis. Even though there are many conventional drugs such as metformin (MET), Thiazolidinediones (TZDs), sulfonylureas (SUF), dipeptidyl peptidase 4 (DPP-4) inhibitors, glucagon like peptide 1 (GLP-1) and sodium-glucose cotransporter-2 (SGLT-2) inhibitors, side effects still exist. As numerous plant extracts with antidiabetic effects have been widely reported, they have the potential to be a great therapeutic agent for type 2 diabetes with less side effects. In this study, sixty-five recent studies regarding plant extracts that alleviate type 2 diabetes were reviewed. Plant extracts regulated blood glucose through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. The anti-inflammatory and antioxidant properties of plant extracts suppressed c-Jun amino terminal kinase (JNK) and nuclear factor kappa B (NF-κB) pathways, which induce insulin resistance. Lipogenesis and fatty acid oxidation, which are also associated with insulin resistance, are regulated by AMP-activated protein kinase (AMPK) activation. This review focuses on discovering plant extracts that alleviate type 2 diabetes and exploring its therapeutic mechanisms.
Collapse
|
27
|
Yi S, Song X, Yu W, Zhang R, Wang W, Zhao Y, Han B, Gai Y. De novo assembly and Transcriptome Analysis of the Momordica charantia Seedlings Responding to methyl jasmonate using 454 pyrosequencing. Gene Expr Patterns 2020; 40:119160. [PMID: 33253895 DOI: 10.1016/j.gep.2020.119160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Momordica charantia, a medicinal and edible species of the Cucurbitaceae family, has been widely used as a vegetable around the world. Hundreds of pharmacological compounds isolated from the M. charantia have been reported. However, the mechanism of action of the secondary metabolites has not been fully elucidated. In this study, 118,590 unigenes were gained by de novo assembly based on the raw data from high-throughput sequencing of mRNA (RNA-Sequencing) upon systemic analysis, among which, 51,860 (43.73%) could be annotated to the public sequence databases such as Nr, GO, Swiss-Prot, KEGG and KOG. The transcriptomic changes of M. charantia seedlings treated with or without methyl jasmonate (MeJA) were analyzed to identify key genes involved in MeJA treatment. Additionally, 554 differentially expressed genes (DEGs), including 328 up-regulated ones and 226 down-regulated genes, have been identified. Most DEGs were associated with secondary metabolism and stress responses. Meanwhile, six DEGs were further confirmed by quantitative real-time RT-PCR (qRT-PCR) analysis, resulting in similar expression patterns as compared to those of RNA-Sequencing. Nine significantly enriched pathways including 11 DEGs were identified to be possibly involved in the MeJA-responsive biosynthesis of secondary metabolites based on the transcriptome sequencing analysis. Among them, 4 DEGs, encoding two peroxidases, one cinnamyl alcohol dehydrogenase and one hypothetical protein Csa, might play important roles in the process of phenylpropanoid biosynthesis. In addition, 9 transcription factors (TFs) were also detected as DEGs from 1899 unigenes. Most of them up-regulated by MeJA treatment might be potentially involved in regulating secondary metabolites biosynthesis. This work is the first research on the large-scale assessment of M. charantia transcriptomic resources and the analysis of DEGs and TFs in secondary metabolites biosynthesis of M. charantia seedings treated with or without MeJA, which will be conducive to the further applications of M. charantia.
Collapse
Affiliation(s)
- Shanyong Yi
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, Anhui, PR China; Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an 237012, Anhui, PR China.
| | - Xiangwen Song
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, Anhui, PR China; Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an 237012, Anhui, PR China.
| | - Wangyang Yu
- Anhui Qiansouyan Biotechnology Co., Ltd, Lu'an 237200, Anhui, PR China.
| | - Rongfei Zhang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China.
| | - Wei Wang
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, Anhui, PR China; Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an 237012, Anhui, PR China.
| | - Yucheng Zhao
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China.
| | - Bangxing Han
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, Anhui, PR China; Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an 237012, Anhui, PR China.
| | - Yanan Gai
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, Jiangsu, PR China.
| |
Collapse
|
28
|
Saponins of Momordica charantia increase insulin secretion in INS-1 pancreatic β-cells via the PI3K/Akt/FoxO1 signaling pathway. ACTA ACUST UNITED AC 2020; 68:329-337. [PMID: 33069631 DOI: 10.1016/j.endinu.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
Saponins are the main bioactive substances with anti-hyperglycemic activities of Momordica charantia. This study aimed to verify the effects of M. charantia saponins on insulin secretion and explore the potential underlying mechanisms in INS-1 pancreatic β-cells. We injured INS-1 cells with 33.3mM glucose and then treated them with saponins. Saponins improved cell morphology and viability as demonstrated by inverted microscopy and CCK8 detection and significantly increased insulin secretion in a concentration-dependent manner as shown by ELISA. Thus, we obtained the optimal concentration for the subsequent experiments. Potential mechanisms were explored by immunofluorescence, western blotting, and RT-qPCR techniques. First, saponins increased the mRNA and protein levels of IRS-2 but decreased the serine 731 phosphorylation level of IRS-2. Moreover, saponins increased the phosphorylation of Akt protein and decreased the protein level of FoxO1, which were both reversed by the PI3K inhibitor ly294002. Furthermore, saponins increased the protein level of the downstream molecule and insulin initiating factor PDX-1, which was also reversed by ly294002. Saponins also increased Akt and PDX-1 mRNA and decreased FoxO1 mRNA, which were both reversed by ly294002. Saponins increased glucose-stimulated insulin secretion (GSIS) and intracellular insulin content, which were reversed by ly294002, as determined by ELISA. The immunofluorescence results also confirmed this tendency. In conclusion, our findings improve our understanding of the function of saponins in INS-1 pancreatic β-cells and suggest that saponins may increase insulin secretion via the PI3K/Akt/FoxO1 signaling pathway.
Collapse
|
29
|
Peter EL, Nagendrappa PB, Kaligirwa A, Ogwang PE, Sesaazi CD. The safety and efficacy of Momordica charantia L. in animal models of type 2 diabetes mellitus: A systematic review and meta-analysis. Phytother Res 2020; 35:637-656. [PMID: 32929814 DOI: 10.1002/ptr.6853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 01/21/2023]
Abstract
Type 2 diabetes mellitus is a chronic hyperglycemic condition due to progressively impaired glucose regulation. Momordica charantia L. could potentially improve hyperglycemia because its fruit extracts can alleviate insulin resistance, beta-cell dysfunction, and increase serum insulin level. We evaluated the effect of M. charantia L. in comparison with a vehicle on glycemic control in animal models of type 2 diabetes mellitus. MEDLINE, Web of Science, Scopus, and CINAHL databases were searched without language restriction through April 2019. About 66 studies involving 1861 animals that examined the effect of M. charantia L. on type 2 diabetes mellitus were included. Fruits and seed extracts reduced fasting plasma glucose (FPG) and glycosylated hemoglobin A1c in comparison to vehicle control: (42 studies, 815 animals; SMD, -6.86 [95% CI; -7.95, -5.77], 3 studies, 59 animals; SMD; -7.76 [95% CI; -12.50, -3.01]) respectively. Also, the extracts have hepato-renal protective effects at varying doses and duration of administration. Despite the observed significant glycemic control effect, poor methodological quality calls for future researches to focus on standardizing extract based on chemical markers and adopt measures to improve the quality of preclinical studies such as sample size calculation, randomization, and blinding.
Collapse
Affiliation(s)
- Emanuel L Peter
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Innovation, Technology Transfer & Commercialization, National Institute for Medical Research, Dar Es Salaam, Tanzania
| | - Prakash B Nagendrappa
- Centre for Local Health Traditions & Policy, Trans-Disciplinary University (TDU), Bengaluru, India
| | - Anita Kaligirwa
- Department of Pharmacology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Patrick Engeu Ogwang
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Crispin Duncan Sesaazi
- Department of Pharmaceutical Sciences, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
30
|
Effects of β-Adrenergic Blockade on Metabolic and Inflammatory Responses in a Rat Model of Ischemic Stroke. Cells 2020; 9:cells9061373. [PMID: 32492962 PMCID: PMC7349353 DOI: 10.3390/cells9061373] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke provokes an inflammatory response concurrent with both sympathetic nervous system activation and hyperglycemia. Currently, their crosstalk and consequences in stroke outcomes are of clinical attraction. We have provided experimental evidence showing the suppressive effects of the nonselective β-adrenoreceptor antagonist propranolol on hyperglycemia, inflammation, and brain injury in a rat model experiencing cerebral ischemia. Pretreatment with propranolol protected against postischemic brain infarction, edema, and apoptosis. The neuroprotection caused by propranolol was accompanied by a reduction in fasting glucose, fasting insulin, glucose tolerance impairment, plasma C-reactive protein, plasma free fatty acids, plasma corticosterone, brain oxidative stress, and brain inflammation. Pretreatment with insulin alleviated-while glucose augmented-postischemic brain injury and inflammation. Additionally, the impairment of insulin signaling in the gastrocnemius muscles was noted in rats with cerebral ischemia, with propranolol improving the impairment by reducing oxidative stress and tumor necrosis factor-α signaling. The anti-inflammatory effects of propranolol were further demonstrated in isoproterenol-stimulated BV2 and RAW264.7 cells through its ability to decrease cytokine production. Despite their potential benefits, stroke-associated hyperglycemia and inflammation are commonly linked with harmful consequences. Our findings provide new insight into the anti-inflammatory, neuroprotective, and hypoglycemic mechanisms of propranolol in combating neurodegenerative diseases, such as stroke.
Collapse
|
31
|
Antioxidant Effects and Mechanisms of Medicinal Plants and Their Bioactive Compounds for the Prevention and Treatment of Type 2 Diabetes: An Updated Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1356893. [PMID: 32148647 PMCID: PMC7042557 DOI: 10.1155/2020/1356893] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is a metabolic disorder that majorly affects the endocrine gland, and it is symbolized by hyperglycemia and glucose intolerance owing to deficient insulin secretory responses and beta cell dysfunction. This ailment affects as many as 451 million people worldwide, and it is also one of the leading causes of death. In spite of the immense advances made in the development of orthodox antidiabetic drugs, these drugs are often considered not successful for the management and treatment of T2DM due to the myriad side effects associated with them. Thus, the exploration of medicinal herbs and natural products as therapeutic sources for the treatment of T2DM is promoted because they have little or no side effects. Bioactive molecules isolated from natural sources have been proven to lower blood glucose levels via regulating one or more of the following mechanisms: improvement of beta cell function, insulin resistance, glucose (re)absorption, and glucagon-like peptide-1 homeostasis. In recent times, the mechanisms of action of different bioactive molecules with antidiabetic properties and phytochemistry are gaining a lot of attention in the area of drug discovery. This review article presents an update of the findings from clinical research into medicinal plant therapy for T2DM.
Collapse
|
32
|
The protective effect of Geniposide on diabetic cognitive impairment through BTK/TLR4/NF-κB pathway. Psychopharmacology (Berl) 2020; 237:465-477. [PMID: 31811349 DOI: 10.1007/s00213-019-05379-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022]
Abstract
The purpose of the present study was to elucidate the pharmacological effects of Geniposide (GEN) on high diet fed and streptozotocin (STZ)-caused diabetic cognitive impairment. The mice were fed with high fat diet (HFD) for 4 weeks and intraperitoneally injected with 60 mg/kg STZ for three times within 72 h. The mice with glucose level over 15 mmol/l were regarded as diabetic and selected for further studies. The animals were intragastrically treated with metformin or GEN once daily for 4 weeks. Afterwards, the animals were applied for Y maze, novel object recognition (NOR) test, step-through passive avoidance test, and Morris water maze (MWM) test. The blood glucose and body weight were examined. The SH-SY5Y cells were treated with GEN in the presence or absence of ibrutinib and stimulated with high-glucose culture medium. The tumor necrosis factor-a (TNF-α) and interleukin (IL)-6 in serum, hippocampus, and supernatant were measured using ELISA method. The protein expressions of Bruton's tyrosine kinase (BTK), Toll-like receptor 4 (TLR4), myeloid differentiating factor 88 (MyD88), nuclear factor kappa-B (NF-κB), p-NF-κB, brain-derived neurotrophic factor (BDNF), cAMP-response element binding protein (CREB), p-CREB, and glucagon-like peptide-1 receptor (GLP-1R) were detected by western blot analyses. As a result, the GEN treatment notably attenuated the body weight, blood glucose, and cognitive decline. GEN also inhibited the generations of inflammatory cytokines. Furthermore, the administrations of GEN ameliorated the alterations of BTK, TLR4, MyD88, NF-κB, and BDNF in HFD + STZ-induced mice. With the application of ibrutinib, the selective inhibitor of BTK, it was also found that BTK/TLR4/NF-κB pathway was associated with the GEN treatment in high glucose-induced SH-SY5Y cells. In summary, the results suggested that GEN exerted the protective effect on STZ-induced cognitive impairment possibly through the modulation of BTK/TLR4/NF-κB signaling.
Collapse
|
33
|
Furman BL, Candasamy M, Bhattamisra SK, Veettil SK. Reduction of blood glucose by plant extracts and their use in the treatment of diabetes mellitus; discrepancies in effectiveness between animal and human studies. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112264. [PMID: 31600561 DOI: 10.1016/j.jep.2019.112264] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/03/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The global problem of diabetes, together with the limited access of large numbers of patients to conventional antidiabetic medicines, continues to drive the search for new agents. Ancient Asian systems such as traditional Chinese medicine, Japanese Kampo medicine, and Indian Ayurvedic medicine, as well as African traditional medicine and many others have identified numerous plants reported anecdotally to treat diabetes; there are probably more than 800 such plants for which there is scientific evidence for their activity, mostly from studies using various models of diabetes in experimental animals. AIM OF THE REVIEW Rather than a comprehensive coverage of the literature, this article aims to identify discrepancies between findings in animal and human studies, and to highlight some of the problems in developing plant extract-based medicines that lower blood glucose in patients with diabetes, as well as to suggest potential ways forward. METHODS In addition to searching the 2018 PubMed literature using the terms 'extract AND blood glucose, a search of the whole literature was conducted using the terms 'plant extracts' AND 'blood glucose' AND 'diabetes' AND 'double blind' with 'clinical trials' as a filter. A third search using PubMed and Medline was undertaken for systematic reviews and meta-analyses investigating the effects of plant extracts on blood glucose/glycosylated haemoglobin in patients with relevant metabolic pathologies. FINDINGS Despite numerous animal studies demonstrating the effects of plant extracts on blood glucose, few randomised, double-blind, placebo-controlled trials have been conducted to confirm efficacy in treating humans with diabetes; there have been only a small number of systematic reviews with meta-analyses of clinical studies. Qualitative and quantitative discrepancies between animal and human clinical studies in some cases were marked; the factors contributing to this included variations in the products among different studies, the doses used, differences between animal models and the human disease, and the impact of concomitant therapy in patients, as well as differences in the duration of treatment, and the fact that treatment in animals may begin before or very soon after the induction of diabetes. CONCLUSION The potential afforded by natural products has not yet been realised in the context of treating diabetes mellitus. A systematic, coordinated, international effort is required to achieve the goal of providing anti-diabetic treatments derived from medicinal plants.
Collapse
Affiliation(s)
- Brian L Furman
- Strathclyde Institute of Pharmacy & Biomedical Sciences, 161, Cathedral Street Glasgow, G4 ORE, Scotland, UK.
| | - Mayuren Candasamy
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Subrat Kumar Bhattamisra
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Sajesh K Veettil
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
34
|
Salehi B, Ata A, V. Anil Kumar N, Sharopov F, Ramírez-Alarcón K, Ruiz-Ortega A, Abdulmajid Ayatollahi S, Valere Tsouh Fokou P, Kobarfard F, Amiruddin Zakaria Z, Iriti M, Taheri Y, Martorell M, Sureda A, N. Setzer W, Durazzo A, Lucarini M, Santini A, Capasso R, Adrian Ostrander E, -ur-Rahman A, Iqbal Choudhary M, C. Cho W, Sharifi-Rad J. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019; 9:E551. [PMID: 31575072 PMCID: PMC6843349 DOI: 10.3390/biom9100551] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is one of the major health problems in the world, the incidence and associated mortality are increasing. Inadequate regulation of the blood sugar imposes serious consequences for health. Conventional antidiabetic drugs are effective, however, also with unavoidable side effects. On the other hand, medicinal plants may act as an alternative source of antidiabetic agents. Examples of medicinal plants with antidiabetic potential are described, with focuses on preclinical and clinical studies. The beneficial potential of each plant matrix is given by the combined and concerted action of their profile of biologically active compounds.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran;
| | - Athar Ata
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada;
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576104, India;
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan;
| | - Karina Ramírez-Alarcón
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepción 4070386, Chile;
| | - Ana Ruiz-Ortega
- Facultad de Educación y Ciencias Sociales, Universidad Andrés Bello, Autopista Concepción—Talcahuano, Concepción 7100, Chile;
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (S.A.A.); (F.K.); (Y.T.)
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran
| | - Patrick Valere Tsouh Fokou
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon;
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (S.A.A.); (F.K.); (Y.T.)
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran
| | - Zainul Amiruddin Zakaria
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Integrative Pharmacogenomics Institute (iPROMISE), Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam Selangor 42300, Malaysia
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (S.A.A.); (F.K.); (Y.T.)
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepción 4070386, Chile;
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, and CIBEROBN—Physiopathology of Obesity and Nutrition, CB12/03/30038, University of Balearic Islands, E-07122 Palma de Mallorca, Spain;
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA;
| | - Alessandra Durazzo
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano, 49-80131 Napoli, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Elise Adrian Ostrander
- Medical Illustration, Kendall College of Art and Design, Ferris State University, Grand Rapids, MI 49503, USA;
| | - Atta -ur-Rahman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.-u.-R.); (M.I.C.)
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.-u.-R.); (M.I.C.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Javad Sharifi-Rad
- Department of Pharmacology, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft 7861756447, Iran
| |
Collapse
|
35
|
Wang Z, Xu J, Liu Y, Chen J, Lin H, Huang Y, Bian X, Zhao Y. Selection and validation of appropriate reference genes for real-time quantitative PCR analysis in Momordica charantia. PHYTOCHEMISTRY 2019; 164:1-11. [PMID: 31054374 DOI: 10.1016/j.phytochem.2019.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/21/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Real time quantitative reverse transcription PCR (RT-qPCR) has been attracting more attention for its high sensitivity in gene expression analysis. Given the widely use of RT-qPCR in normalization, it is playing a pivotal role for seeking suitable reference genes in different species. In current work, 12 candidate reference genes including Actin 2 (ACT2), Cyclophilin 2 (CYP2), Glyceraldehyde-3-phosphate dehydrogenase C2 (GAPC2), Elongation factor 1-α (EF1-α), Nuclear cap binding protein 20 (NCBP20), Serine/threonine-protein phosphatase PP2A (PP2A), Polypyrimidine tract-binding protein 1 (PTBP1), SAND family protein (SNAD), TIP41-like protein (TIP41), Tubulin beta-6 (TUB6), Ubiquitin-conjugating enzyme 9 (UBC9) and Glyceraldehyde-3-phosphatedehydrogenase (GAPDH) were screened from the transcriptome datasets of M. charantia. Afterwards, GeNorm, NormFinder and BestKeeper algorithms were applied to assess the expression stability of these 12 genes under different abiotic stresses including drought, cold, high-salt, hormone, UV, oxidative and metal stress. The results indicated that 12 selected genes exhibited various stability across the samples under different external stress conditions, but TIP41, PTBP1 and PP2A presented high stability among all the reference genes. To validate the suitability of the identified reference genes, the results of hormone subset were compared with RNA sequencing (RNA-seq) data, and the relative abundance of Ascorbate peroxidase 1(APX1)was used to confirm the reliability of the results. This work assesses the stability of reference genes in M. charantia under different abiotic stress conditions, which will be beneficent for accurate normalization of target genes in M. charantia.
Collapse
Affiliation(s)
- Zhenglong Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jiyang Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yihan Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jiyu Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Hanfeng Lin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yanli Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xiaohong Bian
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Yucheng Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
36
|
Pahlavani N, Roudi F, Zakerian M, Ferns GA, Navashenaq JG, Mashkouri A, Ghayour-Mobarhan M, Rahimi H. Possible molecular mechanisms of glucose-lowering activities of Momordica charantia (karela) in diabetes. J Cell Biochem 2019; 120:10921-10929. [PMID: 30790347 DOI: 10.1002/jcb.28483] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 01/24/2023]
Abstract
Diabetes mellitus is a highly prevalent metabolic disorder which is characterized by impaired glucose tolerance, with a relative or absolute insulin deficiency and profound changes in the metabolism of macronutrients. Traditional and complementary medicine is therapeutic strategies that have both been applied to improving glycemic control. Momordica charantia is one of the plant-based, folk medicines that used for improving glycemic control. We aimed to review, the effects of M. charantia on blood glucose with a clarification of the molecular pathways involved. Of the compounds derived from the plants, the insulin-like peptide, charantin, and the alkaloid vicine, have been reported to have hypoglycemic effects. Different mechanisms contribute to the antidiabetic activities of M. charantia, these include increasing pancreatic insulin secretion, decreasing insulin resistance and increasing peripheral and skeletal muscle cell glucose utilization, inhibition of intestinal glucose absorption and suppressing of key enzymes in the gluconeogenic pathways.
Collapse
Affiliation(s)
- Naseh Pahlavani
- Students Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Roudi
- Students Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Zakerian
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Brighton, Sussex, UK
| | | | - Amir Mashkouri
- Students Research Committee, Imam Reza International University, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cardiovascular Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamidreza Rahimi
- Department of Modern Sciences and Technology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Li J, Bai L, Wei F, Zhao J, Wang D, Xiao Y, Yan W, Wei J. Therapeutic Mechanisms of Herbal Medicines Against Insulin Resistance: A Review. Front Pharmacol 2019; 10:661. [PMID: 31258478 PMCID: PMC6587894 DOI: 10.3389/fphar.2019.00661] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance is a condition in which insulin sensitivity is reduced and the insulin signaling pathway is impaired. Although often expressed as an increase in insulin concentration, the disease is characterized by a decrease in insulin action. This increased workload of the pancreas and the consequent decompensation are not only the main mechanisms for the development of type 2 diabetes (T2D), but also exacerbate the damage of metabolic diseases, including obesity, nonalcoholic fatty liver disease, polycystic ovary syndrome, metabolic syndrome, and others. Many clinical trials have suggested the potential role of herbs in the treatment of insulin resistance, although most of the clinical trials included in this review have certain flaws and bias risks in their methodological design, including the generation of randomization, the concealment of allocation, blinding, and inadequate reporting of sample size estimates. These studies involve not only the single-flavored herbs, but also herbal formulas, extracts, and active ingredients. Numerous of in vitro and in vivo studies have pointed out that the role of herbal medicine in improving insulin resistance is related to interventions in various aspects of the insulin signaling pathway. The targets involved in these studies include insulin receptor substrate, phosphatidylinositol 3-kinase, glucose transporter, AMP-activated protein kinase, glycogen synthase kinase 3, mitogen-activated protein kinases, c-Jun-N-terminal kinase, nuclear factor-kappaB, protein tyrosine phosphatase 1B, nuclear factor-E2-related factor 2, and peroxisome proliferator-activated receptors. Improved insulin sensitivity upon treatment with herbal medicine provides considerable prospects for treating insulin resistance. This article reviews studies of the target mechanisms of herbal treatments for insulin resistance.
Collapse
Affiliation(s)
- Jun Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Litao Bai
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Danwei Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yao Xiao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weitian Yan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Zuo ML, Wang AP, Tian Y, Mao L, Song GL, Yang ZB. Oxymatrine ameliorates insulin resistance in rats with type 2 diabetes by regulating the expression of KSRP, PETN, and AKT in the liver. J Cell Biochem 2019; 120:16185-16194. [PMID: 31087709 DOI: 10.1002/jcb.28898] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/03/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
Abstract
Insulin resistance plays a key role in the development and progression of type 2 diabetes mellitus (T2DM). Recent studies found that insulin resistance was associated with the dysfunction of KH-type splicing regulatory protein (KSRP) expression and AKT pathway, and that oxymatrine possesses an antidiabetic effect. The aim of the present study was to investigate whether the protection of oxymatrine against T2DM was associated with the modulation of the KSRP expression and AKT pathway. Sprague-Dawley rats were fed a high-fat diet and injected with streptozotocin intraperitoneally to induce T2DM, which led to an increase in blood glucose levels and insulin resistance, and a decrease in insulin sensitivity and glycogen synthesis concomitant with KSRP downregulation, PTEN upregulation, and AKT phosphorylation deficiency. The administration of oxymatrine decreased blood glucose levels and insulin resistance, increased insulin sensitivity, and improved glycogen synthesis in the liver of T2DM rats, through a reversal in the expression of KSRP, PTEN, and AKT. On the basis of these observations, we concluded that oxymatrine can protect T2DM rats from insulin resistance through the regulation of the KSRP, PETN, and AKT expression in the liver.
Collapse
Affiliation(s)
- Mei-Ling Zuo
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Ai-Ping Wang
- Institute of Clinical Research, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Ying Tian
- Institute of Clinical Research, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Li Mao
- Department of Basic Medicine, Changsha Health Vocational College, Changsha, Hunan, China
| | - Gui-Lin Song
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan, China.,Institute of Emergency and Critical Care Medicine of Changsha, Changsha, China
| | - Zhong-Bao Yang
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan, China.,Institute of Emergency and Critical Care Medicine of Changsha, Changsha, China
| |
Collapse
|
39
|
Jia Q, Zhu R, Tian Y, Chen B, Li R, Li L, Wang L, Che Y, Zhao D, Mo F, Gao S, Zhang D. Salvia miltiorrhiza in diabetes: A review of its pharmacology, phytochemistry, and safety. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152871. [PMID: 30851580 DOI: 10.1016/j.phymed.2019.152871] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/01/2019] [Accepted: 02/17/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Salvia miltiorrhiza (SM), one of the frequently used herbs in traditional Chinese medicine (TCM), has now attracted rising interests for a possible alternative in the management of diabetes. This review is aimed to providing a comprehensive perspective of SM in phytochemical constituents, pharmacological activities against diabetes and its complications, and safety. METHODS A comprehensive search of published literatures was conducted to locate original publications pertaining to SM and diabetes till the end of 2017 using PubMed, China National Knowledge Infrastructure, National Science and Technology Library, China Science and Technology Journal Database, and Web of Science database. The main inquiry was used for the presence of the following keywords in various combinations in the titles and abstracts: Salvia miltiorrhiza, diabetes, obesity, phytochemistry, pharmacology, and safety. About 200 research papers and reviews were consulted. RESULTS SM exhibited anti-diabetic activities by treating macro- and micro-vascular diseases in preclinical experiments and clinical trials through an improvement of redox homeostasis and inhibition of apoptosis and inflammation via the regulation of Wnt/β-catenin, TSP-1/TGF-β1/STAT3, JNK/PI3K/Akt, kinin B2 receptor-Akt-GSK-3β, AMPKβ/PGC-1α/Sirt3, Akt/AMPK, TXNIP/NLRP3, TGF-β1/NF-κB, mineralocorticoid receptor/Na+/K+-ATPase, AGEs/RAGE, Nrf2/Keap1, CaMKKβ/AMPK, AMPK/ACC, IRS-1/PI3K signaling pathways, and modulation of K+-Ca2+ channels, as well as influence of VEGF, NOS, AGEs, PPAR expression and hIAPP aggregation. The antidiabetic effects of this herb may be related to its TCM characters of improving blood circulation and reliving blood stasis. The main ingredients of SM included salvianolic acids and diterpenoid tanshinones, which have been well studied in the diabetic animals. Acute and subacute toxicity studies supported the notion that SM is well tolerated. CONCLUSION SM may offer a new strategy for prevention and treatment of diabetes and its complications that stimulates extensive research into identifying potential anti-diabetic compounds and fractions as well as exploring the underlying mechanisms of this herb. Further scientific evidences are still required from well-designed preclinical experiments and clinical trials on its anti-diabetic effects and safety.
Collapse
Affiliation(s)
- Qiangqiang Jia
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruyuan Zhu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yimiao Tian
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Beibei Chen
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui Li
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lin Li
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lili Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yiwen Che
- The Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Dandan Zhao
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fangfang Mo
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sihua Gao
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
40
|
Adinortey MB, Agbeko R, Boison D, Ekloh W, Kuatsienu LE, Biney EE, Affum OO, Kwarteng J, Nyarko AK. Phytomedicines Used for Diabetes Mellitus in Ghana: A Systematic Search and Review of Preclinical and Clinical Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:6021209. [PMID: 31118963 PMCID: PMC6500637 DOI: 10.1155/2019/6021209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Available data indicate that diabetes mellitus leads to elevated cost of healthcare. This imposes a huge economic burden on households, societies, and nations. As a result many Ghanaians, especially rural folks, resort to the use of phytomedicine, which is relatively less expensive. This paper aims at obtaining information on plants used in Ghana to treat diabetes mellitus, gather and present evidence-based data available to support their uses and their mechanisms of action, and identify areas for future research. METHOD A catalogue of published textbooks, monographs, theses, and peer-reviewed articles of plants used in Ghanaian traditional medicine between 1987 and July 2018 for managing diabetes mellitus was obtained and used. RESULTS The review identified 76 plant species belonging to 45 families that are used to manage diabetes mellitus. Leaves were the part of the plants frequently used for most preparation (63.8%) and were mostly used as decoctions. Majority of the plants belonged to the Euphorbiaceae, Lamiaceae, Asteraceae, and Apocynaceae families. Pharmacological data were available on 23 species that have undergone in vitro studies. Forty species have been studied using in vivo animal models. Only twelve plants and their bioactive compounds were found with data on both preclinical and clinical studies. The records further indicate that medicinal plants showing antidiabetic effects did so via biochemical mechanisms such as restitution of pancreatic β-cell function, improvement in insulin sensitivity by receptors, stimulating rate of insulin secretion, inhibition of liver gluconeogenesis, enhanced glucose absorption, and inhibition of G-6-Pase, α-amylase, and α-glucosidase activities. CONCLUSION This review contains information on medicinal plants used to manage diabetes mellitus, including their pharmacological properties and mechanisms of action as well as models used to investigate them. It also provides gaps that can form the basis for further investigations and development into useful medications for effective treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Michael Buenor Adinortey
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Rosemary Agbeko
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Daniel Boison
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - William Ekloh
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
- West Africa Centre for Cell Biology of Infectious Disease and Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | | | - Emmanuel Ekow Biney
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Obed O. Affum
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Jeffery Kwarteng
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Alexander Kwadwo Nyarko
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Ghana, Legon, Ghana
| |
Collapse
|
41
|
Postprandial Glucose Levels Are Better Associated with the Risk Factors for Diabetes Compared to Fasting Glucose and Glycosylated Hemoglobin (HbA1c) Levels in Elderly Prediabetics: Beneficial Effects of Polyherbal Supplements-A Randomized, Double-Blind, Placebo Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7923732. [PMID: 31118970 PMCID: PMC6500635 DOI: 10.1155/2019/7923732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/03/2019] [Accepted: 03/20/2019] [Indexed: 12/27/2022]
Abstract
Backgrounds Prediabetes is a condition in which a person's blood glucose levels are higher than normal physiological levels but lower compared to patients with diabetes. Up to 70% of individuals with prediabetes will eventually develop diabetes. To date, there have been no pharmaceutical drugs to treat diabetes. It is believed that early diagnosis and nonpharmacological intervention for prediabetes are critical for effective prevention of diabetes. Most individuals with prediabetes remain undiagnosed even after being evaluated using the standard tests for fasting glucose (FG) and HbA1c. We investigated if postprandial glucose levels (2h-PG) were associated with pre/diabetes and if polyherbal supplements could be beneficial for individuals with prediabetes. Materials and Methods 100 elderly individuals with impaired 2h-PG or fasting glucose levels were recruited to receive either a 12-week supplement of GlucoVita (an antioxidative polyherbal formulation) (n=50) or placebo (n=50). Results No baseline differences were observed for FG, HbA1c, or 2h-PG. Individuals who received a twelve-week administration of GlucoVita supplements had significantly reduced 2h-PG (8.15±1.67 versus 7.35±2.06 mmol/l, P<0.05) levels compared to individuals in the placebo group. In addition, HbA1c levels were lower in individuals who received GlucoVita (5.81±0.49 %) compared to the individuals in the placebo group (6.00±0.51%) (P=0.08) after 12-weeks. Stratified analysis, based on impaired fasting glucose (IFG), 2h-PG, metabolic symptom, and age, demonstrated that, after the 12-week intervention, HbA1c levels were significantly lower in the GlucoVita administered group compared to the placebo group (IFG subgroup; 5.85±0.46%, n= 27 versus 6.14±0.50, n=33, P<0.05) and the metabolic symptom-free subgroup (5.73±0.45%, n=23 versus 6.04±0.52%, n=24, P<0.05). GlucoVita also reduced FG in individuals with normal 2h-PG (6.37±0.27 versus 6.08±0.38 mmol/l, P<0.05). Baseline 2h-PG levels, but not HbA1c or FG levels, were significantly correlated with body weight, waist circumference, and BMI (r=0.25, P<0.05; r=0.31, P<0.01; r=0.22, P<0.05, respectively). Conclusion 2h-PG levels were better associated with body weight, waist circumference, and BMI risk factors compared to FG and HbA1c levels in elderly individuals with prediabetes. Polyherbal formulation GlucoVita supplements improved 2h-PG and HbA1c levels only in elderly individuals who were overweight but were symptom-free and under 65 years of age. Due to the small cohort size of this pilot study, future studies are required to validate our findings.
Collapse
|
42
|
Inhibitory Effects of Momordicine I on High-Glucose-Induced Cell Proliferation and Collagen Synthesis in Rat Cardiac Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3939714. [PMID: 30402205 PMCID: PMC6196925 DOI: 10.1155/2018/3939714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/02/2018] [Indexed: 12/11/2022]
Abstract
Diabetes-associated cardiac fibrosis is a severe cardiovascular complication. Momordicine I, a bioactive triterpenoid isolated from bitter melon, has been demonstrated to have antidiabetic properties. This study investigated the effects of momordicine I on high-glucose-induced cardiac fibroblast activation. Rat cardiac fibroblasts were cultured in a high-glucose (25 mM) medium in the absence or presence of momordicine I, and the changes in collagen synthesis, transforming growth factor-β1 (TGF-β1) production, and related signaling molecules were assessed. Increased oxidative stress plays a critical role in the development of high-glucose-induced cardiac fibrosis; we further explored momordicine I's antioxidant activity and its effect on fibroblasts. Our data revealed that a high-glucose condition promoted fibroblast proliferation and collagen synthesis and these effects were abolished by momordicine I (0.3 and 1 μM) pretreatment. Furthermore, the inhibitory effect of momordicine I on high-glucose-induced fibroblast activation may be associated with its activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and the inhibition of reactive oxygen species formation, TGF-β1 production, and Smad2/3 phosphorylation. The addition of brusatol (a selective inhibitor of Nrf2) or Nrf2 siRNA significantly abolished the inhibitory effect of momordicine I on fibroblast activation. Our findings revealed that the antifibrotic effect of momordicine I was mediated, at least partially, by the inhibition of the TGF-β1/Smad pathway, fibroblast proliferation, and collagen synthesis through Nrf2 activation. Thus, this work provides crucial insights into the molecular pathways for the clinical application of momordicine I for treating diabetes-associated cardiac fibrosis.
Collapse
|
43
|
Fuller S, Yu Y, Mendoza T, Ribnicky DM, Cefalu WT, Floyd ZE. Potential adverse effects of botanical supplementation in high-fat-fed female mice. Biol Sex Differ 2018; 9:41. [PMID: 30208938 PMCID: PMC6134698 DOI: 10.1186/s13293-018-0199-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Insulin resistance underlies metabolic syndrome and is associated with excess adiposity and visceral fat accumulation, which is more frequently observed in males than females. However, in young females, the prevalence of metabolic syndrome is rising, mainly driven by accumulation of abdominal visceral fat. The degree to which sex-related differences could influence the development of insulin resistance remains unclear, and studies of potential therapeutic strategies to combat metabolic syndrome using rodent models have focused predominantly on males. We therefore evaluated the effects of two nutritional supplements derived from botanical sources, an extract of Artemisia dracunculus L. (termed PMI5011) and Momordica charantia (commonly known as bitter melon), on female mice challenged with a high-fat diet in order to determine if dietary intake of these supplements could ameliorate obesity-induced insulin resistance and metabolic inflexibility in skeletal muscle. METHODS Body composition, physical activity and energy expenditure, fatty acid oxidation, insulin signaling, and gene and protein expression of factors controlling lipid metabolism and ectopic lipid accumulation were evaluated in female mice fed a high-fat diet supplemented with either PMI5011 or bitter melon. Statistical significance was assessed by unpaired two-tailed t test and repeated measures ANOVA. RESULTS PMI5011 supplementation resulted in increased body weight and adiposity, while bitter melon did not induce changes in these parameters. Pyruvate tolerance testing indicated that both supplements increased hepatic glucose production. Both supplements induced a significant suppression in fatty acid oxidation in skeletal muscle homogenates treated with pyruvate, indicating enhanced metabolic flexibility. PMI5011 reduced lipid accumulation in skeletal muscle, while bitter melon induced a downward trend in lipid accumulation in the skeletal muscle and liver. This was accompanied by transcriptional regulation of autophagic genes by bitter melon in the liver. CONCLUSIONS Data from the current study indicates that dietary supplementation with PMI5011 and bitter melon evokes a divergent, and generally less favorable, set of metabolic responses in female mice compared to effects previously observed in males. Our findings underscore the importance of considering sex-related variations in responses to dietary supplementation aimed at combating metabolic syndrome.
Collapse
Affiliation(s)
- Scott Fuller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA.,School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA, 70506, USA
| | - Yongmei Yu
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Tamra Mendoza
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - David M Ribnicky
- Biotech Center, Rutgers University, New Brunswick, NJ, 08901, USA
| | - William T Cefalu
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Z Elizabeth Floyd
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA.
| |
Collapse
|