1
|
Zheng D, Bai J, Wang Y, Li X, Chu Y, Li D, Ju A, Xie Y, Li W. Herb-drug interaction study of Yiqi Fumai lyophilized injection (YQFM) on pharmacokinetics of aspirin, nifedipine, and clopidogrel in rats. Biomed Chromatogr 2024; 38:e6018. [PMID: 39327227 DOI: 10.1002/bmc.6018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Yiqi Fumai lyophilized injection (YQFM), a compound traditional Chinese medicine prescription derived from "Sheng Mai Powder," is approved for the treatment of cardiovascular diseases. YQFM is usually prescribed in combination with some Western medicines to treat patients, such as aspirin, nifedipine, and clopidogrel. However, the herb-drug interactions (HDIs) of YQFM are still unclear. We determined the effect of YQFM on drug metabolism-related CYP450 enzymes by in vitro assays. And the effects of YQFM on the pharmacokinetics of aspirin, nifedipine, or clopidogrel were analyzed in rats, as well as the effect of YQFM on the prothrombin time of aspirin or clopidogrel, to evaluate the safety and efficacy of co-administration. Our study indicated that the clinical dose of YQFM did not significantly influence the relevant CYP450 isoenzymes. Besides, YQFM had no effect on the pharmacokinetics of aspirin, nifedipine, or clopidogrel single and multiple administrations in rats. In pharmacodynamics study, YQFM also had no impact on prothrombin time of aspirin or clopidogrel. Based on the results of pharmacogenomics, pharmacokinetics, and pharmacodynamics, the HDIs of YQFM have a good safety profile, and the combination with the above three drugs might have synergistic effects due to the different efficacy of YQFM-quality markers.
Collapse
Affiliation(s)
- Dayong Zheng
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Jiaxuan Bai
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Yiran Wang
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Xiaoyang Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Chu
- State Key Laboratory of Core Technology in Innovation Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
- Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Dekun Li
- State Key Laboratory of Core Technology in Innovation Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
- Tianjin Tasly Pride Pharmaceutical Co., Ltd., Tianjin, China
| | - Aichun Ju
- State Key Laboratory of Core Technology in Innovation Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
- Tianjin Tasly Pride Pharmaceutical Co., Ltd., Tianjin, China
| | - Yuesheng Xie
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Wei Li
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
2
|
Jalali A, Kabiri M, Hashemi S, Abdi Ardekani A, Zarshenas MM. Medicinal plants or bioactive components with antioxidant/anti-apoptotic effects as a potential therapeutic approach in heart failure prevention and management: a literature review. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-17. [PMID: 39576713 DOI: 10.1080/10286020.2024.2414196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 11/24/2024]
Abstract
Heart failure is described as a complicated syndrome, which is estimated that 56.2 million people were living with HF globally in 2019. Oxidative stress and apoptosis play a major role on HF development via targeting several signaling pathways in cardiac cells. This study investigated medicinal plants or their bioactive components with positive effects on HF management. In this research, keywords "heart failure," "plant," "antioxidant" or "radical scavenging," "herbal" and "apoptosis" were synchronously searched through popular databases from 1990 up to 2023. Finally, the role of oxidative stress and apoptosis in HF development was searched and related signaling pathways were investigated.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil 56189-85991, Iran
| | - Maryam Kabiri
- Arnold and Marie Schwarts College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| | - Shima Hashemi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Ramsar Campus, Ramsar 4847193698, Iran
| | - Alireza Abdi Ardekani
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil 56189-85991, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| |
Collapse
|
3
|
Chen Y, Tu Y, Du L, Nan R, Ren Y. Warming Yang Promoting Blood Circulation and Diuresis Alleviates Myocardial Damage by Inhibiting Collagen Fiber and Myocardial Fibrosis and Attenuating Mitochondria Signaling Pathway Mediated Apoptosis in Chronic Heart Failure Rats. TOHOKU J EXP MED 2024; 263:141-150. [PMID: 38522897 DOI: 10.1620/tjem.2024.j022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Warming Yang promoting blood circulation and diuresis (WYPBD) has been proven effective in treating some diseases. This study aimed to evaluate therapeutic effect of WYPBD in treating chronic heart failure (CHF). CHF rats were established by intraperitoneally injecting doxorubicin (DOX). Therapeutic effects of WYPBD on cardiac function and hemodynamic parameters of myocardial tissues were analyzed. Collagen fiber production and myocardial fibrosis were evaluated. Transcriptions of COL1A1 gene, COL3A1 gene, and TGFB1 gene were evaluated with RT-PCR. Expression of BNP, AVP, PARP, caspase-3, and Bcl-2 in myocardial tissues were evaluated. TUNEL assay was used to identify apoptosis of cardiomyocytes. WYPBD alleviated degree of myocardial hypertrophy in CHF rats compared to the rats in CHF model group (P < 0.05). WYPBD significantly improved cardiac hemodynamics (increased LVEF and LVSF) of CHF rats compared to rats in the CHF model group (P < 0.05). WYPBD protected myocardial structure and inhibited collagen fiber production in myocardial tissues of CHF rats. WYPBD markedly decreased myocardial fibrosis mediators (Col1α, Col3α, TGF-β1) transcription in myocardial tissues of CHF rats compared to rats in CHF model group (P < 0.05). WYPBD significantly reduced BNP and AVP expression in myocardial tissues of CHF rats compared to rats in the CHF model group (P < 0.05). WYPBD markedly reduced the expression of PRAP and caspase-3, and increased Bcl-2 expression in myocardial tissues of CHF rats compared to rats in the CHF model group (P < 0.05). In conclusion, WYPBD alleviated CHF myocardial damage by inhibiting collagen fiber and myocardial fibrosis, attenuating apoptosis associated with the mitochondria signaling pathway of cardiomyocytes.
Collapse
Affiliation(s)
- Yong Chen
- Department of Classical Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine
| | - Yadan Tu
- Department of Classical Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine
| | - Lei Du
- Department of Classical Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine
| | - Ruixue Nan
- Department of Classical Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine
| | - Yi Ren
- Department of Classical Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine
| |
Collapse
|
4
|
Deng J, Liu J, Chen W, Liang Q, He Y, Sun G. Effects of Natural Products through Inhibiting Endoplasmic Reticulum Stress on Attenuation of Idiopathic Pulmonary Fibrosis. Drug Des Devel Ther 2024; 18:1627-1650. [PMID: 38774483 PMCID: PMC11108075 DOI: 10.2147/dddt.s388920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
With ever-increasing intensive studies of idiopathic pulmonary fibrosis (IPF), significant progresses have been made. Endoplasmic reticulum stress (ERS)/unfolded protein reaction (UPR) is associated with the development and progression of IPF, and targeting ERS/UPR may be beneficial in the treatment of IPF. Natural product is a tremendous source of new drug discovery, and accumulating studies have reported that many natural products show potential therapeutic effects for IPF via modulating one or more branches of the ERS signaling pathway. Therefore, this review focuses on critical roles of ERS in IPF development, and summarizes herbal preparations and bioactive compounds which protect against IPF through regulating ERS.
Collapse
Affiliation(s)
- JiuLing Deng
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - Jing Liu
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - WanSheng Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Qing Liang
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - YuQiong He
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - GuangChun Sun
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| |
Collapse
|
5
|
Chen J, Kang J, Yuan S, O’Connell P, Zhang Z, Wang L, Liu J, Chen R. Exploring the Mechanisms of Traditional Chinese Herbal Therapy in Gastric Cancer: A Comprehensive Network Pharmacology Study of the Tiao-Yuan-Tong-Wei decoction. Pharmaceuticals (Basel) 2024; 17:414. [PMID: 38675376 PMCID: PMC11054859 DOI: 10.3390/ph17040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
The use of herbal medicine as an adjuvant therapy in the management of gastric cancer has yielded encouraging outcomes, notably in enhancing overall survival rates and extending periods of disease remission. Additionally, herbal medicines have demonstrated potential anti-metastatic effects in gastric cancer. Despite these promising findings, there remains a significant gap in our understanding regarding the precise pharmacological mechanisms, the identification of specific herbal compounds, and their safety and efficacy profiles in the context of gastric cancer therapy. In addressing this knowledge deficit, the present study proposes a comprehensive exploratory analysis of the Tiao-Yuan-Tong-Wei decoction (TYTW), utilizing an integrative approach combining system pharmacology and molecular docking techniques. This investigation aims to elucidate the pharmacological actions of TYTW in gastric pathologies. It is hypothesized that the therapeutic efficacy of TYTW in counteracting gastric diseases stems from its ability to modulate key signaling pathways, thereby influencing PIK3CA activity and exerting anti-inflammatory effects. This modulation is observed predominantly in pathways such as PI3K/AKT, MAPK, and those directly associated with gastric cancer. Furthermore, the study explores how TYTW's metabolites (agrimoniin, baicalin, corosolic acid, and luteolin) interact with molecular targets like AKT1, CASP3, ESR1, IL6, PIK3CA, and PTGS2, and their subsequent impact on these critical pathways and biological processes. Therefore, this study represents preliminary research on the anticancer molecular mechanism of TYTW by performing network pharmacology and providing theoretical evidence for further experimental investigations.
Collapse
Affiliation(s)
- Juan Chen
- Department of Gastroenterology, Beijing Nuclear Industry Hospital, Beijing 102413, China; (J.C.)
| | - Jingdong Kang
- Department of General Surgery, Beijing Nuclear Industry Hospital, Beijing 102413, China
| | - Shouli Yuan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
| | - Peter O’Connell
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Zizhu Zhang
- Department of Gastroenterology, Beijing Nuclear Industry Hospital, Beijing 102413, China; (J.C.)
| | - Lina Wang
- Pharmacy Department, Beijing Water Resources Hospital, Beijing 100036, China
| | - Junying Liu
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Rongfeng Chen
- National Center for Occupational Safety and Health, National Health Commission, Beijing 102308, China
| |
Collapse
|
6
|
Wu Y, Li T, Li P, Peng H, Gao A, Wang J, Zhu H, Wang X. Effects of Shenmai injection against chronic heart failure: a meta-analysis and systematic review of preclinical and clinical studies. Front Pharmacol 2024; 14:1338975. [PMID: 38385058 PMCID: PMC10880451 DOI: 10.3389/fphar.2023.1338975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/28/2023] [Indexed: 02/23/2024] Open
Abstract
Objective: This study aims to evaluate the clinical and preclinical efficacy of SMI in treating CHF, and to summarize the relevant mechanisms of action in order to provide evidence for its role in CHF treatment. Methods: A systematic computerized search of eight databases and three registry systems was performed, with the time frame spanning from the inception of the databases to 30 June 2023. Strict procedures were used for data extraction, quality assessment, and data analysis. The methodological quality of the included studies was assessed using RoB-2 and SYRCLE tools. Statistical analysis was performed using Rev Man 5.4 software, using either fixed-effects or random-effects models. Results: A total of 25 clinical trials (including test group 1,367 patients, control group 1,338 patients) and 11 animal studies (including 201 animals) were included in this review. The meta-analysis of clinical studies showed that SMI can improve cardiac function indicators (LVEF, LVFS, LVEDV, LVESV, LVEDD, LVESD) (p < 0.00001), reduce BNP/NT-proBNP levels (p < 0.01), and improve inflammatory markers (hs-CRP, TNF-α, IL-6) (p < 0.00001) and endothelin (ET) levels (p < 0.0001). In animal studies, SMI demonstrated improved cardiac function (LVEF, LVFS) (p < 0.05), and improved heart failure markers (NT-proBNP, p < 0.05) when compared to control groups. Conclusion: This study represents the first meta-analysis which includes both preclinical and clinical studies on SMI. Clinical and animal studies have shown that SMI can improve cardiac function in CHF patients through its anti-apoptotic effects, antioxidant activities, anti-inflammatory effects, and improvement of myocardial metabolism. This study has certain limitations in terms of literature quality, quantity, and follow-up time. Therefore, the conclusions drawn from this study may require further validation through larger-scale, high-quality RCT trials.
Collapse
Affiliation(s)
- Yang Wu
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tianli Li
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, China
| | - Pochen Li
- Department of Respiratory, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - HsuanChieh Peng
- Department of Respiratory, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ang Gao
- Medical Services Section, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jisheng Wang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haiyan Zhu
- Department of Geriatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xian Wang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Fujimori ASS, Ribeiro APD, Pereira AG, Dias-Audibert FL, Tonon CR, dos Santos PP, Dantas D, Zanati SG, Catharino RR, Zornoff LAM, Azevedo PS, de Paiva SAR, Okoshi MP, Lima EO, Polegato BF. Effects of Pera Orange Juice and Moro Orange Juice in Healthy Rats: A Metabolomic Approach. Metabolites 2023; 13:902. [PMID: 37623846 PMCID: PMC10456557 DOI: 10.3390/metabo13080902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Cardiovascular disease is a leading cause of death worldwide. Heart failure is a cardiovascular disease with high prevalence, morbidity, and mortality. Several natural compounds have been studied for attenuating pathological cardiac remodeling. Orange juice has been associated with cardiovascular disease prevention by attenuating oxidative stress. However, most studies have evaluated isolated phytochemicals rather than whole orange juice and usually under pathological conditions. In this study, we evaluated plasma metabolomics in healthy rats receiving Pera or Moro orange juice to identify possible metabolic pathways and their effects on the heart. METHODS Sixty male Wistar rats were allocated into 3 groups: control (C), Pera orange juice (PO), and Moro orange juice (MO). PO and MO groups received Pera orange juice or Moro orange juice, respectively, and C received water with maltodextrin (100 g/L). Echocardiogram and euthanasia were performed after 4 weeks. Plasma metabolomic analysis was performed by high-resolution mass spectrometry. Type I collagen was evaluated in picrosirius red-stained slides and matrix metalloproteinase (MMP)-2 activity by zymography. MMP-9, tissue inhibitor of metalloproteinase (TIMP)-2, TIMP-4, type I collagen, and TNF-α protein expression were evaluated by Western blotting. RESULTS We differentially identified three metabolites in PO (N-docosahexaenoyl-phenylalanine, diglyceride, and phosphatidylethanolamine) and six in MO (N-formylmaleamic acid, N2-acetyl-L-ornithine, casegravol isovalerate, abscisic alcohol 11-glucoside, cyclic phosphatidic acid, and torvoside C), compared to controls, which are recognized for their possible roles in cardiac remodeling, such as extracellular matrix regulation, inflammation, oxidative stress, and membrane integrity. Cardiac function, collagen level, MMP-2 activity, and MMP-9, TIMP-2, TIMP-4, type I collagen, and TNF-α protein expression did not differ between groups. CONCLUSION Ingestion of Pera and Moro orange juice induces changes in plasma metabolites related to the regulation of extracellular matrix, inflammation, oxidative stress, and membrane integrity in healthy rats. Moro orange juice induces a larger number of differentially expressed metabolites than Pera orange juice. Alterations in plasma metabolomics induced by both orange juice are not associated with modifications in cardiac extracellular matrix components. Our results allow us to postulate that orange juice may have beneficial effects on pathological cardiac remodeling.
Collapse
Affiliation(s)
- Anderson S. S. Fujimori
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Ana P. D. Ribeiro
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Amanda G. Pereira
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Flávia L. Dias-Audibert
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil; (F.L.D.-A.); (R.R.C.)
| | - Carolina R. Tonon
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Priscila P. dos Santos
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Danielle Dantas
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Silmeia G. Zanati
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Rodrigo R. Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil; (F.L.D.-A.); (R.R.C.)
| | - Leonardo A. M. Zornoff
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Paula S. Azevedo
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Sergio A. R. de Paiva
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Marina P. Okoshi
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Estela O. Lima
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Bertha F. Polegato
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| |
Collapse
|
8
|
Ma C, Sheng N, Li Y, Zheng H, Wang Z, Zhang J. A comprehensive perspective on the disposition, metabolism, and pharmacokinetics of representative multi-components of Dengzhan Shengmai in rats with chronic cerebral hypoperfusion after oral administration. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116212. [PMID: 36739927 DOI: 10.1016/j.jep.2023.116212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengzhan Shengmai capsule (DZSM), an evidence-based Chinese medicine comprising Erigeron breviscapus (Vaniot) Hand. -Mazz., Panax ginseng C.A.Mey., Ophiopogon japonicus (Thunb.) Ker Gawl., and Schisandra chinensis (Turcz.) Baill., exhibits an excellent efficacy in treating cardio- and cerebrovascular diseases. It contains caffeoyl compounds, flavonoids, saponins, and lignans as primary active components. However, so far, the characteristics of disposition, metabolism, and pharmacokinetics of its active components remain mostly unclear. AIM OF STUDY To elucidate disposition, metabolism, and pharmacokinetics of representative components of DZSM in rats with chronic cerebral hypoperfusion (CCH) by integrating ex vivo and in situ approaches. MATERIALS AND METHODS Exposure and distribution of absorbed prototypes and their metabolites were comprehensively investigated using sensitive LC-MS/MS and high-resolution LC-Q-TOF/MS. Pharmacokinetics of representative 16 components (12 prototypes and 4 metabolites) with different chemical categories, relatively high in vivo levels, wide tissue distribution, and reported neuroprotective activities were profiled. The ex vivo everted gut sac and in situ linked-rat models were adopted. RESULTS Representative 12 prototypes including 6 caffeoyl compounds (CA, 5-CQA, 3-CQA, 4-CQA, 1,3-CQA, and 3,4-CQA), 1 flavonoid (Scu), 2 saponins (Rd and Rg2), and 3 lignans (SchA, SchB, and SolA) presented characteristic absorption, disposition, and pharmacokinetics profiles in CCH rats. The caffeoyl compounds and flavonoid were well absorbed, exhibited wide distribution, and underwent extensive intestinal metabolism, such as methylation, isomerization, and sulfoconjugation. For CA, 5-CQA, Scu, and 4 related metabolites, the enterohepatic circulation was observed and resulted in bimodal or multimodal pharmacokinetic profiles. Saponins showed relatively low systemic exposure and limited distribution. The PPD-type ginsenoside Rd exhibited longer elimination half-life and systemic circulation than the PPT-type ginsenoside Rg2. No enterohepatic circulation was observed regarding saponins, suggesting that the multimodal pharmacokinetic profile of Rd could be due to its multi-site intestinal absorption. Lignans presented a low in vivo exposure and broad distribution. They were mainly transformed into hydroxylated metabolites. Corresponding to its bimodal pharmacokinetic profile, one metabolite of lignans completed the enterohepatic cycle. CONCLUSION The disposition, metabolism, and pharmacokinetic profiles of representative active components of DZSM were comprehensively characterized and elucidated.
Collapse
Affiliation(s)
- Congyu Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Ning Sheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Yuanyuan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Hao Zheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
9
|
Lv XF, Wen RQ, Liu K, Zhao XK, Pan CL, Gao X, Wu X, Zhi XD, Ren CZ, Chen QL, Lu WJ, Bai TY, Li YD. Role and molecular mechanism of traditional Chinese medicine in preventing cardiotoxicity associated with chemoradiotherapy. Front Cardiovasc Med 2022; 9:1047700. [PMID: 36419486 PMCID: PMC9678083 DOI: 10.3389/fcvm.2022.1047700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/20/2022] [Indexed: 08/12/2023] Open
Abstract
Cardiotoxicity is a serious complication of cancer therapy. It is the second leading cause of morbidity and mortality in cancer survivors and is associated with a variety of factors, including oxidative stress, inflammation, apoptosis, autophagy, endoplasmic reticulum stress, and abnormal myocardial energy metabolism. A number of studies have shown that traditional Chinese medicine (TCM) can mitigate chemoradiotherapy-associated cardiotoxicity via these pathways. Therefore, this study reviews the effects and molecular mechanisms of TCM on chemoradiotherapy-related cardiotoxicity. In this study, we searched PubMed for basic studies on the anti-cardiotoxicity of TCM in the past 5 years and summarized their results. Angelica Sinensis, Astragalus membranaceus Bunge, Danshinone IIA sulfonate sodium (STS), Astragaloside (AS), Resveratrol, Ginsenoside, Quercetin, Danggui Buxue Decoction (DBD), Shengxian decoction (SXT), Compound Danshen Dripping Pill (CDDP), Qishen Huanwu Capsule (QSHWC), Angelica Sinensis and Astragalus membranaceus Bunge Ultrafiltration Extract (AS-AM),Shenmai injection (SMI), Xinmailong (XML), and nearly 60 other herbs, herbal monomers, herbal soups and herbal compound preparations were found to be effective as complementary or alternative treatments. These preparations reduced chemoradiotherapy-induced cardiotoxicity through various pathways such as anti-oxidative stress, anti-inflammation, alleviating endoplasmic reticulum stress, regulation of apoptosis and autophagy, and improvement of myocardial energy metabolism. However, few clinical trials have been conducted on these therapies, and these trials can provide stronger evidence-based support for TCM.
Collapse
Affiliation(s)
- Xin-Fang Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Ruo-Qing Wen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Kai Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin-Ke Zhao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Chen-Liang Pan
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiang Gao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xue Wu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
| | - Xiao-Dong Zhi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Chun-Zhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Qi-Lin Chen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Wei-Jie Lu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Ting-Yan Bai
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Ying-Dong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
10
|
Simultaneous Extraction and Determination of Characteristic Steroidal Saponins and Homoisoflavonoids in Zhejiang Ophiopogon japonicus. Molecules 2022; 27:molecules27217380. [PMID: 36364204 PMCID: PMC9656867 DOI: 10.3390/molecules27217380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 12/03/2022] Open
Abstract
Zhejiang Ophiopogonjaponicus (ZOJ) is a specific variety of Ophiopogon japonicus with characteristic steroidal saponins and homoisoflavonoids, which are also main pharmacodynamic constituents with clinical effects, including curing inflammation and cardiovascular diseases. However, few analysis methods were applied to simultaneously and quantitatively determine two kinds of its constituents, and hazardous organic solvents are mostly used for extraction. In this study, a new validated simultaneous extraction and determination method for four characteristic steroidal saponins and homoisoflavonoids in ZOJ was established by ionic liquid–ultrasonic extraction (IL-UAE) combined with HPLC-DAD-ELSD analysis, which can be used for the quality control of ZOJ. Chromatographic separation was performed with a DAD wavelength at 296 nm, and the ELSD parameters of the drift tube temperature (DTT), atomizer temperature (AT), and nitrogen gas pressure (NGP) were set at 20% heating power, 70 °C, and 25 psi, respectively. The optimal IL-UAE conditions were 1 mol/L [Bmim]CF3SO3 aqueous solution, a liquid–material ratio of 40 mL/g, and an ultrasonic time of 60 min. The proposed method is reliable, reproducible, and accurate, which were verified with real sample assays. Consequently, this work will be helpful for the quality control of ZOJ. It can also present a promising reference for the simultaneous extraction and determination of different kinds of constituents in other medicinal plants.
Collapse
|
11
|
Protective Effect of Natural Medicinal Plants on Cardiomyocyte Injury in Heart Failure: Targeting the Dysregulation of Mitochondrial Homeostasis and Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3617086. [PMID: 36132224 PMCID: PMC9484955 DOI: 10.1155/2022/3617086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Heart failure occurs because of various cardiovascular pathologies, such as coronary artery disease or cardiorenal syndrome, eventually reaching end-stage disease. Various factors contribute to cardiac structural or functional changes that result in systolic or diastolic dysfunction. Several studies have confirmed that the key factor in heart failure progression is myocardial cell death, and mitophagy is the major mechanism regulating myocardial cell death in heart failure. The clinical mechanisms of heart failure are well understood in practice. However, the essential role of mitophagic regulation in heart failure has only recently received widespread attention. Receptor-mediated mitophagy is involved in various mitochondrial processes like oxidative stress injury, energy metabolism disorders, and calcium homeostasis, which are also the main causes of heart failure. Understanding of the diverse regulatory mechanisms in mitophagy and the complexity of its pathophysiology in heart failure remains incomplete. Related studies have found that various natural medicinal plants and active ingredients, such as flavonoids and saponins, can regulate mitophagy to a certain extent, improve myocardial function, and protect myocardial cells. This review comprehensively covers the relevant mechanisms of different types of mitophagy in regulating heart failure pathology and controlling mitochondrial adaptability to stress injury. Further, it explores the relationship between mitophagy and cardiac ejection dysfunction. Natural medicinal plant-targeted regulation strategies and scientific evidence on mitophagy were provided to elucidate current and potential strategies to apply mitophagy-targeted therapy for heart failure.
Collapse
|
12
|
Thakur M, Vasudeva N, Sharma S, Datusalia AK. Plants and their Bioactive Compounds as a Possible Treatment for Traumatic Brain Injury-Induced Multi-Organ Dysfunction Syndrome. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-126021. [PMID: 36045522 DOI: 10.2174/1871527321666220830164432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND & OBJECTIVE Traumatic brain injury is an outcome of the physical or mechanical impact of external forces on the brain. Thus, the silent epidemic has complex pathophysiology affecting the brain along with extracranial or systemic complications in more than one organ system, including the heart, lungs, liver, kidney, gastrointestinal and endocrine system. which is referred to as Multi-Organ Dysfunction Syndrome. It is driven by three interconnected mechanisms such as systemic hyperinflammation, paroxysmal sympathetic hyperactivity, and immunosuppression-induced sepsis. These multifaceted pathologies accelerate the risk of mortality in clinical settings by interfering with the functions of distant organs through hypertension, cardiac arrhythmias, acute lung injury, neurogenic pulmonary edema, reduced gastrointestinal motility, Cushing ulcers, acute liver failure, acute kidney injury, coagulopathy, endocrine dysfunction, and many other impairments. The pharmaceutical treatment approach for this is highly specific in its mode of action and linked to a variety of side effects, including hallucinations, seizures, anaphylaxis, teeth, bone staining, etc. Therefore, alternative natural medicine treatments are widely accepted due to their broad complementary or synergistic effects on the physiological system with minor side effects. CONCLUSION This review is a compilation of the possible mechanisms behind the occurrence of multiorgan dysfunction and reported medicinal plants with organoprotective activity that have not been yet explored against traumatic brain injury and thereby, highlighting the marked possibilities of their effectiveness in the management of multiorgan dysfunction. As a result, we attempted to respond to the hypothesis against the usage of medicinal plants to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Manisha Thakur
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Neeru Vasudeva
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Sunil Sharma
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology/Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India
| |
Collapse
|
13
|
Xin-Ji-Er-Kang Alleviates Isoproterenol-Induced Myocardial Hypertrophy in Mice through the Nrf2/HO-1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7229080. [PMID: 36045660 PMCID: PMC9423967 DOI: 10.1155/2022/7229080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
Xin-Ji-Er-Kang (XJEK) inhibited cardiovascular remodeling in hypertensive mice in our previous studies. We hypothesized that XJEK may prevent isoproterenol (ISO)-induced myocardial hypertrophy (MH) in mice by ameliorating oxidative stress (OS) through a mechanism that may be related to the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1(HO-1) pathways. Forty SPF male Kunming mice were randomized into 5 groups (n = 8 mice per group): control group, MH group, MH + different doses of XJEK (7.5 g/kg/day and 10 g/kg/day), and MH + metoprolol (60 mg/kg/day). On the eighth day after drug treatment, electrocardiogram (ECG) and echocardiography were performed, the mice were sacrificed, and blood and heart tissues were collected for further analysis. XJEK administration markedly ameliorated cardiovascular remodeling (CR), as manifested by a decreased HW/BW ratio and CSA and less collagen deposition after MH. XJEK administration also improved MH, as evidenced by decreased atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC) levels. XJEK also suppressed the decreased superoxide dismutase (SOD) and catalase (CAT) activities and increased malondialdehyde (MDA) levels in serum of mice with MH. XJEK-induced oxidative stress may be related to potentiating Nrf2 nuclear translocation and HO-1 expression compared with the MH groups. XJEK ameliorates MH by activating the Nrf2/HO-1 signaling pathway, suggesting that XJEK is a potential treatment for MH.
Collapse
|
14
|
Zuo QQ, Yu ZF, Liu MR, Du HL. Clinical efficacy of Wenjing decoction in the treatment of ovulatory disorder infertility: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e29640. [PMID: 35838989 PMCID: PMC11132400 DOI: 10.1097/md.0000000000029640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Wenjing decoction (WJD) was widely used in the treatment for ovulatory disorder infertility (ODI) in China, while its efficacy was not clearly known. In this study, we evaluated the clinical efficacy of WJD by meta-analysis. METHODS Eight electronic databases including Cochrane Library, PubMed, Embase, Web of Science, China National Knowledge Infrastructure, WanFang Data, VIP Database, and China Biology Medicine were searched for randomized controlled trials (RCTs) published from the inception of each database to July 1, 2021, of which the interventions involve WJD and clomiphene. Outcomes included clinical efficacy rate, pregnancy rate, ovulation rate, dominant follicle diameter, endometrial thickness, estradiol, follicle-stimulating hormone, and luteinizing hormone. Meta-analysis and risk of bias were performed by RevMan 5.3 software. RESULTS Eleven RCTs including 915 patients, of which 476 in the intervention group and 439 in the control group. Meta-analysis showed that WJD was better than clomiphene for patients with ODI in terms of clinical effective rate (odds ratio [OR] = 1.22, 95% confidence interval [CI]: 1.08-1.34), pregnancy rate (OR = 1.54, 95% CI: 1.15-2.07), ovulation rate (OR = 1.34, 95% CI: 1.07-1.67), endometrial thickness (mean difference [MD] = 1.50, 95% CI: 0.90-2.10), and dominant follicle diameter (MD = 1.85, 95% CI: 0.68-3.02). The estradiol level (MD = 91.0, 95% CI: 80.3-101.88) in patients taking WJD was significantly higher than those taking clomiphene, while the follicle-stimulating hormone level (MD = -0.93, 95% CI: -1.13 to -0.72) and the luteinizing hormone level (MD = -4.41, 95% CI: -4.80 to -4.03) in patients taking WJD was significantly lower than those taking clomiphene. Our results also indicated that WJD combined with clomiphene was better than clomiphene alone for patients with ODI in terms of pregnancy rate (OR = 1.79, 95% CI: 1.37-2.35). CONCLUSIONS WJD may be effective in the treatment of patients with ODI. Due to the quality and quantity of literature, RCT with large sample size and high quality need to be performed to verify our conclusion.
Collapse
Affiliation(s)
- Qian-qian Zuo
- Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhi-fang Yu
- Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Meng-rui Liu
- Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hui-lan Du
- Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
15
|
Qu PR, Jiang ZL, Song PP, Liu LC, Xiang M, Wang J. Saponins and their derivatives: Potential candidates to alleviate anthracycline-induced cardiotoxicity and multidrug resistance. Pharmacol Res 2022; 182:106352. [PMID: 35835369 DOI: 10.1016/j.phrs.2022.106352] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Anthracyclines (ANTs) continue to play an irreplaceable role in oncology treatment. However, the clinical application of ANTs has been limited. In the first place, ANTs can cause dose-dependent cardiotoxicity such as arrhythmia, cardiomyopathy, and congestive heart failure. In the second place, the development of multidrug resistance (MDR) leads to their chemotherapeutic failure. Oncology cardiologists are urgently searching for agents that can both protect the heart and reverse MDR without compromising the antitumor effects of ANTs. Based on in vivo and in vitro data, we found that natural compounds, including saponins, may be active agents for other both natural and chemical compounds in the inhibition of anthracycline-induced cardiotoxicity (AIC) and the reversal of MDR. In this review, we summarize the work of previous researchers, describe the mechanisms of AIC and MDR, and focus on revealing the pharmacological effects and potential molecular targets of saponins and their derivatives in the inhibition of AIC and the reversal of MDR, aiming to encourage future research and clinical trials.
Collapse
Affiliation(s)
- Pei-Rong Qu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Zhi-Lin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Ping-Ping Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medicine Sciences, Beijing 100013, China
| | - Lan-Chun Liu
- Beijing University of traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
16
|
Gao L, Yuan P, Wei Y, Fu Y, Hou Y, Li P, Chen Y, Ruan Y, Zhou N, Zheng X, Feng W. Total flavonoids of Selaginella tamariscina (P.Beauv.) Spring ameliorates doxorubicin-induced cardiotoxicity by modulating mitochondrial dysfunction and endoplasmic reticulum stress via activating MFN2/PERK. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154065. [PMID: 35358932 DOI: 10.1016/j.phymed.2022.154065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is a highly effective chemotherapeutic that is effective for various tumours. However, the clinical application of DOX has been limited by adverse reactions such as cardiotoxicity and heart failure. Since DOX-induced cardiotoxicity is irreversible, drugs to prevent DOX-induced cardiotoxicity are needed. PURPOSE This study aimed to investigate the effect of total flavonoids of Selaginella tamariscina (P.Beauv.) Spring (TFST) on doxorubicin-induced cardiotoxicity. METHODS The present study established DOX-induced cardiotoxicity models in C57BL/6 mice treated with DOX (cumulative dose: 20 mg/kg body weight) and H9c2 cells incubated with DOX (1 μM/l) to explore the intervention effect and potential mechanism of TFST. Echocardiography was performed to evaluate left ventricular functions. Heart tissue samples were collected for histological evaluation. Myocardial injury markers and oxidative stress markers were examined. Mitochondrial energy metabolism pathway associated proteins PPARα/PGC-1α/Sirt3 were detected. We also explored the effects of TFST on endoplasmic reticulum (ER) stress and apoptosis. To further investigate the protective mechanism of TFST, we used the specific small interfering RNA MFN2 (siMFN2) to explore the effect of MFN2 on TFST against DOX-induced cardiotoxicity in vitro. Flow cytometry detected reactive oxygen species, mitochondrial membrane potential and apoptosis. Cell mitochondrial stress was measured by Seahorse XF analyser. RESULTS Both in vivo and in vitro studies verified that TFST observably alleviated DOX-induced mitochondrial dysfunction and ER stress. However, these effects were reversed after transfected siMFN2. CONCLUSION Our results indicated that TFST ameliorates DOX-induced cardiotoxicity by alleviating mitochondrial dysfunction and ER stress by activating MFN2/PERK. MFN2/PERK pathway activation may be a novel mechanism to protect against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Liyuan Gao
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peipei Yuan
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Yaxin Wei
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Fu
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ying Hou
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Panying Li
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yi Chen
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuan Ruan
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ning Zhou
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Xiaoke Zheng
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.
| | - Weisheng Feng
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.
| |
Collapse
|
17
|
Luo Y, Chen J, Chen Y, Su Y, Wu X, Zheng W, Liu X, Chen L. Qishen Yiqi dropping pills improve isoproterenol-induced cardiomyocyte hypertrophy by regulating X-inactive specific transcript (XIST) expression in rats. J Thorac Dis 2022; 14:2213-2223. [PMID: 35813728 PMCID: PMC9264057 DOI: 10.21037/jtd-22-606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022]
Abstract
Background This study aimed to explore the potential mechanism of Qishen Yiqi dropping pills (QYDPs) in the treatment of chronic heart failure (CHF) by regulating the expression of lncRNAs during CHF. Methods Differences in the expression of the long non-coding RNA (lncRNA), X-inactive specific transcript (XIST), in an isoproterenol (ISO)-induced cardiomyocyte hypertrophy model treated with QYDPs was analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR). A cell counting kit-8 (CCK8) assay, flow cytometry (FCM), and enzyme linked immunosorbent assay (ELISA) were used to analyze the protective effects of QYDPs on the proliferation rate, apoptosis, myocardial enzyme, oxidative stress, and inflammation of cardiomyocytes, as well as the molecular mechanism of XIST. Results Our results showed that in the ISO-induced cardiomyocyte hypertrophy model, XIST expression and apoptosis were increased, the cell proliferation rate was decreased, and myocardial enzyme levels increased [i.e., increased lactate dehydrogenase (LDH) and creatine kinase (CK) levels]. Furthermore, cellular oxidative stress [i.e., increased malondialdehyde (MDA) levels and decreased superoxide dismutase (SOD) levels] and inflammatory response [i.e., increased interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α protein secretion] were also promoted. QYDP treatment effectively mitigated the effects of ISO induction. Subsequently, we found that suppressing XIST expression reversed the effect of ISO induction, whereas overexpression (ov) of XIST enhanced the effect of ISO induction. Finally, this study confirmed that QYDP treatment improved the ISO-induced decrease in proliferation, apoptosis, and promotion of oxidative stress and inflammatory response in cardiomyocytes, whereas ov of XIST partially negated the effect of QYDPs. Conclusions QYDPs protected H9c2 cells from ISO-induced damage by downregulating XIST expression.
Collapse
Affiliation(s)
- Ying Luo
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Jiaxian Chen
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Yuewu Chen
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Yangshen Su
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Xiaoyan Wu
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Wanling Zheng
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Xianxia Liu
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Lei Chen
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| |
Collapse
|
18
|
Comparison of Protective Effects of Shenmai Injections Produced by Medicinal Materials from Different Origins on Cardiomyocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7205476. [PMID: 35341144 PMCID: PMC8956391 DOI: 10.1155/2022/7205476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
Abstract
Shenmai injection is mainly used for the treatment of heart-related diseases, including coronary heart disease, viral myocarditis, chronic cor pulmonale, and shock in Asia. Medicinal materials from different origins produce Shenmai injections for clinical use, and their protective effects on cardiomyocytes may vary with the choice of raw materials. In this study, we compared the protective effects of Shenmai injections produced from different raw materials on cardiomyocytes. Results showed that the protective effects of various Shenmai injections on hypoxia-reoxygenation-induced cardiomyocyte injury were mainly attributed to total ginsenosides extract, with few differences between them. However, the protective effects of different Shenmai injections on doxorubicin and oxidative stress-induced cardiomyocyte injury were significantly different; the protective effects of Shenmai injection with Zhejiang Ophiopogon japonicus as raw material were significantly better than those with Sichuan Ophiopogon japonicus, consistent with our previous research results. Our study reveals the different cardiomyocyte protective effects of Shenmai injections produced by medicinal materials from different origins, laying a scientific foundation for their clinical selection.
Collapse
|
19
|
Rajendran P, Elsawy H, Sedky A, Alfwuaires M. Ruscogenin protects against deoxynivalenol-Induced hepatic injury by inhibiting oxidative stress, inflammation, and apoptosis through the Nrf2 signaling pathway: An In vitro study. SAUDI JOURNAL OF MEDICINE AND MEDICAL SCIENCES 2022; 10:207-215. [PMID: 36247053 PMCID: PMC9555037 DOI: 10.4103/sjmms.sjmms_725_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 06/21/2022] [Indexed: 12/05/2022] Open
Abstract
Background Deoxynivalenol (DON) is a trichothecene mycotoxin with demonstrated cytotoxicity in several cell lines and animals, primarily owing to inflammation and reactive oxygen species accumulation. Ruscogenin (RGN), a steroidal sapogenin of Radix Ophiopogon japonicus, has significant anti-thrombotic/anti-inflammatory effects. Objective: The aim of this study was to assess the protective role of RGN against DON-induced oxidative stress, which occurs through the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and is regulated by phosphoinositide 3-kinases/protein kinase B (PI3K/AKT). Methods: The effects were examined using the HepG2 cell line. RGN and DON were suspended in serum-free medium. Cells were seeded onto plates, and then RGN, DON, or both were added over 24 h in triplicates for each group. Results: RGN conferred protection against DON-exhibited cytotoxicity against HepG2 cells. RGN pretreatment downregulated the expression of DON-induced TNF-α and COX-2 and the formation of reactive oxygen species in a dose-dependent manner. RGN upregulated the expression of Nrf2 and its antioxidant proteins as well as mRNA levels of HO-1/NQO-1/HO-1/Nrf2. Similarly, treatment with DON + RGN resulted in upregulation of the pI3K/pAKT signaling pathway in a dose-dependent manner. Finally, RGN was also found to inhibit the DON-induced apoptosis by upregulating the levels of cleaved proteins and downregulating the expression of Bcl2. Conclusion: The study demonstrates that RGN suppresses hepatic cell injury induced by oxidative stress through Nrf2 via activation of the pI3K/AKT signaling pathway.
Collapse
|
20
|
Liu X, Gong X, Liu Y, Liu J, Zhang H, Qiao S, Li G, Tang M. Application of High-Throughput Sequencing on the Chinese Herbal Medicine for the Data-Mining of the Bioactive Compounds. FRONTIERS IN PLANT SCIENCE 2022; 13:900035. [PMID: 35909744 PMCID: PMC9331165 DOI: 10.3389/fpls.2022.900035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/10/2022] [Indexed: 05/11/2023]
Abstract
The Chinese Herbal Medicine (CHM) has been used worldwide in clinic to treat the vast majority of human diseases, and the healing effect is remarkable. However, the functional components and the corresponding pharmacological mechanism of the herbs are unclear. As one of the main means, the high-throughput sequencing (HTS) technologies have been employed to discover and parse the active ingredients of CHM. Moreover, a tremendous amount of effort is made to uncover the pharmacodynamic genes associated with the synthesis of active substances. Here, based on the genome-assembly and the downstream bioinformatics analysis, we present a comprehensive summary of the application of HTS on CHM for the synthesis pathways of active ingredients from two aspects: active ingredient properties and disease classification, which are important for pharmacological, herb molecular breeding, and synthetic biology studies.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Sen Qiao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- Gang Li,
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Min Tang,
| |
Collapse
|
21
|
Lei F, Weckerle CS, Heinrich M. Liriopogons (Genera Ophiopogon and Liriope, Asparagaceae): A Critical Review of the Phytochemical and Pharmacological Research. Front Pharmacol 2021; 12:769929. [PMID: 34925027 PMCID: PMC8678496 DOI: 10.3389/fphar.2021.769929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
The closely related genera Liriope and Ophiopogon (Asparagaceae), collectively known in English as liriopogons, have similar therapeutic uses in treating cough, rheumatoid arthritis, and cleaning heat. The main aim of this review is to understand the current phytochemical and pharmacological knowledge including an assessment of the quality of the scientific evidence. A literature search was conducted in line with PRISMA guidelines, by retrieving available information up to 2020 from five online resources. The bioactive metabolites of liriopogons include steroidal saponins, flavonoids, polysaccharides, organic acids, phenols. Cardiovascular protective, anti-inflammatory, anti-diabetic, anti-oxidant, anti-cancer, neuroprotective, anti-viral, anti-acute myeloid leukemia and hepatoprotective effects have been at the center of attention. From a toxicological perspective Ophiopogon japonicus seems to be safe. Some problems with the quality of the pharmacological evidence stand out including the application of excessive dose level and methodological problems in the design. Additionally, a reasonable link between local/traditional uses and pharmacological assessment is often vague or not reflected in the text. Future researches on liriopogons are required to use rigorous scientific approaches in research on evidence-based natural products for the future benefits of patients.
Collapse
Affiliation(s)
- Feiyi Lei
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Caroline S Weckerle
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Michael Heinrich
- Research Group 'Pharmacognosy and Phytotherapy', UCL School of Pharmacy, University of London, London, United Kingdom
| |
Collapse
|
22
|
Ku TC, Wang PH, Huang JL, Chen HY, Fang JT, Hsieh HL, Chen JL. The survival outcome of nasopharyngeal cancer patients with traditional Chinese medicine external use: A hospital-based study. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114380. [PMID: 34197958 DOI: 10.1016/j.jep.2021.114380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/13/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE External-use traditional Chinese medicine (TCM) agents are widely used to relieve the adverse effects of radiation therapy in nasopharyngeal cancer patients. AIM OF THE STUDY Our study aimed to evaluate the influence of external-use TCM agents to relieve radiotherapy-related adverse effects on the efficacy of radiation therapy and the prognosis of nasopharyngeal cancer patients. MATERIALS AND METHODS By using the Chang Gung Research Database (CGRD), we analyzed 1823 newly diagnosed nasopharyngeal cancer patients with radiotherapy-related adverse effects between 2001/01 and 2015/12. We used Kaplan-Meier analysis and a Cox regression model to estimate the differences in effects on survival outcomes between two groups, TCM external users and non-TCM external users. RESULTS We found that TCM external users had significantly better 3-year and 5-year overall survival rates (log-rank test, p = 0.0377 and p = 0.034, respectively) than non-TCM external users. The 3-year and 5-year disease-free survival rates were not statistically significantly different between the groups. We also found a trend of improved 3-year and 5-year overall survival rates in TCM external users with advanced-stage disease, without statistical significance (log-rank test, p = 0.10 and p = 0.089, respectively). The subgroup analysis revealed lower risks of mortality in TCM external users among the nonhypertension, nonhyperlipidemia, nonischemic heart disease, noncirrhosis, and nonchronic kidney disease groups. CONCLUSIONS Our study showed that TCM agents external use could significantly improve 3-year and 5-year overall survival rates in nasopharyngeal cancer patients with radiotherapy-related adverse effects.
Collapse
Affiliation(s)
- Te-Chien Ku
- Division of Chinese Internal Medicine, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Pin-Han Wang
- Division of Chinese Internal Medicine, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Jhen-Ling Huang
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Hsing-Yu Chen
- Division of Chinese Internal Medicine, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Ji-Tseng Fang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, And Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Jiun-Liang Chen
- Division of Chinese Internal Medicine, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
23
|
Zhang X, Lv S, Zhang W, Jia Q, Wang L, Ding Y, Yuan P, Zhu Y, Liu L, Li Y, Zhang J. Shenmai injection improves doxorubicin cardiotoxicity via miR-30a/Beclin 1. Biomed Pharmacother 2021; 139:111582. [PMID: 33895525 DOI: 10.1016/j.biopha.2021.111582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Shenmai Injection (SMI) has been widely used in the treatment of cardiovascular diseases and can reduce side effects when combined with chemotherapy drugs. However, the potential protective mechanism of SMI on the cardiotoxicity caused by anthracyclines has not been clear. METHODS We used network pharmacology methods to collect the compound components in SMI and myocardial injury targets, constructed a 'drug-disease' target interaction network relationship diagram, and screened the core targets to predict the potential mechanism of SMI in treating cardiotoxicity of anthracyclines. In addition, the rat model of doxorubicin cardiotoxicity was induced by injecting doxorubicin through the tail vein. The rats were randomized in the model group, miR-30a agomir group, SMI low-dose group, SMI high-dose group,and the control group. The cardiac ultrasound was used to evaluate the structure and function of the rat heart. HE staining was used to observe the pathological changes of the rat myocardium. Transmission electron microscopy was used to observe myocardial autophagosomes. The expression of miR-30a and Beclin 1 mRNA in the rat myocardium was detected by RT-qPCR. Western Blot detected the expression of LC3-II/LC3-I and p62 protein. RESULTS The network pharmacological analysis found that SMI could act synergistically through multiple targets and multiple pathways, which might exert a myocardial protective effect through PI3K-Akt signaling pathways and cancer microRNAs. In vivo, compared with the control group, the treatment group could improve the cardiac structure and function, and reduce myocardial pathological damage and the number of autophagosomes. The expression of miR-30a in the myocardium of rats in miR-30a agomir group and SMI group increased (P < 0.01),Beclin 1 mRNA was decreased (P < 0.01),LC3-Ⅱ/LC3-I protein was decreased (P < 0.01 or P < 0.05),and p62 protein was increased (P < 0.01 or P < 0.05). CONCLUSIONS SMI has the characteristics of multi-component, multi-target, and multi-pathway. It can inhibit myocardial excessive autophagy by regulating the expression of miR-30a/Beclin 1 and alleviate the myocardial injury induced by doxorubicin.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shichao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Wanqin Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Qiujin Jia
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Lirong Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yuejia Ding
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Peng Yuan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yaping Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Yanyang Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
24
|
Multidirectional effects of saponin fraction isolated from the leaves of sea buckthorn Elaeagnus rhamnoides (L.) A. Nelson. Biomed Pharmacother 2021; 137:111395. [PMID: 33761611 DOI: 10.1016/j.biopha.2021.111395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 01/11/2023] Open
Abstract
Many studies show that saponins isolated from various plants have a cytotoxic effect on cancer cells inducing apoptosis and autophagy. On the other hand, saponins also exhibit a number of beneficial properties, such as antioxidant properties. Thus, saponins can be considered both in terms of their therapeutic and protective effects during anticancer treatment. In this study, we investigated the effect of the saponin fraction isolated from sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) leaves on the viability of HL-60 cancer cells using resazurin assay and its ability to induction of apoptosis with Annexin V-FITC and propidium iodide (PI) double staining. Moreover, we studied its effect on the oxidative stress induced by H2O2, and anti-platelet and anticoagulant potential in whole blood using T-TAS, a microchip-based flow chamber system. We observed that the saponin fraction significantly decreased the viability of HL-60 cells at the concentration above 50 µg/mL and induced apoptosis at the concentration of 100 µg/mL. Moreover, we observed that saponin fraction used at lower concentrations, such as 0.5 and 1 µg/mL, stimulated HL-60 cells and increased their viability. The saponin fraction also decreased the level of free radicals and reduced oxidative DNA damage measured by the comet assay. However, at high concentration of oxidant H2O2 equal 5 mM, we noticed that the saponin fraction at 50 µg/mL increased the level of free radicals in HL-60 cells. We also demonstrated anticoagulant potential of the saponin fraction at the concentration of 50 µg/mL. Our results indicate that the saponin fraction obtained from sea buckthorn leaves can show both chemotherapeutic and chemoprotective potential.
Collapse
|
25
|
Zhang S, Wu P, Liu J, Du Y, Yang Z. Roflumilast Attenuates Doxorubicin-Induced Cardiotoxicity by Targeting Inflammation and Cellular Senescence in Cardiomyocytes Mediated by SIRT1. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:87-97. [PMID: 33469262 PMCID: PMC7810683 DOI: 10.2147/dddt.s269029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022]
Abstract
Background and Purpose Cardiotoxicity is an important side effect of the treatment of a malignant tumor with Doxorubicin. Currently, decreasing the dosage of Doxorubicin to alleviate the side effects on cardiac function is the common method to deal with the cardiotoxicity induced by Doxorubicin. The present study aims to investigate the therapeutic effects of Roflumilast on Doxorubicin-induced inflammation and cellular senescence, as well as the potential mechanism in H9c2 myocardial cells. Methods The injured cardiac cell model was established by incubation with 5 μmol/L Doxorubicin. MTT was used to evaluate the cell viability of treated H9c2 cardiac cells. The expression of 4-HNE was determined using an immunofluorescence assay. The gene expression levels of IL-17, IL-6, TNF-α, IL-4, PAI-1, p21, and SIRT1 were evaluated using qRT-PCR and the protein levels of Gpx4, PAI-1, p21, and SIRT1 were determined using Western blot analysis. Secretions of IL-17, IL-6, TNF-α, IL-4, CK-MB, and cTnI were measured using ELISA. Cellular senescence was assessed using SA-β-Gal staining. Si-RNA technology was used to knockdown the expression of SIRT1 in H9c2 cardiac cells. Results Cell viability of H9c2 cardiac cells was significantly inhibited by Doxorubicin but rescued by Roflumilast. The upregulated 4-HNE and downregulated Gpx4 were reversed by Roflumilast. The secretions of IL-6 and IL-17 were promoted by Doxorubicin and suppressed by Roflumilast. The increased SA-β-Gal staining induced by Doxorubicin was inhibited by Roflumilast. P21 and PAI-1 were significantly upregulated and SIRT1 was greatly downregulated by Doxorubicin, all of which were reversed by Roflumilast. The anti-senescent effect of Roflumilast was abolished by knocking down SIRT1. Conclusion Roflumilast might attenuate Doxorubicin-induced inflammation and cellular senescence in cardiomyocytes by upregulating SIRT1.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China.,Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213004, People's Republic of China
| | - Peng Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Jiabao Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Yingqiang Du
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Zhijian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| |
Collapse
|
26
|
Cheng F, Jiang W, Xiong X, Chen J, Xiong Y, Li Y. Ethanol Extract of Chinese Hawthorn (Crataegus pinnatifida) Fruit Reduces Inflammation and Oxidative Stress in Rats with Doxorubicin-Induced Chronic Heart Failure. Med Sci Monit 2020; 26:e926654. [PMID: 33232307 PMCID: PMC7697658 DOI: 10.12659/msm.926654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Chinese hawthorn (Crataegus pinnatifida) fruit is a traditional Chinese medicine for treatment of digestive system and cardiovascular diseases. The fruit contains polyphenol compounds, such as epicatechin, that have anti-inflammatory activity. This study aimed to investigate the effects of an alcohol extract of hawthorn fruit (HAE) on inflammation and oxidative stress in rats with doxorubicin-induced chronic heart failure (CHF). Material/Methods Rats were intraperitoneally injected with doxorubicin to induce CHF and subsequently treated with HAE intragastrically once daily for 6 weeks. At the end of the experiment, echocardiographic and hemodynamic parameters were assessed, and enzyme-linked immunoassays were used to detect the levels of cardiac injury markers (brain natriuretic peptide, creatine kinase-MB, aspartate aminotransferase, lactate dehydrogenase, copeptin, and adrenomedullin), oxidative stress markers (glutathione peroxidase and malondialdehyde), and inflammatory cytokines (interleukin [IL]-6, IL-8, IL-1β, and tumor necrosis factor-α). The IL-1β, IL-6, glutathione peroxidase-1, and catalase mRNA levels were also measured by quantitative real-time polymerase chain reaction. Results Our findings indicated that HAE exerts a cardioprotective effect, as shown by improved echocardiographic and hemodynamic parameters, decreased activity of serum myocardial enzymes, reduced serum levels of CHF markers, and inhibited inflammatory response in cardiac tissue. In addition, HAE treatment downregulated the mRNA expression of IL-1β and tumor necrosis factor-α and upregulated the mRNA expression of glutathione peroxidase-1 and catalase compared with untreated doxorubicin-induced CHF rats. Conclusions HAE shows promise for the prevention and treatment of CHF. The cardioprotective effect of HAE appears to be related to inhibition of both the inflammatory response and oxidative stress in vivo.
Collapse
Affiliation(s)
- Fangzhou Cheng
- Department of Cardiology, Shenzhen Yantian People's Hospital, ShenzhenShenzhen, Guangdong, China (mainland)
| | - Wenlong Jiang
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Xiaoshuan Xiong
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Juan Chen
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Yunzhi Xiong
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Yinghong Li
- The Central Laboratory, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
27
|
Liang B, Zhang XX, Gu N. Virtual screening and network pharmacology-based synergistic mechanism identification of multiple components contained in Guanxin V against coronary artery disease. BMC Complement Med Ther 2020; 20:345. [PMID: 33187508 PMCID: PMC7664106 DOI: 10.1186/s12906-020-03133-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Guanxin V (GXV), a traditional Chinese medicine (TCM), has been widely used to treat coronary artery disease (CAD) in clinical practice in China. However, research on the active components and underlying mechanisms of GXV in CAD is still scarce. METHODS A virtual screening and network pharmacological approach was utilized for predicting the pharmacological mechanisms of GXV in CAD. The active compounds of GXV based on various TCM-related databases were selected and then the potential targets of these compounds were identified. Then, after the CAD targets were built through nine databases, a PPI network was constructed based on the matching GXV and CAD potential targets, and the hub targets were screened by MCODE. Moreover, Metascape was applied to GO and KEGG functional enrichment. Finally, HPLC fingerprints of GXV were established. RESULTS A total of 119 active components and 121 potential targets shared between CAD and GXV were obtained. The results of functional enrichment indicated that several GO biological processes and KEGG pathways of GXV mostly participated in the therapeutic mechanisms. Furthermore, 7 hub MCODEs of GXV were collected as potential targets, implying the complex effects of GXV-mediated protection against CAD. Six specific chemicals were identified. CONCLUSION GXV could be employed for CAD through molecular mechanisms, involving complex interactions between multiple compounds and targets, as predicted by virtual screening and network pharmacology. Our study provides a new TCM for the treatment of CAD and deepens the understanding of the molecular mechanisms of GXV against CAD.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
28
|
Olas B, Urbańska K, Bryś M. Saponins as Modulators of the Blood Coagulation System and Perspectives Regarding Their Use in the Prevention of Venous Thromboembolic Incidents. Molecules 2020; 25:molecules25215171. [PMID: 33172028 PMCID: PMC7664220 DOI: 10.3390/molecules25215171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023] Open
Abstract
Saponins comprise a heterogenous group of chemical compounds containing a triterpene or steroid aglycone group and at least one sugar chain. They exist as secondary metabolites, occurring frequently in dicotyledonous plants and lower marine animals. Plant saponin extracts or single saponins have indicated antiplatelet and anticoagulant activity. Venous thromboembolism (VTE), including deep venous thrombosis and pulmonary embolism, is a multifactorial disease influenced by various patient characteristics such as age, immobility, previous thromboembolism and inherited thrombophilia. This mini-review (1) evaluates the current literature on saponins as modulators of the coagulation system, (2) discusses the impact of chemical structure on the modulation of the coagulation system, which may further provide a basis for drug or supplement design, (3) examines perspectives of their use in the prevention of VTE. It also describes the molecular mechanisms of action of the saponins involved in the prevention of VTE.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
- Correspondence: ; Tel./Fax: +48-42-6354485
| | - Karina Urbańska
- Faculty of Medicine, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland;
| |
Collapse
|
29
|
Guo M, Jiang W, Yu J, Pang X. Investigating the authenticity of Ophiopogonis Radix and its Chinese patent medicines by using a nucleotide signature. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113134. [PMID: 32668322 DOI: 10.1016/j.jep.2020.113134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ophiopogonis Radix (Maidong), derived from the dried root tuber of Ophiopogon japonicus (Thunb.) Ker Gawl., has been widely used in the treatment of chronic inflammatory and cardiovascular diseases. However, Ophiopogonis Radix is often adulterated with some species because of morphological similarities. Adulterants circulating in herbal markets are a latent threat to the clinical safety and consumers' interest. AIM OF THE STUDY We aimed to develop a nucleotide signature for identification of Ophiopogonis Radix and its Chinese patent medicines. MATERIALS AND METHODS A total of 255 ITS2 sequences representing 39 species and 4 varieties were used to develop a nucleotide signature of Ophiopogonis Radix. The nucleotide signature was used to investigate 17 commercial crude drugs and eight batches of Chinese patent medicines. RESULTS A 69 bp nucleotide signature unique to Ophiopogonis Radix was found. The survey revealed that 2 of 17 crude drug samples were adulterants detected as Liriopes Radix (Shanmaidong). Fortunately, no adulterants were detected in the eight batches of Chinese patent medicines. CONCLUSIONS The newly developed nucleotide signature could be efficiently applied to identify Ophiopogonis Radix and its Chinese patent medicines, aiding in the authentication, quality control, and supervision of processed products in herbal markets.
Collapse
Affiliation(s)
- Mengyue Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Wenjun Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jingsheng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xiaohui Pang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
30
|
Shen M, Nan Y, Zhang L, Di L, He S, Li Y, Li Y. Maimendong Decoction Improves Pulmonary Function in Rats With Idiopathic Pulmonary Fibrosis by Inhibiting Endoplasmic Reticulum Stress in AECIIs. Front Pharmacol 2020; 11:1262. [PMID: 32973506 PMCID: PMC7466437 DOI: 10.3389/fphar.2020.01262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/30/2020] [Indexed: 11/29/2022] Open
Abstract
This study was designed to investigate the mechanism by which MMDD improves lung function, and observe the effect of MMDD on endoplasmic reticulum stress(ERS) in alveolar type II epithelial cells (AECIIs) of pulmonary fibrosis rats. pulmonary fibrosis animal model was established by intratracheal injection of BLM at a dose of 6mg/kg body weight. Overall, Thirty male SPF Sprague-Dawley rats were randomly divided into control group, BLM group and BLM+MMDD group. BLM+MMDD group rats were fed 24 g/kg over three weeks for twice a day on the fourteenth day after model establishment. MMDD improves pulmonary function of fibrotic rats and reduces the occurrence of endoplasmic reticulum stress in AECIIs. MMDD could significantly improve the forced vital capacity (FVC) of bleomycin-induced pulmonary fibrosis in rats. MMDD reduced the expression of GRP78 and CHOP in AECIIs, increased the secretion of surfactant protein C (SPC) by AECIIs. Moreover, the apoptosis of the fibrosis zone in the lung tissue was remarkably mitigated by administration of MMDD. The finding of this study revealed that MMDD can improve lung function in rats with pulmonary fibrosis by reducing the occurrence of ERS and cell apoptosis of AECIIs. It may provide a new method for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Mengmeng Shen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanan Nan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Liming Di
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuangshuang He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yadong Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
31
|
Lee Y, Kwon I, Jang Y, Cosio-Lima L, Barrington P. Endurance Exercise Attenuates Doxorubicin-induced Cardiotoxicity. Med Sci Sports Exerc 2020; 52:25-36. [PMID: 31318716 DOI: 10.1249/mss.0000000000002094] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE Endurance exercise (EXE) preconditioning before DOX treatment confers cardioprotection; however, whether EXE postconditioning (i.e., EXE intervention after the completion of DOX treatment) is cardioprotective remains unknown. Thus, the aim of the present study was to investigate if EXE postconditioning provides cardioprotection by testing the hypothesis that EXE-autophagy upregulation and NADPH oxidase 2 (NOX2) downregulation would be linked to cardioprotection against DOX-induced cardiotoxicity. METHODS C57BL/6 male mice were assigned into three groups: control (CON, n = 10), doxorubicin (DOX, n = 10), and doxorubicin + endurance exercise (DOX + EXE, n = 10). Animals assigned to DOX and DOX + EXE groups were intraperitoneally injected with DOX (5 mg·kg each week for 4 wk). Forty-eight hours after the last DOX treatment, the mice assigned to DOX + EXE performed EXE on a motorized treadmill at a speed of 13-15 m·min for 60 min·d for 4 wk. RESULTS EXE prevented DOX-induced apoptosis and mitigated tissue damages. Although DOX did not modulate auto/mitophagy, EXE significantly enhanced its flux (increased LC3-II levels, reduced p62 levels, and increased autophagosomes with mitochondria) along with increased mitochondrial fission (DRP1) and reduced fusion markers (OPA1 and MFN2). Interestingly, EXE-induced autophagy against DOX occurred in the absence of alterations of autophagy inducer AMPK or autophagy inhibitor mTOR signaling. EXE prohibited DOX-induced oxidative damages by suppressing NOX2 levels but without modulating other key antioxidant enzymes including MnSOD, CuZnSOD, catalase, and GPX1/2. CONCLUSION Our data provide novel findings that EXE-induced auto/mitophagy promotion and NOX2 downregulation are linked to cardioprotection against DOX-induced cardiotoxicity. Importantly, our study shows that EXE postconditioning intervention is effective and efficacious to prevent DOX-induced cardiac injuries.
Collapse
Affiliation(s)
- Youngil Lee
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florid, Pensacola, FL
| | | | | | | | | |
Collapse
|
32
|
Georgiadis N, Tsarouhas K, Rezaee R, Nepka H, Kass GEN, Dorne JLCM, Stagkos D, Toutouzas K, Spandidos DA, Kouretas D, Tsitsimpikou C. What is considered cardiotoxicity of anthracyclines in animal studies. Oncol Rep 2020; 44:798-818. [PMID: 32705236 PMCID: PMC7388356 DOI: 10.3892/or.2020.7688] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Anthracyclines are commonly used anticancer drugs with well-known and extensively studied cardiotoxic effects in humans. In the clinical setting guidelines for assessing cardiotoxicity are well-established with important therapeutic implications. Cardiotoxicity in terms of impairment of cardiac function is largely diagnosed by echocardiography and based on objective metrics of cardiac function. Until this day, cardiotoxicity is not an endpoint in the current general toxicology and safety pharmacology preclinical studies, although other classes of drugs apart from anthracyclines, along with everyday chemicals have been shown to manifest cardiotoxic properties. Also, in the relevant literature there are not well-established objective criteria or reference values in order to uniformly characterize cardiotoxic adverse effects in animal models. This in depth review focuses on the evaluation of two important echocardiographic indices, namely ejection fraction and fractional shortening, in the literature concerning anthracycline administration to rats as the reference laboratory animal model. The analysis of the gathered data gives promising results and solid prospects for both, defining anthracycline cardiotoxicity objective values and delineating the guidelines for assessing cardiotoxicity as a separate hazard class in animal preclinical studies for regulatory purposes.
Collapse
Affiliation(s)
| | | | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, 9177948564 Mashhad, Iran
| | - Haritini Nepka
- Department of Pathology, University Hospital of Larissa, 41334 Larissa, Greece
| | | | | | - Dimitrios Stagkos
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Konstantinos Toutouzas
- First Department of Cardiology, Hippokration Hospital, Medical School, University of Athens, 11527 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Christina Tsitsimpikou
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
33
|
Huang ST, Lai HC, Lin YC, Huang WT, Hung HH, Ou SC, Lin HJ, Hung MC. Principles and treatment strategies for the use of Chinese herbal medicine in patients at different stages of coronavirus infection. Am J Cancer Res 2020; 10:2010-2031. [PMID: 32774998 PMCID: PMC7407358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a novel, human-infecting β-coronavirus enveloped, positive-sense single-stranded RNA viruses, similar to the severe acute respiratory syndrome (SARS) infection that emerged in November 2002. In traditional Chinese medicine (TCM), the epidemic disease concepts of "febrile epidemics" (wenyi) or "warm diseases" (wenbing) are based on geographic and cultural aspects, and Chinese herbal medicine (CHM) played an important role in the treatment of epidemic diseases. CHM was widely used to treat patients suffered with SARS almost two decades ago during outbreak of SARS, with proven safety and potential benefits. TCM has also been widely used to treat cancer patients for a long history and much of them associate with immunomodulatory activity and are used to treat coronavirus-related diseases. We propose the use of CHM treatment principles for clinical practice, based on four main stages of COVID-19 infection: early, intermediate, severe, and convalescence. We suggest corresponding decoctions that exhibit antiviral activity and anti-inflammatory effects in the early stage of infection; preventing the disease from progressing from an intermediate to severe stage of infection; restoring normal lung function and improving consciousness in the severe stage; and ameliorating pulmonary and vascular injury in the convalescent stage. We summarize the pharmaceutical mechanisms of CHM for treating coronavirus via antiviral, anti-inflammatory and immunomodulatory effects.
Collapse
Affiliation(s)
- Sheng-Teng Huang
- School of Chinese Medicine, China Medical UniversityTaichung, Taiwan
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
- Research Cancer Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University HospitalTaichung, Taiwan
- An-Nan Hospital, China Medical UniversityTainan, Taiwan
| | - Hsiang-Chun Lai
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Yu-Chun Lin
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Wei-Te Huang
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Hao-Hsiu Hung
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Shi-Chen Ou
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Hung-Jen Lin
- School of Chinese Medicine, China Medical UniversityTaichung, Taiwan
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical UniversityTaichung, Taiwan
| |
Collapse
|
34
|
Żuchowski J, Skalski B, Juszczak M, Woźniak K, Stochmal A, Olas B. LC/MS Analysis of Saponin Fraction from the Leaves of Elaeagnus rhamnoides (L.) A. Nelson and Its Biological Properties in Different In Vitro Models. Molecules 2020; 25:molecules25133004. [PMID: 32630067 PMCID: PMC7411717 DOI: 10.3390/molecules25133004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
This study focuses on saponin fraction from sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) leaves. It has known that for example teas from sea buckthorn leaves have anti-obesity properties. The objective of our present experiments was to investigate both the chemical composition of saponin fraction, as well as their biological properties in different in vitro models (using human plasma, blood platelets, and peripheral blood mononuclear cells (PBMCs)). We observed that saponin fraction reduces plasma lipid peroxidation and protein carbonylation induced by H2O2/Fe. This fraction also decreased DNA oxidative damage induced by H2O2 in PBMCs. Regarding the cytotoxicity of saponin fraction (0.5–50 µg/mL) none was found to cause lysis of blood platelets, and PBMCs. Our results, for the first time indicate that saponin fraction from sea buckthorn leaves may be a new promising source of compounds for prophylaxis and treatment of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Jerzy Żuchowski
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.Ż); (A.S.)
| | - Bartosz Skalski
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland;
| | - Michał Juszczak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland; (M.J.); (K.W.)
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland; (M.J.); (K.W.)
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.Ż); (A.S.)
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland;
- Correspondence:
| |
Collapse
|
35
|
Tian Y, Lv W, Lu C, Jiang Y, Yang X, Song M. Galectin-3 inhibition attenuates doxorubicin-induced cardiac dysfunction by upregulating the expression of peroxiredoxin-4. Can J Physiol Pharmacol 2020; 98:700-707. [PMID: 32516552 DOI: 10.1139/cjpp-2019-0700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Doxorubicin (DOX) is a highly efficient chemotherapeutic drug limited by its cardiotoxicity. Galectin-3 (Gal-3) overexpression is associated with several cardiovascular diseases. In this study, the in vivo models of DOX-treated rats and the in vitro model of DOX-treated H9C2 cells were used. DOX induced cardiac injury and dysfunction accompanied with the upregulation of Gal-3 at the end of the experiment, while inhibition of Gal-3 with modified citrus pectin (MCP) exhibited a dramatic improvement in cardiac function of the DOX-treated rats, as manifested by increased left ventricular systolic pressure and ±dp/dtmax and decreased left ventricular end-diastolic pressure. The plasma levels of myocardial injury markers such as lactate dehydrogenase, creatine kinase, creatine kinase-MB, and cardiac troponin I were decreased after MCP treatment. In parallel, MCP attenuated myocardial tissue markers of oxidative stress such as hydrogen peroxide and malondialdehyde restored the activities of superoxide dismutase, catalase, and glutathione peroxidase and upregulated antioxidant peroxiredoxin-4 (Prx-4). To further verify the role of Prx-4, it was downregulated by siRNA-mediated knockdown in H9C2 cells. MCP could not reverse DOX-induced oxidative stress in Prx-4-knock-down cells. In conclusion, Gal-3 mediated DOX-induced cardiotoxicity and Gal-3 inhibition attenuated DOX-induced cardiac dysfunction by upregulating the expression of Prx-4 to reduce myocardial oxidative stress.
Collapse
Affiliation(s)
- Yunpeng Tian
- Department of Cardiology and Department of Cardiac Surgery, Tianjin First Central Hospital, Tianjin 300192, People's Republic of China
| | - Wei Lv
- Department of Cardiology and Department of Cardiac Surgery, Tianjin First Central Hospital, Tianjin 300192, People's Republic of China
| | - Chengzhi Lu
- Department of Cardiology and Department of Cardiac Surgery, Tianjin First Central Hospital, Tianjin 300192, People's Republic of China
| | - Yiyao Jiang
- Department of Cardiology and Department of Cardiac Surgery, Tianjin First Central Hospital, Tianjin 300192, People's Republic of China
| | - Xue Yang
- Department of Cardiology, Dalian Municipal Central Hospital, Dalian 116003, People's Republic of China
| | - Minghao Song
- Department of Cardiology, Tongji Hospital of Tongji University, Shanghai 200003, People's Republic of China
| |
Collapse
|
36
|
Wen JX, Li RS, Wang J, Hao JJ, Qin WH, Yang T, Wang RL, Wei SZ, Liu XY, Li HT, Wang JB, Liu HH, Zhao YL. Therapeutic effects of Aconiti Lateralis Radix Praeparata combined with Zingiberis Rhizoma on doxorubicin-induced chronic heart failure in rats based on an integrated approach. J Pharm Pharmacol 2020; 72:279-293. [PMID: 31743450 DOI: 10.1111/jphp.13191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study was aimed to explore the mechanism of Aconiti Lateralis Radix Praeparata (ALRP) and Zingiberis Rhizoma (ZR) on doxorubicin (DOX)-induced chronic heart failure (CHF) in rats by integrated approaches. METHODS Effects of ALRP and ZR on cardiac function, serum biochemical indicators and histopathology in rats were analysed. Moreover, UHPLC-Q-TOF/MS was performed to identify the potential metabolites affecting the pathological process of CHF. Metabolomics and network pharmacology analyses were conducted to illustrate the possible pathways and network in CHF treatment. The predicted gene expression levels in heart tissue were verified and assessed by RT-PCR. KEY FINDINGS ALRP-ZR demonstrated remarkable promotion of hemodynamic indices and alleviated histological damage of heart tissue. Metabolomics analyses showed that the therapeutic effect of ALRP and ZR is mainly associated with the regulation of eight metabolites and ten pathways, which may be responsible for the therapeutic efficacy of ALRP-ZR. Moreover, the results of RT-PCR showed that ALRP-ZR could substantially increase the expression level of energy metabolism-related genes, including PPARδ, PPARγ, Lpl, Scd, Fasn and Pla2g2e. CONCLUSIONS The results highlighted the role of ALRP-ZR in the treatment of CHF by influencing the metabolites related to energy metabolism pathway via metabolomics and network pharmacology analyses.
Collapse
Affiliation(s)
- Jian-Xia Wen
- College of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Rui-Sheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Jian Wang
- College of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun-Jie Hao
- College of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
- Integrative Medical Center, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Wei-Han Qin
- Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Tao Yang
- College of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Rui-Lin Wang
- Department of Traditional Chinese Medicine, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Shi-Zhang Wei
- College of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Xiao-Yi Liu
- Integrative Medical Center, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Hao-Tian Li
- Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Jia-Bo Wang
- Integrative Medical Center, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Hong-Hong Liu
- Integrative Medical Center, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Yan-Ling Zhao
- Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
37
|
Xiang ZN, Yi WQ, Wang YL, Shao LD, Zhang CQ, Yuan Y, Pan J, Wan LS, Chen JC. Buxaustroines A-N, a Series of 17(13→18) abeo-Cycloartenol Triterpenoidal Alkaloids from Buxus austro-yunnanensis and Their Cardioprotective Activities. JOURNAL OF NATURAL PRODUCTS 2019; 82:3111-3120. [PMID: 31686503 DOI: 10.1021/acs.jnatprod.9b00652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Buxaustroines A-N (1-14), a series of triterpenoidal alkaloids featuring a novel 17(13→18)abeo motif, were obtained from the extract of Buxus austro-yunnanensis. Their structures were assigned based on NMR data analysis and X-ray diffraction crystallography. A putative biosynthetic pathway for one of the alkaloids from a co-isolate 15 is proposed. In the assessment of their bioactivities, some of the compounds displayed protective effects against doxorubicin-induced injury of myocardial cells. Preliminary structure-activity relationship studies of 1-14, which are based on the same skeleton, were conducted.
Collapse
Affiliation(s)
- Zhi-Nan Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Wen-Qin Yi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yong-Long Wang
- Department of Pharmacy , The Second Affiliated Hospital of Nanchang University , Nanchang 330006 , People's Republic of China
| | - Li-Dong Shao
- Department of Traditional Chinese Medicine , Yunnan University of Chinese Medicine , Kunming 650500 , People's Republic of China
| | - Cheng-Qi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yan Yuan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Jun Pan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Luo-Sheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Jia-Chun Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| |
Collapse
|
38
|
Zhao YQ, Zhang L, Zhao GX, Chen Y, Sun KL, Wang B. Fucoxanthin attenuates doxorubicin-induced cardiotoxicity via anti-oxidant and anti-apoptotic mechanisms associated with p38, JNK and p53 pathways. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|