1
|
Yenigun VB, Kocyigit A, Kanimdan E, Balkan E, Gul AZ. Copper (II) increases anti-Proliferative activity of thymoquinone in colon cancer cells by increasing genotoxic, apoptotic, and reactive oxygen species generating effects. Toxicon 2024; 250:108103. [PMID: 39278473 DOI: 10.1016/j.toxicon.2024.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Thymoquinone is the main active compound derived from the essential oil of the Nigella sativa plant seed. While thymoquinone is an antioxidant, it has been reported in several studies that thymoquinone has dose-dependent pro-oxidant activity with the Fenton reaction in the presence of transition elements such as iron and copper. This study aimed to investigate cytotoxic, apoptotic, genotoxic, and reactive oxygen species (ROS) generating effects of thymoquinone treated with copper in colon cancer cells. HT-29 cells were treated with pro-oxidant-acting doses of thymoquinone alone and together with the non-toxic dose of Copper (II) Sulfate for 24 h. Cytotoxic, apoptotic, genotoxic, and ROS production activities were analyzed by MTT viability test, Acridine Orange/Ethidium Bromide (AO/EB) staining, alkaline single cell gel electrophoresis and H2DCF-DA assay, respectively. Viability results showed that thymoquinone and copper synergistically affect cancer cells, and DNA damage was increased with the synergic effect. The intracellular ROS was increased when thymoquinone and copper were applied together. Applying redox-active copper (II) with thymoquinone increases DNA damage, apoptosis, and cell death by increasing the amount of intracellular ROS through pro-oxidant activity. Treatments targeting copper-related pathways may open new therapeutic avenues for cancer treatment.
Collapse
Affiliation(s)
- Vildan Betul Yenigun
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey; Bezmialem Vakif University, Vocational School of Health Services, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey.
| | - Ebru Kanimdan
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey; Bezmialem Vakif University, Vocational School of Health Services, Istanbul, Turkey
| | - Ezgi Balkan
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Ayse Zehra Gul
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| |
Collapse
|
2
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Li R, Li Z, Luo W, Zhu X, Luo B. Identification of immunosenescence of unconventional T cells in hepatocellular carcinoma. Comput Biol Chem 2024; 112:108148. [PMID: 39004028 DOI: 10.1016/j.compbiolchem.2024.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/01/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Accumulation of senescent cells is a recognized feature in hepatocellular carcinoma (HCC), but their specific types and prognostic implications remain under investigation. This study aimed to delineate senescent cell types and their senescent patterns in HCC using publicly available bulk and single-cell mRNA sequencing data. Through gene expression and gene set enrichment analysis, we identified distinct senescent patterns within HCC samples. Notably, unconventional T cells, specifically natural killer T cells and γδT cells, were found to be the predominant senescent cell types. These cells exhibited enriched pathways related to DNA damage, senescence and the negative regulation of lymphocyte activation. Furthermore, we observed upregulation of the mTOR signaling pathway, which correlated positively with the expression of senescence-associated genes. This suggests a potential regulatory role for mTOR in the senescence of HCC. Strikingly, patients with elevated expression of senescence markers, including p16INK4A, p21, and GLB1, demonstrated significantly reduced overall survival rates. Our findings indicate that immunosenescence in unconventional T cells may play a role in HCC progression. The potential therapeutic implications of targeting the mTOR pathway or eliminating senescent unconventional T cells warrant further exploration to improve HCC patient outcomes.
Collapse
Affiliation(s)
- Rumei Li
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhaoxi Li
- Central Laboratory, Dongguan People's Hospital/Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523069, China
| | - Wanrong Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaotong Zhu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Baoming Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
4
|
Cui J, Lin L, Hao F, Shi Z, Gao Y, Yang T, Yang C, Wu X, Gao R, Ru Y, Li F, Xiao C, Gao Y, Wang Y. Comprehensive review of the traditional uses and the potential benefits of epimedium folium. Front Pharmacol 2024; 15:1415265. [PMID: 39323630 PMCID: PMC11422139 DOI: 10.3389/fphar.2024.1415265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Epimedium Folium has been extensively utilized for medicinal purposes in China for a significant period. This review undertakes a comprehensive examination of literature pertaining to Epimedium and its metabolites over the past decade, drawing from databases such as PubMed. Through meticulous organization and synthesis of pertinent research findings, including disease models, pharmacological effects, and related aspects, this narrative review sheds light on the principal pharmacological activities and associated mechanisms of Epimedium in safeguarding the reproductive system, promoting bone health, mitigating inflammation, and combating tumors and viral infections. Consequently, this review contributes to a more profound comprehension of the recent advances in Epimedium research.
Collapse
Affiliation(s)
- Jialu Cui
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Lin
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feiran Hao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhuo Shi
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yehui Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tingyu Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunqi Yang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Wu
- School of Pharmacy, Henan University, Kaifeng, China
| | - Rong Gao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Ru
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fangyang Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chengrong Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuguang Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
5
|
Sun X, He Z, Lu R, Liu Z, Chiampanichayakul S, Anuchapreeda S, Jiang J, Tima S, Zhong Z. Hyaluronic acid-modified liposomes Potentiated in-vivo anti-hepatocellular carcinoma of icaritin. Front Pharmacol 2024; 15:1437515. [PMID: 39055490 PMCID: PMC11270019 DOI: 10.3389/fphar.2024.1437515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction: Icaritin (ICT), a promising anti-hepatocellular carcinoma (HCC) prenylated flavonoid, is hindered from being applied due to its low water solubility and high lipophilicity in poorly differentiated HCC which is associated with upregulation of CD44 isoforms. Thus, hyaluronic acid (HA), a natural polysaccharide with high binding ability to CD44 receptors, was used to formulate a modified liposome as a novel targeted ICT-delivery system for HCC treatment. Methods: The ICT-Liposomes (Lip-ICT) with and without HA were prepared by a combined method of thin-film dispersion and post-insertion. The particle size, polydispersity (PDI), zeta potential, encapsulation efficacy (%EE), drug loading content (%DLC), and in vitro drug release profiles were investigated for physicochemical properties, whereas MTT assay was used to assess cytotoxic effects on HCC cells, HepG2, and Huh7 cells. Tumor bearing nude mice were used to evaluate the inhibitory effect of HA-Lip-ICT and Lip-ICT in vivo. Results: Lip-ICT and HA-Lip-ICT had an average particle size of 171.2 ± 1.2 nm and 208.0 ± 3.2 nm, with a zeta potential of -13.9 ± 0.83 and -24.8 ± 0.36, respectively. The PDI resulted from Lip-ICT and HA-Lip-ICT was 0.28 ± 0.02 and 0.26 ± 0.02, respectively. HA-Lip-ICT demonstrated higher in vitro drug release when pH was dropped from 7.4 to 5.5, The 12-h release rate of ICT from liposomes increased from 30% at pH7.4 to more than 60% at pH5.5. HA-Lip-ICT displayed higher toxicity than Lip-ICT in both HCC cells, especially Huh7with an IC50 of 34.15 ± 2.11 μM. The in vivo tissue distribution and anti-tumor experiments carried on tumor bearing nude mice indicated that HA-Lip- ICT exhibited higher tumor accumulation and achieved a tumor growth inhibition rate of 63.4%. Discussion: The nano-sized Lip-ICT was able to prolong the drug release time and showed long-term killing HCC cells ability. Following conjugation with HA, HA-Lip-ICT exhibited higher cytotoxicity, stronger tumor targeting, and tumor suppression abilities than Lip-ICT attributed to HA-CD44 ligand-receptor interaction, increasing the potential of ICT to treat HCC.
Collapse
Affiliation(s)
- Xiaoduan Sun
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhenzhen He
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ruilin Lu
- Suining First People’s Hospital, Suining, China
| | - Zhongbing Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sawitree Chiampanichayakul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Singkome Tima
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Zhirong Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, China
| |
Collapse
|
6
|
Chen Y, Xia H, Zhong X. In Vitro evaluation of the anti-pancreatic cancer activity of epimedium herb. Front Pharmacol 2024; 15:1389221. [PMID: 39011503 PMCID: PMC11246921 DOI: 10.3389/fphar.2024.1389221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction: Pancreatic cancer (PC) is a particularly aggressive malignancy with limited therapeutic options. The search for innovative treatments has focused on traditional Chinese medicine, specifically epimedium. This research investigates epimedium's active ingredients, potential targets, and underlying mechanisms in treating PC. Methods: High-performance liquid chromatography (HPLC) was used to quantify the active components of epimedium and HPLC-Q-TOF-MS was employed for qualitative identification. Potential targets of epimedium's active ingredients were identified using the TCMSP, ETCM, CTD, and Swiss Target Prediction databases. Potential PC-related targets were sourced from DisGeNET, GeneCards, and OMIM databases. A Venn diagram was utilized to identify overlapping PC-related and epimedium targets. Core targets and pathways were elucidated through protein-protein interaction (PPI) network analysis, Gene Ontology (GO) assessments, and Reactome pathway enrichment analyses. Molecular docking techniques investigated interactions between active compounds and these targets. The expression and prognostic implications of target genes were evaluated using GEPIA2 and the Human Protein Atlas (HPA) databases. In vitro studies assessed the impact of epimedium extract (EPE) on Panc-1 cell viability, and Western blot analysis examined the expression levels of key targets. Results: Network pharmacological indicate that epimedium econtains active components such as baohuoside I, icariin, hyperoside, and epimedin B, which have potential therapeutic effects against PC. In vitro assays confirmed that EPE significantly reduced the viability of Panc-1 cells. Western blot analysis revealed a considerable decrease in the expression of key targets in EPE-treated cells, including AKT1, EGFR, p-EGFR, JUN, BCL2, IL6, and SRC. The R-HSA-1280215: Interleukin-4 and Interleukin-13 signaling pathways involving these genes were identified as potential therapeutic targets. Discussion: Epimedium holds promise as a candidate for treating PC. The modulation of interleukin-4 and interleukin-13 signaling pathways could be a pivotal mechanism by which epimedium impedes tumor development. Further research is warranted to validate these findings and explore the clinical applicability of epimedium in PC treatment.
Collapse
Affiliation(s)
- Yangfeng Chen
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Han Xia
- Changsha Central Hospital, Changsha, China
| | - Xiaohong Zhong
- College of Horticulture, Hunan Agricultural University, Changsha, China
| |
Collapse
|
7
|
Reyes-Hernández OD, Figueroa-González G, Quintas-Granados LI, Hernández-Parra H, Peña-Corona SI, Cortés H, Kipchakbayeva A, Mukazhanova Z, Habtemariam S, Leyva-Gómez G, Büsselberg D, Sharifi-Rad J. New insights into the anticancer therapeutic potential of icaritin and its synthetic derivatives. Drug Dev Res 2024; 85:e22175. [PMID: 38567708 DOI: 10.1002/ddr.22175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
Icaritin is a natural prenylated flavonoid derived from the Chinese herb Epimedium. The compound has shown antitumor effects in various cancers, especially hepatocellular carcinoma (HCC). Icaritin exerts its anticancer activity by modulating multiple signaling pathways, such as IL-6/JAK/STAT3, ER-α36, and NF-κB, affecting the tumor microenvironment and immune system. Several clinical trials have evaluated the safety and efficacy of icaritin in advanced HCC patients with poor prognoses, who are unsuitable for conventional therapies. The results have demonstrated that icaritin can improve survival, delay progression, and produce clinical benefits in these patients, with a favorable safety profile and minimal adverse events. Moreover, icaritin can enhance the antitumor immune response by regulating the function and phenotype of various immune cells, such as CD8+ T cells, MDSCs, neutrophils, and macrophages. These findings suggest that icaritin is a promising candidate for immunotherapy in HCC and other cancers. However, further studies are needed to elucidate the molecular mechanisms and optimal dosing regimens of icaritin and its potential synergistic effects with other agents. Therefore, this comprehensive review of the scientific literature aims to summarize advances in the knowledge of icaritin in preclinical and clinical studies as well as the pharmacokinetic, metabolism, toxicity, and mechanisms action to recognize the main challenge, gaps, and opportunities to develop a medication that cancer patients can use. Thus, our main objective was to clarify the current state of icaritin for use as an anticancer drug.
Collapse
Affiliation(s)
- Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Itzel Quintas-Granados
- Colegio de Ciencias y Humanidades, Plantel Cuautepec, Universidad Autónoma de la Ciudad de México. Ciudad de México, México, México
| | - Hector Hernández-Parra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Aliya Kipchakbayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Zhazira Mukazhanova
- Higher School of IT and Natural Sciences, Sarsen Amanzholov East Kazakhstan University, Ust-Kamenogorsk, Kazakhstan
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, London, UK
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | | |
Collapse
|
8
|
Tang X, Zhang Y, Dong X, Jiang G, Hong D, Liu X. The Synergy of Gene Targeting Drug Icaritin Soft Capsule with Immunomodulator and TACE Brings New Hope for Drug Combination in Patients with Advanced Liver Cancer: A Case Report and Literature Review. Cancer Manag Res 2023; 15:707-717. [PMID: 37485037 PMCID: PMC10362861 DOI: 10.2147/cmar.s414487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/02/2023] [Indexed: 07/25/2023] Open
Abstract
At present, the average five-year survival rate of liver cancer in China is only 12.1%. The reason for this association lies in the diagnosis at its middle or/and advanced stage of liver cancer for lacking special clinical symptoms in almost 70% of patients without the chance of effective surgical resection. Epidemiological studies have shown that there are only 30% of patients with an initial diagnosis of liver cancer have the opportunity to undergo radical surgery. Therefore, systematic and comprehensive treatment would play an important role in liver cancer treatment at its middle or/and advanced stage, and the related therapeutic schedule still needs further improvement and optimization. We applied a gene-targeted drug of Icaritin soft capsule in the treatment of a liver cancer patient at its advanced stage. And the level of AFP was found to decrease to 6.4ng/mL from 10.86ng/mL; meanwhile, MRI showed that the primary tumor significantly reduced in size, with shrinking of the hepatogastric space, hepatic aortic side, and renal artery side lymph nodes. After treatment with TACE and Icaritin, the patient had no discomfort and no longer experienced abdominal pain and bloating and gained three kilograms of weight. The therapeutic effect of Icaritin-targeted drugs was completely demonstrated during the later treatment follow-up. That is to say, the multiple anti-tumor characteristics of Icaritin with good safety were fully displayed in this case, and it can be used in combination with other drugs to treat hepatocellular carcinoma in the clinical setting. The results show that Icaritin can put some effects on the combined treatment of patients with liver cancer.
Collapse
Affiliation(s)
- Xiaoxia Tang
- Operating Room, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yizhuo Zhang
- General Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xinyu Dong
- General Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Guixing Jiang
- General Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Defei Hong
- General Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xiaolong Liu
- General Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
9
|
Ge T, Shao Y, Bao X, Xu W, Lu C. Cellular senescence in liver diseases: From mechanisms to therapies. Int Immunopharmacol 2023; 121:110522. [PMID: 37385123 DOI: 10.1016/j.intimp.2023.110522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Cellular senescence is an irreversible state of cell cycle arrest, characterized by a gradual decline in cell proliferation, differentiation, and biological functions. Cellular senescence is double-edged for that it can provoke organ repair and regeneration in physiological conditions but contribute to organ and tissue dysfunction and prime multiple chronic diseases in pathological conditions. The liver has a strong regenerative capacity, where cellular senescence and regeneration are closely involved. Herein, this review firstly introduces the morphological manifestations of senescent cells, the major regulators (p53, p21, and p16), and the core pathophysiologic mechanisms underlying senescence process, and then specifically generalizes the role and interventions of cellular senescence in multiple liver diseases, including alcoholic liver disease, nonalcoholic fatty liver disease, liver fibrosis, and hepatocellular carcinoma. In conclusion, this review focuses on interpreting the importance of cellular senescence in liver diseases and summarizes potential senescence-related regulatory targets, aiming to provide new insights for further researches on cellular senescence regulation and therapeutic developments for liver diseases.
Collapse
Affiliation(s)
- Ting Ge
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yunyun Shao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Wenxuan Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
10
|
Huong NT, Son NT. Icaritin: A phytomolecule with enormous pharmacological values. PHYTOCHEMISTRY 2023:113772. [PMID: 37356700 DOI: 10.1016/j.phytochem.2023.113772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023]
Abstract
Pharmacological studies on flavonoids have always drawn much interest for many years. Icaritin (ICT), a representative flavone containing an 8-prenyl group, is a principal compound detected in medicinal plants of the genus Epimedum, the family Berberidaceae. Experimental results in the phytochemistry and pharmacology of this molecule are abundant now, but a deep overview has not been carried out. The goal of this review is to provide an insight into the natural observation, biosynthesis, biotransformation, synthesis, pharmacology, and pharmacokinetics of prenyl flavone ICT. The relevant data on ICT was collected from bibliographic sources, like Google Scholar, Web of Science, Sci-Finder, and various published journals. "Icaritin" alone or in combination is the main keyword to seek for references, and references have been updated till now. ICT is among the characteristic phytomolecules of Epimedum plants. Bacteria monitored its biosynthesis and biotransformation, while this agent was rapidly synthesized from phloroglucinol by microwave-assistance Claisen rearrangement. ICT is a potential agent in numerous in vitro and in vivo pharmacological records, which demonstrated its role in cancer treatments via apoptotic-related mechanisms. It also brings in various health benefits since it reduced harmful effects on the liver, lung, heart, bone, blood, and skin, and improved immune responses. Pharmacokinetic outcomes indicated that its metabolic pathway involved hydration, hydroxylation, dehydrogenation, glycosylation, and glucuronidation. Molecule mechanisms of action at a cellular level are predominant, but clinical studies are expected to get more. Structure-activity relationship records seem insufficient, and the studies on nano-combined approaches to improve its soluble property in living bodied medium are needed.
Collapse
Affiliation(s)
- Nguyen Thi Huong
- Faculty of Chemical Technology, Hanoi University of Industry, Hanoi, Viet Nam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam.
| |
Collapse
|
11
|
Nasimi Shad A, Fanoodi A, Maharati A, Akhlaghipour I, Moghbeli M. Molecular mechanisms of microRNA-301a during tumor progression and metastasis. Pathol Res Pract 2023; 247:154538. [PMID: 37209575 DOI: 10.1016/j.prp.2023.154538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Cancer is known as one of the leading causes of human deaths globally. Late diagnosis is considered as one of the main reasons for the high mortality rate among cancer patients. Therefore, the introduction of early diagnostic tumor markers can improve the efficiency of therapeutic modalities. MicroRNAs (miRNAs) have a key role in regulation of cell proliferation and apoptosis. MiRNAs deregulation has been frequently reported during tumor progressions. Since, miRNAs have a high stability in body fluids; they can be used as the reliable non-invasive tumor markers. Here, we discussed the role of miR-301a during tumor progressions. MiR-301a mainly functions as an oncogene via the modulation of transcription factors, autophagy, epithelial-mesenchymal transition (EMT), and signaling pathways. This review paves the way to suggest miR-301a as a non-invasive marker for the early tumor diagnosis. MiR-301a can also be suggested as an effective target in cancer therapy.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Li H, Ge N, Guan X, Han C, Li Y, Shen L, Chen M, Zhang B, Qu C, Zou W. The location of estrogen receptor variant ER-α36 is associated with the invasion of glioblastoma. Steroids 2023; 194:109224. [PMID: 36924815 DOI: 10.1016/j.steroids.2023.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Glioblastoma (GBM) is the most common central nervous system tumor and is associated with poor outcomes. There have been no significant improvements in GBM mortality in recent decades. ER-α36 is a variant of ER-α66 that may be involved in carcinoma growth and proliferation via genomic and nongenomic mechanisms. This variant might play an essential role in tamoxifen resistance of several tumors. Previously, our laboratory found that ER-α36 is expressed in GBM and participates in proliferation; nevertheless, the role of ER-α36 in GBM invasion remains unknown. This study aimed to determine the effects of the ER-α36 modulator SNG162 on GBM growth and invasion. U251 cells, U87cells, and U87-36KD cells with knockdown of ER-α36 expression were cultured under the two-dimensional and the three-dimensional (3D) environments. GBM cells growth was examined by cell counting, flow cytometry, western blot, and MTT assays. Invasiveness was measured using confocal microscopy in the 3D environment. Growth of U87 cells with downregulated EGFR and ER-α36 expression was significantly reduced after treatment with 1 µM, 3 µM, and 5 µM of SNG162; growth inhibition in U251 cells was more potent than in U87 cells, although the expression level of ER-α36 in U251 cells was lower than in U87 cells. We found that 1 μM SNG162 suppressed E2-induced MAPK/ERK pathway activation in U87 cells. We also showed that SNG162 inhibited U87 cells invasion; however, it did not significantly affect U251 and U87-36KD cells invasion using the 3D culture method. Finally, we determined that ER-α36 was expressed in the nucleus of invading GBM cells, and SNG162 significantly inhibited the expression of ER-α36 in these cells. SNG162 inhibited the expression of EGFR on cell membranes of non-invasive GBM cells. These results suggest that SNG162 could be a therapeutic agent for GBM by targeting ER-α36.
Collapse
Affiliation(s)
- Hongyan Li
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China
| | - Nan Ge
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xin Guan
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China; Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chao Han
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liming Shen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mengmeng Chen
- Qingdao Re-store Life Science Co., Ltd., Qingdao, Shandong, China
| | - Bingqiang Zhang
- Qingdao Re-store Life Science Co., Ltd., Qingdao, Shandong, China
| | - Chao Qu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China; Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Wei Zou
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China; Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Qingdao Re-store Life Science Co., Ltd., Qingdao, Shandong, China.
| |
Collapse
|
13
|
Pharmacological targeting of CBP/p300 drives a redox/autophagy axis leading to senescence-induced growth arrest in non-small cell lung cancer cells. Cancer Gene Ther 2023; 30:124-136. [PMID: 36117234 PMCID: PMC9842509 DOI: 10.1038/s41417-022-00524-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 01/21/2023]
Abstract
p300/CBP histone acetyltransferases (HAT) are critical transcription coactivators involved in multiple cellular activities. They act at multiple levels in non-small cell lung carcinoma (NSCLC) and appear, therefore, as promising druggable targets. Herein, we investigated the biological effects of A-485, the first selective (potent) drug-like HAT catalytic inhibitor of p300/CBP, in human NSCLC cell lines. A-485 treatment specifically reduced p300/CBP-mediated histone acetylation marks and caused growth arrest of lung cancer cells via activation of the autophagic pathway. Indeed, A-485 growth-arrested cells displayed phenotypic markers of cell senescence and failed to form colonies. Notably, disruption of autophagy by genetic and pharmacological approaches triggered apoptotic cell death. Mechanistically, A-485-induced senescence occurred through the accumulation of reactive oxygen species (ROS), which in turn resulted in DNA damage and activation of the autophagic pathway. Interestingly, ROS scavengers were able to revert senescence phenotype and restore cell viability, suggesting that ROS production had a key role in upstream events leading to growth arrest commitment. Altogether, our data provide new insights into the biological effects of the A-485 and uncover the importance of the autophagic/apoptotic response to design a new combinatorial anticancer strategy.
Collapse
|
14
|
Lu Y, Gao Y, Yang H, Hu Y, Li X. Nanomedicine-boosting icaritin-based immunotherapy of advanced hepatocellular carcinoma. Mil Med Res 2022; 9:69. [PMID: 36503490 PMCID: PMC9743634 DOI: 10.1186/s40779-022-00433-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Traditional treatments for advanced hepatocellular carcinoma (HCC), such as surgical resection, transplantation, radiofrequency ablation, and chemotherapy are unsatisfactory, and therefore the exploration of powerful therapeutic strategies is urgently needed. Immunotherapy has emerged as a promising strategy for advanced HCC treatment due to its minimal side effects and long-lasting therapeutic memory effects. Recent studies have demonstrated that icaritin could serve as an immunomodulator for effective immunotherapy of advanced HCC. Encouragingly, in 2022, icaritin soft capsules were approved by the National Medical Products Administration (NMPA) of China for the immunotherapy of advanced HCC. However, the therapeutic efficacy of icaritin in clinical practice is impaired by its poor bioavailability and unfavorable in vivo delivery efficiency. Recently, functionalized drug delivery systems including stimuli-responsive nanocarriers, cell membrane-coated nanocarriers, and living cell-nanocarrier systems have been designed to overcome the shortcomings of drugs, including the low bioavailability and limited delivery efficiency as well as side effects. Taken together, the development of icaritin-based nanomedicines is expected to further improve the immunotherapy of advanced HCC. Herein, we compared the different preparation methods for icaritin, interpreted the HCC immune microenvironment and the mechanisms underlying icaritin for treatment of advanced HCC, and discussed both the design of icaritin-based nanomedicines with high icaritin loading and the latest progress in icaritin-based nanomedicines for advanced HCC immunotherapy. Finally, the prospects to promote further clinical translation of icaritin-based nanomedicines for the immunotherapy of advanced HCC were proposed.
Collapse
Affiliation(s)
- Yi Lu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Yue Gao
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056 Aachen, Germany
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
| | - Huan Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
| | - Xin Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
15
|
Liu M, Hu T, Gou W, Chang H, Li Y, Li Y, Zuo D, Hou W, Jiao S. Exploring the pharmacological mechanisms of icaritin against nasopharyngeal carcinoma via network pharmacology and experimental validation. Front Pharmacol 2022; 13:993022. [PMID: 36467051 PMCID: PMC9715612 DOI: 10.3389/fphar.2022.993022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Icaritin is a natural product with a wide range of anti-tumor effects. However, its anti-tumor mechanism has not been thoroughly studied. This study examined the inhibitory effect of icaritin on nasopharyngeal cancer and its underlying mechanism using network pharmacology along with in vivo and in vitro experiments. Methods: MTT and clone formation assays were used to detect the effects of icaritin on the viability and proliferation of nasopharyngeal carcinoma cells, followed by the construction of a HONE1 xenograft tumor model to evaluate the anti-tumor efficacy of icaritin in vivo. A public database was used to predict prospective targets, built a protein-protein interaction (PPI) network, and analyze gene enrichment and biological processes. Based on network pharmacological data, cell cycle-related proteins were identified using western blotting. Besides, cell cycle distribution, apoptosis, and intracellular reactive oxygen species (ROS) generation were identified using flow cytometry. In addition, SA-β-Gal staining was performed to detect cellular senescence, and western blotting was performed to detect the expression of P53, P21, and other proteins to verify key signaling pathways. Results: Icaritin effectively inhibited the viability and proliferation of nasopharyngeal carcinoma cell lines and showed good anti-tumor activity against HONE1 nasopharyngeal carcinoma cells in vivo. Key protein targets, including AKT1, HSP90AA1, CDK4, CCND1, and EGFR, were screened using PPI network topology analysis. GO and KEGG analysis revealed that the cell cycle, p53 signaling, and cell senescence pathways may be the main regulatory pathways. Flow cytometry and western blot experiments showed that icaritin caused S-phase arrest and promoted an increase in ROS. SA-β-Gal staining showed that icaritin significantly induced cellular senescence, and western blotting showed that the expression of senescence-related proteins p53 and P21 increased significantly. Moreover, inhibition of ROS levels by N-Acetylcysteine (NAC) enhanced cell viability, reversed cellular senescence and reduced cellular senescence-associated protein expression. Conclusion: The results of network pharmacological analysis and in vivo and in vitro experiments showed that icaritin effectively inhibited the growth of nasopharyngeal carcinoma cells, promoted ROS production, induced cellular senescence, and inhibited tumor cells, which are related to the regulation of P53/P21 signal pathway.
Collapse
Affiliation(s)
- Minglu Liu
- Department of Medical Oncology, The First Medical Centre, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Tong Hu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China,Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenfeng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| | - Huajie Chang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| | - Yanli Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenbin Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China,*Correspondence: Shunchang Jiao, ; Wenbin Hou,
| | - Shunchang Jiao
- Department of Medical Oncology, The First Medical Centre, Chinese People’s Liberation Army General Hospital, Beijing, China,*Correspondence: Shunchang Jiao, ; Wenbin Hou,
| |
Collapse
|
16
|
Shen G, Luo Y, Yao Y, Meng G, Zhang Y, Wang Y, Xu C, Liu X, Zhang C, Ding G, Pang Y, Zhang H, Guo B. The discovery of a key prenyltransferase gene assisted by a chromosome-level Epimedium pubescens genome. FRONTIERS IN PLANT SCIENCE 2022; 13:1034943. [PMID: 36452098 PMCID: PMC9702526 DOI: 10.3389/fpls.2022.1034943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Epimedium pubescens is a species of the family Berberidaceae in the basal eudicot lineage, and a main plant source for the traditional Chinese medicine "Herba Epimedii". The current study achieved a chromosome-level genome assembly of E. pubescens with the genome size of 3.34 Gb, and the genome guided discovery of a key prenyltransferase (PT) in E. pubescens. Our comparative genomic analyses confirmed the absence of Whole Genome Triplication (WGT-γ) event shared in core eudicots and further revealed the occurrence of an ancient Whole Genome Duplication (WGD) event approximately between 66 and 81 Million Years Ago (MYA). In addition, whole genome search approach was successfully applied to identify 19 potential flavonoid PT genes and an important flavonoid PT (EpPT8) was proven to be an enzyme for the biosynthesis of medicinal compounds, icaritin and its derivatives in E. pubescens. Therefore, our results not only provide a good reference genome to conduct further molecular biological studies in Epimedium genus, but also give important clues for synthetic biology and industrial production of related prenylated flavonoids in future.
Collapse
Affiliation(s)
- Guoan Shen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yanjiao Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Institute of Animal Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Guoqing Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yuanyue Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Chaoqun Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiang Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Cheng Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Key Laboratory of Biodiversity Science and Ecological Engineering, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yongzhen Pang
- Institute of Animal Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Baolin Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Pedroza-Diaz J, Arroyave-Ospina JC, Serna Salas S, Moshage H. Modulation of Oxidative Stress-Induced Senescence during Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:antiox11050975. [PMID: 35624839 PMCID: PMC9137746 DOI: 10.3390/antiox11050975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 01/10/2023] Open
Abstract
Non-alcoholic fatty liver disease is characterized by disturbed lipid metabolism and increased oxidative stress. These conditions lead to the activation of different cellular response mechanisms, including senescence. Cellular senescence constitutes an important response to injury in the liver. Recent findings show that chronic oxidative stress can induce senescence, and this might be a driving mechanism for NAFLD progression, aggravating the disturbance of lipid metabolism, organelle dysfunction, pro-inflammatory response and hepatocellular damage. In this context, the modulation of cellular senescence can be beneficial to ameliorate oxidative stress-related damage during NAFLD progression. This review focuses on the role of oxidative stress and senescence in the mechanisms leading to NAFLD and discusses the possibilities to modulate senescence as a therapeutic strategy in the treatment of NAFLD.
Collapse
Affiliation(s)
- Johanna Pedroza-Diaz
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Grupo de Investigación e Innovación Biomédica GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050536, Colombia
| | - Johanna C. Arroyave-Ospina
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Correspondence:
| | - Sandra Serna Salas
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| | - Han Moshage
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| |
Collapse
|
18
|
Li K, Xiao K, Zhu S, Wang Y, Wang W. Chinese Herbal Medicine for Primary Liver Cancer Therapy: Perspectives and Challenges. Front Pharmacol 2022; 13:889799. [PMID: 35600861 PMCID: PMC9117702 DOI: 10.3389/fphar.2022.889799] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/21/2022] [Indexed: 12/17/2022] Open
Abstract
Primary liver cancer (PLC) is one of the most common solid malignancies. However, PLC drug development has been slow, and first-line treatments are still needed; thus, studies exploring and developing alternative strategies for effective PLC treatment are urgently needed. Chinese herbal medicine (CHM) has long been applied in the clinic due to its advantages of low toxicity and targeting of multiple factors and pathways, and it has great potential for the development of novel natural drugs against PLC. Purpose: This review aims to provide an update on the pharmacological mechanisms of Chinese patent medicines (CPMs) and the latest CHM-derived compounds for the treatment of PLC and relevant clinical evaluations. Materials and Methods: A systematic search of English literature databases, Chinese literature, the Clinical Trials Registry Platform, and the Chinese Clinical Trial Registry for studies of CHMs for PLC treatment was performed. Results: In this review, we summarize the clinical trials and mechanisms of CPMs for PLC treatment that have entered the clinic with the approval of the Chinese medicine regulatory authority. These CPMs included Huaier granules, Ganfule granules, Fufang Banmao capsules, Jinlong capsules, Brucea javanica oil emulsions, and compound kushen injections. We also summarize the latest in vivo, in vitro, and clinical studies of CHM-derived compounds against PLC: icaritin and ginsenoside Rg3. Dilemmas facing the development of CHMs, such as drug toxicity and low oral availability, and future developments are also discussed. Conclusion: This review provides a deeper the understanding of CHMs as PLC treatments and provides ideas for the development of new natural drugs against PLC.
Collapse
Affiliation(s)
- Kexin Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Kunmin Xiao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yong Wang, ; Wei Wang,
| | - Wei Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Institute of Prescription and Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provinvial Key Laboratory of TCM Pathogenesis and Prescriptions of Heart and Spleen Diseases, Guangzhou, China
- *Correspondence: Yong Wang, ; Wei Wang,
| |
Collapse
|
19
|
Zhu YH, Zhang XR, Zhang Q, Chai J. Icaritin-elevated circ_0000190 suppresses the malignant progression of multiple myeloma by targeting miR-301a. Kaohsiung J Med Sci 2022; 38:447-456. [PMID: 35174633 DOI: 10.1002/kjm2.12504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/29/2021] [Accepted: 12/08/2021] [Indexed: 12/17/2022] Open
Abstract
Icaritin has potential anticancer effects on various cancers, including multiple myeloma (MM). Recent studies claim that Icaritin can regulate the expression of noncoding RNAs (ncRNAs) in cancer development. This study aimed to investigate the role of circular RNA_0000190 (circ_0000190) and functional mechanism in Icaritin-treated MM. The expression of circ_0000190 and miR-301a was detected by quantitative real-time polymerase chain reaction. Cell cycle, apoptosis, migration, and invasion were investigated using flow cytometry assay, and transwell assay, respectively. The expression of BAX, BCL2, MMP2, and CCND1 was detected by western blot. The predicted target relationship between circ_0000190 and miR-301a was validated by dual-luciferase reporter assay and RNA immunoprecipitation assay. The activation of JAK1/STAT3 pathway was examined using western blot. Circ_0000190 was strikingly downregulated in MM specimens and cell lines, and Icaritin promoted the expression of circ_0000190. In function, circ_0000190 overexpression promoted MM cell cycle arrest and apoptosis but restrained the ability of migration and invasion. Icaritin blocked the development of MM by increasing circ_0000190 expression. MiR-301a was identified as a target of circ_0000190, and miR-301a reintroduction largely abolished the effects of circ_0000190 overexpression. The activation of JAK1/STAT3 pathway was promoted by miR-301a restoration. Icaritin played anticancer effects in MM partly by enhancing the expression of circ_0000190 and regulating the circ_0000190/miR-301a pathway. This study enhanced the understanding of the mechanism of Icaritin associated with circRNAs in MM.
Collapse
Affiliation(s)
- Yu-Hui Zhu
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| | - Xin-Ru Zhang
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| | - Qi Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jin Chai
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Malla RR, Marni R, Chakraborty A. ROS-mediated pathways: potential role in hepatocellular carcinoma biology and therapy. THERANOSTICS AND PRECISION MEDICINE FOR THE MANAGEMENT OF HEPATOCELLULAR CARCINOMA, VOLUME 2 2022:321-335. [DOI: 10.1016/b978-0-323-98807-0.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
邹 亚. Clinical Application and Mechanism of Epimedium. TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.12677/tcm.2022.112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Gao L, Ouyang Y, Li R, Zhang X, Gao X, Lin S, Wang X. Icaritin Inhibits Migration and Invasion of Human Ovarian Cancer Cells via the Akt/mTOR Signaling Pathway. Front Oncol 2022; 12:843489. [PMID: 35433438 PMCID: PMC9010825 DOI: 10.3389/fonc.2022.843489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/07/2022] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal of all gynecologic malignancies with poor survival rates. Although surgical treatment and chemotherapy had advanced to improve survival, platinum-based chemoresistance remains a major hurdle in the clinical treatment of OC. The search for novel active ingredients for the treatment of drug-resistant OC is urgently needed. Here, we demonstrated that icaritin, the main active ingredient derived from the traditional Chinese herb Epimedium genus, significantly suppressed the proliferation, migration, and invasion of both drug-susceptible and cisplatin-resistant OC cells in vitro. Mechanistically, icaritin at 20 μM significantly inhibited the phosphorylation of Akt and mTOR, as well as decreased the expression of vimentin and increased the expression of E-cadherin. Our data indicate that icaritin, a prenylated flavonoid natural product, could serve as a potential inhibitor of cisplatin-resistant OC by inhibiting the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Lvfen Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuan Ouyang
- Department of Obstetrics and Gynecology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Ruobin Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xian Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xuesong Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaoqiang Lin
- Integrated Traditional and Western Medicine Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Shaoqiang Lin, ; Xiaoyu Wang,
| | - Xiaoyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Shaoqiang Lin, ; Xiaoyu Wang,
| |
Collapse
|
23
|
Li H, Liu Y, Jiang W, Xue J, Cheng Y, Wang J, Yang R, Zhang X. Icaritin promotes apoptosis and inhibits proliferation by down-regulating AFP gene expression in hepatocellular carcinoma. BMC Cancer 2021; 21:318. [PMID: 33765973 PMCID: PMC7992931 DOI: 10.1186/s12885-021-08043-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Icaritin, an active ingredient of the Chinese herb Epimedium, plays an anti-tumor role in liver cancer by inhibiting the proliferation of hepatocellular cells and promoting their apoptosis. In China, phase II and a large phase III clinical trial of icaritin reagent for the treatment of hepatocellular cancer is under-going, but the specific mechanism of icaritin action was unclear. Alpha-fetoprotein (AFP), an oncofetal protein, produced in the healthy fetal liver and yolk sac. Intracellular AFP promoted cellular proliferation and inhibited cellular apoptosis in hepatocellular carcinoma (HCC). The study was aimed to investigate the effect of icaritin on HCC through p53/AFP pathway. Methods Real-time RT PCR and western blot were used to detect p53 and AFP expression levels in HCC cells treated with icaritin. The mechanism of icaritin affecting p53 expression was verified by ubiquitination experiment, and the binding activity of icaritin on p53 in AFP promoter region was verified by luciferase experiment. EdU, MTT and flow cytometry were used to determine whether icaritin affected HCC cellular proliferation and apoptosis through p53/ AFP pathway. Expression levels of p53 and AFP in xenograft mouse model were determined by western blotting. Results Our results showed icaritin inhibited AFP expression at mRNA and protein level. AFP was also identified as the target gene of the p53 transcription factor. Icaritin abrogated murine double minute (Mdm) 2-mediated p53 ubiquitination degradation to improve the stability of p53. Up-regulated p53 protein levels then transcriptionally inhibited the AFP promoter. Icaritin-mediated decrease of AFP through Mdm2/p53 pathways inhibited HCC cellular proliferation and promoted HCC cellular apoptosis. Conclusion Our findings revealed the mechanism of icaritin in promoting apoptosis and inhibiting proliferation in liver cancer cells. The regulatory mechanism of icaritin in AFP protein down-regulation provides a theoretical and experimental basis for further research into new drugs for the treatment of liver cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08043-9.
Collapse
Affiliation(s)
- Hui Li
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, 100191, Beijing, People's Republic of China.
| | - Yujuan Liu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Wei Jiang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Junhui Xue
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Yuning Cheng
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Jiyin Wang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Ruixiang Yang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Xiaowei Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| |
Collapse
|
24
|
Immobilization of Thermostable β-Glucosidase and α-l-Rhamnosidase from Dictyoglomus thermophilum DSM3960 and Their Cooperated Biotransformation of Total Flavonoids Extract from Epimedium into Icaritin. Catal Letters 2021. [DOI: 10.1007/s10562-020-03522-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Atypical immunometabolism and metabolic reprogramming in liver cancer: Deciphering the role of gut microbiome. Adv Cancer Res 2020; 149:171-255. [PMID: 33579424 DOI: 10.1016/bs.acr.2020.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality worldwide. Much recent research has delved into understanding the underlying molecular mechanisms of HCC pathogenesis, which has revealed to be heterogenous and complex. Two major hallmarks of HCC include: (i) a hijacked immunometabolism and (ii) a reprogramming in metabolic processes. We posit that the gut microbiota is a third component in an entanglement triangle contributing to HCC progression. Besides metagenomic studies highlighting the diagnostic potential in the gut microbiota profile, recent research is pinpointing the gut microbiota as an instigator, not just a mere bystander, in HCC. In this chapter, we discuss mechanistic insights on atypical immunometabolism and metabolic reprogramming in HCC, including the examination of tumor-associated macrophages and neutrophils, tumor-infiltrating lymphocytes (e.g., T-cell exhaustion, regulatory T-cells, natural killer T-cells), the Warburg effect, rewiring of the tricarboxylic acid cycle, and glutamine addiction. We further discuss the potential involvement of the gut microbiota in these characteristics of hepatocarcinogenesis. An immediate highlight is that microbiota metabolites (e.g., short chain fatty acids, secondary bile acids) can impair anti-tumor responses, which aggravates HCC. Lastly, we describe the rising 'new era' of immunotherapies (e.g., immune checkpoint inhibitors, adoptive T-cell transfer) and discuss for the potential incorporation of gut microbiota targeted therapeutics (e.g., probiotics, fecal microbiota transplantation) to alleviate HCC. Altogether, this chapter invigorates for continuous research to decipher the role of gut microbiome in HCC from its influence on immunometabolism and metabolic reprogramming.
Collapse
|
26
|
Liu Y, Yang S, Wang K, Lu J, Bao X, Wang R, Qiu Y, Wang T, Yu H. Cellular senescence and cancer: Focusing on traditional Chinese medicine and natural products. Cell Prolif 2020; 53:e12894. [PMID: 32881115 PMCID: PMC7574878 DOI: 10.1111/cpr.12894] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is the principal cause of death and a dominant public health problem which seriously threatening human life. Among various ways to treat cancer, traditional Chinese medicine (TCM) and natural products have outstanding anti‐cancer effects with their unique advantages of high efficiency and minimal side effects. Cell senescence is a physiological process of cell growth stagnation triggered by stress, which is an important line of defence against tumour development. In recent years, active ingredients of TCM and natural products, as an interesting research hotspot, can induce cell senescence to suppress the occurrence and development of tumours, by inhibiting telomerase activity, triggering DNA damage, inducing SASP, and activating or inactivating oncogenes. In this paper, the recent research progress on the main compounds derived from TCM and natural products that play anti‐cancer roles by inducing cell senescence is systematically reviewed, aiming to provide a reference for the clinical treatment of pro‐senescent cancer.
Collapse
Affiliation(s)
- Yiman Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shenshen Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kailong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaomei Bao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
27
|
Total body irradiation-induced colon damage is prevented by nitrate-mediated suppression of oxidative stress and homeostasis of the gut microbiome. Nitric Oxide 2020; 102:1-11. [PMID: 32470598 DOI: 10.1016/j.niox.2020.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Inorganic dietary nitrate plays vital roles in biological functions via the exogenous NO3-/NO2-/NO pathway under hypoxia and ischemia. We previously verified the antioxidative effects of inorganic nitrate in a mouse model of total body irradiation (TBI). Accordingly, in this study, we evaluated the effects of inorganic nitrate on prevention of TBI-induced colon injury and dysbiosis of the gut microbiome. Nitrate significantly rescued the abnormal biological indexes (body weight, white blood cell, red blood cell, platelet, hemoglobin level and intestinal canal lengths) induced by TBI. Then, we detected oxidative stress and DNA damage indexes (phospho-histone H2AX and p53 binding protein 1), which were both increased by irradiation (IR) and alleviated by nitrate. IR-induced apoptosis and senescence were ameliorated by inorganic nitrate. The distribution of the gut microbiome differed for mice with TBI and those receiving inorganic nitrate. The average abundance of Lactobacillus significantly increased, and that of Bacteroidales decreased at the genus level in the nitrate group compared with that in the IR alone group. At 30 days after TBI, the abundances of Bacteroides and Faecalibaculum decreased, whereas that of Lactobacillus increased in the IR + nitrate group compared with that in the IR alone group. Inorganic nitrate efficiently prevents TBI-induced colon epithelium injury and maintains the homeostasis of the gut microbiome. Thus, our results showed that inorganic nitrate might be a promising treatment for TBI induced colon injury.
Collapse
|
28
|
Bailly C. Molecular and cellular basis of the anticancer activity of the prenylated flavonoid icaritin in hepatocellular carcinoma. Chem Biol Interact 2020; 325:109124. [PMID: 32437694 DOI: 10.1016/j.cbi.2020.109124] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
The prenylated flavonoid icaritin (ICT) is currently undergoing phase 3 clinical trial for the treatment of advanced hepatocellular carcinoma (HCC), based on a solid array of preclinical and clinical data. The antitumor activity originates from the capacity of the drug to modulate several signaling effectors in cancer cells, mainly the estrogen receptor splice variant ERα36, the transcription factors STAT3 and NFκB, and the chemokine receptor CXCR4. Recent studies have implicated additional components, including different microRNAs, the generation of reactive oxygen species and the targeting of sphingosine kinase-1. ICT also engages the RAGE-HMGB1 signaling route and modulates the apoptosis/autophagy crosstalk to promote its anticancer activity. In addition, ICT exerts profound changes on the tumor microenvironment to favor an immune-response. Collectively, these multiple biochemical and cellular characteristics confer to ICT a robust activity profile which can be exploited to treat HCC, as well as other cancers, including glioblastoma and onco-hematological diseases such as chronic myeloid leukemia. This review provides an update of the pharmacological properties of ICT and its metabolic characteristics. It also addresses the design of derivatives, including both natural products and synthetic molecules, such as SNG1153 also in clinical trial. The prenylated flavonoid ICT deserves attention as a multifunctional natural product potentially useful to improve the treatment of advanced hepatocellular carcinoma.
Collapse
|
29
|
Kumar R, Awasthi M, Sharma A, Padwad Y, Sharma R. Berberine induces dose-dependent quiescence and apoptosis in A549 cancer cells by modulating cell cyclins and inflammation independent of mTOR pathway. Life Sci 2020; 244:117346. [PMID: 31978448 DOI: 10.1016/j.lfs.2020.117346] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022]
Abstract
AIM Emerging studies have shown that application of low concentration of bioactive phytomolecules can confer anti-proliferative effects on tumour cells by inducing senescence pathways. The alkaloid berberine is recognized for its anti-cancer attributes but its potential to induce senescence in tumour cells is least understood. MATERIALS AND METHODS The present work assessed the mechanisms pertaining to dose-dependent anti-proliferative effects of berberine in the perspective of senescence and inflammation using human non-small cell lung cancer cell line (A549). KEY FINDINGS Amongst the different tested bioactive phytomolecules, berberine treatment suppressed the proliferation of A549 cells regardless of the concentration applied. Application of low doses of berberine induced a weak SA-β-gal activity and p21WAF1 expression but did not show evidence of SASP activation due to absence of NF-κB activation and expression of proinflammatory genes. However, treatment with higher dose of berberine showed no evidence of SA-β-gal activity or p21WAF1 expression, but instead induced apoptosis and suppressed the expression of cell cyclins. The proliferative capacity of berberine treated cells was at par with control cells and no SA-β-gal activity could be observed in first generation of berberine treated cells. mTOR pathway showed no distinct activation on account of berberine treatment thereby further emphasizing that low dose of berberine induced quiescence and not senescence in A549 cells. SIGNIFICANCE Taken together, our observations indicate that despite its strong anti-proliferative effects, low dose berberine treatment may only induce transient changes akin to quiescence that needs to be considered before implying pro-senescence attributes of berberine in cancer therapeutics.
Collapse
Affiliation(s)
- Ravi Kumar
- Pharmacology and Toxicology Laboratory, Food & Nutraceutical Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Mansi Awasthi
- Pharmacology and Toxicology Laboratory, Food & Nutraceutical Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Anamika Sharma
- Pharmacology and Toxicology Laboratory, Food & Nutraceutical Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Yogendra Padwad
- Pharmacology and Toxicology Laboratory, Food & Nutraceutical Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India.
| | - Rohit Sharma
- Pharmacology and Toxicology Laboratory, Food & Nutraceutical Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India.
| |
Collapse
|