1
|
Cheng CH, Hao WR, Cheng TH. Fanlian Huazhuo formula: A promising therapeutic approach for metabolic associated steatotic liver disease. World J Gastroenterol 2025; 31:100250. [DOI: 10.3748/wjg.v31.i1.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/31/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024] Open
Abstract
This article reviews the study, “Fanlian huazhuo formula alleviates high-fat-diet-induced nonalcoholic fatty liver disease by modulating autophagy and lipid synthesis signaling pathway” published in the World Journal of Gastroenterology. The study explores the therapeutic potential of Fanlian Huazhuo formula (FLHZF) in treating metabolic-associated steatotic liver disease (MASLD), demonstrating that FLHZF reduces lipid accumulation, oxidative stress, and liver injury in MASLD models by modulating key signaling pathways involved in lipid metabolism and autophagy. This editorial emphasizes the potential of FLHZF as a treatment for MASLD and calls for further research to verify its clinical efficacy.
Collapse
Affiliation(s)
- Chun-Han Cheng
- Department of Medical Education, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Wen-Rui Hao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei 23561, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11002, Taiwan
| | - Tzu-Hurng Cheng
- Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
2
|
Zhang Z, Yue R, Wang Y, Ma L, Wang M, Chen Y. To explore the mechanism of gypenosides in the treatment of liver injury in rats based on GC-MS metabolomics and bile acid metabolism pathway. J Pharm Biomed Anal 2025; 252:116506. [PMID: 39418697 DOI: 10.1016/j.jpba.2024.116506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/16/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Gynostemma pentaphyllum is a herbaceous vine of Cucurbitaceae family, and its principal pharmacological components, gypenosides (GPs), have been proved to be effective in various liver diseases. However, the mechanisms of GPs on liver injury are still to be studied for further. This investigation utilized the CCl4-induced liver injury rat model (LI) to comprehensively explore the mechanism of action of GPs in the treatment of chemical liver injury by comparing the metabolomic changes in four groups rats. In this study, the therapeutic efficacy of GPs in a liver injury rat model induced by weekly gavage of CCl4 was evaluated by inflammatory factors, oxidative damage indexes, and histopathological sections. Then, GC-MS technology was used to identify the metabolic profile of GPs in treating liver injury. Finally, the content variation of metabolites (BAs and SCFAs) was measured to elucidate the mechanism of GPs in the treatment of CCl4-induced liver injury. After 8 weeks of administration, GPs effectively reduced the degree of LI and appeared a substantial tendency of reversing in the levels of MDA, GSH, CYP7E1, CYP7A1 and CYP27A1. Untargeted metabolomics suggested that GPs may play a role in BAs and SCFAs metabolism. Targeted metabolomics and ELISA confirmed the key role of GPs in increasing SCFAs levels and regulating BAs metabolism. Overall, this study indicated that GPs can alleviate CCl4-induced liver injury. And GPs may exert beneficial effects on LI by affecting their metabolites (SCFAs and BAs).
Collapse
Affiliation(s)
- Zhiru Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Rong Yue
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yibo Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Lizhou Ma
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yu Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
3
|
Li B, Jiang XF, Dong YJ, Zhang YP, He XLS, Zhou CL, Ding YY, Wang N, Wang YB, Cheng WQ, Jiang NH, Su J, Lv GY, Chen SH. The effects of Atractylodes macrocephala extract BZEP self-microemulsion based on gut-liver axis HDL/LPS signaling pathway to ameliorate metabolic dysfunction-associated fatty liver disease in rats. Biomed Pharmacother 2024; 175:116519. [PMID: 38663104 DOI: 10.1016/j.biopha.2024.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 06/03/2024] Open
Abstract
OBJECTIVES To elucidate the therapeutic effects and mechanisms of Atractylodes macrocephala extract crystallize (BZEP) and BZEP self-microemulsion (BZEPWR) on metabolic dysfunction-associated fatty liver disease (MAFLD) induced by "high sugar, high fat, and excessive alcohol consumption" based on the gut-liver axis HDL/LPS signaling pathway. METHODS In this study, BZEP and BZEPWR were obtained via isolation, purification, and microemulsification. Furthermore, an anthropomorphic MAFLD rat model of "high sugar, high fat, and excessive alcohol consumption" was established. The therapeutic effects of BZEPWR and BZEP on the model rats were evaluated in terms of liver function, lipid metabolism (especially HDL-C), serum antioxidant indexes, and liver and intestinal pathophysiology. To determine the lipoproteins in the serum sample, the amplitudes of a plurality of NMR spectra were derived via deconvolution of the composite methyl signal envelope to yield HDL-C subclass concentrations. The changes in intestinal flora were detected via 16 S rRNA gene sequencing. In addition, the gut-liver axis HDL/LPS signaling pathway was validated using immunohistochemistry, immunofluorescence, and western blot. RESULTS The findings established that BZEPWR and BZEP improved animal signs, serum levels of liver enzymes (ALT and AST), lipid metabolism (TC, TG, HDL-C, and LDL-C), and antioxidant indexes (GSH, SOD, and ROS). In addition, pathological damage to the liver, colon, and ileum was ameliorated, and the intestinal barrier function of the model rats was restored. At the genus level, BZEPWR and BZEP exerted positive effects on beneficial bacteria, such as Lactobacillus and norank_f__Muribaculaceae, and inhibitory effects on harmful bacteria, such as unclassified_f__Lachnospiraceae and Blautia. Twenty HDL-C subspecies were detected, and their levels were differentially increased in both BZEPWR and BZEP groups, with BZEPWR exhibiting a stronger elevating effect on specific HDL-C subspecies. Also, the gut-liver axis HDL/LPS signaling pathway was studied, which indicated that BZEPWR and BZEP significantly increased the expressions of ABCA1, LXR, occludin, and claudin-1 proteins in the gut and serum levels of HDL-C. Concomitantly, the levels of LPS in the serum and TLR4, Myd88, and NF-κB proteins in the liver were decreased. CONCLUSION BZEPWR and BZEP exert restorative and reversal effects on the pathophysiological damage to the gut-liver axis in MAFLD rats, and the therapeutic mechanism may be related to the regulation of the intestinal flora and the HDL/LPS signaling pathway.
Collapse
Affiliation(s)
- Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Xiao-Feng Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China
| | - Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Yi-Piao Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Xing-Li-Shang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Cheng-Liang Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Yan-Yan Ding
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Ning Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Yi-Bin Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Wan-Qi Cheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Ning-Hua Jiang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China.
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang 310014, China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang 310014, China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China.
| |
Collapse
|
4
|
Han L, Wu L, Yin Q, Li L, Zheng X, Du S, Huang X, Bai L, Wang Y, Bian Y. A promising therapy for fatty liver disease: PCSK9 inhibitors. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155505. [PMID: 38547616 DOI: 10.1016/j.phymed.2024.155505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Fatty liver disease (FLD) poses a significant global health concern worldwide, with its classification into nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) contingent upon the presence or absence of chronic and excessive alcohol consumption. The absence of specific therapeutic interventions tailored to FLD at various stages of the disease renders its treatment exceptionally arduous. Despite the fact that FLD and hyperlipidemia are intimately associated, there is still debate over how lipid-lowering medications affect FLD. Proprotein Convertase Subtilisin/ Kexin type 9 (PCSK9) is a serine protease predominantly synthesized in the liver, which has a crucial impact on cholesterol homeostasis. Research has confirmed that PCSK9 inhibitors have prominent lipid-lowering properties and substantial clinical effectiveness, thereby justifying the need for additional exploration of their potential role in FLD. PURPOSE Through a comprehensive literature search, this review is to identify the relationship and related mechanisms between PCSK9, lipid metabolism and FLD. Additionally, it will assess the pharmacological mechanism and applicability of PCSK9 inhibitors (including naturally occurring PCSK9 inhibitors, such as conventional herbal medicines) for the treatment of FLD and serve as a guide for updating the treatment protocol for such conditions. METHODS A comprehensive literature search was conducted using several electronic databases, including Pubmed, Medline, Embase, CNKI, Wanfang database and ClinicalTrials.gov, from the inception of the database to 30 Jan 2024. Key words used in the literature search were "fatty liver", "hepatic steatosis", "PCSK9", "traditional Chinese medicine", "herb medicine", "botanical medicine", "clinical trial", "vivo", "vitro", linked with AND/OR. Most of the included studies were within five years. RESULTS PCSK9 participates in the regulation of circulating lipids via both LDLR dependent and independent pathways, and there is a potential association with de novo lipogenesis. Major clinical studies have demonstrated a positive correlation between circulating PCSK9 levels and the severity of NAFLD, with elevated levels of circulating PCSK9 observed in individuals exposed to chronic alcohol. Numerous studies have demonstrated the potential of PCSK9 inhibitors to ameliorate non-alcoholic steatohepatitis (NASH), potentially completely alleviate liver steatosis, and diminish liver impairment. In animal experiments, PCSK9 inhibitors have exhibited efficacy in alleviating alcoholic induced liver lipid accumulation and hepatitis. Traditional Chinese medicine such as berberine, curcumin, resveratrol, piceatannol, sauchinone, lupin, quercetin, salidroside, ginkgolide, tanshinone, lunasin, Capsella bursa-pastoris, gypenosides, and Morus alba leaves are the main natural PCS9 inhibitors. Excitingly, by inhibiting transcription, reducing secretion, direct targeting and other pathways, traditional Chinese medicine exert inhibitory effects on PCSK9, thereby exerting potential FLD therapeutic effects. CONCLUSION PCSK9 plays an important role in the development of FLD, and PCSK9 inhibitors have demonstrated beneficial effects on lipid regulation and FLD in both preclinical and clinical studies. In addition, some traditional Chinese medicines have improved the disease progression of FLD by inhibiting PCSK9 and anti-inflammatory and antioxidant effects. Consequently, the inhibition of PCSK9 appears to be a promising therapeutic strategy for FLD.
Collapse
Affiliation(s)
- Lizhu Han
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Liuyun Wu
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qinan Yin
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lian Li
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xingyue Zheng
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shan Du
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xuefei Huang
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lan Bai
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu 610072, China.
| | - Yuan Bian
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
5
|
Xie P, Luo HT, Pei WJ, Xiao MY, Li FF, Gu YL, Piao XL. Saponins derived from Gynostemma pentaphyllum regulate triglyceride and cholesterol metabolism and the mechanisms: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117186. [PMID: 37722515 DOI: 10.1016/j.jep.2023.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) can be used for both medicinal and tea and has lipid-lowering properties. Modern research has shown that its main bioactive components are flavonoids and saponins. It has many beneficial effects such as hypolipidemic, anti-cancer, cardioprotective, hepatoprotective, neuroprotective, anti-diabetic and anti-inflammatory. AIMS OF THE REVIEW This review aimed to summarize its anti-glycolipid metabolic models and mechanisms are reviewed to facilitate a deeper understanding of the mechanism in lowering lipids. MATERIALS AND METHODS Information related to lipid lowering in G. pentaphyllum was collated by reviewing the relevant literature in the PubMed database from 1985 to 2023. RESULTS Only 101 G. pentaphyllum compounds have been initially explored for their hypolipidemic activity. There are cell models, animal models and human subjects for lipid-lowering of it. It reduced triglyceride level via PPAR/UCP-1/PGC-1α/PRDM16 and (SREBP-1c)-ACC/FAS-CPT1 signal pathways. Cholesterol-lowering effects via (SREBP-2)-HMGCR, PCSK9-LDLR and bile acid biosynthetic pathways. Activation of adenosine 5'-monophosphate-activated protein kinase (AMPK) is a key factor in the regulation of glycolipid metabolism in G. pentaphyllum. Other pathways of action of G. pentaphyllum in regulating glucolipid metabolism are also discussed in this paper. CONCLUSION To date, more than 328 saponins have been isolated and identified in Gynostemma. Further studies on these components, including molecular mechanisms and in vivo metabolic regulation, need to be further confirmed. G. pentaphyllum has the potential to be developed into drugs or functional foods, but further research is needed.
Collapse
Affiliation(s)
- Peng Xie
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Hao-Tian Luo
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Wen-Jing Pei
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Man-Yu Xiao
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Fang-Fang Li
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yu-Long Gu
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
6
|
Zhang Y, Chen L, Fei Y, Chen P, Pan L. Qingrexiaoji Recipe Regulates the Differentiation of M2 TAM via miR-29 in GC. Comb Chem High Throughput Screen 2024; 27:2764-2775. [PMID: 39428821 DOI: 10.2174/0113862073263776231009115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/22/2024]
Abstract
BACKGROUND Gastric cancer, one of the most familiar adenocarcinomas of the gastrointestinal tract, ranks third in the world in cancer-related deaths. Traditional Chinese medicine can suppress the growth of tumors, and the underlying mechanism may be associated with the tumor microenvironment. Here, we investigated the anti-cancer effects of the Qingrexiaoji recipe on gastric cancer and the underlying molecular mechanism. METHODS An in vivo nude mouse model was established, and the expression of CD206, CD80, and M2 phenotype-related proteins (Arg-1, Fizz1) was obtained by flow cytometry and western blotting. The expressions of the M2 phenotype-related cytokines were examined by ELISA. RESULTS Qingrexiaoji recipe inhibited gastric tumor growth and downregulated the expression of CD206, IFN-γ, IL-13, IL-4, and TNF-α in vivo. Qingrexiaoji recipe deceased M2 phenotypic polarization by upregulating microRNA (miR)-29a-3p level. Luciferase activity assays showed that HDAC4 is a potential target of miR-29a-3p. In cells co-transfected with HDAC4 siRNA and miR-29a-3p inhibitor and treated with IL-4 and Qingrexiaoji recipe, the miR-29a-3p inhibitorinduced increase of M2 phenotypic polarization was reversed. CONCLUSION In summary, these results suggested that the Qingrexiaoji recipe regulated M2 macrophage polarization by regulating miR-29a-3p/HDAC4, providing a different and innovative treatment for gastric cancer.
Collapse
Affiliation(s)
- Yiqiong Zhang
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Luting Chen
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Wenling, Taizhou, Zhejiang, China
| | - Yuchang Fei
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Jiashan, Jiaxing, Zhejiang, China
| | - Peifeng Chen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lei Pan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Ren G, Bai C, Yi S, Cong Q, Zhu Y. Mechanisms and Therapeutic Strategies for MAFLD Targeting TLR4 Signaling Pathways. J Innate Immun 2023; 16:45-55. [PMID: 38128497 PMCID: PMC10783892 DOI: 10.1159/000535524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Metabolic-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases. The underlying pathophysiological mechanisms are intricate and involve various factors. Unfortunately, there is currently a lack of available effective treatment options. Toll-like receptors (TLRs) are a group of pattern-recognition receptors that are responsible for activating the innate immune system. Research has demonstrated that TLR4 plays a pivotal role in the progression of MAFLD by facilitating the pathophysiological mechanisms. SUMMARY Lipid peroxidation, pro-inflammatory factors, insulin resistance (IR), and dysbiosis of intestinal microbiota are considered as the pathogenic mechanisms of MAFLD. This review summarizes the impact of TLR4 signaling pathways on the progression of MAFLD, specifically in relation to lipid metabolic disorders, IR, oxidative stress, and gut microbiota disorders. Additionally, we emphasize the potential therapeutic approaches for MAFLD that target TLR4 signaling pathways, including the use of plant extracts, traditional Chinese medicines, probiotics, pharmaceuticals such as peroxisome proliferator-activated receptor antagonists and farnesol X agonists, and lifestyle modifications such as dietary changes and exercise also considered. Furthermore, TLR4 signaling pathways have also been linked to the lean MAFLD. KEY MESSAGES TLR4 plays a crucial role in MAFLD by triggering IR, buildup of lipids, imbalance in gut microbiota, oxidative stress, and initiation of immune responses. The mitigation of MAFLD can be accomplished by suppressing the TLR4 signaling pathway. In the future, it could potentially emerge as a therapeutic target for the condition.
Collapse
Affiliation(s)
- Guanghui Ren
- Department of Infectious Disease, Liver Disease Center of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China,
| | - Changchuan Bai
- Dalian Hospital of Traditional Chinese Medicine, Dalian, China
| | - Sitong Yi
- Department of Infectious Disease, Liver Disease Center of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingwei Cong
- Department of Infectious Disease, Liver Disease Center of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhu
- Department of Infectious Disease, Liver Disease Center of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|