1
|
Wang H, Concannon P, Ge Y. Roles of TULA-family proteins in T cells and autoimmune diseases. Genes Immun 2024:10.1038/s41435-024-00300-8. [PMID: 39558087 DOI: 10.1038/s41435-024-00300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/20/2024]
Abstract
The T cell Ubiquitin Ligand (TULA) protein family contains two members, UBASH3A and UBASH3B, that display similarities in protein sequence and domain structure. Both TULA proteins act to repress T cell activation via a combination of overlapping and nonredundant functions. UBASH3B acts mainly as a phosphatase that suppresses proximal T cell receptor (TCR) signaling. In contrast, UBASH3A acts primarily as an adaptor protein, interacting with other proteins (including UBASH3B) in T cells upon TCR stimulation and resulting in downregulation of TCR signaling and NF-κB signaling. Human genetic and functional studies have revealed another notable distinction between UBASH3A and UBASH3B: numerous genome-wide association studies have identified statistically significant associations between genetic variants in and around the UBASH3A gene and at least seven different autoimmune diseases, suggesting a key role of UBASH3A in autoimmunity. However, the evidence for an independent role of UBASH3B in autoimmune disease is limited. This review summarizes key findings regarding the roles of TULA proteins in T cell biology and autoimmunity, highlights the commonalities and differences between UBASH3A and UBASH3B, and speculates on the individual and joint effects of TULA proteins on T cell signaling.
Collapse
Affiliation(s)
- Hua Wang
- International Center for Genetic Engineering and Biotechnology, China Regional Research Center, Taizhou, Jiangsu Province, China
| | - Patrick Concannon
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Yan Ge
- International Center for Genetic Engineering and Biotechnology, China Regional Research Center, Taizhou, Jiangsu Province, China.
| |
Collapse
|
2
|
Tsygankov AY. Role of Tula-Family Proteins in Cell Signaling and Activation: Advances and Challenges. Int J Mol Sci 2024; 25:4434. [PMID: 38674019 PMCID: PMC11050124 DOI: 10.3390/ijms25084434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
This Special Issue entitled "Role of Tula-Family Proteins in Cell Signaling and Activation: Advances and Challenges" is focused on a relatively novel vertebrate gene/protein family termed alternatively TULA, UBASH3, or STS [...].
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
3
|
Zaman A, French JB, Carpino N. The Sts Proteins: Modulators of Host Immunity. Int J Mol Sci 2023; 24:8834. [PMID: 37240179 PMCID: PMC10218301 DOI: 10.3390/ijms24108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The suppressor of TCR signaling (Sts) proteins, Sts-1 and Sts-2, are a pair of closely related signaling molecules that belong to the histidine phosphatase (HP) family of enzymes by virtue of an evolutionarily conserved C-terminal phosphatase domain. HPs derive their name from a conserved histidine that is important for catalytic activity and the current evidence indicates that the Sts HP domain plays a critical functional role. Sts-1HP has been shown to possess a readily measurable protein tyrosine phosphatase activity that regulates a number of important tyrosine-kinase-mediated signaling pathways. The in vitro catalytic activity of Sts-2HP is significantly lower than that of Sts-1HP, and its signaling role is less characterized. The highly conserved unique structure of the Sts proteins, in which additional domains, including one that exhibits a novel phosphodiesterase activity, are juxtaposed together with the phosphatase domain, suggesting that Sts-1 and -2 occupy a specialized intracellular signaling niche. To date, the analysis of Sts function has centered predominately around the role of Sts-1 and -2 in regulating host immunity and other responses associated with cells of hematopoietic origin. This includes their negative regulatory role in T cells, platelets, mast cells and other cell types, as well as their less defined roles in regulating host responses to microbial infection. Regarding the latter, the use of a mouse model lacking Sts expression has been used to demonstrate that Sts contributes non-redundantly to the regulation of host immunity toward a fungal pathogen (C. albicans) and a Gram-negative bacterial pathogen (F. tularensis). In particular, Sts-/- animals demonstrate significant resistance to lethal infections of both pathogens, a phenotype that is correlated with some heightened anti-microbial responses of phagocytes derived from mutant mice. Altogether, the past several years have seen steady progress in our understanding of Sts biology.
Collapse
Affiliation(s)
- Anika Zaman
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Jarrod B. French
- Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912, USA;
| | - Nick Carpino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
4
|
Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nat Rev Drug Discov 2023; 22:273-294. [PMID: 36693907 PMCID: PMC9872771 DOI: 10.1038/s41573-022-00618-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/25/2023]
Abstract
Protein phosphatases act as key regulators of multiple important cellular processes and are attractive therapeutic targets for various diseases. Although extensive effort has been dedicated to phosphatase-targeted drug discovery, early expeditions for competitive phosphatase inhibitors were plagued by druggability issues, leading to the stigmatization of phosphatases as difficult targets. Despite challenges, persistent efforts have led to the identification of several drug-like, non-competitive modulators of some of these enzymes - including SH2 domain-containing protein tyrosine phosphatase 2, protein tyrosine phosphatase 1B, vascular endothelial protein tyrosine phosphatase and protein phosphatase 1 - reigniting interest in therapeutic targeting of phosphatases. Here, we discuss recent progress in phosphatase drug discovery, with emphasis on the development of selective modulators that exhibit biological activity. The roles and regulation of protein phosphatases in immune cells and their potential as powerful targets for immuno-oncology and autoimmunity indications are assessed.
Collapse
|
5
|
Kunapuli SP, Tsygankov AY. TULA-Family Regulators of Platelet Activation. Int J Mol Sci 2022; 23:ijms232314910. [PMID: 36499237 PMCID: PMC9736690 DOI: 10.3390/ijms232314910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
The two members of the UBASH3/TULA/STS-protein family have been shown to critically regulate cellular processes in multiple biological systems. The regulatory function of TULA-2 (also known as UBASH3B or STS-1) in platelets is one of the best examples of the involvement of UBASH3/TULA/STS proteins in cellular regulation. TULA-2 negatively regulates platelet signaling mediated by ITAM- and hemITAM-containing membrane receptors that are dependent on the protein tyrosine kinase Syk, which currently represents the best-known dephosphorylation target of TULA-2. The biological responses of platelets to collagen and other physiological agonists are significantly downregulated as a result. The protein structure, enzymatic activity and regulatory functions of UBASH3/TULA/STS proteins in the context of platelet responses and their regulation are discussed in this review.
Collapse
|
6
|
Yamagata K, Nakayamada S, Zhang T, Nguyen AP, Ohkubo N, Iwata S, Kato S, Tanaka Y. IL-6 production through repression of UBASH3A gene via epigenetic dysregulation of super-enhancer in CD4 + T cells in rheumatoid arthritis. Inflamm Regen 2022; 42:46. [PMID: 36324153 PMCID: PMC9632101 DOI: 10.1186/s41232-022-00231-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is associated with immune dysfunction. UBASH3A as a negative regulator of T cell receptors (TCRs) signaling is a susceptible factor in RA. The aim of this study was to determine the role of UBASH3A in RA pathogenesis, by assessing the role of super-enhancer (SE) in the control of UBASH3A expression in CD4+ T cells and the contribution of the latter in proinflammatory cytokine production in patients with RA. Methods UBASH3A mRNA and protein levels were quantified by PCR and western blotting, respectively. The cells were treated with a locked nucleic acid to inhibit enhancer RNA (eRNA) expression. Chromatin immunoprecipitation was used to identify the factors recruited to UBASH3A loci displaying SE architecture. CD4+ T cells were transfected with UBASH3A plasmids, and cytokine levels were measured by a cytometric bead array. Results UBASH3A was extracted as a RA susceptibility gene associated with SNPs in the SEs that are highly expressed in CD4+ T cells by in silico screening. UBASH3A mRNA and protein expression levels were lower in CD4+ T cells of RA patients than in the control. eRNA_1 and eRNA_3 knockdown reduced UBASH3A mRNA levels. RA patients exhibited accumulation of BTB and CNC homology 2 (BACH2), the silencing transcription factor, at the UBASH3A loci in CD4+ T cells, but not the SE-defining factor, mediator complex subunit 1 (MED1)/bromodomain 4 (BRD4). However, opposite changes were observed in the control. Stimulation of TCRs expressed on CD4+ T cells of RA patients resulted in interleukin (IL)-6 production, while UBASH3A over-expression significantly inhibited the production. Conclusions In RA, transcription of UBASH3A is suppressed via epigenetic regulation of SE in CD4+ T cells. Low UBASH3A levels result in excessive TCR signal activation with subsequent enhancement of IL-6 production. Supplementary Information The online version contains supplementary material available at 10.1186/s41232-022-00231-9.
Collapse
Affiliation(s)
- Kaoru Yamagata
- grid.271052.30000 0004 0374 5913The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Shingo Nakayamada
- grid.271052.30000 0004 0374 5913The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Tong Zhang
- grid.271052.30000 0004 0374 5913The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Anh Phuong Nguyen
- grid.271052.30000 0004 0374 5913The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Naoyuki Ohkubo
- grid.271052.30000 0004 0374 5913The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Shigeru Iwata
- grid.271052.30000 0004 0374 5913The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Shigeaki Kato
- grid.411789.20000 0004 0371 1051Graduate School of Life Science and Engineering, Iryo Sosei University, Iwaki, Fukushima, 970-8551, Japan
| | - Yoshiya Tanaka
- grid.271052.30000 0004 0374 5913The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, Fukuoka, 807-8555 Japan
| |
Collapse
|
7
|
Tsygankov AY. TULA proteins as signaling regulators. Cell Signal 2019; 65:109424. [PMID: 31639493 DOI: 10.1016/j.cellsig.2019.109424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
Abstract
Two members of the UBASH3/STS/TULA family exhibit a unique protein domain structure, which includes a histidine phosphatase domain, and play a key role in regulating cellular signaling. UBASH3A/STS-2/TULA is mostly a lymphoid protein, while UBASH3B/STS-1/TULA-2 is expressed ubiquitously. Dephosphorylation of tyrosine-phosphorylated proteins by TULA-2 and, probably to a lesser extent, by TULA critically contribute to the molecular basis of their regulatory effect. The notable differences between the effects of the two family members on cellular signaling and activation are likely to be linked to the difference between their specific enzymatic activities. However, these differences might also be related to the functions of their domains other than the phosphatase domain and independent of their phosphatase activity. The down-regulation of the Syk/Zap-70-mediated signaling, which to-date appears to be the best-studied regulatory effect of TULA family, is discussed in detail in this publication.
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Fels Institute for Cancer Research and Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, 3400 N. Broad Street, Philadelphia, PA, 19140, United States.
| |
Collapse
|