1
|
Zhang S, Ma J, Ma Y, Yi J, Wang B, Wang H, Yang Q, Zhang K, Yan X, Sun D, You J. Engineering Probiotics for Diabetes Management: Advances, Challenges, and Future Directions in Translational Microbiology. Int J Nanomedicine 2024; 19:10917-10940. [PMID: 39493275 PMCID: PMC11530765 DOI: 10.2147/ijn.s492651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Background Diabetes Mellitus (DM) is a substantial health concern worldwide, and its incidence is progressively escalating. Conventional pharmacological interventions frequently entail undesirable side effects, and while probiotics offer benefits, they are hindered by constraints such as diminished stability and effectiveness within the gastrointestinal milieu. Given these complications, the advent of bioengineered probiotics is a promising alternative for DM management. Aim of Review The objective of this review is to provide an exhaustive synthesis of the most recent studies on the use of engineered probiotics in the management of DM. This study aimed to clarify the mechanisms through which these probiotics function, evaluate their clinical effectiveness, and enhance public awareness of their prospective advantages in the treatment of DM. Key Scientific Concepts of Review Scholarly critiques have explored diverse methodologies of probiotic engineering, including physical alteration, bioenrichment, and genetic manipulation. These techniques augment the therapeutic potency of probiotics by ameliorating gut microbiota, fortifying the intestinal barrier, modulating metabolic pathways, and regulating immune responses. Such advancements have established engineered probiotics as a credible therapeutic strategy for DM, potentially providing enhanced results compared to conventional treatments.
Collapse
Affiliation(s)
- Shenghao Zhang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Beier Wang
- Department of Hepatobiliary-Pancreatic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077, People’s Republic of China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, People’s Republic of China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| | - Jinfeng You
- Department of Obstetrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, 324000, People’s Republic of China
| |
Collapse
|
2
|
Triantafyllakou I, Clemente N, Khetavat RK, Dianzani U, Tselios T. Development of PLGA Nanoparticles with a Glycosylated Myelin Oligodendrocyte Glycoprotein Epitope (MOG 35-55) against Experimental Autoimmune Encephalomyelitis (EAE). Mol Pharm 2022; 19:3795-3805. [PMID: 36098508 DOI: 10.1021/acs.molpharmaceut.2c00277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is one of the most common neurodegenerative diseases in young adults, with early clinical symptoms seen in the central nervous system (CNS) myelin sheaths due to an attack caused by the patient's immune system. Activation of the immune system is mediated by the induction of an antigen-specific immune response involving the interaction of multiple T-cell types with antigen-presenting cells (APCs), such as dendritic cells (DCs). Antigen-specific therapeutic approaches focus on immune cells and autoantigens involved in the onset of disease symptoms, which are the main components of myelin proteins. The ability of such therapeutics to bind strongly to DCs could lead to immune system tolerance to the disease. Many modern approaches are based on peptide-based research, as, in recent years, they have been of particular interest in the development of new pharmaceuticals. The characteristics of peptides, such as short lifespan in the body and rapid hydrolysis, can be overcome by their entrapment in nanospheres, providing better pharmacokinetics and bioavailability. The present study describes the development of polymeric nanoparticles with encapsulated myelin peptide analogues involved in the development of MS, along with their biological evaluation as inhibitors of MS development and progression. In particular, particles of poly(lactic-co-glycolic) acid (PLGA) loaded with peptides based on mouse/rat (rMOG) epitope 35-55 of myelin oligodendrocyte glycoprotein (MOG) conjugated with saccharide residues were developed. More specifically, the MOG35-55 peptide was conjugated with glucosamine to promote the interaction with mannose receptors (MRs) expressed by DCs. In addition, a study of slow release (dissolution) and quantification on both initially encapsulated peptide and daily release in saline in vitro was performed, followed by an evaluation of in vivo activity of the formulation on mouse experimental autoimmune encephalomyelitis (EAE), an animal model of MS, using both prophylactic and therapeutic protocols. Our results showed that the therapeutic protocol was effective in reducing EAE clinical scores and inflammation of the central nervous system and could be an alternative and promising approach against MS inducing tolerance against the disease.
Collapse
Affiliation(s)
- Iro Triantafyllakou
- Department of Chemistry, University of Patras, 26504 Rion Patras, Greece.,Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Nausicaa Clemente
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Ravi Kumar Khetavat
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Theodore Tselios
- Department of Chemistry, University of Patras, 26504 Rion Patras, Greece
| |
Collapse
|
3
|
Inaishi J, Saisho Y. Exenatide Once Weekly for Management of Type 2 Diabetes: A Review. Clin Pharmacol 2022; 14:19-26. [PMID: 35422660 PMCID: PMC9004502 DOI: 10.2147/cpaa.s288846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Exenatide is one of the exendin-based glucagon-like peptide 1 receptor agonists (GLP-1RAs) and is currently available in two formulations, ie, exenatide twice daily (BID), a short-acting GLP-1RA, and exenatide once weekly (QW), a long-acting GLP-1RA. Clinical efficacy and safety of exenatide 2 mg QW in patients with type 2 diabetes (T2DM) has been demonstrated in the DURATION study program. Exenatide QW has been shown to achieve greater HbA1c reduction compared with exenatide BID, with less injection frequency and greater treatment satisfaction. However, exenatide QW failed to show a significant cardiovascular risk reduction in a cardiovascular outcome trial (CVOT), the EXSCEL trial, while other GLP-1RAs have shown positive CV outcomes. Furthermore, exenatide QW has been shown to be inferior to liraglutide and semaglutide with respect to HbA1c or body weight reduction in the head-to-head trials. Thus, although the long-term efficacy and safety of exenatide QW have been demonstrated, exenatide QW might be selected with lower priority within the class of GLP1-RAs for the management of T2DM, especially for patients at high CV risk. On the other hand, exenatide QW is now expected to be a treatment option for children with T2DM or patients with Parkinson’s disease. This review provides an overview of the current evidence regarding the clinical efficacy and safety of exenatide QW and discusses the current perspectives on exenatide QW for treatment of T2DM.
Collapse
Affiliation(s)
- Jun Inaishi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Saisho
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Correspondence: Yoshifumi Saisho, Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan, Tel +81-3-3353-1211 (x62383), Fax +81-3-3359-2745, Email
| |
Collapse
|
4
|
Inaishi J, Saisho Y, Watanabe Y, Tsuchiya T, Sasaki H, Masaoka T, Itoh H. Changes in glycemic variability, gastric emptying and vascular endothelial function after switching from twice-daily to once-weekly exenatide in patients with type 2 diabetes: a subpopulation analysis of the twin-exenatide study. BMC Endocr Disord 2022; 22:20. [PMID: 35016646 PMCID: PMC8751111 DOI: 10.1186/s12902-022-00932-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/03/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND We investigated the changes in blood glucose fluctuation, gastric emptying, and vascular endothelial function by switching from an exenatide twice-daily formulation (BID) to a once-weekly formulation (QW) since the evaluation of postprandial glucose excursion and glycemic variability (GV) by continuous glucose monitoring (CGM) after switching was lacking. METHODS Twenty-nine patients with type 2 diabetes treated with exenatide BID were included in this study and switched to exenatide QW for 24 weeks. GV assessed by CGM, gastric emptying (by 13 C-acetate breath test) and vascular endothelial function (by reactive hyperemia - peripheral arterial tonometry) were evaluated at baseline and 24 weeks after switching. RESULTS HbA1c decreased significantly from the baseline to week 24, while postprandial glucose levels after breakfast and dinner significantly increased (both P <0.05). However, the increases in GV indices were modest and not statistically significant at week 24. Vascular endothelial function was also not significantly changed after switching (P >0.05). Gastric emptying was significantly accelerated at week 24 (Tmax 83.4 ± 12.1 min vs. 58.2 ± 16.4 min) (P <0.001) and correlated with increased postprandial glucose levels after breakfast and dinner (both P <0.05). CONCLUSIONS Despite the increase in postprandial glucose associated with accelerated gastric emptying after switching from exenatide BID to QW, change in GV was modest and no significant deterioration in vascular endothelial function was observed after switching. These results support the superiority of treatment with exenatide QW over exenatide BID in clinical practice; however, attention should be paid to the monitoring and management of postprandial glucose levels when selecting exenatide QW. TRIAL REGISTRATION Clinical trial registry number; UMIN000016390 and jRCTs031180320 . Approval date of Registry and the Registration: December 12, 2014.
Collapse
Affiliation(s)
- Jun Inaishi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Saisho
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan.
| | - Yuusuke Watanabe
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tami Tsuchiya
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hironobu Sasaki
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuhiro Masaoka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Di Dalmazi G, Coluzzi S, Baldassarre MPA, Ghit A, Graziano G, Rossi MC, Ciappini B, Milo M, Carrieri F, Nicolucci A, Consoli A, Formoso G. Effectiveness and Tolerability of Once-Weekly GLP-1 Receptor Agonists in Clinical Practice: A Focus on Switching Between Once-Weekly Molecules in Type 2 Diabetes. Front Endocrinol (Lausanne) 2022; 13:892702. [PMID: 35909534 PMCID: PMC9335857 DOI: 10.3389/fendo.2022.892702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
AIMS This study aims to evaluate the effectiveness and tolerability of once-weekly glucagon-like peptide receptor agonists (OW GLP-1RAs) and to assess the clinical benefits of switching from one GLP-1RA to another (switchers) in a routine clinical setting. MATERIALS AND METHODS This is a retrospective, real-world cohort study, based on electronic medical records utilized in one Italian diabetes clinic. Estimated mean changes in HbA1c and body weight after 6 and 12 months from the first prescription of a long-acting GLP1-RA were evaluated using longitudinal linear mixed models for repeated measures. The effectiveness of the three long-acting GLP1-RAs was compared separately in the GLP1-RA naive and switchers cohorts, after propensity score adjustment. RESULTS Initiating a long-acting GLP1-RA was associated with statistically significant improvements in HbA1c (-1%) and body weight (-2.6 kg) after 6 months, and benefits were maintained after 12 months. In GLP1-RA naive cohort, semaglutide showed the largest effect on HbA1c (-1.55%; 95%CI, -1.77;-1.34) and body weight (-3.76 kg; 95%CI, -5.05;-2.47) at 6 months, maintained at 12 months (-1.55%; 95%CI, -1.82;-1.28 and -6.29 kg; 95%CI, -7.94;-4.63). In the switchers' cohort, statistically significant reductions at 6 months in HbA1c and body weight were documented with semaglutide and dulaglutide only, with semaglutide associated with the most marked reduction (-0.84%; 95%CI, -1.03;-0.65 and -3.43 kg; 95%, -4.67;-2.19). Dropout rates were 9.2%, 28.5%, and 41.7% in semaglutide, dulaglutide, and exenatide groups, respectively. CONCLUSIONS The effectiveness and tolerability of the OW GLP-1RAs in the real world were documented. Semaglutide was associated with the highest response without impact on safety. Clinical improvements were obtained even in switchers, especially in those switching to semaglutide.
Collapse
Affiliation(s)
- Giulia Di Dalmazi
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Endocrinology and Metabolic Disease Clinic of Pescara, Pescara, Italy
| | - Sara Coluzzi
- Endocrinology and Metabolic Disease Clinic of Pescara, Pescara, Italy
| | - Maria Pompea Antonia Baldassarre
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Amr Ghit
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Giusi Graziano
- CORESEARCH-Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Maria Chiara Rossi
- CORESEARCH-Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Beatrice Ciappini
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marica Milo
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Federica Carrieri
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Antonio Nicolucci
- CORESEARCH-Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Agostino Consoli
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Endocrinology and Metabolic Disease Clinic of Pescara, Pescara, Italy
| | - Gloria Formoso
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Endocrinology and Metabolic Disease Clinic of Pescara, Pescara, Italy
- *Correspondence: Gloria Formoso,
| |
Collapse
|
6
|
Du H, Meng X, Yao Y, Xu J. The mechanism and efficacy of GLP-1 receptor agonists in the treatment of Alzheimer's disease. Front Endocrinol (Lausanne) 2022; 13:1033479. [PMID: 36465634 PMCID: PMC9714676 DOI: 10.3389/fendo.2022.1033479] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Since type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer's disease (AD) and both have the same pathogenesis (e.g., insulin resistance), drugs used to treat T2DM have been gradually found to reduce the progression of AD in AD models. Of these drugs, glucagon-like peptide 1 receptor (GLP-1R) agonists are more effective and have fewer side effects. GLP-1R agonists have reducing neuroinflammation and oxidative stress, neurotrophic effects, decreasing Aβ deposition and tau hyperphosphorylation in AD models, which may be a potential drug for the treatment of AD. However, this needs to be verified by further clinical trials. This study aims to summarize the current information on the mechanisms and effects of GLP-1R agonists in AD.
Collapse
Affiliation(s)
- Haiyang Du
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Meng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yu Yao
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Xu
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jun Xu,
| |
Collapse
|
7
|
Tu P, Huang B, Li M, Zhang Y, Bao S, Tu N, Yang Y, Lu J. Exendin-4 may improve type 2 diabetes by modulating the epigenetic modifications of pancreatic histone H3 in STZ-induced diabetic C57BL/6 J mice. J Physiol Biochem 2021; 78:51-59. [PMID: 34410626 DOI: 10.1007/s13105-021-00835-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/05/2021] [Indexed: 01/01/2023]
Abstract
Type 2 diabetes (T2D) is a complicated systemic disease that might be improved by exendin-4, although the epigenetic role remains unclear. In the current study, C57BL/6 J mice were used to generate a T2D model, followed by treatment with exendin-4 (10 μg/kg). Histone H3K9 and H3K23 acetylation, H3K4 mono-methylation, and H3K9 di-methylation were explored by western blot analysis of pancreatic histone extracts. Real-time polymerase chain reaction (PCR) was used to examine the expression levels of pancreatic beta cell development-related genes, and chromatin immunoprecipitation (ChIP) was applied to analyze H3 and H3K9 acetylation, H3K4 mono-methylation, and H3K9 di-methylation in the promoter region of the pancreatic and duodenal homeobox 1 (Pdx1) gene. The results showed that total H3K9 di-methylation and H3K9 and H3K23 acetylation increased in pancreatic tissues of diabetic mice, whereas H3K4 mono-methylation was reduced. All of these changes could be abrogated by treatment with exendin-4. Our data indicated that T2D progression might be improved by exendin-4 treatment through the reversal of global pancreatic histone H3K9 and H3K23 acetylation, H3K4 mono-methylation, and H3K9 di-methylation. A better understanding of these epigenetic alterations may, therefore, lead to novel therapeutic strategies for T2D.
Collapse
Affiliation(s)
- Peipei Tu
- Department of Microbiology and Bioengineering, College of Life Science, Anhui Medical University, Hefei, 230032, Anhui, China.,Department of Immunology, College of Basic Medical Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Bin Huang
- Department of Orthopedic, Huaibei Miner General Hospital, Huaibei, 235000, Anhui, China
| | - Minggang Li
- Institute of Molecular Biology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yaofang Zhang
- Department of Basic, Tianjin Agricultural University, Tianjin, 300384, China
| | - Shixiang Bao
- Department of Microbiology and Bioengineering, College of Life Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Na Tu
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yanan Yang
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Jingtao Lu
- Department of Microbiology and Bioengineering, College of Life Science, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
8
|
Elkeeb R, Eid T, Yu J, Nguyen H, Atef E. Can a monthly exenatide extended release regimen provide a therapeutic and cost benefit? Biopharm Drug Dispos 2021; 42:245-251. [PMID: 33876430 DOI: 10.1002/bdd.2279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/11/2021] [Accepted: 04/11/2021] [Indexed: 11/10/2022]
Abstract
Exenatide is used to treat type 2 diabetes mellitus. The current regimen is a 2 mg extended release (ER) weekly injection. The aim of our study was to prove the efficacy of exenatide ER if administered once-monthly. The proposed monthly dose was based on an Excel simulation using pharmacokinetic parameters extracted using Plot Digitizer® (version 2.6.8) from Cirincione et al. (2017), as well as accounting for the exenatide ER formulation characteristics, in vivo and in vitro exenatide stability. A PBPK model of exenatide molecule was developed using (Simcyp® version 19) based on data from in vitro and clinical PK studies. The model was used to confirm the Excel simulation findings of the effectiveness of exenatide ER monthly in maintaining the plasma level above the minimum effective concentration (MEC). Our simulation from Excel and Simcyp® showed that the drug plasma levels of the once monthly ER dose maintained a steady state concentration (Css ) above the MEC. The simulated Excel plasma level ranged from Cmin to Cmax of 60-130ng/L, respectively. The exenatide compound was successfully modeled and used to predict the Css of the ER monthly dose. The Simcyp® simulated Css of the ER was 117 ng/L. A monthly exenatide ER dose provides a plasma level within the therapeutic range. This new proposed dose has a significant pharmacoeconomic benefit and could well improve patient adherence.
Collapse
Affiliation(s)
- Rania Elkeeb
- School of Pharmacy, West Coast University, Los Angeles, California, USA
| | - Tony Eid
- California Northstate University College of Pharmacy, Elk Grove, California, USA
| | - Janie Yu
- California Northstate University College of Pharmacy, Elk Grove, California, USA
| | - Hang Nguyen
- California Northstate University College of Pharmacy, Elk Grove, California, USA
| | - Eman Atef
- School of Pharmacy, West Coast University, Los Angeles, California, USA
| |
Collapse
|
9
|
Tanday N, Flatt PR, Irwin N. Metabolic responses and benefits of glucagon-like peptide-1 (GLP-1) receptor ligands. Br J Pharmacol 2021; 179:526-541. [PMID: 33822370 PMCID: PMC8820187 DOI: 10.1111/bph.15485] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone that has undergone a revolutionary turnaround from discovery to clinically approved therapeutic. Rapid progress in drug design and formulation has led from initial development of short- and long-acting drugs suitable for daily or weekly parenteral administration, respectively, through to the most recent approval of an orally active GLP-1 agent. The current review outlines the biological action profile of GLP-1 including the various beneficial metabolic responses in pancreatic and extra-pancreatic tissues, including the gastrointestinal tract, liver, bone and kidney as well as the reproductive cardiovascular and CNS. We then briefly consider clinically approved GLP-1 receptor ligands and recent advances in this field. Given the sustained evolution in the area of GLP-1 drug development and excellent safety profile, as well as the plethora of metabolic benefits, clinical approval for use in diseases beyond diabetes and obesity is very much conceivable.
Collapse
Affiliation(s)
- Neil Tanday
- Diabetes Research Group, Ulster University, Coleraine, UK
| | - Peter R Flatt
- Diabetes Research Group, Ulster University, Coleraine, UK
| | - Nigel Irwin
- Diabetes Research Group, Ulster University, Coleraine, UK
| |
Collapse
|
10
|
Rosendo-Silva D, Matafome P. Gut-adipose tissue crosstalk: A bridge to novel therapeutic targets in metabolic syndrome? Obes Rev 2021; 22:e13130. [PMID: 32815267 DOI: 10.1111/obr.13130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
Abstract
The gut is one of the main endocrine organs in our body, producing hormones acknowledged to play determinant roles in controlling appetite, energy balance and glucose homeostasis. One of the targets of such hormones is the adipose tissue, a major energetic reservoir, which governs overall metabolism through the secretion of adipokines. Disturbances either in nutrient and metabolic sensing and consequent miscommunication between these organs constitute a key driver to the metabolic complications clustered in metabolic syndrome. Thus, it is essential to understand how the disruption of this crosstalk might trigger adipose tissue dysfunction, a strong characteristic of obesity and insulin resistance. The beneficial effects of metabolic surgery in the amelioration of glucose homeostasis and body weight reduction allowed to understand the potential of gut signals modulation as a treatment for metabolic syndrome-related obesity and type 2 diabetes. In this review, we cover the effects of gut hormones in the modulation of adipose tissue metabolic and endocrine functions, as well as their impact in tissue plasticity. Furthermore, we discuss how the modulation of gut secretome, either through surgical procedures or pharmacological approaches, might improve adipose tissue function in obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Daniela Rosendo-Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Paulo Matafome
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| |
Collapse
|
11
|
Guja C, Frías JP, Suchower L, Hardy E, Marr G, Sjöström CD, Jabbour SA. Safety and Efficacy of Exenatide Once Weekly in Participants with Type 2 Diabetes and Stage 2/3 Chronic Kidney Disease. Diabetes Ther 2020; 11:1467-1480. [PMID: 32306296 PMCID: PMC7324446 DOI: 10.1007/s13300-020-00815-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION The safety and efficacy of exenatide once weekly (EQW) is overall well established. EQW is primarily renally eliminated. In this study, the efficacy and renal and gastrointestinal tolerability of EQW were summarised in participants with type 2 diabetes and chronic kidney disease stage 3 (CKD3; moderate renal impairment; estimated glomerular filtration rate [eGFR] ≥ 30 to < 60 mL/min/1.73 m2) or CKD stage 2 (CKD2; mild renal impairment; eGFR ≥ 60 to < 90 mL/min/1.73 m2). METHODS Data on participants with type 2 diabetes and baseline CKD3 or CKD2 from eight phase 3, double-blind or open-label studies with 26- or 28-week controlled treatment periods were pooled. Participants received EQW or a placebo/non-glucagon-like peptide-1 receptor agonist comparator (sitagliptin, metformin, pioglitazone, dapagliflozin and insulin). RESULTS Participants with baseline CKD3 (N = 182) or CKD2 (N = 772) receiving EQW differed in a number of baseline characteristics, such as age < 65 years, race, mean body mass index and mean type 2 diabetes duration, whereas mean blood pressure and glycated haemoglobin (HbA1c) were similar. Mean reductions in HbA1c, body weight and systolic blood pressure from baseline to week 26/28 in participants receiving EQW were similar between the CKD subgroups. The proportions of participants (CKD3 and CKD2) with any adverse event (AE) were 81% and 72%, respectively, for EQW and 74% and 68%, respectively, for all comparators; those for serious AEs were 2.7% and 3.4%, respectively, for EQW and 6% and 5%, respectively, for all comparators. Gastrointestinal AE rates were higher in the EQW CKD3 subgroup (42.2% of participants) than in the CKD2 (32.8%) subgroup, although rates for nausea and vomiting were similar. There were no dehydration events; one participant in each treatment group had a serious AE of acute kidney injury (EQW with CKD3, n = 1; pioglitazone with CKD2, n = 1). CONCLUSION Exenatide once weekly was well tolerated and demonstrated similar efficacy in participants with type 2 diabetes with mild and moderate renal impairment. TRIAL REGISTRATION ClinicalTrials.gov identifiers: NCT00637273, NCT00676338, NCT02229383, NCT02229396, NCT00641056, NCT01652729, NCT00935532, NCT01003184.
Collapse
Affiliation(s)
- Cristian Guja
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - Juan P Frías
- National Research Institute, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
12
|
Huang Y, Li J, Chen S, Zhao S, Huang J, Zhou J, Xu Y. Identification of Potential Therapeutic Targets and Pathways of Liraglutide Against Type 2 Diabetes Mellitus (T2DM) Based on Long Non-Coding RNA (lncRNA) Sequencing. Med Sci Monit 2020; 26:e922210. [PMID: 32238798 PMCID: PMC7152739 DOI: 10.12659/msm.922210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The aim of this study was to explore the potential therapeutic targets and pathways of liraglutide against type 2 diabetes mellitus (T2DM) in streptozotocin-induced diabetic rats based on lncRNA sequencing. MATERIAL AND METHODS Male Wistar rats were randomly divided into 3 groups: the control group (n=10), the T2DM model group (high-sugar and high-fat diet, and streptozotocin-induced, n=11), and the liraglutide group (model plus liraglutide, n=10). After 8 weeks of drug treatment, lncRNA sequencing was used to identify the lncRNA therapeutic targets and their related protein-coding genes of liraglutide against T2DM, which were further studied by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to determine the major biological processes and pathways involved in the action of liraglutide treatment. Lastly, several lncRNA targets were randomly detected based on quantitative real-time polymerase chain reaction (QRT-PCR) to verify the accuracy of sequencing results. RESULTS A total of 104 lncRNA targets of liraglutide against T2DM were screened, with 27 upregulated and 77 downregulated, including NONRATT030354.2, MSTRG.1456.6, and NONRATT011758.2. The major biological processes involved were glucose and lipid metabolism and amino acid metabolism. Liraglutide had a therapeutic effect in T2DM, mainly through the Wnt, PPAR, amino acid metabolism signaling, mTOR, and lipid metabolism-related pathways. CONCLUSIONS In this study, we screened 104 lncRNA therapeutic targets and several signaling pathways (Wnt, PPAR, amino acid metabolism signaling pathway, mTOR, and lipid metabolism-related pathways) of liraglutide against T2DM based on lncRNA sequencing.
Collapse
Affiliation(s)
- Yanqin Huang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Jie Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Shouqiang Chen
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Sen Zhao
- Department of Traditional Chinese Medicine, The General Hospital of The People's Liberation Army, Beijing, China (mainland)
| | - Jie Huang
- College of Health, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Jie Zhou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| |
Collapse
|
13
|
Heimbürger SM, Bergmann NC, Augustin R, Gasbjerg LS, Christensen MB, Knop FK. Glucose-dependent insulinotropic polypeptide (GIP) and cardiovascular disease. Peptides 2020; 125:170174. [PMID: 31689454 DOI: 10.1016/j.peptides.2019.170174] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Accumulating evidence suggests that glucose-dependent insulinotropic polypeptide (GIP) in addition to its involvement in type 2 diabetic pathophysiology may be involved in the development of obesity and the pathogenesis of cardiovascular disease. In this review, we outline recent preclinical and clinical cardiovascular-related discoveries about GIP. These include chronotropic and blood pressure-lowering effects of GIP. Furthermore, GIP has been suggested to control vasodilation via secretion of nitric oxide, and vascular leukocyte adhesion and inflammation via expression and secretion of endothelin 1. Also, GIP seems to regulate circulating lipids via effects on adipose tissue uptake and metabolism of lipids. Lastly, we discuss how dysmetabolic conditions such as obesity and type 2 diabetes may shift the actions of GIP in an atherogenic direction, and we provide a perspective on the therapeutic potential of GIP receptor agonism and antagonism in cardiovascular diseases. We conclude that GIP actions may have implications for the development of cardiovascular disease, but also that the potential of GIP-based drugs for the treatment of cardiovascular disease currently is uncertain.
Collapse
Affiliation(s)
- Sebastian M Heimbürger
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Robert Augustin
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim GmbH & CoKG, Biberach, Germany
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|