1
|
Li J, Luo H, Luo Q. Agomelatine bears promising potential in treating bipolar depression- a systematic review. Int J Psychiatry Clin Pract 2024:1-9. [PMID: 39697002 DOI: 10.1080/13651501.2024.2436177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 08/12/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION The controversy of antidepressant use in bipolar depression remains controversial. Agomelatine (AGO) is an effective antidepressant in major depressive disorder (MDD), but its application in bipolar depression was little discussed. We aimed to provide a comprehensive systematic review of clinical evidence from studies examining the efficacy and safety of AGO for bipolar depression. METHODS We conducted a systematic review about AGO trials for the treatment of bipolar patients. We searched PubMed, MEDLINE, Embase, and Cochrane for relevant studies published since each database's inception. We synthesised evidence regarding efficacy (mood and rhythm) and tolerability across studies. RESULTS We identified 6 studies including 272 participants (44% female). All studies used 25-50 mg AGO per day for treatment combined or not combined with mood stabilisers (MS). Across all 6 studies, there were improvements in depression evaluated by depression rating scores and response rate over time. The response rates varied from 43% to 91% within 6-12 weeks. Although AGO was found of better efficacy in bipolar depression compared to recurrent depression, its efficacy remains controversial. Most studies have shown AGO to be effective after just about a week. AGO was reasonably well tolerated both in acute and extension period, without obvious risk in inducing mood switching. CONCLUSION AGO is promising in treating bipolar depression with significant efficacy and well tolerability. However, more strictly designed and large-sample trials are needed in further research with homogeneity within intervention and treatment groups.
Collapse
Affiliation(s)
- Junyao Li
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huirong Luo
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghua Luo
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Han D, Zhao Z, Mao T, Gao M, Yang X, Gao Y. Ginsenoside Rg1: A Neuroprotective Natural Dammarane-Type Triterpenoid Saponin With Anti-Depressive Properties. CNS Neurosci Ther 2024; 30:e70150. [PMID: 39639753 PMCID: PMC11621566 DOI: 10.1111/cns.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Depression, a widespread mental disorder, presents significant risks to both physical and mental health due to its high rates of recurrence and suicide. Currently, single-target antidepressants typically alleviate depressive symptoms or delay the progression of depression rather than cure it. Ginsenoside Rg1 is one of the main ginsenosides found in Panax ginseng roots. It improves depressive symptoms through various mechanisms, suggesting its potential as a treatment for depression. MATERIALS AND METHODS We evaluated preclinical studies to comprehensively discuss the antidepressant mechanism of ginsenoside Rg1 and review its toxicity and medicinal value. Additionally, pharmacological network and molecular docking analyses were performed to further validate the antidepressant effects of ginsenoside Rg1. RESULTS The antidepressant mechanism of ginsenoside Rg1 may involve various pharmacological mechanisms and pathways, such as inhibiting neuroinflammation and over-activation of microglia, preserving nerve synapse structure, promoting neurogenesis, regulating monoamine neurotransmitter levels, inhibiting hyperfunction of the hypothalamic-pituitary-adrenal axis, and combatting antioxidative stress. Moreover, ginsenoside Rg1 preserves astrocyte gap junction function by regulating connexin43 protein biosynthesis and degradation, contributing to its antidepressant effect. Pharmacological network and molecular docking studies identified five targets (AKT1, STAT3, EGFR, PPARG, and HSP90AA1) as potential molecular regulatory sites of ginsenoside Rg1. CONCLUSIONS Ginsenoside Rg1 may exert its antidepressant effects via various pharmacological mechanisms. In addition, multicenter clinical case-control and molecular targeted studies are required to confirm both the clinical efficacy of ginsenoside Rg1 and its potential direct targets.
Collapse
Affiliation(s)
- Dong Han
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zheng Zhao
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Tinghui Mao
- Department of Organ Transplantation and Hepatobiliary SurgeryThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Man Gao
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xue Yang
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yan Gao
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
3
|
Wang S, Li C, Kang X, Su X, Liu Y, Wang Y, Liu S, Deng X, Huang H, Li T, Lu D, Cai W, Lu Z, Wei L, Lu T. Agomelatine promotes differentiation of oligodendrocyte precursor cells and preserves white matter integrity after cerebral ischemic stroke. J Cereb Blood Flow Metab 2024; 44:1487-1500. [PMID: 38853430 PMCID: PMC11574932 DOI: 10.1177/0271678x241260100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
White matter injury contributes to neurological disorders after acute ischemic stroke (AIS). The repair of white matter injury is dependent on the re-myelination by oligodendrocytes. Both melatonin and serotonin antagonist have been proved to protect against post-stroke white matter injury. Agomelatine (AGM) is a multi-functional treatment which is both a melatonin receptor agonist and selective serotonin receptor antagonist. Whether AGM protects against white matter injury after stroke and the underlying mechanisms remain elusive. Here, using the transient middle cerebral artery occlusion (tMCAO) model, we evaluated the therapeutic effects of AGM in stroke mice. Sensorimotor and cognitive functions, white matter integrity, oligodendroglial regeneration and re-myelination in stroke hemisphere after AGM treatment were analyzed. We found that AGM efficiently preserved white matter integrity, reduced brain tissue loss, attenuated long-term sensorimotor and cognitive deficits in tMCAO models. AGM treatment promoted OPC differentiation and enhanced re-myelination both in vitro, ex vivo and in vivo, although OPC proliferation was unaffected. Mechanistically, AGM activated low density lipoprotein receptor related protein 1 (LRP1), peroxisome proliferator-activated receptor γ (PPARγ) signaling thus promoted OPC differentiation and re-myelination after stroke. Inhibition of PPARγ or knock-down of LRP1 in OPCs reversed the beneficial effects of AGM. Altogether, our data indicate that AGM represents a novel therapy against white matter injury after cerebral ischemia.
Collapse
Affiliation(s)
- Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinmei Kang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaotao Su
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sanxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Wei
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tingting Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Chen Y, Tian Y, Liu H, Li Q, Luo Z, Ran J, Miao Z, Zhang Q, Yin G, Xie Q. Repurposed drug agomelatine is therapeutic against collagen-induced arthritis via iNOS targeting. Int Immunopharmacol 2024; 130:111750. [PMID: 38442577 DOI: 10.1016/j.intimp.2024.111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND The most promising biologics tumor necrosis factor α (TNFα) inhibitors are effective in treating rheumatoid arthritis (RA) in only 50-70 % of the cases; thus, new drugs targeting TNFα-mediated inflammation are required. METHODS Firstly, the drugs that could inhibit FLS proliferation and TNFα induced inflammatory cytokine production were screened. Secondly, treatment effects of the identified drugs were screened in collagen-induced arthritis (CIA) mouse model. Thirdly, the inhibitory effect of the identified drug, agomelatine (AOM), on TNFα induced inflammatory cytokine production and NF-κB activity were confirmed. Fourthly, bioinformatics was applied to predict the binding target of AOM and the binding was confirmed, and the already known inhibitor of target was used to test the treatment effect for CIA mouse model. Finally, the effect of AOM on signaling pathway was tested and on TNFα induced inflammatory cytokine production was observed after inhibiting the target. RESULTS AOM effectively inhibited TNFα-induced NF-κB activation, NF-κB p65 translocation, and inflammatory cytokines production in vitro and was therapeutic against CIA. The mechanistic study indicated inducible nitric oxide synthase (iNOS) as the binding target of AOM. 1400 W, a known inhibitor of iNOS, could effectively treat CIA by decreasing iNOS activity and the levels of inflammatory cytokines. The inhibitory effect of AOM on TNFα-induced inflammation was further elucidated by 1400 W, or NF-κB p65 inhibitor JSH-23, indicating that AOM is therapeutic against CIA via iNOS/ERK/p65 signaling pathway after binding with iNOS. CONCLUSIONS AOM is therapeutic against CIA via inhibition of the iNOS/ERK/p65 signaling pathway after binding with iNOS.
Collapse
Affiliation(s)
- Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunru Tian
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qianwei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongling Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingjing Ran
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Miao
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Wang YB, Song NN, Ding YQ, Zhang L. Neural plasticity and depression treatment. IBRO Neurosci Rep 2023; 14:160-184. [PMID: 37388497 PMCID: PMC10300479 DOI: 10.1016/j.ibneur.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 12/08/2022] Open
Abstract
Depression is one of the most common mental disorders, which can lead to a variety of emotional problems and even suicide at its worst. As this neuropsychiatric disorder causes the patients to suffer a lot and function poorly in everyday life, it is imposing a heavy burden on the affected families and the whole society. Several hypotheses have been proposed to elucidate the pathogenesis of depression, such as the genetic mutations, the monoamine hypothesis, the hypothalamic-pituitary-adrenal (HPA) axis hyperactivation, the inflammation and the neural plasticity changes. Among these models, neural plasticity can occur at multiple levels from brain regions, cells to synapses structurally and functionally during development and in adulthood. In this review, we summarize the recent progresses (especially in the last five years) on the neural plasticity changes in depression under different organizational levels and elaborate different treatments for depression by changing the neural plasticity. We hope that this review would shed light on the etiological studies for depression and on the development of novel treatments.
Collapse
Affiliation(s)
- Yu-Bing Wang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
6
|
Goh CL, Cheng JT, Palit M, Costello S, Barton DA. Pharmacological management of neuropsychiatric symptoms in geriatric traumatic brain injury: a scoping review. Brain Inj 2023; 37:356-371. [PMID: 36628484 DOI: 10.1080/02699052.2023.2166115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
OBJECTIVE This scoping review aimed to summarize the existing knowledge base on the pharmacological management of neuropsychiatric symptoms in geriatric TBI and identify gaps in the literature to guide future research. METHODS Seven electronic databases and nine gray literature databases were systematically searched for articles that examined pharmacological management of neuropsychiatric symptoms in adults aged 65 years and over with TBI. The search was guided by four main concepts and selected based on inclusion criteria. Unpublished studies and abstract-only articles were excluded. RESULTS Eight studies met full inclusion criteria. Patterns of psychotropic medication prescription and prescribing principles for geriatric TBI were elucidated. There were no clear or consistent prescribing guidance. Therefore, prescribing recommendations could not be addressed. Current management is inferred from research primarily done in younger adults, or extrapolated from the literature and practice of treating other psychiatric and neurological disorders. CONCLUSION There are significant gaps in knowledge and no evidence-based guidelines for the treatment of neuropsychiatric symptoms in geriatric TBI. TBI among older adults is distinct from those of younger adults and thereby demands a unique approach to treatment and research. The authors' proposed guideline is an important first step in facilitating guideline development and future research.
Collapse
Affiliation(s)
- Cay Laurene Goh
- Department of Aged Psychiatry, Alfred Health, Melbourne, Australia
| | | | - Mithu Palit
- Acquired Brain Injury Rehabilitation Centre, Alfred Health, Melbourne, Australia
| | - Shane Costello
- School of Educational Psychology & Counselling, Monash University, Melbourne, Australia
| | | |
Collapse
|
7
|
Agomelatine improves streptozotocin-induced diabetic nephropathy through melatonin receptors/SIRT1 signaling pathway. Int Immunopharmacol 2023; 115:109646. [PMID: 36587501 DOI: 10.1016/j.intimp.2022.109646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD). Agomelatine, a melatonin receptor agonist, has a potent anti-inflammatory activity. The current study aimed to determine the ameliorative anti-inflammatory effect of agomelatine against DN. METHODS We used 10 % fructose with streptozotocin (STZ) to induce DN in male Wistar rats. Diabetic rats were treated with agomelatine in presence or absence of melatonin receptor antagonist (luzindole) or Sirtuin1 (SIRT1) inhibitor (EX527). SIRT1 expression was measured by qRT-PCR and immunohistochemical analysis. The expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), 5'adenosine monophosphate-activated protein kinase (AMPK), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion protein-1 (VCAM-1), and monocyte chemoattractant protein-1 (MCP-1) were measured using ELISA. Histological assessment was performed using hematoxylin and eosin-stained renal sections. RESULTS Fructose and STZ treatment induced diabetes, insulin resistance, and renal damage accompanied by reduced SIRT1 expression, increased NFκB activation, and decreased AMPK phosphorylation in the kidney. Agomelatine treatment improved kidney histology and function and upregulated SIRT1 expression (2-fold). Inhibition of melatonin receptors and SIRT1 activity increased NFκB phosphorylation (2.13 and 1.98-folds, respectively), reduced AMPK activation (0.51 and 0.53-folds, respectively), increased inflammatory markers ICAM-1 (2.16 and 2.23-folds, respectively), VCAM-1 (2.19 and 2.26-folds, respectively), and MCP-1(2.84 and 3.12-folds, respectively), and inhibited the ameliorative effect of agomelatine on kidney structure and function. CONCLUSION Our findings reveal the ameliorative anti-inflammatory activity of agomelatine against STZ-induced DN and this effect is SIRT1- and melatonin receptor-dependent. Therefore, agomelatine may be beneficial to prevent the development of ESRD from diabetes mellitus.
Collapse
|
8
|
Serafini G, Costanza A, Aguglia A, Amerio A, Trabucco A, Escelsior A, Sher L, Amore M. The Role of Inflammation in the Pathophysiology of Depression and Suicidal Behavior: Implications for Treatment. Med Clin North Am 2023; 107:1-29. [PMID: 36402492 DOI: 10.1016/j.mcna.2022.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Depression and suicidal behavior are 2 complex psychiatric conditions of significant public health concerns due to their debilitating nature. The need to enhance contemporary treatments and preventative approaches for these illnesses not only calls for distillation of current views on their pathogenesis but also provides an impetus for further elucidation of their novel etiological determinants. In this regard, inflammation has recently been recognized as a potentially important contributor to the development of depression and suicidal behavior. This review highlights key evidence that supports the presence of dysregulated neurometabolic and immunologic signaling and abnormal interaction with microbial species as putative etiological hallmarks of inflammation in depression as well as their contribution to the development of suicidal behavior. Furthermore, therapeutic insights addressing candidate mechanisms of pathological inflammation in these disorders are proposed.
Collapse
Affiliation(s)
- Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa 16132, Italy.
| | - Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland; Department of Psychiatry, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), Lugano, Switzerland
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa 16132, Italy
| | - Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa 16132, Italy
| | - Alice Trabucco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Andrea Escelsior
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa 16132, Italy
| | - Leo Sher
- James J. Peters VA Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, New York, NY, USA
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa 16132, Italy
| |
Collapse
|
9
|
Huang J, Xie XM, Lyu N, Fu BB, Zhao Q, Zhang L, Wang G. Agomelatine in the treatment of anhedonia, somatic symptoms, and sexual dysfunction in major depressive disorder. Front Psychiatry 2023; 14:1115008. [PMID: 37151978 PMCID: PMC10157485 DOI: 10.3389/fpsyt.2023.1115008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Objective This study evaluated the treatment outcomes of agomelatine on anhedonic state, anxiety/somatic symptoms, and sexual function in Chinese patients with major depressive disorder (MDD). Method In total, 93 adult patients with MDD were enrolled, and 68 of them were included in a prospective, open-label, multicenter clinical study. All patients received agomelatine monotherapy during a 9-week treatment phase. The effectiveness of the treatment was reflected by the improvement of anhedonia and somatic symptoms based on the 17-item Hamilton Depression Rating Scale (HAMD-17). In addition, the Arizona Sexual Dysfunction Scale (ASEX), Sheehan Disability Scale (SDS), and Short Form of Quality-of-Life Enjoyment and Satisfaction Questionnaire (Q-LES-Q-SF) were administered to all participants at baseline and at the 3-, 6-, and 9-week follow-ups. Results After 9 weeks of treatment with agomelatine, the response and remission rates were 73.5% and 39.7%, respectively. Somatic symptoms significantly improved at week 9 (p < 0.001), and significant effects were also observed on the HAMD anhedonia items (p < 0.001). The patients exhibited lower levels of disease severity (the SDS score dropped from 15.52 ± 4.7 to 7.09 ± 5.62 at week 9; the ASEX score dropped from 21.89 ± 4.06 to 16.19 ± 4.79, p < 0.001) and higher levels of QOL (the Q-LES-Q-SF score dropped from 41.02 ± 5.99 to 50.49 ± 8.57, p < 0.001) during the follow-up. Furthermore, treatment with agomelatine improved depressive symptoms without causing serious adverse events. Conclusion These analyses indicate that agomelatine is a treatment option for improving anhedonic status, anxiety/somatic symptoms, and sexual dysfunction in MDD patients.
Collapse
Affiliation(s)
- Juan Huang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiao-Meng Xie
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Nan Lyu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Bing-Bing Fu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qian Zhao
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ling Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- *Correspondence: Ling Zhang
| | - Gang Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Gang Wang
| |
Collapse
|
10
|
Qi JS, Su Q, Li T, Liu GW, Zhang YL, Guo JH, Wang ZJ, Wu MN. Agomelatine: a potential novel approach for the treatment of memory disorder in neurodegenerative disease. Neural Regen Res 2023; 18:727-733. [DOI: 10.4103/1673-5374.353479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Ľupták M, Fišar Z, Hroudová J. Agomelatine, Ketamine and Vortioxetine Attenuate Energy Cell Metabolism-In Vitro Study. Int J Mol Sci 2022; 23:ijms232213824. [PMID: 36430306 PMCID: PMC9697131 DOI: 10.3390/ijms232213824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
This determination of the mitochondrial effect of pharmacologically different antidepressants (agomelatine, ketamine and vortioxetine) was evaluated and quantified in vitro in pig brain-isolated mitochondria. We measured the activity of mitochondrial complexes, citrate synthase, malate dehydrogenase and monoamine oxidase, and the mitochondrial respiratory rate. Total hydrogen peroxide production and ATP production were assayed. The most potent inhibitor of all mitochondrial complexes and complex I-linked respiration was vortioxetine. Agomelatine and ketamine inhibited only complex IV activity. None of the drugs affected complex II-linked respiration, citrate synthase or malate dehydrogenase activity. Hydrogen peroxide production was mildly increased by agomelatine, which might contribute to increased oxidative damage and adverse effects at high drug concentrations. Vortioxetine significantly reduced hydrogen peroxide concentrations, which might suggest antioxidant mechanism activation. All tested antidepressants were partial MAO-A inhibitors, which might contribute to their antidepressant effect. We observed vortioxetine-induced MAO-B inhibition, which might be linked to decreased hydrogen peroxide formation and contribute to its procognitive and neuroprotective effects. Mitochondrial dysfunction could be linked to the adverse effects of vortioxetine, as vortioxetine is the most potent inhibitor of mitochondrial complexes and complex I-linked respiration. Clarifying the molecular interaction between drugs and mitochondria is important to fully understand their mechanism of action and the connection between their mechanisms and their therapeutic and/or adverse effects.
Collapse
Affiliation(s)
- Matej Ľupták
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| | - Jana Hroudová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague, Czech Republic
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
- Correspondence:
| |
Collapse
|
12
|
Høier NK, Madsen T, Spira AP, Hawton K, Jennum P, Nordentoft M, Erlangsen A. Associations between treatment with melatonin and suicidal behavior: a nationwide cohort study. J Clin Sleep Med 2022; 18:2451-2458. [PMID: 35801338 PMCID: PMC9516579 DOI: 10.5664/jcsm.10118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES Melatonin is often prescribed to patients with sleep disorders who are known to have elevated suicide risks, yet melatonin's association with suicidal behavior remains to be examined. We investigated whether individuals prescribed melatonin had higher rates of suicide and suicide attempts when compared to individuals who were not prescribed this drug, including both those with and without known mental disorders. METHODS A cohort design was applied to longitudinal, register data on all persons aged ≥ 10 years in Denmark during 2007-2016. Based on data from the National Prescription Registry, periods of being in treatment with melatonin were defined using information on the number of tablets and the daily defined dose. We calculated incidence rate ratios for suicide and suicide attempts, as identified in register records, comparing those in treatment with melatonin to those not in treatment. RESULTS Among 5,798,923 individuals, 10,577 (0.2%) were treated with melatonin (mean treatment length, 50 days) during the study period. Of those, 22 died by suicide and 134 had at least 1 suicide attempt. People in treatment with melatonin had a 4-fold higher rate of suicide (incidence rate ratio, 4.8; 95% CI, 3.0-7.5) and a 5-fold higher rate of suicide attempt (incidence rate ratio, 5.9; 95% CI, 4.4-8.0) than those not in treatment and when adjusting for sex and age group. CONCLUSIONS Treatment with melatonin was associated with suicide and suicide attempt. Although there are several possible explanations, attention to suicide risk is particularly warranted for people with mental comorbidity who are in treatment with melatonin. CITATION Høier NK, Madsen T, Spira AP, et al. Associations between treatment with melatonin and suicidal behavior: a nationwide cohort study. J Clin Sleep Med. 2022;18(10):2451-2458.
Collapse
Affiliation(s)
- Nikolaj Kjær Høier
- Danish Research Institute for Suicide Prevention, Mental Health Centre Copenhagen, Copenhagen, Denmark
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Trine Madsen
- Danish Research Institute for Suicide Prevention, Mental Health Centre Copenhagen, Copenhagen, Denmark
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Adam P. Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Johns Hopkins Center on Aging and Health, Baltimore, Maryland
| | - Keith Hawton
- Center for Suicide Research, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Poul Jennum
- Danish Center for Sleep Medicine, Rigshospitalet and Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Merete Nordentoft
- Danish Research Institute for Suicide Prevention, Mental Health Centre Copenhagen, Copenhagen, Denmark
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Annette Erlangsen
- Danish Research Institute for Suicide Prevention, Mental Health Centre Copenhagen, Copenhagen, Denmark
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Centre for Mental Health Research, Research School of Population Health, The Australian National University, Canberra, Australia
| |
Collapse
|
13
|
Bdair H, Singleton TA, Ross K, Jolly D, Kang MS, Aliaga A, Tuznik M, Kaur T, Yous S, Soucy JP, Massarweh G, Scott PJH, Koeppe R, Spadoni G, Bedini A, Rudko DA, Gobbi G, Benkelfat C, Rosa-Neto P, Brooks AF, Kostikov A. Radiosynthesis and In Vivo Evaluation of Four Positron Emission Tomography Tracer Candidates for Imaging of Melatonin Receptors. ACS Chem Neurosci 2022; 13:1382-1394. [PMID: 35420022 DOI: 10.1021/acschemneuro.1c00678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Melatonin is a neurohormone that modulates several physiological functions in mammals through the activation of melatonin receptor type 1 and 2 (MT1 and MT2). The melatonergic system is an emerging therapeutic target for new pharmacological interventions in the treatment of sleep and mood disorders; thus, imaging tools to further investigate its role in the brain are highly sought-after. We aimed to develop selective radiotracers for in vivo imaging of both MT1 and MT2 by positron emission tomography (PET). We identified four previously reported MT ligands with picomolar affinities to the target based on different scaffolds which were also amenable for radiolabeling with either carbon-11 or fluorine-18. [11C]UCM765, [11C]UCM1014, [18F]3-fluoroagomelatine ([18F]3FAGM), and [18F]fluoroacetamidoagomelatine ([18F]FAAGM) have been synthesized in high radiochemical purity and evaluated in wild-type rats. All four tracers showed moderate to high brain permeability in rats with maximum standardized uptake values (SUVmax of 2.53, 1.75, 3.25, and 4.47, respectively) achieved 1-2 min after tracer administration, followed by a rapid washout from the brain. Several melatonin ligands failed to block the binding of any of the PET tracer candidates, while in some cases, homologous blocking surprisingly resulted in increased brain retention. Two 18F-labeled agomelatine derivatives were brought forward to PET scans in non-human primates and autoradiography on human brain tissues. No specific binding has been detected in blocking studies. To further investigate pharmacokinetic properties of the putative tracers, microsomal stability, plasma protein binding, log D, and membrane bidirectional permeability assays have been conducted. Based on the results, we conclude that the fast first pass metabolism by the enzymes in liver microsomes is the likely reason of the failure of our PET tracer candidates. Nevertheless, we showed that PET imaging can serve as a valuable tool to investigate the brain permeability of new therapeutic compounds targeting the melatonergic system.
Collapse
Affiliation(s)
- Hussein Bdair
- McGill University, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
- McGill University, Department of Psychiatry, Irving Ludmer Psychiatry Research and Training Building, Montreal, Quebec H3A 1A1, Canada
| | - Thomas A. Singleton
- McGill University, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Karen Ross
- McGill University, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Dean Jolly
- McGill University, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montreal, Quebec H4H 1R3, Canada
| | - Arturo Aliaga
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montreal, Quebec H4H 1R3, Canada
| | - Marius Tuznik
- McGill University, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Tanpreet Kaur
- University of Michigan Medical School, Department of Radiology, Ann Arbor, Michigan 48109-5610, United States
| | - Saïd Yous
- University of Lille, Lille Neurosciences and Cognition Research Center, Lille, Hauts-de-France FR 59000, France
| | - Jean-Paul Soucy
- McGill University, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
- Concordia University, PERFORM Centre, Montreal, Québec H4B 1R6, Canada
| | - Gassan Massarweh
- McGill University, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Peter J. H. Scott
- University of Michigan Medical School, Department of Radiology, Ann Arbor, Michigan 48109-5610, United States
| | - Robert Koeppe
- University of Michigan Medical School, Department of Radiology, Ann Arbor, Michigan 48109-5610, United States
| | - Gilberto Spadoni
- University Carlo Bo, Department Biomolecular Science, Urbino IT 61029, Italy
| | - Annalida Bedini
- University Carlo Bo, Department Biomolecular Science, Urbino IT 61029, Italy
| | - David A. Rudko
- McGill University, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Gabriella Gobbi
- McGill University, Department of Psychiatry, Irving Ludmer Psychiatry Research and Training Building, Montreal, Quebec H3A 1A1, Canada
| | - Chawki Benkelfat
- McGill University, Department of Psychiatry, Irving Ludmer Psychiatry Research and Training Building, Montreal, Quebec H3A 1A1, Canada
| | - Pedro Rosa-Neto
- McGill University, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montreal, Quebec H4H 1R3, Canada
| | - Allen F. Brooks
- University of Michigan Medical School, Department of Radiology, Ann Arbor, Michigan 48109-5610, United States
| | - Alexey Kostikov
- McGill University, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montreal, Quebec H4H 1R3, Canada
- McGill University, Department of Chemistry, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
14
|
Yang XB, Zu HB, Zhao YF, Yao K. Agomelatine Prevents Amyloid Plaque Deposition, Tau Phosphorylation, and Neuroinflammation in APP/PS1 Mice. Front Aging Neurosci 2022; 13:766410. [PMID: 35153715 PMCID: PMC8828541 DOI: 10.3389/fnagi.2021.766410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/20/2021] [Indexed: 01/09/2023] Open
Abstract
Agomelatine, an agonist of melatonergic MT1 and MT2 receptors and a selective 5-hydroxytryptamine 2C receptor antagonist, is widely applied in treating depression and insomnia symptoms in several neurogenerative diseases. However, the neuroprotective effect of agomelatine in Alzheimer’s disease (AD) is less known. In this study, a total of 30 mice were randomly divided into three groups, namely, wild type (WT), APP/PS1, and agomelatine (50 mg/kg). After 30 days, the Morris water maze was performed to test the cognitive ability of mice. Then, all mice were sacrificed, and the hippocampus tissues were collected for ELISA, Western blot, and immunofluorescence analysis. In this study, we found that agomelatine attenuated spatial memory deficit, amyloid-β (Aβ) deposition, tau phosphorylation, and neuroinflammation in the hippocampus of APP/PS1 mice. Further study demonstrated that agomelatine treatment upregulated the protein expression of DHCR24 and downregulated P-Akt, P-mTOR, p-p70s6k, Hes1, and Notch1 expression. In summary, our results identified that agomelatine could improve cognitive impairment and ameliorate AD-like pathology in APP/PS1 mice via activating DHCR24 signaling and inhibiting Akt/mTOR and Hes1/Notch1 signaling pathway. Agomelatine may become a promising drug candidate in the therapy of AD.
Collapse
|
15
|
Petrova N. New goals for depression therapy. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:57-61. [DOI: 10.17116/jnevro202212211157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Won E, Na KS, Kim YK. Associations between Melatonin, Neuroinflammation, and Brain Alterations in Depression. Int J Mol Sci 2021; 23:ijms23010305. [PMID: 35008730 PMCID: PMC8745430 DOI: 10.3390/ijms23010305] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 12/14/2022] Open
Abstract
Pro-inflammatory systemic conditions that can cause neuroinflammation and subsequent alterations in brain regions involved in emotional regulation have been suggested as an underlying mechanism for the pathophysiology of major depressive disorder (MDD). A prominent feature of MDD is disruption of circadian rhythms, of which melatonin is considered a key moderator, and alterations in the melatonin system have been implicated in MDD. Melatonin is involved in immune system regulation and has been shown to possess anti-inflammatory properties in inflammatory conditions, through both immunological and non-immunological actions. Melatonin has been suggested as a highly cytoprotective and neuroprotective substance and shown to stimulate all stages of neuroplasticity in animal models. The ability of melatonin to suppress inflammatory responses through immunological and non-immunological actions, thus influencing neuroinflammation and neurotoxicity, along with subsequent alterations in brain regions that are implicated in depression, can be demonstrated by the antidepressant-like effects of melatonin. Further studies that investigate the associations between melatonin, immune markers, and alterations in the brain structure and function in patients with depression could identify potential MDD biomarkers.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, Chaum, Seoul 06062, Korea;
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon 21565, Korea;
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea
- Correspondence:
| |
Collapse
|
17
|
Naveed M, Li LD, Sheng G, Du ZW, Zhou YP, Nan S, Zhu MY, Zhang J, Zhou QG. Agomelatine: An astounding sui-generis antidepressant? Curr Mol Pharmacol 2021; 15:943-961. [PMID: 34886787 DOI: 10.2174/1874467214666211209142546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/09/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
Major depressive disorder (MDD) is one of the foremost causes of disability and premature death worldwide. Although the available antidepressants are effective and well tolerated, they also have many limitations. Therapeutic advances in developing a new drug's ultimate relation between MDD and chronobiology, which targets the circadian rhythm, have led to a renewed focus on psychiatric disorders. In order to provide a critical analysis about antidepressant properties of agomelatine, a detailed PubMed (Medline), Scopus (Embase), Web of Science (Web of Knowledge), Cochrane Library, Google Scholar, and PsycInfo search was performed using the following keywords: melatonin analog, agomelatine, safety, efficacy, adverse effects, pharmacokinetics, pharmacodynamics, circadian rhythm, sleep disorders, neuroplasticity, MDD, bipolar disorder, anhedonia, anxiety, generalized anxiety disorder (GAD), and mood disorders. Agomelatine is a unique melatonin analog with antidepressant properties and a large therapeutic index that improves clinical safety. It is a melatonin receptor agonist (MT1 and MT2) and a 5-HT2C receptor antagonist. The effects on melatonin receptors enable the resynchronization of irregular circadian rhythms with beneficial effects on sleep architectures. In this way, agomelatine is accredited for its unique mode of action, which helps to exert antidepressant effects and resynchronize the sleep-wake cycle. To sum up, an agomelatine has not only antidepressant properties but also has anxiolytic effects.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Lian-Di Li
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Gang Sheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Zi-Wei Du
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Ya-Ping Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Sun Nan
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Ming-Yi Zhu
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Jing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| |
Collapse
|
18
|
Seo JS, Bahk WM, Woo YS, Park YM, Kim W, Jeong JH, Shim SH, Lee JG, Jang SH, Yang CM, Wang SM, Jung MH, Sung HM, Choo IH, Yoon BH, Lee SY, Jon DI, Min KJ. Korean Medication Algorithm for Depressive Disorder 2021, Fourth Revision: An Executive Summary. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:751-772. [PMID: 34690130 PMCID: PMC8553538 DOI: 10.9758/cpn.2021.19.4.751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
Objective In the 19 years since the Korean College of Neuropsychopharmacology and the Korean Society for Affective Disorders developed the Korean Medication Algorithm Project for Depressive Disorder (KMAP-DD) in 2002, four revisions have been conducted. Methods To increase survey efficiency in this revision, to cover the general clinical practice, and to compare the results with previous KMAP-DD series, the overall structure of the questionnaire was maintained. The six sections of the questionnaire were as follows: 1) pharmacological treatment strategies for major depressive disorder (MDD) with/without psychotic features; 2) pharmacological treatment strategies for persistent depressive disorder and other depressive disorder subtypes; 3) consensus for treatment-resistant depression; 4) the choice of an antidepressant in the context of safety, adverse effects, and comorbid physical illnesses; 5) treatment strategies for special populations (children/adolescents, elderly, and women); and 6) non-pharmacological biological therapies. Recommended first-, second-, and third-line strategies were derived statistically. Results There has been little change in the four years since KMAP-DD 2017 due to the lack of newly introduced drug or treatment strategies. However, shortened waiting time between the initial and subsequent treatments, increased preference for atypical antipsychotics (AAPs), especially aripiprazole, and combination strategies with AAPs yield an active and somewhat aggressive treatment trend in Korea. Conclusion We expect KMAP-DD to provide clinicians with useful information about the specific strategies and medications appropriate for treating patients with MDD by bridging the gap between clinical real practice and the evidence-based world.
Collapse
Affiliation(s)
- Jeong Seok Seo
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Won-Myong Bahk
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Sup Woo
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Min Park
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Won Kim
- Department of Psychiatry, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Jong-Hyun Jeong
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Se-Hoon Shim
- Department of Psychiatry, Soonchunhyang University Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Jung Goo Lee
- Department of Psychiatry, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Seung-Ho Jang
- Department of Psychiatry, Wonkwang University Hospital, School of Medicine, Wonkwang University, Iksan, Korea
| | - Chan-Mo Yang
- Department of Psychiatry, Wonkwang University Hospital, School of Medicine, Wonkwang University, Iksan, Korea
| | - Sheng-Min Wang
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myung Hun Jung
- Department of Psychiatry, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Hyung Mo Sung
- Department of Psychiatry, Soonchunhyang University Gumi Hospital, College of Medicine, Soonchunhyang University, Gumi, Korea
| | - Il Han Choo
- Department of Neuropsychiatry, College of Medicine, Chosun University, Gwangju, Korea.,Department of Psychiatry, Chosun University Hospital, Gwangju, Korea
| | - Bo-Hyun Yoon
- Department of Psychiatry, Naju National Hospital, Naju, Korea
| | - Sang-Yeol Lee
- Department of Psychiatry, Wonkwang University Hospital, School of Medicine, Wonkwang University, Iksan, Korea
| | - Duk-In Jon
- Department of Psychiatry, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Kyung Joon Min
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
19
|
Qiu W, Cai X, Zheng C, Qiu S, Ke H, Huang Y. Update on the Relationship Between Depression and Neuroendocrine Metabolism. Front Neurosci 2021; 15:728810. [PMID: 34531719 PMCID: PMC8438205 DOI: 10.3389/fnins.2021.728810] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/11/2021] [Indexed: 12/27/2022] Open
Abstract
Through the past decade of research, the correlation between depression and metabolic diseases has been noticed. More and more studies have confirmed that depression is comorbid with a variety of metabolic diseases, such as obesity, diabetes, metabolic syndrome and so on. Studies showed that the underlying mechanisms of both depression and metabolic diseases include chronic inflammatory state, which is significantly related to the severity. In addition, they also involve endocrine, immune systems. At present, the effects of clinical treatments of depression is limited. Therefore, exploring the co-disease mechanism of depression and metabolic diseases is helpful to find a new clinical therapeutic intervention strategy. Herein, focusing on the relationship between depression and metabolic diseases, this manuscript aims to provide an overview of the comorbidity of depression and metabolic.
Collapse
Affiliation(s)
- Wenxin Qiu
- Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaodan Cai
- Fujian Medical University, Fuzhou, Fujian, China
| | | | - Shumin Qiu
- Fujian Medical University, Fuzhou, Fujian, China
| | - Hanyang Ke
- Fujian Medical University, Fuzhou, Fujian, China
| | - Yinqiong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
20
|
Wang S, Leri F, Rizvi SJ. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110289. [PMID: 33631251 DOI: 10.1016/j.pnpbp.2021.110289] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Anhedonia is one of the core symptoms of major depressive disorder (MDD), which is often inadequately treated by traditional antidepressants. The modern framework of anhedonia extends the definition from impaired consummatory pleasure or interest in rewards to a broad spectrum of deficits that impact functions such as reward anticipation, approach motivation, effort expenditure, reward valuation, expectation, and reward-cue association learning. Substantial preclinical and clinical research has explored the neural basis of reward deficits in the context of depression, and has implicated mesocorticolimbic reward circuitry comprising the nucleus accumbens, ventral pallidum, ventral tegmental area, amygdala, hippocampus, anterior cingulate, insula, orbitofrontal cortex, and other prefrontal cortex regions. Dopamine modulates several reward facets including anticipation, motivation, effort, and learning. As well, serotonin, norepinephrine, opioids, glutamate, Gamma aminobutyric acid (GABA), and acetylcholine are also involved in anhedonia, and medications targeting these systems may also potentially normalize reward processing in depression. Unfortunately, whereas reward anticipation and reward outcome are extensively explored by both preclinical and clinical studies, translational gaps remain in reward motivation, effort, valuation, and learning, where clinical neuroimaging studies are in the early stages. This review aims to synthesize the neurobiological mechanisms underlying anhedonia in MDD uncovered by preclinical and clinical research. The translational difficulties in studying the neural basis of reward are also discussed.
Collapse
Affiliation(s)
- Shijing Wang
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Ontario, Canada
| | - Sakina J Rizvi
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
van Poelgeest EP, Pronk AC, Rhebergen D, van der Velde N. Depression, antidepressants and fall risk: therapeutic dilemmas-a clinical review. Eur Geriatr Med 2021; 12:585-596. [PMID: 33721264 PMCID: PMC8149338 DOI: 10.1007/s41999-021-00475-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/18/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE The aim of this clinical review was to summarize the existing knowledge on fall risk associated with antidepressant use in older adults, describe underlying mechanisms, and assist clinicians in decision-making with regard to (de-) prescribing antidepressants in older persons. METHODOLOGY We comprehensively examined the literature based on a literature search in Pubmed and Google Scholar, and identified additional relevant articles from reference lists, with an emphasis on the most commonly prescribed drugs in depression in geriatric patients. We discuss use of antidepressants, potential fall-related side effects, and deprescribing of antidepressants in older persons. RESULTS Untreated depression and antidepressant use both contribute to fall risk. Antidepressants are equally effective, but differ in fall-related side effect profile. They contribute to (or cause) falling through orthostatic hypotension, sedation/impaired attention, hyponatremia, movement disorder and cardiac toxicity. Falling is an important driver of morbidity and mortality and, therefore, requires prevention. If clinical condition allows, withdrawal of antidepressants is recommended in fall-prone elderly persons. An important barrier is reluctance of prescribers to deprescribe antidepressants resulting from fear of withdrawal symptoms or disease relapse/recurrence, and the level of complexity of deprescribing antidepressants in older persons with multiple comorbidities and medications. Practical resources and algorithms are available that guide and assist clinicians in deprescribing antidepressants. CONCLUSIONS (De-) prescribing antidepressants in fall-prone older adults is often challenging, but detailed insight in fall-related side effect profile of the different antidepressants and a recently developed expert-based decision aid STOPPFalls assists prescribers in clinical decision-making.
Collapse
Affiliation(s)
- E P van Poelgeest
- Department of Internal Medicine, Geriatrics, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - A C Pronk
- Department of Internal Medicine, Geriatrics, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - D Rhebergen
- Amsterdam University Medical Center, Department of Psychiatry, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Mental Health Care Institute GGZ Centraal, Amersfoort, The Netherlands
| | - N van der Velde
- Department of Internal Medicine, Geriatrics, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Mc Carthy CE. Sleep Disturbance, Sleep Disorders and Co-Morbidities in the Care of the Older Person. Med Sci (Basel) 2021; 9:medsci9020031. [PMID: 34063838 PMCID: PMC8162526 DOI: 10.3390/medsci9020031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
Sleep complaints can be both common and complex in the older patient. Their consideration is an important aspect of holistic care, and may have an impact on quality of life, mortality, falls and disease risk. Sleep assessment should form part of the comprehensive geriatric assessment. If sleep disturbance is brought to light, consideration of sleep disorders, co-morbidity and medication management should form part of a multifaceted approach. Appreciation of the bi-directional relationship and complex interplay between co-morbidity and sleep in older patients is an important element of patient care. This article provides a brief overview of sleep disturbance and sleep disorders in older patients, in addition to their association with specific co-morbidities including depression, heart failure, respiratory disorders, gastro-oesophageal reflux disease, nocturia, pain, Parkinson's disease, dementia, polypharmacy and falls. A potential systematic multidomain approach to assessment and management is outlined, with an emphasis on non-pharmacological treatment where possible.
Collapse
Affiliation(s)
- Christine E. Mc Carthy
- Department of Geriatric Medicine, University Hospital Galway, Galway, Ireland;
- HRB-Clinical Research Facility, National University of Ireland, Galway, Co., Galway, Ireland
| |
Collapse
|
23
|
Dmitrzak-Weglarz M, Banach E, Bilska K, Narozna B, Szczepankiewicz A, Reszka E, Jablonska E, Kapelski P, Skibinska M, Pawlak J. Molecular Regulation of the Melatonin Biosynthesis Pathway in Unipolar and Bipolar Depression. Front Pharmacol 2021; 12:666541. [PMID: 33981243 PMCID: PMC8107693 DOI: 10.3389/fphar.2021.666541] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a neurohormone that maintains the circadian rhythms of the body. By regulating the secretion of other hormones and neurotransmitters, it acts as a pleiotropic modulator that affects, for example, reproductive, immune, cardiovascular, sleep, and wake systems and mood. Thus, synthetic melatonin has become an essential component in the treatment of depressive disorders. Although we know the pathway of melatonin action in the brain, we lack comprehensive cross-sectional studies on the periphery of depressed patients. This study aimed to comprehensively analyze the differences between healthy control subjects (n = 84) and unipolar and bipolar depression patients (n = 94), including an analysis of the melatonin pathway at the level of the genes and serum biomarkers. An innovative approach is a pilot study based on gene expression profiling carried out on clinical and cell culture models using agomelatine and melatonin. We confirmed the melatonin biosynthesis pathway's molecular regulation dysfunctions, with a specific pattern for unipolar and bipolar depression, at the AANAT gene, its polymorphisms (rs8150 and rs3760138), and examined the serum biomarkers (serotonin, AANAT, ASMT, and melatonin). The biological pathway analysis uncovered pathways and genes that were uniquely altered after agomelatine treatment in a clinical model and melatonin treatment in a cell culture model. In both models, we confirmed the immunomodulatory effect of melatonin agents in depression.
Collapse
Affiliation(s)
| | - Ewa Banach
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland
| | - Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Narozna
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Szczepankiewicz
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Ewa Jablonska
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Paweł Kapelski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Skibinska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
24
|
Almeida RF, Ferreira TP, David CVC, Abreu E Silva PC, Dos Santos SA, Rodrigues ALS, Elisabetsky E. Guanine-Based Purines as an Innovative Target to Treat Major Depressive Disorder. Front Pharmacol 2021; 12:652130. [PMID: 33927625 PMCID: PMC8076783 DOI: 10.3389/fphar.2021.652130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/01/2021] [Indexed: 01/18/2023] Open
Affiliation(s)
- Roberto F Almeida
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil.,Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago P Ferreira
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Camila V C David
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Paulo C Abreu E Silva
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Sulamita A Dos Santos
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Ana L S Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Elaine Elisabetsky
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
25
|
Serotonin 2 Receptors, Agomelatine, and Behavioral and Psychological Symptoms of Dementia in Alzheimer's Disease. Behav Neurol 2021; 2021:5533827. [PMID: 33859767 PMCID: PMC8026319 DOI: 10.1155/2021/5533827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/04/2022] Open
Abstract
There are nearly 50 million Alzheimer's disease (AD) patients worldwide, 90% of whom develop behavioral and psychological symptoms of dementia (BPSD), which increase the mortality rate of patients, and impose an economic and care burden on families and society. As a neurotransmitter and neuromodulator, serotonin is involved in the regulation of psychoemotional, sleep, and feeding functions. Accumulating data support the importance of serotonin in the occurrence and development of BPSD. Studies have shown that reduction of serotonin receptors can increase depression and mental symptoms in AD patients. At present, there is no drug treatment for AD approved by the US Food and Drug Administration. Among them, agomelatine, as a new type of antidepressant, can act on serotonin 2 receptors to improve symptoms such as depression and anxiety. At present, research on BPSD is still in the preliminary exploratory stage, and there are still a lot of unknowns. This review summarizes the relationship between serotonin 2 receptors, agomelatine, and BPSD. It provides a new idea for the study of the pathogenesis and treatment of BPSD.
Collapse
|
26
|
Sanches M, Quevedo J, Soares JC. New agents and perspectives in the pharmacological treatment of major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110157. [PMID: 33159975 PMCID: PMC7750246 DOI: 10.1016/j.pnpbp.2020.110157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022]
Abstract
Despite the important advances in the understanding of the pathophysiology of MDD, a large proportion of depressed patients do not respond well to currently available pharmacological agents. The present review focuses on new targets and future directions in the pharmacological treatment of MDD. Novel agents and their efficacy in the treatment of depression are discussed, with a focus on the respectively target pathophysiological pathways and the level of available evidence. Although it is expected that classic antidepressants will remain the cornerstone of MDD treatment, at least for the near future, a large number of novel compounds is currently under investigation as for their efficacy in the treatment of MDD, many of which with promising results.
Collapse
Affiliation(s)
- Marsal Sanches
- UT Health Center of Excellence on Mood Disorders, Faillace Department of Psychiatry & Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| | - Joao Quevedo
- UT Health Center of Excellence on Mood Disorders, Faillace Department of Psychiatry & Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jair C Soares
- UT Health Center of Excellence on Mood Disorders, Faillace Department of Psychiatry & Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
27
|
Could Agomelatine Play a Role to Treat Anhedonia in Heroin Dependence? ADDICTIVE DISORDERS & THEIR TREATMENT 2021. [DOI: 10.1097/adt.0000000000000245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Yardimci A, Ozdede MR, Kelestimur H. Agomelatine, A Potential Multi-Target Treatment Alternative for Insomnia, Depression, and Osteoporosis in Postmenopausal Women: A Hypothetical Model. Front Psychiatry 2021; 12:654616. [PMID: 34267684 PMCID: PMC8275877 DOI: 10.3389/fpsyt.2021.654616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
Insomnia, which is associated with menopausal depression, is a common symptom of menopause. Both symptoms have a common etiology, and can affect each other significantly. Pharmacological interventions, including hypnotics and antidepressants, and non-pharmacological therapies are generally administered in clinical practice for insomnia treatment. As another menopausal disorder, osteoporosis is described as a disease of low bone mineral density (BMD), affecting nearly 200 million women worldwide. Postmenopausal osteoporosis is common among middle-aged women. Since postmenopausal osteoporosis mainly results from low estrogen levels, menopausal hormone therapy (HT) is considered the first-line option for the prevention of osteoporosis during the menopausal period. However, almost no study has evaluated novel treatments for the combined prevention of insomnia, depression, and osteoporosis. Hence, it is necessary to develop new multi-target strategies for the treatment of these disorders to improve the quality of life during this vulnerable period. Melatonin is the major regulator of sleep, and it has been suggested to be safe and effective for bone loss therapy by MT-2 receptor activity. As a result, we hypothesize that agomelatine, an MT-1 and MT-2 receptor agonist and 5-HT2C receptor antagonist, holds promise in the combined treatment of insomnia, depression, and osteoporosis in middle-aged women during menopause.
Collapse
Affiliation(s)
- Ahmet Yardimci
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | | | - Haluk Kelestimur
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
29
|
Drug-Drug Interactions Involving Intestinal and Hepatic CYP1A Enzymes. Pharmaceutics 2020; 12:pharmaceutics12121201. [PMID: 33322313 PMCID: PMC7764576 DOI: 10.3390/pharmaceutics12121201] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
Cytochrome P450 (CYP) 1A enzymes are considerably expressed in the human intestine and liver and involved in the biotransformation of about 10% of marketed drugs. Despite this doubtless clinical relevance, CYP1A1 and CYP1A2 are still somewhat underestimated in terms of unwanted side effects and drug–drug interactions of their respective substrates. In contrast to this, many frequently prescribed drugs that are subjected to extensive CYP1A-mediated metabolism show a narrow therapeutic index and serious adverse drug reactions. Consequently, those drugs are vulnerable to any kind of inhibition or induction in the expression and function of CYP1A. However, available in vitro data are not necessarily predictive for the occurrence of clinically relevant drug–drug interactions. Thus, this review aims to provide an up-to-date summary on the expression, regulation, function, and drug–drug interactions of CYP1A enzymes in humans.
Collapse
|
30
|
Wang SM, Woo YS, Kim NY, Na HR, Lim HK, Bahk WM. Agomelatine for the Treatment of Generalized Anxiety Disorder: A Meta-Analysis. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:423-433. [PMID: 32702221 PMCID: PMC7383014 DOI: 10.9758/cpn.2020.18.3.423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022]
Abstract
Objective Despite multiple drugs available, a large proportion of patients with generalized anxiety disorder (GAD) do not show adequate response and remission. Thus, additional novel pharmacological agents are needed to increase treatment option for GAD. We aimed to investigate efficacy and safety of agomelatine in the treatment of GAD by conducting a meta-analysis. Methods An extensive search of multiple databases and clinical trial registries were conducted. Mean change in total scores on Hamilton Anxiety Rating Scale (HAM-A) from baseline to endpoint was our primary outcome measure. Secondary efficacy measures included response and remission rates, as defined by a 50% or greater reduction in HAM-A total scores and a score of 7 or less in HAM-A total scores at study endpoint respectively. Results Four published double blinded, randomized, placebo-controlled trials were included in this meta-analysis. Agomelatine more significantly (standardized mean difference = −0.56, p = 0.004) improved HAM-A total scores than placebo. The odds ratios (ORs) of agomelatine over placebo for response and remission rates were 3.75 (p < 0.00001) and 2.74 (p < 0.00001), respectively. Agomelatine was generally well tolerated with insignificance in dropout rate, somnolence, headache, nasopharyngitis, and dizziness compared with placebo. However, agomelatine showed significantly higher incidence of liver function increment (OR = 3.13, p = 0.01) and nausea (OR = 3.27, p = 0.02). Conclusion We showed that agomelatine may be another treatment option in patients with GAD. However, the results should be interpreted and translated into clinical practice with caution because the meta-analysis was based on limited numbers of clinical trials.
Collapse
Affiliation(s)
- Sheng-Min Wang
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Sup Woo
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Nak-Young Kim
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hae-Ran Na
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Kook Lim
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won-Myong Bahk
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
31
|
Konstantakopoulos G, Dimitrakopoulos S, Michalopoulou PG. The preclinical discovery and development of agomelatine for the treatment of depression. Expert Opin Drug Discov 2020; 15:1121-1132. [PMID: 32568567 DOI: 10.1080/17460441.2020.1781087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Under the treatment of commonly used antidepressants, many patients with major depressive disorder (MDD) do not achieve remission. All previous first-line treatments for depression have focused on the enhancement of monoaminergic activity. Agomelatine was the first antidepressant with a mechanism of action extending beyond monoaminergic neurotransmission. AREAS COVERED The aim of this case history is to describe the discovery strategy and development of agomelatine. The pharmacodynamic profile of the drug is briefly presented. The article summarizes (a) the preclinical behavioral data on agomelatine's effects on depressive-like behavior, anxiety, and circadian rhythmicity disruptions, and (b) the results of early preclinical studies on safety, efficacy in MDD, and the risk-benefit pharmacological profile. Furthermore, the article examines findings of post-marketing research on safety, efficacy, and cost-effectiveness of the drug. EXPERT OPINION There is now evidence supporting the clinical efficacy and safety profile of agomelatine in the acute-phase treatment of MDD. Agomelatine may be more effective in specific subgroups of MDD patients, those with severe anxiety symptoms or disturbed circadian profiles. Its antidepressant and anxiolytic activities are due to synergy between its melatonergic and 5-hydroxytryptaminergic effects. Since its discovery, novel compounds acting on the melatonergic system have been under investigation for the treatment of MDD.
Collapse
Affiliation(s)
- George Konstantakopoulos
- First Department of Psychiatry, University of Athens , Athens, Greece.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, UK
| | | | - Panayiota G Michalopoulou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, UK
| |
Collapse
|
32
|
Hypotensive Effect of Nanomicellar Formulation of Melatonin and Agomelatine in a Rat Model: Significance for Glaucoma Therapy. Diagnostics (Basel) 2020; 10:diagnostics10030138. [PMID: 32138160 PMCID: PMC7151109 DOI: 10.3390/diagnostics10030138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Melatoninergic agents are known to reduce intraocular pressure (IOP). The present study was performed to evaluate the effect of nanomicellar formulations of melatoninergic agents on IOP in the rat. METHODS Tonometry was used to measure IOP in eyes instilled with melatonin or agomelatine. Ocular hypertension was induced by the injection of methylcellulose in the anterior chamber. RESULTS Melatonin formulated in nanomicelles had a longer lasting hypotonizing effect on IOP with respect to melatonin in saline. Nanomicellar formulations of melatonin and agomelatine, either alone or in combination, had lowering effects that did not depend on their concentration or their combination, which, however, resulted in an increased duration of the hypotonizing effect. The duration of the lowering effect was further increased by the addition of lipoic acid. CONCLUSIONS We demonstrated the effective hypotonizing activity of melatonin and agomelatine in combination with lipoic acid. Although results in animals cannot be directly translated to humans, the possibility of developing novel therapeutical approaches for patients suffering from hypertensive glaucoma should be considered.
Collapse
|
33
|
Cheng Q, Huang J, Xu L, Li Y, Li H, Shen Y, Zheng Q, Li L. Analysis of Time-Course, Dose-Effect, and Influencing Factors of Antidepressants in the Treatment of Acute Adult Patients With Major Depression. Int J Neuropsychopharmacol 2020; 23:76-87. [PMID: 31774497 PMCID: PMC7094001 DOI: 10.1093/ijnp/pyz062] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Model-based meta-analysis was used to describe the time-course and dose-effect relationships of antidepressants and also simultaneously investigate the impact of various factors on drug efficacy. METHODS This study is a reanalysis of a published network meta-analysis. Only placebo-controlled trials were included in this study. The change rate in depression rating scale scores from baseline was used as an efficacy indicator because a continuous variable is more likely to reflect subtle differences in efficacy between drugs. RESULTS A total 230 studies containing 64 346 patients were included in the analysis. The results showed that the number of study sites (single or multi-center) and the type of setting (inpatient or noninpatient) are important factors affecting the efficacy of antidepressants. After deducting the placebo effect, the maximum pure drug efficacy value of inpatients was 18.4% higher than that of noninpatients, and maximum pure drug efficacy value of single-center trials was 10.2% higher than that of multi-central trials. Amitriptyline showed the highest drug efficacy. The remaining 18 antidepressants were comparable or had little difference. Within the approved dose range, no significant dose-response relationship was observed. However, the time-course relationship is obvious for all antidepressants. In terms of safety, with the exception of amitriptyline, the dropout rate due to adverse events of other drugs was not more than 10% higher than that of the placebo group. CONCLUSION The number of study sites and the type of setting are significant impact factors for the efficacy of antidepressants. Except for amitriptyline, the other 18 antidepressants have little difference in efficacy and safety.
Collapse
Affiliation(s)
- Qingqing Cheng
- Center for Drug of Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jihan Huang
- Center for Drug of Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Center for Drug of Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunfei Li
- Center for Drug of Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huafang Li
- Shanghai Mental Health Center, Shanghai, China
| | - Yifeng Shen
- Shanghai Mental Health Center, Shanghai, China
| | - Qingshan Zheng
- Center for Drug of Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lujin Li
- Center for Drug of Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|