1
|
Kumar KMP, Unnikrishnan AG, Jariwala P, Mehta A, Chaturvedi R, Panchal S, Lakhani P, Acharya R, Dixit J. SGLT2 Inhibitors: Paradigm Shift from Diabetes Care to Metabolic Care-An Indian Perspective. Indian J Endocrinol Metab 2024; 28:11-18. [PMID: 38533279 PMCID: PMC10962769 DOI: 10.4103/ijem.ijem_377_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/19/2023] [Accepted: 01/20/2024] [Indexed: 03/28/2024] Open
Abstract
The prevalence and burden of diabetes are on the rise in India, making it 'the diabetes capital of the world'. Comorbidities such as obesity, cardiovascular (CV) complications, chronic kidney disease (CKD), non-alcoholic fatty liver disease (NAFLD), and neurodegenerative diseases are common in patients with diabetes. Recent breakthroughs in diabetes medications and continuous glucose monitoring have resulted in a paradigm shift in diabetes care. Hence, a review in the Indian context is warranted. This review focuses on the existing evidence (gathered by a systematic literature search utilising online databases such as PubMed) on the metabolic, cardio-renoprotective, and hepatoprotective effects of sodium-glucose co-transporter 2 (SGLT2) inhibition, particularly in the Indian setting. The study revealed that the SGLT2 inhibitors (SGLT2i), with their numerous pleiotropic benefits, have received considerable attention recently as a novel class of antihyperglycaemic agents (AHAs) for the management of diabetes. SGLT2i play a crucial role in the transition from glycaemic control to metabolic care, particularly in the context of obesity, CV disease and renal disease. In addition to improving glycaemic control, SGLT2i have been shown to promote weight loss, reduce blood pressure and improve lipid profiles, which are key components of metabolic health. Moreover, SGLT2i have demonstrated renal protective effects, including a reduction in albuminuria and a slower decline in the estimated glomerular filtration rate (eGFR), suggesting a potential role in the management of renal dysfunction.
Collapse
Affiliation(s)
- K M Prasanna Kumar
- Centre for Diabetes and Endocrine Care and Diabetes Care, Bengaluru, Karnataka, India
| | | | | | | | | | - Sagar Panchal
- Medical Affairs, Johnson & Johnson Private Limited, Mumbai, Maharashtra, India
| | - Preet Lakhani
- Medical Affairs, Johnson & Johnson Private Limited, Mumbai, Maharashtra, India
| | - Rachana Acharya
- Medical Affairs, Johnson & Johnson Private Limited, Mumbai, Maharashtra, India
| | - Jitendra Dixit
- Evidence Generation Centre and Strategic Alliances, Janssen Inc., Ontario, Canada
| |
Collapse
|
2
|
Jarosz-Popek J, Eyileten C, Gager GM, Nowak A, Szwed P, Wicik Z, Palatini J, von Lewinski D, Sourij H, Siller-Matula JM, Postula M. The interaction between non-coding RNAs and SGLT2: A review. Int J Cardiol 2023; 398:131419. [PMID: 39492411 DOI: 10.1016/j.ijcard.2023.131419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2, SLC5A2) is a promising target for a new class of drug primarily established as kidney-targeting as well as emerging class of glucose-lowering drugs in diabetes. Studies showed that SGLT2 inhibitors also have a systemic impact via indirectly targeting the heart and kidneys which exerts broad cardio- and nephroprotective effects. Additionally, as cancer cells tightly require glucose supply, studies also questioned how SGLT2 inhibitors impact molecular pathology and cellular metabolism in cancer hallmarks. However, the exact molecular mechanisms responsible for those benefits have not been fully discovered. MicroRNAs (miRNA) and circularRNAs (circRNAs) are endogenous, single-stranded, non-coding RNAs (ncRNAs) that can control protein-coding genes, affecting significant molecular and cellular processes regulating homeostasis. CircRNAs particularly regulate gene expression at the transcriptional and post-transcriptional level by sponging to miRNAs and by altering interactions between proteins.
Collapse
Affiliation(s)
- Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Gloria M Gager
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna 1090, Austria; Department of Clinical Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Anna Nowak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Szwed
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, Warsaw 02-957, Poland
| | - Jeff Palatini
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna 1090, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland.
| |
Collapse
|
3
|
Xia Z, Song L, Fang D, You W, Li F, Zheng D, Li Y, Lin L, Dou J, Su X, Zhai Q, Zuo Y, Zhang Y, Gaisano HY, Jiang J, He Y. Higher systolic blood pressure is specifically associated with better islet beta-cell function in T2DM patients with high glycemic level. Cardiovasc Diabetol 2022; 21:283. [PMID: 36536433 PMCID: PMC9764532 DOI: 10.1186/s12933-022-01723-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patients with type 2 diabetes mellitus (T2DM) usually have higher blood viscosity attributed to high blood glucose that can decrease blood supply to the pancreas. A mild increase in blood pressure (BP) has been reported as a potential compensatory response that can maintain blood perfusion in the islet. However, how BP influences beta-cell function in T2DM subjects remains inconsistent. This study aimed to examine the relationship between BP and beta-cell function in patients with T2DM under different HbA1c levels. METHODS This is a cross-sectional study of 615 T2DM patients, whose clinical data were extracted from hospital medical records. Beta-cell function was assessed by insulin secretion-sensitivity index-2 (ISSI2). Multivariable linear regression analysis and restricted cubic splines (RCS) analysis were performed to identify the association between systolic BP (SBP) and ISSI2. Mediation analysis was performed to determine whether higher SBP could reduce blood glucose by enhancing beta-cell function. RESULTS After adjustment of potential confounders, in participants with HbA1c ≥ 10%, the SBP between 140 to150 mmHg had the highest log ISSI2 (b = 0.227, 95% CI 0.053-0.402), an association specific to participants with < 1 year duration of diabetes. RCS analyses demonstrated an inverted U-shaped association between SBP and ISSI2 with the SBP at 144 mmHg corresponding to the best beta-cell function. This higher SBP was "paradoxically" associated with lower 2 h postprandial blood glucose (PBG) when SBP < 150 mmHg that was almost exclusively mediated by ISSI2 (mediating effect = - 0.043, 95%CI - 0.067 to - 0.018; mediating effect percentage = 94.7%, P < 0.01). SBP was however not associated with improvement in ISSI2 or 2 h PBG in participants with HbA1c < 10%. CONCLUSIONS In early stage of diabetes, a slightly elevated SBP (140-150 mmHg) was transiently associated with better beta-cell function in T2DM patients with HbA1c ≥ 10% but not in those with HbA1c < 10%.
Collapse
Affiliation(s)
- Zhang Xia
- grid.24696.3f0000 0004 0369 153XDepartment of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, You’anmen Wai, Fengtai District, Beijing, 100069 China
| | - Lijuan Song
- Department of Endocrinology, Jining No.1 People’s Hospital, 6 Jiankang Road, Rencheng District, Jining, Shandong 272000 China
| | - Dongdong Fang
- Department of Endocrinology, Jining No.1 People’s Hospital, 6 Jiankang Road, Rencheng District, Jining, Shandong 272000 China
| | - Wenjun You
- Department of Endocrinology, Jining No.1 People’s Hospital, 6 Jiankang Road, Rencheng District, Jining, Shandong 272000 China
| | - Feng Li
- Department of Endocrinology, Jining No.1 People’s Hospital, 6 Jiankang Road, Rencheng District, Jining, Shandong 272000 China ,Institute for Chronic Disease Management, Jining No.1 People’s Hospital, Jining, Shandong China
| | - Deqiang Zheng
- grid.24696.3f0000 0004 0369 153XDepartment of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, You’anmen Wai, Fengtai District, Beijing, 100069 China ,grid.24696.3f0000 0004 0369 153XBeijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yuhao Li
- grid.24696.3f0000 0004 0369 153XDepartment of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, You’anmen Wai, Fengtai District, Beijing, 100069 China
| | - Lu Lin
- grid.414252.40000 0004 1761 8894Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingtao Dou
- grid.414252.40000 0004 1761 8894Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Su
- grid.24696.3f0000 0004 0369 153XDepartment of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, You’anmen Wai, Fengtai District, Beijing, 100069 China
| | - Qi Zhai
- grid.24696.3f0000 0004 0369 153XDepartment of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, You’anmen Wai, Fengtai District, Beijing, 100069 China
| | - Yingting Zuo
- grid.24696.3f0000 0004 0369 153XDepartment of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, You’anmen Wai, Fengtai District, Beijing, 100069 China
| | - Yibo Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, You’anmen Wai, Fengtai District, Beijing, 100069 China
| | - Herbert Y. Gaisano
- grid.17063.330000 0001 2157 2938Departments of Medication and Physiology, University of Toronto, Toronto, ON Canada
| | - Jiajia Jiang
- Department of Endocrinology, Jining No.1 People’s Hospital, 6 Jiankang Road, Rencheng District, Jining, Shandong 272000 China ,Institute for Chronic Disease Management, Jining No.1 People’s Hospital, Jining, Shandong China
| | - Yan He
- grid.24696.3f0000 0004 0369 153XDepartment of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, You’anmen Wai, Fengtai District, Beijing, 100069 China ,grid.24696.3f0000 0004 0369 153XBeijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| |
Collapse
|
4
|
Zhu Z, Zhang Q, Liu L, Bao P, Liu S, Song C, Yang W, Nan Z. Clinical efficacy and safety of astragalus injection combined with ACEI/ARB in the treatment of diabetic kidney disease: Protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e31490. [PMID: 36626537 PMCID: PMC9750634 DOI: 10.1097/md.0000000000031490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Kidney disease is a common complication of diabetes and the main cause of end-stage renal disease. Astragalus (Huangqi) injection in combination with angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (ACEI/ARBs) have been widely used for the treatment of diabetic kidney disease (DKD) in China. However, no supporting evidence yet exists with regard to the safety and effectiveness of this approach. Here a protocol is outlined for use in systematic evaluation of the safety and effectiveness of astragalus injection combined with ACEI/ARB for the treatment of DKD. METHODS Randomised controlled trials will be retrieved from 8 scientific databases, including PubMed, Web of Science, EMBASE database, Cochrane Library, China National Knowledge Infrastructure, Wanfang, China Biomedical Literature CD-ROM Database and China Science Journal Database. Ongoing clinical trial databases will also be searched for studies published from the time of establishment of each database to September 1, 2022. that will include the Chinese Clinical Trial Registration Centre (www.chictr.org.cn/), the World Health Organisation International Trial Registration Platform (https://www.who.int/clinical-trials-registry-platform), Google Scholar (https://scholar.google.com/), Baidu Scholar (https://xueshu.baidu.com), etc. The main outcome indicators included urinary albumin excretion rate or 24-hour urinary albumin excretion rate, and renal function (blood urea nitrogen, serum creatinine concentration). The secondary outcome indicators mainly include the following 4 aspects: blood sugar, blood pressure, blood lipid levels and adverse events. Two researchers will independently select and extract data from randomized controlled trials and determine risks of bias. Meta-analysis will be performed using Revman5.4 then the quality of evidence from randomized clinical trials will be assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) System tool. RESULTS This review will be the first to summarize meta-analysis results regarding the efficacy and safety of Huangqi injection combined with ACEI/ARB when administered during any stage of diabetic nephropathy rather than during only a single stage of the disease. DISCUSSION It will provide high-quality guidance for the treatment of diabetic kidney disease and provide patients with more treatment options.
Collapse
Affiliation(s)
- Zhiyue Zhu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qi Zhang
- Institution of Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Le Liu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Pengjie Bao
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shilin Liu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chaoqun Song
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenbo Yang
- Department of Pediatrics, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
- *Correspondence: Zheng Nan, Changchun University of Chinese Medicine,1035 Boshuo Rd, Changchun 130021, Jilin, China (e-mail: ) and Wenbo Yang, Department of Pediatrics, Affiliated Hospital of Jiangxi University of Chinese Medicine,445 Bayi Rd, 330006, Nanchang, China (e-mail: )
| | - Zheng Nan
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Zheng Nan, Changchun University of Chinese Medicine,1035 Boshuo Rd, Changchun 130021, Jilin, China (e-mail: ) and Wenbo Yang, Department of Pediatrics, Affiliated Hospital of Jiangxi University of Chinese Medicine,445 Bayi Rd, 330006, Nanchang, China (e-mail: )
| |
Collapse
|
5
|
Wicik Z, Nowak A, Jarosz-Popek J, Wolska M, Eyileten C, Siller-Matula JM, von Lewinski D, Sourij H, Filipiak KJ, Postuła M. Characterization of the SGLT2 Interaction Network and Its Regulation by SGLT2 Inhibitors: A Bioinformatic Analysis. Front Pharmacol 2022; 13:901340. [PMID: 36046822 PMCID: PMC9421436 DOI: 10.3389/fphar.2022.901340] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2), also known as solute carrier family 5 member 2 (SLC5A2), is a promising target for a new class of drugs primarily established as kidney-targeting, effective glucose-lowering agents used in diabetes mellitus (DM) patients. Increasing evidence indicates that besides renal effects, SGLT2 inhibitors (SGLT2i) have also a systemic impact via indirectly targeting the heart and other tissues. Our hypothesis states that the pleiotropic effects of SGLT2i are associated with their binding force, location of targets in the SGLT2 networks, targets involvement in signaling pathways, and their tissue-specific expression. Methods: Thus, to investigate differences in SGLT2i impact on human organisms, we re-created the SGLT2 interaction network incorporating its inhibitors and metformin and analyzed its tissue-specific expression using publicly available datasets. We analyzed it in the context of the so-called key terms ( autophagy, oxidative stress, aging, senescence, inflammation, AMPK pathways, and mTOR pathways) which seem to be crucial to elucidating the SGLT2 role in a variety of clinical manifestations. Results: Analysis of SGLT2 and its network components’ expression confidence identified selected organs in the following order: kidney, liver, adipose tissue, blood, heart, muscle, intestine, brain, and artery according to the TISSUES database. Drug repurposing analysis of known SGLT2i pointed out the influence of SGLT1 regulators on the heart and intestine tissue. Additionally, dapagliflozin seems to also have a stronger impact on brain tissue through the regulation of SGLT3 and SLC5A11. The shortest path analysis identified interaction SIRT1-SGLT2 among the top five interactions across six from seven analyzed networks associated with the key terms. Other top first-level SGLT2 interactors associated with key terms were not only ADIPOQ, INS, GLUT4, ACE, and GLUT1 but also less recognized ILK and ADCY7. Among other interactors which appeared in multiple shortest-path analyses were GPT, COG2, and MGAM. Enrichment analysis of SGLT2 network components showed the highest overrepresentation of hypertensive disease, DM-related diseases for both levels of SGLT2 interactors. Additionally, for the extended SGLT2 network, we observed enrichment in obesity (including SGLT1), cancer-related terms, neuroactive ligand–receptor interaction, and neutrophil-mediated immunity. Conclusion: This study provides comprehensive and ranked information about the SGLT2 interaction network in the context of tissue expression and can help to predict the clinical effects of the SGLT2i.
Collapse
Affiliation(s)
- Zofia Wicik
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Nowak
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Jarosz-Popek
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Marta Wolska
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Jolanta M. Siller-Matula
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | | | - Marek Postuła
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Marek Postuła,
| |
Collapse
|
6
|
Chen PY, Chiu CC, Hsieh TH, Liu YR, Chen CH, Huang CY, Lu ML, Huang MC. The relationship of antipsychotic treatment with reduced brown adipose tissue activity in patients with schizophrenia. Psychoneuroendocrinology 2022; 142:105775. [PMID: 35594830 DOI: 10.1016/j.psyneuen.2022.105775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Antipsychotic drug (APD) treatment has been associated with metabolic abnormalities. Brown adipose tissue (BAT) is the main site of adaptive thermogenesis and secretes various metabolism-improving factors known as batokines. We explored the association of BAT activity with APD treatment and metabolic abnormalities in patients with schizophrenia by measuring the blood levels of bone morphogenetic protein 8b (BMP8b), a batokine secreted by mature BAT. METHODS BMP8b levels were compared among 50 drug-free, 32 aripiprazole-treated, and 91 clozapine-treated patients with schizophrenia. Regression analysis was used to explore factors, including APD types, that might be associated with BMP8b levels and the potential effect of BMP8b on metabolic syndrome (MS). RESULTS APD-treated patients had decreased BMP8b levels relative to drug-free patients. The difference still existed after adjustment for body mass index and Brief Psychiatric Rating Scale scores. Among APD-treated group, clozapine was associated with even lower BMP8b levels than the less obesogenic APD, aripiprazole. Furthermore, higher BMP8b levels were associated with lower risks of MS after adjustment for BMI and APD treatment. CONCLUSION Using drug-free patients as the comparison group to understand the effect of APDs, this is the first study to show APD treatment is associated with reduced BAT activity that is measured by BMP8b levels, with clozapine associated a more significant reduction than aripiprazole treatment. BMP8b might have a beneficial effect against metabolic abnormalities and this effect is independent of APD treatment. Future studies exploring the causal relationship between APD treatment and BMP8b levels and the underlying mechanisms are warranted.
Collapse
Affiliation(s)
- Po-Yu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychology, National Cheng-chi University, Taiwan
| | - Chih-Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cho-Yin Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital, 250 Wu-Hsing Street, 110 Taipei, Taiwan.
| |
Collapse
|
7
|
Nie T, Cooper GJS. Mechanisms Underlying the Antidiabetic Activities of Polyphenolic Compounds: A Review. Front Pharmacol 2021; 12:798329. [PMID: 34970150 PMCID: PMC8712966 DOI: 10.3389/fphar.2021.798329] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/18/2021] [Indexed: 12/16/2022] Open
Abstract
Polyphenolic compounds are thought to show considerable promise for the treatment of various metabolic disorders, including type 2 diabetes mellitus (T2DM). This review addresses evidence from in vitro, in vivo, and clinical studies for the antidiabetic effects of certain polyphenolic compounds. We focus on the role of cytotoxic human amylin (hA) aggregates in the pathogenesis of T2DM, and how polyphenols can ameliorate this process by suppressing or modifying their formation. Small, soluble amylin oligomers elicit cytotoxicity in pancreatic islet β-cells and may thus cause β-cell disruption in T2DM. Amylin oligomers may also contribute to oxidative stress and inflammation that lead to the triggering of β-cell apoptosis. Polyphenols may exert antidiabetic effects via their ability to inhibit hA aggregation, and to modulate oxidative stress, inflammation, and other pathways that are β-cell-protective or insulin-sensitizing. There is evidence that their ability to inhibit and destabilize self-assembly by hA requires aromatic molecular structures that bind to misfolding monomers or oligomers, coupled with adjacent hydroxyl groups present on single phenyl rings. Thus, these multifunctional compounds have the potential to be effective against the pleiotropic mechanisms of T2DM. However, substantial further research will be required before it can be determined whether a polyphenol-based molecular entity can be used as a therapeutic for type 2 diabetes.
Collapse
Affiliation(s)
- Tina Nie
- School of Biological Sciences, Faculty of Science, the University of Auckland, Auckland, New Zealand
| | - Garth J. S. Cooper
- School of Biological Sciences, Faculty of Science, the University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, the University of Auckland, Auckland, New Zealand
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, Faculty of Biology Medicine & Health, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Sasaki H, Saisho Y, Inaishi J, Itoh H. Revisiting Regulators of Human β-cell Mass to Achieve β-cell-centric Approach Toward Type 2 Diabetes. J Endocr Soc 2021; 5:bvab128. [PMID: 34405128 PMCID: PMC8361804 DOI: 10.1210/jendso/bvab128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes (T2DM) is characterized by insulin resistance and β-cell dysfunction. Because patients with T2DM have inadequate β-cell mass (BCM) and β-cell dysfunction worsens glycemic control and makes treatment difficult, therapeutic strategies to preserve and restore BCM are needed. In rodent models, obesity increases BCM about 3-fold, but the increase in BCM in humans is limited. Besides, obesity-induced changes in BCM may show racial differences between East Asians and Caucasians. Recently, the developmental origins of health and disease hypothesis, which states that the risk of developing noncommunicable diseases including T2DM is influenced by the fetal environment, has been proposed. It is known in rodents that animals with low birthweight have reduced BCM through epigenetic modifications, making them more susceptible to diabetes in the future. Similarly, in humans, we revealed that individuals born with low birthweight have lower BCM in adulthood. Because β-cell replication is more frequently observed in the 5 years after birth, and β cells are found to be more plastic in that period, a history of childhood obesity increases BCM. BCM in patients with T2DM is reduced by 20% to 65% compared with that in individuals without T2DM. However, since BCM starts to decrease from the stage of borderline diabetes, early intervention is essential for β-cell protection. In this review, we summarize the current knowledge on regulatory factors of human BCM in health and diabetes and propose the β-cell–centric concept of diabetes to enhance a more pathophysiology-based treatment approach for T2DM.
Collapse
Affiliation(s)
- Hironobu Sasaki
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Saisho
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jun Inaishi
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Aziz S, Ghadzi SMS, Sulaiman SAS, Hanafiah NHM, Harun SN. Can Newer Anti-Diabetic Therapies Delay the Development of Diabetic Nephropathy? JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2021; 13:341-351. [PMID: 35399797 PMCID: PMC8985833 DOI: 10.4103/jpbs.jpbs_497_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is progressive in nature and leads to hyperglycemia-associated microvascular and macrovascular complications. Diabetic nephropathy (DN) is one of the most prominent microvascular complication induced by T2DM and is characterized by albuminuria and progressive loss of kidney function. Aggressive management of hyperglycemia and hypertension has been found effective in delaying the development and progression of DN. Although the conventional antidiabetic treatment is effective in the earlier management of hyperglycemia, the progressive loss of beta cells ultimately needs the addition of insulin to the therapy. The emergence of newer antidiabetic agents may address the limitations associated with conventional antidiabetic therapies, which not only improve the glycemic status but also effective in improving cardio-renal outcomes. Nevertheless, the exact role of these agents and their role in minimizing diabetes progression to DN still needs elaboration. The present review aimed to highlights the impact of these newer antidiabetic agents in the management of hyperglycemia and their role in delaying the progression of diabetes to DN/management of DN in patients with T2DM.
Collapse
Affiliation(s)
- Sohail Aziz
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Syed Azhar Syed Sulaiman
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Nur Hafzan Md Hanafiah
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Sabariah Noor Harun
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
10
|
Sasaki H, Saisho Y, Inaishi J, Watanabe Y, Tsuchiya T, Makio M, Sato M, Nishikawa M, Kitago M, Yamada T, Itoh H. Reduced beta cell number rather than size is a major contributor to beta cell loss in type 2 diabetes. Diabetologia 2021; 64:1816-1821. [PMID: 33938968 PMCID: PMC8245378 DOI: 10.1007/s00125-021-05467-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/01/2021] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is characterised by reduced beta cell mass (BCM). However, it remains uncertain whether the reduction in BCM in type 2 diabetes is due to a decrease in size or number of beta cells. Our aim was to examine the impact of beta cell size and number on islet morphology in humans with and without type 2 diabetes. METHODS Pancreas samples were obtained from 64 Japanese adults with (n = 26) and without (n = 38) type 2 diabetes who underwent pancreatectomy. Using pancreatic tissues stained for insulin, we estimated beta cell size based on beta cell diameter. Beta cell number was estimated from the product of fractional beta cell area and pancreas volume divided by beta cell size. The associations of beta cell size and number with islet morphology and metabolic status were examined. RESULTS Both beta cell size (548.7 ± 58.5 vs 606.7 ± 65.0 μm3, p < 0.01) and number (5.10 × 108 ± 2.35 × 108 vs 8.16 × 108 ± 4.27 × 108, p < 0.01) were decreased in participants with type 2 diabetes compared with those without diabetes, with the relative reduction in beta cell number (37%) being greater than for beta cell size (10%). Beta cell number but not size was positively correlated with BCM in participants with and without type 2 diabetes (r = 0.97 and r = 0.98, both p < 0.01) and negatively correlated with HbA1c (r = -0.45, p < 0.01). CONCLUSIONS/INTERPRETATION Both beta cell size and number were reduced in participants with type 2 diabetes, with the relative reduction in beta cell number being greater. Decrease in beta cell number appears to be a major contributor to reduced BCM in type 2 diabetes.
Collapse
Affiliation(s)
- Hironobu Sasaki
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Saisho
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Jun Inaishi
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Center for Preventative Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuusuke Watanabe
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tami Tsuchiya
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masayoshi Makio
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Midori Sato
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Nishikawa
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Taketo Yamada
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Department of Pathology, Saitama Medical University, Saitama, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Unnikrishnan R, Radha V, Mohan V. Challenges Involved in Incorporating Personalised Treatment Plan as Routine Care of Patients with Diabetes. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:327-333. [PMID: 33758531 PMCID: PMC7981142 DOI: 10.2147/pgpm.s271582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/22/2021] [Indexed: 11/26/2022]
Abstract
Diabetes is a heterogenous disorder, and patients with this disorder vary considerably in their clinical presentation, response to therapy and risk of complications. Expanding knowledge about the pathophysiology of various forms of diabetes has raised the possibility that diagnostic and therapeutic modalities can be tailored to the individual patient in a personalized manner. The recent publication of a Consensus Statement on precision diabetes care underlines the major strides made in this field in the recent past. However, while personalized diabetes care has the potential to significantly improve outcomes in patients with diabetes in a safe and cost-effective manner, its wider application presents several challenges, especially in resource-strained settings. These challenges pertain equally to precision diagnostics, precision therapeutics and precision monitoring. This article discusses some of the important challenges that care providers are likely to face in applying the personalized approach in caring for their patients with diabetes, in the context of diagnosis and management of type 1 diabetes, type 2 diabetes and monogenic forms of diabetes. Suggestions are also presented for overcoming some of these challenges.
Collapse
Affiliation(s)
- Ranjit Unnikrishnan
- Department of Diabetology, Dr. Mohan's Diabetes Specialities Centre and Madras Diabetes Research Foundation, Chennai, India
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, India
| | - Viswanathan Mohan
- Department of Diabetology, Dr. Mohan's Diabetes Specialities Centre and Madras Diabetes Research Foundation, Chennai, India
| |
Collapse
|
12
|
Kaneto H, Obata A, Kimura T, Shimoda M, Kinoshita T, Matsuoka TA, Kaku K. Unexpected Pleiotropic Effects of SGLT2 Inhibitors: Pearls and Pitfalls of This Novel Antidiabetic Class. Int J Mol Sci 2021; 22:ijms22063062. [PMID: 33802741 PMCID: PMC8002535 DOI: 10.3390/ijms22063062] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 02/06/2023] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors facilitate urine glucose excretion by reducing glucose reabsorption, leading to ameliorate glycemic control. While the main characteristics of type 2 diabetes mellitus are insufficient insulin secretion and insulin resistance, SGLT2 inhibitors have some favorable effects on pancreatic β-cell function and insulin sensitivity. SGLT2 inhibitors ameliorate fatty liver and reduce visceral fat mass. Furthermore, it has been noted that SGLT2 inhibitors have cardio-protective and renal protective effects in addition to their glucose-lowering effect. In addition, several kinds of SGLT2 inhibitors are used in patients with type 1 diabetes mellitus as an adjuvant therapy to insulin. Taken together, SGLT2 inhibitors have amazing multifaceted effects that are far beyond prediction like some emerging magical medicine. Thereby, SGLT2 inhibitors are very promising as relatively new anti-diabetic drugs and are being paid attention in various aspects. It is noted, however, that SGLT2 inhibitors have several side effects such as urinary tract infection or genital infection. In addition, we should bear in mind the possibility of diabetic ketoacidosis, especially when we use SGLT2 inhibitors in patients with poor insulin secretory capacity.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan; (A.O.); (T.K.); (M.S.); (T.K.)
- Correspondence:
| | - Atsushi Obata
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan; (A.O.); (T.K.); (M.S.); (T.K.)
| | - Tomohiko Kimura
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan; (A.O.); (T.K.); (M.S.); (T.K.)
| | - Masashi Shimoda
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan; (A.O.); (T.K.); (M.S.); (T.K.)
| | - Tomoe Kinoshita
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan; (A.O.); (T.K.); (M.S.); (T.K.)
| | - Taka-aki Matsuoka
- The First Department of Internal Medicine, Wakayama Medical University, Wakayama 641-8510, Japan;
| | - Kohei Kaku
- Department of General Internal Medicine 1, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan;
| |
Collapse
|