1
|
Soltani G, Shalaby WS, Razeghinejad R. Latanoprostene bunod: the first nitric oxide-donating antiglaucoma medication. Med Gas Res 2025; 15:220-227. [PMID: 39829161 DOI: 10.4103/mgr.medgasres-d-24-00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/25/2024] [Indexed: 01/22/2025] Open
Abstract
Glaucoma is a chronic optic neuropathy that causes characteristic visual field defects and is considered one of the leading causes of irreversible vision loss worldwide. Lowering intraocular pressure is the only proven treatment for glaucoma. Medical therapy is usually the first-line treatment for open-angle glaucoma and ocular hypertension. Latanoprostene bunod ophthalmic drop 0.024% is a nitric oxide-donating prostaglandin F2α analog. It lowers the intraocular pressure via a dual mechanism of enhancing aqueous humor outflow through both the trabecular meshwork and uveoscleral pathways. Additionally, the nitric oxide component has shown promise in regulating ocular blood flow and promoting the survival of retinal ganglionic cells. Herein, the mechanism of action, efficacy, safety, and tolerability of the latanoprostene bunod and its effects on ocular blood flow are reviewed. Latanoprostene bunod has demonstrated strong efficacy and a favorable safety profile in both clinical trials and real-world studies. Given the promising results of latanoprostene bunod and advancements in drug delivery, topical fixed-combination and sustained-release formulations containing latanoprostene bunod and other agents targeting different intraocular pressure-lowering mechanisms may become available in the future.
Collapse
Affiliation(s)
| | - Wesam Shamseldin Shalaby
- Glaucoma Service, Wills Eye Hospital, Philadelphia, PA, USA
- Ophthalmology Department, Tanta Medical School, Tanta University, Tanta, Gharbia, Egypt
| | | |
Collapse
|
2
|
Foster T, Lim P, Wagle SR, Ionescu CM, Kovacevic B, McLenachan S, Carvalho L, Brunet A, Mooranian A, Al-Salami H. Nanoparticle-Based gene therapy strategies in retinal delivery. J Drug Target 2025:1-20. [PMID: 39749456 DOI: 10.1080/1061186x.2024.2433563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 01/04/2025]
Abstract
Vision loss and blindness are significant issues in both developed and developing countries. There are a wide variety of aetiologies that can cause vision loss, which are outlined in this review. Although treatment has significantly improved over time for some conditions, nearly half of all people with vision impairment are left untreated. Gene delivery is an emerging field that may assist with the treatment of some of these difficult to manage forms of vision loss. Here we review how a component of nanotechnology-based, non-viral gene delivery systems are being applied to help resolve vision impairment. This review focuses on the use of lipid and polymer nanoparticles, and quantum dots as gene delivery vectors to the eye. Finally, we also highlight some emerging technologies that may be useful in this discipline.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
| | - Livia Carvalho
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Alicia Brunet
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
3
|
Kannan L, Lelo de Larrea-Mancera ES, Maniglia M, Vodyanyk MM, Gallun FJ, Jaeggi SM, Seitz AR. Multidimensional relationships between sensory perception and cognitive aging. Front Aging Neurosci 2024; 16:1484494. [PMID: 39759398 PMCID: PMC11695427 DOI: 10.3389/fnagi.2024.1484494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
A growing literature suggests that declines in sensory/perceptual systems predate cognitive declines in aging, and furthermore, they are highly predictive for developing Alzheimer's disease and Alzheimer's related dementias (ADRD). While vision, hearing, olfaction, and vestibular function have each been shown to be related to ADRD, their causal relations to cognitive declines, how they interact with each other remains to be clarified. Currently, there is substantial debate whether sensory/perceptual systems that fail early in disease progression are causal in their contributions to cognitive load and/or social isolation or are simply coincident declines due to aging. At the same time, substantial declines in any of these senses requires compensation, can strain other neural processes and impact activities of daily living, including social engagement, quality of life, and the risk of falls. In this perspective piece, we review literature that illustrates the different relationships between sensory/perceptual systems, cognitive aging and ADRD. We suggest that broadly administered and precise assessment of sensory/perceptual functions could facilitate early detection of ADRD and pave the way for intervention strategies that could help reduce the multifaceted risk of developing ADRD and to improve everyday functioning as people age.
Collapse
Affiliation(s)
- Lakshmi Kannan
- Department of Psychology, Game Design, and Physical Therapy, Movement and Rehabilitation Services, Northeastern University, Boston, MA, United States
| | | | - Marcello Maniglia
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Mariya M. Vodyanyk
- Department of Psychology, Game Design, and Physical Therapy, Movement and Rehabilitation Services, Northeastern University, Boston, MA, United States
| | - Frederick J. Gallun
- Department of Otolaryngology, Oregon Health & Science University, Portland, OR, United States
| | - Susanne M. Jaeggi
- Department of Psychology, Game Design, and Physical Therapy, Movement and Rehabilitation Services, Northeastern University, Boston, MA, United States
| | - Aaron R. Seitz
- Department of Psychology, Game Design, and Physical Therapy, Movement and Rehabilitation Services, Northeastern University, Boston, MA, United States
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
4
|
Khan MS, Murthy A, Ahmed T. Advancements in Ocular Modelling and Simulations: Key Considerations and Case Studies. AAPS PharmSciTech 2024; 26:14. [PMID: 39690355 DOI: 10.1208/s12249-024-03001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024] Open
Abstract
This review paper discusses the key aspects of ocular biopharmaceutics, with emphasis on the crucial role played by ocular compartmental modelling and simulation in deciphering physiological conditions related to various eye diseases. It describes eye's intricate structure and function and the need for precise and targeted drug delivery systems to address prevalent eye conditions. The review categorizes and discusses various formulations employed in ocular drug delivery, delineating their respective advantages and limitations. Additionally, it probes the challenges inherent in diverse routes of drug administration for ocular therapies and provides insights into the complexities of achieving optimal drug concentrations at the target site within the eye. The central theme of this work is the ocular compartmental modelling and simulations. Hence, this works discusses on the nuanced understanding of physiological conditions within the eye, drug distribution, drug release kinetics, and key considerations for ocular compartmental modelling and simulations. By combining information from various sources, this review aims to serve as a comprehensive reference for researchers, clinicians, and pharmaceutical developers. It covers the multifaceted landscape of ocular biopharmaceutics and the transformative impact of modelling and simulation in optimizing ocular drug delivery strategies.
Collapse
Affiliation(s)
- Mohammed Shareef Khan
- Biopharmaceutics - Biopharmaceutics and Bioequivalence, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad, India.
| | - Aditya Murthy
- Biopharmaceutics - Biopharmaceutics and Bioequivalence, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad, India
| | - Tausif Ahmed
- Biopharmaceutics and Bioanalytical - Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad, India
| |
Collapse
|
5
|
Nordin NA, Sadikan MZ, Lambuk L, Hashim S, Airuddin S, Mohd Nasir NA, Mohamud R, Ibrahim J, Kadir R. Liposomal topical drug administration surpasses alternative methods in glaucoma therapeutics: a novel paradigm for enhanced treatment. J Pharm Pharmacol 2024:rgae129. [PMID: 39579384 DOI: 10.1093/jpp/rgae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/01/2024] [Indexed: 11/25/2024]
Abstract
OBJECTIVES Glaucoma is a leading cause of permanent blindness. Despite therapeutic advancements, glaucoma management remains challenging due to limitations of conventional drug delivery, primarily topical eye drops, resulting in suboptimal outcomes and a global surge in cases. To address these issues, liposomal drug delivery has emerged as a promising approach. KEY FINDINGS This review explores the potential of liposomal-based medications, with a particular focus on topical administration as a superior alternative to enhance therapeutic efficacy and improve patient compliance compared to existing treatments. This writing delves into the therapeutic prospects of liposomal formulations across different administration routes, as evidenced by ongoing clinical trials. Additionally, critical aspects of liposomal production and market strategies are discussed herein. SUMMARY By overcoming ocular barriers and optimizing drug delivery, liposomal topical administration holds the key to significantly improving glaucoma treatment outcomes.
Collapse
Affiliation(s)
- Nor Asyikin Nordin
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia (MUCM), 75150 Bukit Baru, Melaka, Malaysia
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Sabarisah Hashim
- Department of Neurosciences, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia
| | - Syahira Airuddin
- Reconstructive Science Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Nur-Azida Mohd Nasir
- Reconstructive Science Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Jamal Ibrahim
- Maths, Science and IT Curriculum Area, Oxford Sixth Form College, 12-13 King Edward St, Oxford, OX1 4HT, United Kingdom
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
6
|
Yamamura K, Mano H, Fuwa M, Iwamura R, Odani-Kawabata N. Ocular Tissue Distribution of Omidenepag Isopropyl in Rabbits and Cynomolgus Monkeys. Transl Vis Sci Technol 2024; 13:6. [PMID: 39514219 PMCID: PMC11552074 DOI: 10.1167/tvst.13.11.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose To evaluate the ocular distribution of omidenepag isopropyl (OMDI) and its active form omidenepag (OMD), an EP2 receptor agonist, after topical administration of OMDI into rabbit and monkey eyes, and to determine whether OMDI and OMD interact with target receptors or enzymes of other antiglaucoma agents. Methods Both eyes of six rabbits and of 14 monkeys were topically instilled with 0.03% [14C]-OMDI. Rabbits were sacrificed after one to four hours, and ocular tissues were collected. Monkeys were sacrificed after 0.25 to 24 hours, and blood and ocular tissues were collected. Radioactivity was measured in each sample. The interactions of OMDI and OMD with the receptors and enzymes associated with the mechanisms of action of other antiglaucoma agents were evaluated. Results Most radioactivity applied to rabbit eyes was recovered as OMD from the cornea, aqueous humor, and iris-ciliary body. Similarly, high concentrations of radioactivity were observed in monkey cornea, bulbar/palpebral conjunctiva, and trabecular meshwork. OMD bound to EP2 receptors, but neither OMD nor OMDI bound to α2A, β1, and β2 adrenergic receptors or inhibited enzymatic activities of CA1 and CA2. OMD and OMDI had little or no effect on ROCK1 and ROCK2. Conclusions OMDI rapidly permeates rabbit and monkey corneas and is converted to OMD, which distributes into anterior ocular tissues. Neither OMD nor OMDI interacted with the target receptors or enzymes of other antiglaucoma agents, suggesting that OMD interacts highly selectively with EP2 receptors. Translational Relevance OMDI is a specific antiglaucoma agent that interacts selectively with ocular EP2 receptors.
Collapse
Affiliation(s)
| | | | - Masahiro Fuwa
- Santen Pharmaceutical Co., Ltd. RD Center, Nara, Japan
| | | | | |
Collapse
|
7
|
Zhang HY, Liu Q, Wang FS, Mu W, Zhu Y, Zhang QY, Feng SG, Yao J, Yan B. Targeted Proteomics Profiling for Biomarker Discovery in Glaucoma Using the Olink Proteomics Platform. J Proteome Res 2024; 23:4674-4683. [PMID: 39319515 DOI: 10.1021/acs.jproteome.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Metabolic dysfunction plays a crucial role in the pathogenesis of glaucoma. In this study, we used Olink proteomics profiling to identify potential biomarkers for glaucoma. Aqueous humor samples were obtained from 44 cataract patients and 44 glaucoma patients. We identified 84 differentially expressed metabolic proteins between the glaucoma and the cataract group. Gene Ontology enrichment analysis highlighted the involvement of these proteins in ER-associated degradation pathway, regulation of interleukin-13 production, and DNA damage response pathway. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis further revealed links to pathways, such as tyrosine and pyrimidine metabolism. Among these, ALDH1A1 emerged as a candidate with a significant diagnostic potential for glaucoma. ALDH1A1 also exhibited a prominent role in the protein-protein interaction network. Elevated levels of ALDH1A1 in the aqueous humor of glaucoma patients were confirmed both in clinical samples and in an ischemia/reperfusion model. Functional assays confirmed that elevated ALDH1A1 induced retinal ganglion cell (RGC) apoptosis in vitro and demonstrated its pro-apoptotic role in RGCs in vivo. Collectively, these findings not only underscore the significance of ALDH1A1 in glaucoma but also provide valuable insights into clinical decision-making and therapeutic strategies.
Collapse
Affiliation(s)
- Hui-Ying Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Qing Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Feng-Sheng Wang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Wan Mu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, China
| | - Yue Zhu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Qiu-Yang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Si-Guo Feng
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
8
|
Abbasi M, Gupta V, Chitranshi N, Moustardas P, Ranjbaran R, Graham SL. Molecular Mechanisms of Glaucoma Pathogenesis with Implications to Caveolin Adaptor Protein and Caveolin-Shp2 Axis. Aging Dis 2024; 15:2051-2068. [PMID: 37962455 PMCID: PMC11346403 DOI: 10.14336/ad.2023.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Glaucoma is a common retinal disorder characterized by progressive optic nerve damage, resulting in visual impairment and potential blindness. Elevated intraocular pressure (IOP) is a major risk factor, but some patients still experience disease progression despite IOP-lowering treatments. Genome-wide association studies have linked variations in the Caveolin1/2 (CAV-1/2) gene loci to glaucoma risk. Cav-1, a key protein in caveolae membrane invaginations, is involved in signaling pathways and its absence impairs retinal function. Recent research suggests that Cav-1 is implicated in modulating the BDNF/TrkB signaling pathway in retinal ganglion cells, which plays a critical role in retinal ganglion cell (RGC) health and protection against apoptosis. Understanding the interplay between these proteins could shed light on glaucoma pathogenesis and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Petros Moustardas
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Stuart L. Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| |
Collapse
|
9
|
Doyle C, Callaghan B, Roodnat AW, Armstrong L, Lester K, Simpson DA, Atkinson SD, Sheridan C, McKenna DJ, Willoughby CE. The TGFβ Induced MicroRNAome of the Trabecular Meshwork. Cells 2024; 13:1060. [PMID: 38920689 PMCID: PMC11201560 DOI: 10.3390/cells13121060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Primary open-angle glaucoma (POAG) is a progressive optic neuropathy with a complex, multifactorial aetiology. Raised intraocular pressure (IOP) is the most important clinically modifiable risk factor for POAG. All current pharmacological agents target aqueous humour dynamics to lower IOP. Newer therapeutic agents are required as some patients with POAG show a limited therapeutic response or develop ocular and systemic side effects to topical medication. Elevated IOP in POAG results from cellular and molecular changes in the trabecular meshwork driven by increased levels of transforming growth factor β (TGFβ) in the anterior segment of the eye. Understanding how TGFβ affects both the structural and functional changes in the outflow pathway and IOP is required to develop new glaucoma therapies that target the molecular pathology in the trabecular meshwork. In this study, we evaluated the effects of TGF-β1 and -β2 treatment on miRNA expression in cultured human primary trabecular meshwork cells. Our findings are presented in terms of specific miRNAs (miRNA-centric), but given miRNAs work in networks to control cellular pathways and processes, a pathway-centric view of miRNA action is also reported. Evaluating TGFβ-responsive miRNA expression in trabecular meshwork cells will further our understanding of the important pathways and changes involved in the pathogenesis of glaucoma and could lead to the development of miRNAs as new therapeutic modalities in glaucoma.
Collapse
Affiliation(s)
- Chelsey Doyle
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Breedge Callaghan
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Anton W. Roodnat
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Lee Armstrong
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Karen Lester
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - David A. Simpson
- Wellcome Wolfson Institute for Experimental Medicine, Queens’ University, Belfast BT9 7BL, UK;
| | - Sarah D. Atkinson
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Carl Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK;
| | - Declan J. McKenna
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Colin E. Willoughby
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| |
Collapse
|
10
|
Jiang J, Kong K, Fang X, Wang D, Zhang Y, Wang P, Yang Z, Zhang Y, Liu X, Aung T, Li F, Yu-Wai-Man P, Zhang X. CRISPR-Cas9-mediated deletion of carbonic anhydrase 2 in the ciliary body to treat glaucoma. Cell Rep Med 2024; 5:101524. [PMID: 38670096 PMCID: PMC11148640 DOI: 10.1016/j.xcrm.2024.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
The carbonic anhydrase 2 (Car2) gene encodes the primary isoenzyme responsible for aqueous humor (AH) production and plays a major role in the regulation of intraocular pressure (IOP). The CRISPR-Cas9 system, based on the ShH10 adenovirus-associated virus, can efficiently disrupt the Car2 gene in the ciliary body. With a single intravitreal injection, Car2 knockout can significantly and sustainably reduce IOP in both normal mice and glaucoma models by inhibiting AH production. Furthermore, it effectively delays and even halts glaucomatous damage induced by prolonged high IOP in a chronic ocular hypertension model, surpassing the efficacy of clinically available carbonic anhydrase inhibitors such as brinzolamide. The clinical application of CRISPR-Cas9 based disruption of Car2 is an attractive therapeutic strategy that could bring additional benefits to patients with glaucoma.
Collapse
Affiliation(s)
- Jiaxuan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Kangjie Kong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Xiuli Fang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Deming Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Yinhang Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Peiyuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Zefeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Yuwei Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Xiaoyi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Tin Aung
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore, Singapore; National University of Singapore, Singapore, Singapore
| | - Fei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China.
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK; UCL Institute of Ophthalmology, University College London, London, UK.
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China.
| |
Collapse
|
11
|
Dick HB, Mackert MJ, Ahmed IIK, Denis P, Hirneiß C, Flowers BE, Singh IP, Mansouri K, Fea AM. Two-Year Performance and Safety Results of the MINIject Supraciliary Implant in Patients With Primary Open-Angle Glaucoma: Meta-Analysis of the STAR-I, II, III Trials. Am J Ophthalmol 2024; 260:172-181. [PMID: 38109951 DOI: 10.1016/j.ajo.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE To evaluate the performance and safety of minimally invasive glaucoma surgery with a supraciliary drainage device (MINIject; iSTAR Medical, Wavre, Belgium) in primary open-angle glaucoma (POAG) as a stand-alone procedure. DESIGN Meta-analysis. METHODS At 11 sites in Colombia, France, Germany, India, Panama, and Spain, 82 patients were treated in 3 prospective, multicenter, interventional, nonrandomized trials (STAR-I, II, III). Data were pooled in a meta-analysis of up to 2 years of follow-up postimplantation. The main outcome measures were mean relative and absolute reduction in diurnal intraocular pressure (IOP) compared to baseline. Secondary outcomes included patients with IOP ≤18 mmHg, patients with IOP reduction ≥20%, number of IOP-lowering medications, adverse events, and endothelial cell density loss. RESULTS At the 2-year follow-up (n = 66), mean IOP was reduced from 23.8 ± 3.3 mmHg at baseline to 14.4 ± 4.5 mmHg (-39.3%; P < 0.0001). An IOP reduction of ≥20% was achieved in 89.4% of patients, with 84.8% having an IOP ≤18 mmHg. IOP-lowering medications were reduced from a mean of 2.4 ± 1.1 to 1.4 ± 1.4 (P < 0.0001), with 37.9% of patients being medication-free at 2 years. Mean endothelial cell density loss at 2 years was 6.2 ± 9.1% compared to baseline and no patient had a loss >30%. CONCLUSIONS This meta-analysis demonstrates the favorable safety and efficacy profile of a supraciliary device implanted in a stand-alone, ab-interno procedure in patients with mild-to-moderate POAG. The data demonstrate that MINIject is a safe and effective, bleb-free treatment option for patients requiring low target IOP up to 2 years.
Collapse
Affiliation(s)
| | - Marc J Mackert
- Department of Ophthalmology, LMU University Hospital, LMU Munich (M.J.M., C.H.), Munich, Germany
| | - Iqbal Ike K Ahmed
- John Moran Eye Center, University of Utah (I.I.K.A.), Salt Lake City, Utah, USA
| | - Philippe Denis
- Department of Ophthalmology, Hôpital de la Croix-Rousse (P.D.), Lyon, France
| | - Christoph Hirneiß
- Department of Ophthalmology, LMU University Hospital, LMU Munich (M.J.M., C.H.), Munich, Germany
| | | | - I Paul Singh
- Eye Centers of Racine & Kenosha (I.P.S.), Racine, Wisconsin, USA
| | - Kaweh Mansouri
- Swiss Visio Glaucoma Research Center, Montchoisi Clinic (K.M.), Lausanne, Switzerland; Glaucoma Department, University of Colorado Denver (K.M.), Denver, Colorado, USA.
| | - Antonio M Fea
- Struttura Complessa Oculistica, Città Della Salute e Della Scienza di Torino, Dipartimento di Scienze Chirurgiche - Università Degli Studi di Torino (A.M.F.), Torino, Italy
| |
Collapse
|
12
|
Appell MB, Pejavar J, Pasupathy A, Rompicharla SVK, Abbasi S, Malmberg K, Kolodziejski P, Ensign LM. Next generation therapeutics for retinal neurodegenerative diseases. J Control Release 2024; 367:708-736. [PMID: 38295996 PMCID: PMC10960710 DOI: 10.1016/j.jconrel.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/05/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Neurodegenerative diseases affecting the visual system encompass glaucoma, macular degeneration, retinopathies, and inherited genetic disorders such as retinitis pigmentosa. These ocular pathologies pose a serious burden of visual impairment and blindness worldwide. Current treatment modalities include small molecule drugs, biologics, or gene therapies, most of which are administered topically as eye drops or as injectables. However, the topical route of administration faces challenges in effectively reaching the posterior segment and achieving desired concentrations at the target site, while injections and implants risk severe complications, such as retinal detachment and endophthalmitis. This necessitates the development of innovative therapeutic strategies that can prolong drug release, deliver effective concentrations to the back of the eye with minimal systemic exposure, and improve patient compliance and safety. In this review, we introduce retinal degenerative diseases, followed by a discussion of the existing clinical standard of care. We then delve into detail about drug and gene delivery systems currently in preclinical and clinical development, including formulation and delivery advantages/drawbacks, with a special emphasis on potential for clinical translation.
Collapse
Affiliation(s)
- Matthew B Appell
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jahnavi Pejavar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ashwin Pasupathy
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sri Vishnu Kiran Rompicharla
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kiersten Malmberg
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Patricia Kolodziejski
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Gynecology and Obstetrics, Biomedical Engineering, Oncology, and Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
13
|
Okuda-Arai M, Mori S, Takano F, Ueda K, Sakamoto M, Yamada-Nakanishi Y, Nakamura M. Impact of glaucoma medications on subsequent Schlemm's canal surgery outcome: Cox proportional hazard model and propensity score-matched analysis. Acta Ophthalmol 2024; 102:e178-e184. [PMID: 37698020 DOI: 10.1111/aos.15750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE The impact of various preoperative glaucoma medications on Schlemm's canal surgery outcomes remains unclear. This study aimed to investigate the impact of preoperative glaucoma medications on the postoperative 1-year outcomes of μTLO. METHODS We analyzed the medical records of 218 patients who underwent their first μTLO to investigate the 1-year postoperative outcomes. Cox proportional hazard regression analysis was performed with surgical failure as the dependent variable and each type of preoperative medication as the independent variable. We also compared the 1-year outcomes of μTLO between users and non-users of specific medications using propensity score matching. Surgical success was defined as a postoperative intraocular pressure ranging from 5 to 21 mmHg, a ≥20% reduction in IOP from baseline, and no additional glaucoma surgery within 1 year postoperatively. RESULTS The Cox proportional hazard analysis showed that all drugs that do not increase the conventional outflow exhibited hazard ratios greater than 1.0, and the preoperative use of β-blockers and oral CAI was a significant surgical risk factor (hazard ratio: 2.65 and 2.45, p = 0.04 and <0.001). In the propensity score matching analysis, success rates at 1 year postoperatively were 55/85, 54/79, 60/73, and 40/76% for users/non-users of β-blockers, topical CAIs, an alpha-2 adrenergic agonist, and an oral CAI, respectively. Kaplan-Meier survival curves in these comparisons also demonstrated that preoperative β-blockers and oral CAI use were significant surgical risks (p = 0.01, <0.001). CONCLUSION Our study suggests that preoperative medications that do not involve conventional pathway outflow have a detrimental effect on subsequent Schlemm's canal surgery outcomes.
Collapse
Affiliation(s)
- Mina Okuda-Arai
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sotaro Mori
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
- Institute of Ophthalmology, University College London, London, UK
| | - Fumio Takano
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kaori Ueda
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Sakamoto
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuko Yamada-Nakanishi
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
14
|
Berdahl JP, Sarkisian SR, Ang RE, Doan LV, Kothe AC, Usner DW, Katz LJ, Navratil T. Efficacy and Safety of the Travoprost Intraocular Implant in Reducing Topical IOP-Lowering Medication Burden in Patients with Open-Angle Glaucoma or Ocular Hypertension. Drugs 2024; 84:83-97. [PMID: 38060092 PMCID: PMC10789685 DOI: 10.1007/s40265-023-01973-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE A randomized, double-masked, multicenter, phase 2 trial to evaluate the long-term safety and efficacy of travoprost intraocular implant, an extended-release drug delivery system designed to provide uninterrupted sustained intraocular pressure (IOP)-lowering therapy, thereby reducing patient treatment burden and improving adherence with IOP-lowering medication. METHODS Patients with open-angle glaucoma or ocular hypertension were administered a fast-eluting implant (FE implant, n = 51) and received twice-daily (BID) placebo eye drops, a slow-eluting (SE implant, n = 54) and received BID placebo eye drops, or underwent a sham surgical procedure and received BID timolol 0.5% (n = 49). IOP was measured at baseline, day 1-2, day 10, week 4, week 6, month 3, and every 3 months thereafter through 36 months. Efficacy was evaluated by mean change from 8:00 AM unmedicated baseline IOP through month 36, and the percentage of patients receiving the same or fewer topical IOP-lowering medications as at screening (pre-study). Safety was evaluated by adverse events and ophthalmic parameters. RESULTS Clinically and statistically relevant IOP-lowering treatment effects were observed through month 36 after a single administration of the travoprost implant compared with BID timolol with mean IOP reductions ranging from 7.6 to 8.8 mmHg for the FE implant group, from 7.3 to 8.0 mmHg for the SE implant group, and from 7.3 to 7.9 for the timolol group at the 8:00 AM timepoint (P < 0.0001 for all treatment groups at all visits). At months 12, 24, and 36, a greater percentage of FE and SE implant patients versus timolol patients were well controlled on the same or fewer topical IOP-lowering medications compared with screening with 63 and 69% for the FE and SE implants groups, respectively, versus 45% for the timolol group at month 36. The safety profile of the implant was favorable; there were no dislodgements, no explantations, no adverse events of conjunctival hyperemia or periorbital fat atrophy, no discontinuations due to study eye adverse events, nor any serious adverse events in the study eye. Comparable changes from baseline in corneal endothelial cell counts were observed in the three treatment groups over the 36 months. CONCLUSION The travoprost intraocular implant demonstrated robust IOP-lowering and substantially reduced topical IOP-lowering medication burden for up to 36 months following a single administration, while maintaining a favorable safety profile. The travoprost intraocular implant promises to be a meaningful addition to the interventional glaucoma armamentarium by addressing the key shortcomings of topical IOP-lowering medications, including low adherence and topical side effects while controlling IOP for up to 36 months. TRIAL REGISTRY ClinicalTrials.gov identifier NCT02754596 registered 28 April 2016.
Collapse
Affiliation(s)
| | | | - Robert E Ang
- Asian Eye Institute, Rockwell Center, 1200, Makati City, Philippines
| | - Long V Doan
- Glaukos Corporation, One Glaukos Way, Aliso Viejo, CA, 92656, USA
| | - Angela C Kothe
- Glaukos Corporation, One Glaukos Way, Aliso Viejo, CA, 92656, USA
| | - Dale W Usner
- Glaukos Corporation, One Glaukos Way, Aliso Viejo, CA, 92656, USA
| | - L Jay Katz
- Glaukos Corporation, One Glaukos Way, Aliso Viejo, CA, 92656, USA
- Glaucoma Research Center, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Tomas Navratil
- Glaukos Corporation, One Glaukos Way, Aliso Viejo, CA, 92656, USA.
| |
Collapse
|
15
|
Lindner T, Schmidl D, Peschorn L, Pai V, Popa-Cherecheanu A, Chua J, Schmetterer L, Garhöfer G. Therapeutic Potential of Cannabinoids in Glaucoma. Pharmaceuticals (Basel) 2023; 16:1149. [PMID: 37631064 PMCID: PMC10460067 DOI: 10.3390/ph16081149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. To date, intraocular pressure (IOP) is the only modifiable risk factor in glaucoma treatment, but even in treated patients, the disease can progress. Cannabinoids, which have been known to lower IOP since the 1970s, have been shown to have beneficial effects in glaucoma patients beyond their IOP-lowering properties. In addition to the classical cannabinoid receptors CB1 and CB2, knowledge of non-classical cannabinoid receptors and the endocannabinoid system has increased in recent years. In particular, the CB2 receptor has been shown to mediate anti-inflammatory, anti-apoptotic, and neuroprotective properties, which may represent a promising therapeutic target for neuroprotection in glaucoma patients. Due to their vasodilatory effects, cannabinoids improve blood flow to the optic nerve head, which may suggest a vasoprotective potential and counteract the altered blood flow observed in glaucoma patients. The aim of this review was to assess the available evidence on the effects and therapeutic potential of cannabinoids in glaucoma patients. The pharmacological mechanisms underlying the effects of cannabinoids on IOP, neuroprotection, and ocular hemodynamics have been discussed.
Collapse
Affiliation(s)
- Theresa Lindner
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Laura Peschorn
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Viktoria Pai
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Alina Popa-Cherecheanu
- Department of Ophthalmology, Emergency University Hospital, 050098 Bucharest, Romania;
- Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Jacqueline Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Leopold Schmetterer
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Nanyang Technological University, Singapore 639798, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, 1090 Vienna, Austria
- Institute of Molecular and Clinical Ophthalmology, 4031 Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| |
Collapse
|
16
|
Platzl C, Kaser-Eichberger A, Wolfmeier H, Trost A, Schroedl F. Human intrinsic choroidal neurons do not alter the expression of intrinsic markers in response to pressure. Br J Ophthalmol 2023; 107:1209-1215. [PMID: 34933896 DOI: 10.1136/bjophthalmol-2021-320211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The choroid is densely innervated by all parts of the autonomic nervous system and further harbours a network of local nerve cells, the intrinsic choroidal neurons (ICN). Their function in ocular control is currently unknown. While morphological data assume a role in intraocular pressure regulation, we here test if increased pressure on isolated choroids may activate ICN. METHODS Donor tissue was transferred into a pressurisable tissue culture chamber, and nasal and temporal choroid halves incubated for 1 or 4 hours, with pressures set to 15 or 50 mm Hg, followed by qRT-PCR expression analysis of the ICN-specific markers VIP, UCN, NOS1, UCH-L1. POL2-normalised data in the different pressure settings, incubation times and localisations were statistically analysed. RESULTS The presence of the ICN-specific markers VIP, UCN, NOS1, UCH-L1 was confirmed using immunohistochemistry, and mRNA of all markers was detected in all experimental conditions. Marker analysis revealed no significant changes of mRNA expression levels between 15 and 50 mm Hg in the different incubation times. When comparing all samples over all experimental conditions, a significant increase of VIP and NOS1 mRNA was detected in temporal versus nasal choroids. CONCLUSION In this functional analysis of human ICN in vitro, higher amounts of VIP and NOS1 mRNA were detected in the temporal choroid, that is, the choroidal site with ICN accumulation. Further, our data indicate that elevated pressure is apparently not able to trigger ICN responses via the investigated markers. Alternative markers and stimuli need to be investigated in upcoming studies in order to unravel ICN function.
Collapse
Affiliation(s)
- Christian Platzl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Heidi Wolfmeier
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Andrea Trost
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
17
|
Huang C, Shen Y, Zhao Y, Zhang Z, Gao S, Hong J, Xu J, Meng Q, Sun X, Sun J. Sustained release of brimonidine from polydimethylsiloxane-coating silicone rubber implant to reduce intraocular pressure in glaucoma. Regen Biomater 2023; 10:rbad041. [PMID: 37303848 PMCID: PMC10247868 DOI: 10.1093/rb/rbad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 06/13/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness, affecting 111 million people by 2040 worldwide. Intraocular pressure (IOP) is the only controllable risk factor for the disease and current treatment options seek to reduce IOP via daily taking eye drops. However, shortcomings of eye drops, such as poor bioavailability and unsatisfied therapeutic effects, may lead to inadequate patient compliance. In this study, an effective brimonidine (BRI)-loaded silicone rubber (SR) implant coated with polydimethylsiloxane (BRI@SR@PDMS) is designed and fully investigated for IOP reduction treatment. The in vitro BRI release from BRI@SR@PDMS implant reveals a more sustainable trend lasting over 1 month, with a gradually declined immediate drug concentration. The carrier materials show no cytotoxicity on human corneal epithelial cells and mice corneal epithelial cells in vitro. After administrated into rabbit's conjunctival sac, the BRI@SR@PDMS implant releases BRI in a sustained fashion and effectively reduces IOP for 18 days with great biosafety. In contrast, BRI eye drops only maintain IOP-lowering effect for 6 h. Therefore, as a substitute of eye drops, the BRI@SR@PDMS implant can be applied as a promising non-invasive platform to achieve long-term IOP-lowering in patients suffering from ocular hypertension or glaucoma.
Collapse
Affiliation(s)
| | | | | | - Zhutian Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Shunxiang Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Jiaxu Hong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | | | | | - Jianguo Sun
- Correspondence address. (J.S.); (X.S.); (Q.M.)
| |
Collapse
|
18
|
Shen Y, Sun J, Sun X. Intraocular nano-microscale drug delivery systems for glaucoma treatment: design strategies and recent progress. J Nanobiotechnology 2023; 21:84. [PMID: 36899348 PMCID: PMC9999627 DOI: 10.1186/s12951-023-01838-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Glaucoma is a leading cause of irreversible visual impairment and blindness, affecting over 76.0 million people worldwide in 2020, with a predicted increase to 111.8 million by 2040. Hypotensive eye drops remain the gold standard for glaucoma treatment, while inadequate patient adherence to medication regimens and poor bioavailability of drugs to target tissues are major obstacles to effective treatment outcomes. Nano/micro-pharmaceuticals, with diverse spectra and abilities, may represent a hope of removing these obstacles. This review describes a set of intraocular nano/micro drug delivery systems involved in glaucoma treatment. Particularly, it investigates the structures, properties, and preclinical evidence supporting the use of these systems in glaucoma, followed by discussing the route of administration, the design of systems, and factors affecting in vivo performance. Finally, it concludes by highlighting the emerging notion as an attractive approach to address the unmet needs for managing glaucoma.
Collapse
Affiliation(s)
- Yuening Shen
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Jianguo Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China. .,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China. .,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
19
|
Hao H, He B, Yu B, Yang J, Xing X, Liu W. Suprachoroidal injection of polyzwitterion hydrogel for treating glaucoma. BIOMATERIALS ADVANCES 2022; 142:213162. [PMID: 36279749 DOI: 10.1016/j.bioadv.2022.213162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/24/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Glaucoma is the primary cause of irreversible blindness worldwide. The current treatments are primarily based on drug usage or surgical operation to reduce intraocular pressure (IOP). However, it is expensive and requires patients to insist on taking the medicine for a long time. The suprachoroidal space (SCS) is the space between the choroid and the sclera, which forms part of the uveovortex pathway in the circulation of aqueous humor. So far, it is still challenging to realize the injection of hydrogels into the SCS with long-term duration. In this work, an in situ-forming polyzwitterionic polycarboxybetaine hydrogel is designed and injected to expand SCS to increase the drainage of aqueous humor from the eye via the uveovortex pathway, thus reducing IOP for at least 6 weeks, while commercial hyaluronic acid hydrogel can only last for about 4 weeks. The clinical ophthalmological safety assessment examination shows that the treatment of polyzwitterion hydrogel is well-tolerated that leads to minimal inflammatory reaction, and histopathology assessment demonstrates that the SCS is expanded after injection of the hydrogel. Further analysis of ultrasound biomicroscopy reveals that there is a strong correlation between IOP reduction and SCS expansion. In short, the polyzwitterion hydrogel developed in this work can prolong the period of IOP reduction by expanding SCS, thus treating ocular hypertension and glaucoma without resorting to drugs or regular surgery.
Collapse
Affiliation(s)
- Huijie Hao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Binbin He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Bo Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Xiaoli Xing
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
20
|
The Effects of Cannabidiol on Aqueous Humor Outflow and Trabecular Meshwork Cell Signaling. Cells 2022; 11:cells11193006. [PMID: 36230968 PMCID: PMC9564313 DOI: 10.3390/cells11193006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Intraocular pressure (IOP) is regulated primarily through aqueous humor production by ciliary body and drainage through uveoscleral and trabecular meshwork (TM) tissues. The goal of this study was to measure the effect of non-psychotropic cannabidiol (CBD) on aqueous humor outflow through TM and assess the effect of CBD on the TM cell signaling pathways that are important for regulating outflow. Perfused porcine eye anterior segment explants were used to investigate the effects of CBD on aqueous humor outflow. Cultured porcine TM cells were used to study the effects of CBD on TM cell contractility, myosin light chain (MLC) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation, and RhoA activation. In the anterior segment perfusion experiments, aqueous humor outflow was increased significantly within 1 h after adding 1 µM CBD and the effect was sustained over the 5 h of measurement. Treatment of TM cells with 1 µM CBD significantly decreased TM cell-mediated collagen contraction, inhibited phosphorylation of MLC and MYPT1, and reduced RhoA activation. Our data demonstrate, for the first time, that as a potential therapeutic agent for lowering intraocular pressure, CBD can enhance aqueous humor outflow and modify TM cell signaling.
Collapse
|
21
|
Kaplan TM, Sit AJ. Emerging drugs for the treatment of glaucoma: a review of phase II & III trials. Expert Opin Emerg Drugs 2022; 27:321-331. [PMID: 35924872 DOI: 10.1080/14728214.2022.2110240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Glaucoma is a progressive optic neuropathy and the leading cause of irreversible vision loss. By 2040, the number of individuals with glaucoma is expected to nearly double. The only known modifiable risk factor for glaucoma is intraocular pressure. Topical medications are often used as first-line therapies. Although there are numerous available treatments, there continues to be a need for the development of new medical therapies due to variable response, intolerable side-effect profiles in some patients, and elevated intraocular pressure refractory to other treatments. AREAS COVERED This review will cover glaucoma medications currently undergoing phase II and III of drug development. EXPERT OPINION There are numerous drugs currently in development that have demonstrated significant and clinically relevant reduction of intraocular pressure. Differentiating factors include improved tolerability, novel mechanisms of action, multiple mechanisms of action, or superior IOP reduction. However, the availability of generic prostaglandin analogs may limit adoption of these novel compounds as first-line agents, except for certain subgroups of glaucoma patients. Use as adjuvant or second-line therapy appears more likely for the majority of glaucoma patients.
Collapse
Affiliation(s)
- Tyler M Kaplan
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | - Arthur J Sit
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
da Silva CN, Nunes KP, Dourado LFN, Vieira TO, Mariano XM, Cunha Junior ADS, de Lima ME. From the PnTx2-6 Toxin to the PnPP-19 Engineered Peptide: Therapeutic Potential in Erectile Dysfunction, Nociception, and Glaucoma. Front Mol Biosci 2022; 9:831823. [PMID: 35480885 PMCID: PMC9035689 DOI: 10.3389/fmolb.2022.831823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The venom of the “armed” spider Phoneutria nigriventer comprises several potent toxins. One of the most toxic components from this venom is the neurotoxin PnTx2-6 (LD50 = ∼ 0.7 μg/mouse, 48 residues, five disulfide bridges, MW = 5,289.31 Da), which slows down the inactivation of various Na+ channels. In mice and rats, this toxin causes priapism, an involuntary and painful erection, similar to what is observed in humans bitten by P. nigriventer. While not completely elucidated, it is clear that PnTx2-6 potentiates erectile function via NO/cGMP signaling, but it has many off-target effects. Seeking to obtain a simpler and less toxic molecule able to retain the pharmacological properties of this toxin, we designed and synthesized the peptide PnPP-19 (19 residues, MW = 2,485.6 Da), representing a discontinuous epitope of PnTx2-6. This synthetic peptide also potentiates erectile function via NO/cGMP, but it does not target Na+ channels, and therefore, it displays nontoxic properties in animals even at high doses. PnPP-19 effectively potentiates erectile function not only after subcutaneous or intravenous administration but also following topical application. Surprisingly, PnPP-19 showed central and peripheral antinociceptive activity involving the opioid and cannabinoid systems, suggesting applicability in nociception. Furthermore, considering that PnPP-19 increases NO availability in the corpus cavernosum, this peptide was also tested in a model of induced intraocular hypertension, characterized by low NO levels, and it showed promising results by decreasing the intraocular pressure which prevents retinal damage. Herein, we discuss how was engineered this smaller active non-toxic peptide with promising results in the treatment of erectile dysfunction, nociception, and glaucoma from the noxious PnTx2-6, as well as the pitfalls of this ongoing journey.
Collapse
Affiliation(s)
- Carolina Nunes da Silva
- Departmentamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Maria Elena de Lima, ; Carolina Nunes da Silva, ; Kenia Pedrosa Nunes,
| | - Kenia Pedrosa Nunes
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
- *Correspondence: Maria Elena de Lima, ; Carolina Nunes da Silva, ; Kenia Pedrosa Nunes,
| | | | - Thayllon Oliveira Vieira
- Programa de Pós-Graduação em Medicina e Biomedicina Faculdade Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | - Xavier Maia Mariano
- Programa de Pós-Graduação em Medicina e Biomedicina Faculdade Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | | | - Maria Elena de Lima
- Departmentamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Programa de Pós-Graduação em Medicina e Biomedicina Faculdade Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
- *Correspondence: Maria Elena de Lima, ; Carolina Nunes da Silva, ; Kenia Pedrosa Nunes,
| |
Collapse
|
23
|
Tshivhase SE, Khoza LB, Tshitangano TG. Application of the information-motivation-behavioural skills model to strengthen eye care follow-up amongst glaucoma patients. AFRICAN VISION AND EYE HEALTH 2021. [DOI: 10.4102/aveh.v80i1.642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
24
|
Jayanetti V, Sandhu S, Lusthaus JA. The Latest Drugs in Development That Reduce Intraocular Pressure in Ocular Hypertension and Glaucoma. J Exp Pharmacol 2020; 12:539-548. [PMID: 33244278 PMCID: PMC7685378 DOI: 10.2147/jep.s281187] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/03/2020] [Indexed: 11/23/2022] Open
Abstract
Glaucoma causes irreversible vision loss, with elevated intraocular pressure (IOP) being the only known modifiable risk factor. There are a variety of medical and interventional options for lowering IOP; however, despite these treatments, glaucoma continues to be a leading cause of visual impairment. Further research continues to strive for treatment options with improved side effect profiles, additional IOP-lowering effects, and ease of use. This review provides a brief summary of current IOP-lowering therapies and then outlines pipeline ocular hypotensive agents, their mechanisms of action, benefits, and side effect profiles. Advancements are seen within currently used eye drop classes such as prostaglandin analogues, Rho kinase inhibitors and nitric oxide donors, whilst there are also new drug classes, such as tyrosine protein kinase activators. Most developing drugs are topical drop formulations, with a number already having entered Phase III trials. Alternative drug delivery methods are also in development and will be briefly discussed. Pharmacological and drug delivery developments continue to provide glaucoma patients and clinicians with new options and the promise of better outcomes, particularly in terms of improved tolerance and reduced frequency of dosing.
Collapse
Affiliation(s)
- Viran Jayanetti
- Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Sartaj Sandhu
- Sydney Eye Hospital, Sydney, New South Wales, Australia
| | - Jed A Lusthaus
- Glaucoma Unit, Sydney Eye Hospital, Sydney, New South Wales, Australia
| |
Collapse
|