1
|
Cyske Z, Gaffke L, Rintz E, Wiśniewska K, Węgrzyn G, Pierzynowska K. Molecular mechanisms of the ambroxol action in Gaucher disease and GBA1 mutation-associated Parkinson disease. Neurochem Int 2024; 178:105774. [PMID: 38797393 DOI: 10.1016/j.neuint.2024.105774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Glucocerebrosidase (GCase), encoded by the GBA1 gene, is one of the lysosomal enzymes responsible for hydrolyzing the glycosphingolipids. Deficiency in GCase activity (in patients with two defective alleles of GBA1) leads to glucosylceramide storage in lysosomes which in turn results in the development of the Gaucher diseases, a lysosomal storage disorder, while a heterozygous state may be correlated with the GBA1 mutation-associated Parkinson disease. One of the proposed forms of therapy for these two conditions is the use of pharmacological chaperones which work by facilitating the achievement of the correct conformation of abnormally folded enzymes. Several compounds with chaperone activities against GCase have already been tested, one of which turned out to be ambroxol. Studies conducted on the action of this compound have indeed indicated its effectiveness in increasing GCase levels and activity. However, some data have begun to question its activity as a chaperone against certain GCase variants. Then, a number of articles appeared pointing to other mechanisms of action of ambroxol, which may also contribute to the improvement of patients' condition. This paper summarizes the biological mechanisms of action of ambroxol in Gaucher disease and GBA1 mutation-associated Parkinson disease, focused on its activity as a chaperone, modulator of ERAD pathways, inducer of autophagy, and pain reliever in cellular and animal models as well as in patients. The effects of these activities on the reduction of disease markers and symptoms in patients are also discussed. Consideration of all the properties of ambroxol can help in the appropriate choice of therapy and the determination of the effective drug dose.
Collapse
Affiliation(s)
- Zuzanna Cyske
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Estera Rintz
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Wiśniewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
2
|
Massaro G, Geard AF, Nelvagal HR, Gore K, Clemo NK, Waddington SN, Rahim AA. Comparison of different promoters to improve AAV vector-mediated gene therapy for neuronopathic Gaucher disease. Hum Mol Genet 2024; 33:1467-1480. [PMID: 38757200 PMCID: PMC11336133 DOI: 10.1093/hmg/ddae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Gaucher Disease (GD) is an inherited metabolic disorder caused by mutations in the GBA1 gene. It can manifest with severe neurodegeneration and visceral pathology. The most acute neuronopathic form (nGD), for which there are no curative therapeutic options, is characterised by devastating neuropathology and death during infancy. In this study, we investigated the therapeutic benefit of systemically delivered AAV9 vectors expressing the human GBA1 gene at two different doses comparing a neuronal-selective promoter with ubiquitous promoters. Our results highlight the importance of a careful evaluation of the promoter sequence used in gene delivery vectors, suggesting a neuron-targeted therapy leading to high levels of enzymatic activity in the brain but lower GCase expression in the viscera, might be the optimal therapeutic strategy for nGD.
Collapse
Affiliation(s)
- Giulia Massaro
- UCL School of Pharmacy, University College London, 29-38 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Amy F Geard
- UCL School of Pharmacy, University College London, 29-38 Brunswick Square, London, WC1N 1AX, United Kingdom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand Medical, School, 7 York Road, Parktown 2193, South Africa
| | - Hemanth R Nelvagal
- UCL School of Pharmacy, University College London, 29-38 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Katrina Gore
- Apollo Therapeutics, Stevenage Bioscience Catalyst, 50-60 Station Road, Cambridge, CB1 2JH, United Kingdom
| | - Nadine K Clemo
- Apollo Therapeutics, Stevenage Bioscience Catalyst, 50-60 Station Road, Cambridge, CB1 2JH, United Kingdom
| | - Simon N Waddington
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand Medical, School, 7 York Road, Parktown 2193, South Africa
- UCL EGA Institute for Women's Health, University College London, Medical School Building, 74 Huntley Street, London, WC1E 6AU, United Kingdom
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, 29-38 Brunswick Square, London, WC1N 1AX, United Kingdom
| |
Collapse
|
3
|
Zhang Z, Liu D, Yu Z, Xiao Z, Zhou K, Li B. Gaucher Disease Coexisting with Cytomegalovirus Infection: A Rare Presentation in an Infant. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e943398. [PMID: 38509666 DOI: 10.12659/ajcr.943398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
BACKGROUND Gaucher disease is a rare autosomal recessive disorder characterized by mutations in the glucocerebrosidase gene, resulting in deficient enzyme activity and accumulation of glucocerebroside in macrophages, which leads to pathological changes in affected organs. The atypical clinical manifestations of Gaucher disease often contribute to delays in diagnosis and treatment. CASE REPORT We present the case of a 4-month-old female infant admitted to the Department of Pediatrics with progressive hepatosplenomegaly since birth. Concurrently, she had cytomegalovirus infection and sensory neurological hearing loss. Gaucher disease diagnosis was confirmed through whole-exome sequencing and validated by a glucocerebrosidase activity test, revealing the mutation site as c.1448T>C. This report outlines the differential diagnosis process for Gaucher disease in this infant before confirmation, contributing valuable insights for early diagnosis. CONCLUSIONS Our case underscores the challenge of diagnosing Gaucher disease due to its atypical presentation. The coexistence of cytomegalovirus infection complicates the clinical picture, emphasizing the need for careful differential diagnosis. Unfortunately, delayed diagnosis is all too common in rare diseases like Gaucher disease, even when the clinical presentation is seemingly typical. This highlights the need for increased awareness and education within the medical community to facilitate early recognition, which is essential for prompt intervention and improved outcomes. This report contributes valuable clinical and genetic information, aiming to enhance awareness and deepen the understanding of Gaucher disease in infants, particularly those with concurrent infections.
Collapse
Affiliation(s)
- Zhaoxia Zhang
- Department of Pediatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China (mainland)
| | - Dong Liu
- Department of Pediatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China (mainland)
| | - Zhangbin Yu
- Department of Pediatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China (mainland)
| | - Zhihui Xiao
- Department of Pediatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China (mainland)
| | - Keying Zhou
- Department of Pediatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China (mainland)
| | - Bo Li
- Department of Pediatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
4
|
Feng S, Rcheulishvili N, Jiang X, Zhu P, Pan X, Wei M, Wang PG, Ji Y, Papukashvili D. A review on Gaucher disease: therapeutic potential of β-glucocerebrosidase-targeted mRNA/saRNA approach. Int J Biol Sci 2024; 20:2111-2129. [PMID: 38617529 PMCID: PMC11008270 DOI: 10.7150/ijbs.87741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/07/2024] [Indexed: 04/16/2024] Open
Abstract
Gaucher disease (GD), a rare hereditary lysosomal storage disorder, occurs due to a deficiency in the enzyme β-glucocerebrosidase (GCase). This deficiency leads to the buildup of substrate glucosylceramide (GlcCer) in macrophages, eventually resulting in various complications. Among its three types, GD2 is particularly severe with neurological involvements. Current treatments, such as enzyme replacement therapy (ERT), are not effective for GD2 and GD3 due to their inability to cross the blood-brain barrier (BBB). Other treatment approaches, such as gene or chaperone therapies are still in experimental stages. Additionally, GD treatments are costly and can have certain side effects. The successful use of messenger RNA (mRNA)-based vaccines for COVID-19 in 2020 has sparked interest in nucleic acid-based therapies. Remarkably, mRNA technology also offers a novel approach for protein replacement purposes. Additionally, self-amplifying RNA (saRNA) technology shows promise, potentially producing more protein at lower doses. This review aims to explore the potential of a cost-effective mRNA/saRNA-based approach for GD therapy. The use of GCase-mRNA/saRNA as a protein replacement therapy could offer a new and promising direction for improving the quality of life and extending the lifespan of individuals with GD.
Collapse
Affiliation(s)
- Shunping Feng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Nino Rcheulishvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Pan Zhu
- Cheerland Biomedicine, Shenzhen, China
| | - Xuehua Pan
- Shenzhen Pengbo Biotech Co. Ltd, Shenzhen, China
| | - Meilan Wei
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Yang Ji
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Dimitri Papukashvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Kulkarni A, Chen T, Sidransky E, Han TU. Advancements in Viral Gene Therapy for Gaucher Disease. Genes (Basel) 2024; 15:364. [PMID: 38540423 PMCID: PMC10970163 DOI: 10.3390/genes15030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024] Open
Abstract
Gaucher disease, an autosomal recessively inherited lysosomal storage disorder, results from biallelic mutations in the GBA1 gene resulting in deficient activity of the enzyme glucocerebrosidase. In Gaucher disease, the reduced levels and activity of glucocerebrosidase lead to a disparity in the rates of formation and breakdown of glucocerebroside and glucosylsphingosine, resulting in the accumulation of these lipid substrates in the lysosome. This gives rise to the development of Gaucher cells, engorged macrophages with a characteristic wrinkled tissue paper appearance. There are both non-neuronopathic (type 1) and neuronopathic (types 2 and 3) forms of Gaucher disease, associated with varying degrees of severity. The visceral and hematologic manifestations of Gaucher disease respond well to both enzyme replacement therapy and substrate reduction therapy. However, these therapies do not improve the neuronopathic manifestations, as they cannot cross the blood-brain barrier. There is now an established precedent for treating lysosomal storage disorders with gene therapy strategies, as many have the potential to cross into the brain. The range of the gene therapies being employed is broad, but this review aimed to discuss the progress, advances, and challenges in developing viral gene therapy as a treatment for Gaucher disease.
Collapse
Affiliation(s)
| | | | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, Building 35A, Room 1E623, 35A Convent Drive, MSC 3708, Bethesda, MD 20892-3708, USA; (A.K.); (T.C.); (T.-U.H.)
| | | |
Collapse
|
6
|
Mohamed FE, Al-Jasmi F. Exploring the efficacy and safety of Ambroxol in Gaucher disease: an overview of clinical studies. Front Pharmacol 2024; 15:1335058. [PMID: 38414738 PMCID: PMC10896849 DOI: 10.3389/fphar.2024.1335058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Gaucher disease (GD) is mainly caused by glucocerebrosidase (GCase) enzyme deficiency due to genetic variations in the GBA1 gene leading to the toxic accumulation of sphingolipids in various organs, which causes symptoms such as anemia, thrombocytopenia, hepatosplenomegaly, and neurological manifestations. GD is clinically classified into the non-neuronopathic type 1, and the acute and chronic neuronopathic forms, types 2 and 3, respectively. In addition to the current approved GD medications, the repurposing of Ambroxol (ABX) has emerged as a prospective enzyme enhancement therapy option showing its potential to enhance mutated GCase activity and reduce glucosylceramide accumulation in GD-affected tissues of different GBA1 genotypes. The variability in response to ABX varies across different variants, highlighting the diversity in patients' therapeutic outcomes. Its oral availability and safety profile make it an attractive option, particularly for patients with neurological manifestations. Clinical trials are essential to explore further ABX's potential as a therapeutic medication for GD to encourage pharmaceutical companies' investment in its development. This review highlights the potential of ABX as a pharmacological chaperone therapy for GD and stresses the importance of addressing response variability in clinical studies to improve the management of this rare and complex disorder.
Collapse
Affiliation(s)
- Feda E. Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| |
Collapse
|
7
|
Giuffrida G, Markovic U, Condorelli A, Calafiore V, Nicolosi D, Calagna M, Grasso S, Ragusa MTV, Gentile J, Napolitano M. Glucosylsphingosine (Lyso-Gb1) as a reliable biomarker in Gaucher disease: a narrative review. Orphanet J Rare Dis 2023; 18:27. [PMID: 36782327 PMCID: PMC9926807 DOI: 10.1186/s13023-023-02623-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Gaucher disease (GD) is a rare, inherited, autosomal recessive disorder caused by a deficiency of the lysosomal enzyme, acid β-glucosidase. Its diagnosis is achieved via measurements of acid β-glucosidase activity in either fresh peripheral blood leukocytes or dried blood spots, and confirmed by identifying characteristic mutations in the GBA1 gene. Currently, several biomarkers are available for disease monitoring. Chitotriosidase has been used over the last 20 years to assess the severity of GD, but lacks specificity in GD patients. Conversely, the deacylated form of glucosylceramide, glucosylsphingosine (also known as lyso-Gb1), represents a more reliable biomarker characterized by its high sensitivity and specificity in GD. MAIN TEXT Herein, we review the current literature on lyso-Gb1 and describe evidence supporting its usefulness as a biomarker for diagnosing and evaluating disease severity in GD and monitoring treatment efficacy. CONCLUSION Lyso-Gb1 is the most promising biomarker of GD, as demonstrated by its reliability in reflecting disease burden and monitoring treatment response. Furthermore, lyso-Gb1 may play an important role in the onset of monoclonal gammopathy of uncertain significance, multiple myeloma, and Parkinson's disease in GD patients.
Collapse
Affiliation(s)
- Gaetano Giuffrida
- Division of Haematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy.
| | - Uros Markovic
- grid.412844.f0000 0004 1766 6239Division of Haematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy ,Oncohematology and BMT Unit, Mediterranean Institute of Oncology, Viagrande, Italy ,grid.10438.3e0000 0001 2178 8421Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy
| | - Annalisa Condorelli
- grid.412844.f0000 0004 1766 6239Division of Haematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy ,grid.8158.40000 0004 1757 1969Postgraduate School of Hematology, University of Catania, Catania, Italy
| | - Valeria Calafiore
- grid.412844.f0000 0004 1766 6239Division of Haematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Daniela Nicolosi
- grid.412844.f0000 0004 1766 6239Division of Haematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Marianna Calagna
- grid.412844.f0000 0004 1766 6239Division of Haematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy ,grid.8158.40000 0004 1757 1969Postgraduate School of Hematology, University of Catania, Catania, Italy
| | - Stephanie Grasso
- grid.412844.f0000 0004 1766 6239Division of Haematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | | | | | - Mariasanta Napolitano
- grid.10776.370000 0004 1762 5517Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
8
|
Menkovic I, Boutin M, Lavoie P, Auray-Blais C. Multiplex Quantification of Plasma Biomarkers for Patients with Gaucher Disease Type 1. Curr Protoc 2023; 3:e696. [PMID: 36802221 DOI: 10.1002/cpz1.696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Gaucher disease (GD) is a lysosomal storage disorder caused by a deficiency of the enzyme beta-glucocerebrosidase. This leads to the accumulation of glycolipids in macrophages and ultimately results in tissue damage. Recent metabolomic studies highlighted several potential biomarkers in plasma specimens. In hopes of better understanding the distribution, importance, and clinical significance of these potential markers, a UPLC-MS/MS method was developed and validated to quantify lyso-Gb1 and six related analogs (with the following modifications on the sphingosine moiety: -C2 H4 (-28 Da), -C2 H4 +O (-12 Da), -H2 (-2 Da), -H2 +O (+14 Da), +O (+16 Da), and +H2 O (+18 Da)), sphingosylphosphorylcholine, and N-palmitoyl-O-phosphocholineserine in plasma specimens of treated and untreated patients. This 12-min UPLC-MS/MS method involves a purification step via solid-phase extraction followed by evaporation under nitrogen flow and resuspension in an organic mix compatible with HILIC chromatography. This method is currently used for research purposes and might be used for monitoring, prognostics, and follow-up. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Iskren Menkovic
- Division of Medical Genetics, Department of Pediatrics, Centre de Recherche-CHUS, Faculty of Medicine and Health Sciences, Université de Sherbrooke, CIUSSS de l'Estrie-CHUS, 3001, Sherbrooke, Quebec, Canada
| | - Michel Boutin
- Division of Medical Genetics, Department of Pediatrics, Centre de Recherche-CHUS, Faculty of Medicine and Health Sciences, Université de Sherbrooke, CIUSSS de l'Estrie-CHUS, 3001, Sherbrooke, Quebec, Canada
| | - Pamela Lavoie
- Division of Medical Genetics, Department of Pediatrics, Centre de Recherche-CHUS, Faculty of Medicine and Health Sciences, Université de Sherbrooke, CIUSSS de l'Estrie-CHUS, 3001, Sherbrooke, Quebec, Canada
| | - Christiane Auray-Blais
- Division of Medical Genetics, Department of Pediatrics, Centre de Recherche-CHUS, Faculty of Medicine and Health Sciences, Université de Sherbrooke, CIUSSS de l'Estrie-CHUS, 3001, Sherbrooke, Quebec, Canada
| |
Collapse
|
9
|
Menkovic I, Boutin M, Alayoubi A, Curado F, Bauer P, Mercier FE, Auray-Blais C. Quantitation of a Urinary Profile of Biomarkers in Gaucher Disease Type 1 Patients Using Tandem Mass Spectrometry. Diagnostics (Basel) 2022; 12:diagnostics12061414. [PMID: 35741225 PMCID: PMC9221757 DOI: 10.3390/diagnostics12061414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022] Open
Abstract
Gaucher disease is a rare inherited disorder caused by a deficiency of the lysosomal acid beta-glucocerebrosidase enzyme. Metabolomic studies by our group targeted several new potential urinary biomarkers. Apart from lyso-Gb1, these studies highlighted lyso-Gb1 analogs −28, −26, −12 (A/B), +2, +14, +16 (A/B), +30, and +32 Da, and polycyclic lyso-Gb1 analogs 362, 366, 390, and 394 Da. The main objective of the current study was to develop and validate a robust UPLC-MS/MS method to study the urine distribution of these biomarkers in patients. Method: Urine samples were purified using solid-phase extraction. A 12 min UPLC-MS/MS method was developed. Results: Validation assays revealed high precision and accuracy for creatinine and lyso-Gb1. Most lyso-Gb1 analogs had good recovery rates and high intra- and interday precision assays. Biomarker-estimated LOD and LOQ levels ranged from 56–109 pM to 186–354 pM, respectively. Comparison between GD patients and healthy controls showed significant differences in most biomarker levels. Typically, treated GD patients presented lower biomarker levels compared to untreated patients. Conclusions: These data suggest that the metabolites investigated might be interesting GD biomarkers. More studies with a larger cohort of patients will be needed to better understand the clinical significance of these GD biomarkers.
Collapse
Affiliation(s)
- Iskren Menkovic
- Division of Medical Genetics, Department of Pediatrics, Centre de Recherche-CHUS, Faculty of Medicine and Health Sciences, Université de Sherbrooke, CIUSSS de l’Estrie-CHUS, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada; (I.M.); (M.B.)
| | - Michel Boutin
- Division of Medical Genetics, Department of Pediatrics, Centre de Recherche-CHUS, Faculty of Medicine and Health Sciences, Université de Sherbrooke, CIUSSS de l’Estrie-CHUS, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada; (I.M.); (M.B.)
| | - Abdulfatah Alayoubi
- Divisions of Experimental Medicine and Hematology, Department of Medicine, Faculty of Medicine, McGill University, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755, Côte Sainte-Catherine, Montreal, QC H3T 1E2, Canada; (A.A.); (F.E.M.)
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, University Road, Madinah 42353, Saudi Arabia
| | - Filipa Curado
- CENTOGENE GmbH, 18055 Rostock, Germany; (F.C.); (P.B.)
| | - Peter Bauer
- CENTOGENE GmbH, 18055 Rostock, Germany; (F.C.); (P.B.)
| | - François E. Mercier
- Divisions of Experimental Medicine and Hematology, Department of Medicine, Faculty of Medicine, McGill University, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755, Côte Sainte-Catherine, Montreal, QC H3T 1E2, Canada; (A.A.); (F.E.M.)
| | - Christiane Auray-Blais
- Division of Medical Genetics, Department of Pediatrics, Centre de Recherche-CHUS, Faculty of Medicine and Health Sciences, Université de Sherbrooke, CIUSSS de l’Estrie-CHUS, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada; (I.M.); (M.B.)
- Correspondence:
| |
Collapse
|
10
|
Wang JZ, Shimadate Y, Kise M, Kato A, Jia YM, Li YX, Fleet G, Yu CY. Trans, trans-2-C-aryl-3,4-dihydroxypyrrolidines as potent and selective β-glucosidase inhibitors: Pharmacological chaperones for gaucher disease. Eur J Med Chem 2022; 238:114499. [DOI: 10.1016/j.ejmech.2022.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
|
11
|
Peng Y, Liou B, Lin Y, Fannin V, Zhang W, Feldman RA, Setchell KDR, Grabowski GA, Sun Y. Substrate Reduction Therapy Reverses Mitochondrial, mTOR, and Autophagy Alterations in a Cell Model of Gaucher Disease. Cells 2021; 10:2286. [PMID: 34571934 PMCID: PMC8466461 DOI: 10.3390/cells10092286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Substrate reduction therapy (SRT) in clinic adequately manages the visceral manifestations in Gaucher disease (GD) but has no direct effect on brain disease. To understand the molecular basis of SRT in GD treatment, we evaluated the efficacy and underlying mechanism of SRT in an immortalized neuronal cell line derived from a Gba knockout (Gba-/-) mouse model. Gba-/- neurons accumulated substrates, glucosylceramide, and glucosylsphingosine. Reduced cell proliferation was associated with altered lysosomes and autophagy, decreased mitochondrial function, and activation of the mTORC1 pathway. Treatment of the Gba-/- neurons with venglustat analogue GZ452, a central nervous system-accessible SRT, normalized glucosylceramide levels in these neurons and their isolated mitochondria. Enlarged lysosomes were reduced in the treated Gba-/- neurons, accompanied by decreased autophagic vacuoles. GZ452 treatment improved mitochondrial membrane potential and oxygen consumption rate. Furthermore, GZ452 diminished hyperactivity of selected proteins in the mTORC1 pathway and improved cell proliferation of Gba-/- neurons. These findings reinforce the detrimental effects of substrate accumulation on mitochondria, autophagy, and mTOR in neurons. A novel rescuing mechanism of SRT was revealed on the function of mitochondrial and autophagy-lysosomal pathways in GD. These results point to mitochondria and the mTORC1 complex as potential therapeutic targets for treatment of GD.
Collapse
Affiliation(s)
- Yanyan Peng
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.P.); (B.L.); (Y.L.); (V.F.); (G.A.G.)
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.P.); (B.L.); (Y.L.); (V.F.); (G.A.G.)
| | - Yi Lin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.P.); (B.L.); (Y.L.); (V.F.); (G.A.G.)
| | - Venette Fannin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.P.); (B.L.); (Y.L.); (V.F.); (G.A.G.)
| | - Wujuan Zhang
- Department of Pathology, Clinical Mass Spectrometry Laboratory, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (W.Z.); (K.D.R.S.)
| | - Ricardo A. Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Kenneth D. R. Setchell
- Department of Pathology, Clinical Mass Spectrometry Laboratory, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (W.Z.); (K.D.R.S.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Gregory A. Grabowski
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.P.); (B.L.); (Y.L.); (V.F.); (G.A.G.)
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.P.); (B.L.); (Y.L.); (V.F.); (G.A.G.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|