1
|
Zhang H, Wu A, Nan X, Yang L, Zhang D, Zhang Z, Liu H. The Application and Pharmaceutical Development of Etomidate: Challenges and Strategies. Mol Pharm 2024; 21:5989-6006. [PMID: 39495089 DOI: 10.1021/acs.molpharmaceut.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Etomidate is a synthetic imidazole anesthetic that exerts hypnotic effects by potentiating the action of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) or directly activating the anionic GABA (GABAA) receptor. It stands out among many anesthetics because of its multiple advantages, such as good hemodynamic stability and minimal inhibition of spontaneous respiration. However, its low water solubility and side effects, such as adrenal cortex inhibition and myoclonus, have limited the clinical application of this drug. To address these issues, extensive research has been conducted on the drug delivery of etomidate in recent decades, which has led to the emergence of different etomidate preparations. Despite so many etomidate preparations, so far some of the toxic side effects have not yet been effectively addressed. Herein we discuss the pharmaceutical design of etomidate that may resolve the above problem. We also propose targeted strategies for future research on etomidate preparations and discuss the feasibility of different administration routes and dosage forms to expand the application of this drug. Through this review, we hope to draw more attention to the potential of etomidate and its application challenges and provide valuable insights into the development of new etomidate preparations.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Pharmacy, Zigong First People's Hospital, Zigong, Sichuan 643000, People's Republic of China
| | - Ailing Wu
- Department of Anesthesiology, Second People's Hospital of Neijiang, Southwest Medical University, Neijiang, Sichuan 641000, People's Republic of China
- Department of Anesthesiology, First People's Hospital of Neijiang, Neijiang, Sichuan 641099, People's Republic of China
| | - Xichen Nan
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Luhan Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
2
|
Kwacz M, Sadło J, Walo M. New chamber stapes prosthesis: Effect of ionizing radiation on material and functional properties. NUKLEONIKA 2024; 69:205-214. [DOI: 10.2478/nuka-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
New chamber stapes prosthesis (ChSP) is a middle-ear prosthesis intended for use in ear surgery for restoring the patient's middle ear function. As the prosthesis is an implantable medical device, it must be sterilized before use. However, possible alterations in the material and the functional properties following the sterilization process can influence the safety aspects while using the prosthesis. The purpose of this paper was to determine the effects of ionizing radiation (IR) on the physicochemical and biological properties of the new chamber prosthesis by utilizing EPR spectroscopy, mechanical testing, and cytotoxicity studies. Our research shows that the radiation treatment increases the hardness and the elastic modulus of the polymer, decreases the stiffness of the prosthesis membrane, and does not cause chemical changes in the polymers that may result in cytotoxicity. Furthermore, new ChSPs were successfully tested in preclinical in vitro tests. The test results justify the undertaking of further work, including in vivo biocompatibility tests and clinical trials, which would eventually lead to the increased use of the prosthesis in clinical practice.
Collapse
Affiliation(s)
- Monika Kwacz
- Institute of Micromechanics and Photonics , Faculty of Mechatronics, Warsaw University of Technology , św. Andrzeja Boboli 8 St. , Warsaw , Poland
| | - Jarosław Sadło
- Centre for Radiation Research and Technology , Institute of Nuclear Chemistry and Technology , Dorodna 16 St. , Warsaw , Poland
| | - Marta Walo
- Centre for Radiation Research and Technology , Institute of Nuclear Chemistry and Technology , Dorodna 16 St. , Warsaw , Poland
| |
Collapse
|
3
|
Suriyaamporn P, Dechsri K, Charoenying T, Ngawhirunpat T, Rojanarata T, Patrojanasophon P, Opanasopit P, Pamornpathomkul B. Multiple strategies approach: A novel crosslinked hydrogel forming chitosan-based microneedles chemowrap patch loaded with 5-fluorouracil liposomes for chronic wound cancer treatment. Int J Biol Macromol 2024; 279:134973. [PMID: 39182897 DOI: 10.1016/j.ijbiomac.2024.134973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Untreated or poorly managed chronic wounds can progress to skin cancer. Topically applied 5-fluorouracil (5-FU), a nonspecific cytostatic agent, can cause various side effects. Its high polarity also results in low cell membrane affinity and bioavailability. Hydrogel, used for its occlusive effect, is one platform for treating chronic wounds combined with PEGylated liposomes (LPs), developed to increase drug-skin affinity. This research aimed to develop a novel hydrogel forming chitosan-based microneedles (HFM) chemowrap patch containing 5-FU PEGylated LPs, improving 5-FU efficiency for pre-carcinogenic and carcinogenic skin lesions. The results indicated that the 5-FU-PEGylated LPs-loaded HFM chemowrap patch exhibited desirable physical and mechanical characteristics with complete penetration ability. Furthermore, in vivo skin permeation studies demonstrated the highest percentage of 5-FU permeated the skin (42.06 ± 11.82 %) and skin deposition (75.90 ± 1.13 %) compared to the other treatments, with demonstrated superior percentages of complete wound healing in in vivo (47.00 ± 5.77 % wound healing at day 7) and in NHF cells (92.79 ± 7.15 % at 48 h). Furthermore, 5-FU-PEGylated LPs-loaded HFM chemowrap patches exhibit efficient anticancer activity while maintaining safety for normal cells. The results also show that the developed formulation of a 5-FU-PEGylated LPs-loaded HFM chemowrap patch could enhance apoptosis higher than that of the 5-FU solution. Consequently, 5-FU PEGylated LPs-loaded HFM chemowrap patch represented a promising drug delivery approach for treating pre-carcinogenic and carcinogenic skin lesions.
Collapse
Affiliation(s)
- Phuvamin Suriyaamporn
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Koranat Dechsri
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thapakorn Charoenying
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Boonnada Pamornpathomkul
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
4
|
Vasileva O, Zaborova O, Shmykov B, Ivanov R, Reshetnikov V. Composition of lipid nanoparticles for targeted delivery: application to mRNA therapeutics. Front Pharmacol 2024; 15:1466337. [PMID: 39508050 PMCID: PMC11537937 DOI: 10.3389/fphar.2024.1466337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Today, lipid nanoparticles (LNPs) are some of the main delivery systems for mRNA-based therapeutics. The scope of LNP applications in terms of RNA is not limited to antiviral vaccines but encompasses anticancer drugs and therapeutics for genetic (including rare) diseases. Such widespread use implies high customizability of targeted delivery of LNPs to specific organs and tissues. This review addresses vector-free options for targeted delivery of LNPs, namely the influence of lipid composition of these nanoparticles on their biodistribution. In the review, experimental studies are examined that are focused on the biodistribution of mRNA or of the encoded protein after mRNA administration via LNPs in mammals. We also performed a comprehensive analysis of individual lipids' functional groups that ensure biodistribution to desired organs. These data will allow us to outline prospects for further optimization of lipid compositions of nanoparticles for targeted delivery of mRNA therapeutics.
Collapse
Affiliation(s)
- Olga Vasileva
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Olga Zaborova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
- Chemistry Department, Moscow State University, Moscow, Russia
| | - Bogdan Shmykov
- Chemistry Department, Moscow State University, Moscow, Russia
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
5
|
Haseeb M, Khan I, Kartal Z, Mahfooz S, Hatiboglu MA. Status Quo in the Liposome-Based Therapeutic Strategies Against Glioblastoma: "Targeting the Tumor and Tumor Microenvironment". Int J Mol Sci 2024; 25:11271. [PMID: 39457052 PMCID: PMC11509082 DOI: 10.3390/ijms252011271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Glioblastoma is the most aggressive and fatal brain cancer, characterized by a high growth rate, invasiveness, and treatment resistance. The presence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) poses a challenging task for chemotherapeutics, resulting in low efficacy, bioavailability, and increased dose-associated side effects. Despite the rigorous treatment strategies, including surgical resection, radiotherapy, and adjuvant chemotherapy with temozolomide, overall survival remains poor. The failure of current chemotherapeutics and other treatment regimens in glioblastoma necessitates the development of new drug delivery methodologies to precisely and efficiently target glioblastoma. Nanoparticle-based drug delivery systems offer a better therapeutic option in glioblastoma, considering their small size, ease of diffusion, and ability to cross the BBB. Liposomes are a specific category of nanoparticles made up of fatty acids. Furthermore, liposomes can be surface-modified to target a particular receptor and are nontoxic. This review discusses various methods of liposome modification for active/directed targeting and various liposome-based therapeutic approaches in the delivery of current chemotherapeutic drugs and nucleic acids in targeting the glioblastoma and tumor microenvironment.
Collapse
Affiliation(s)
- Mohd Haseeb
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeynep Kartal
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey
| |
Collapse
|
6
|
Shishlyannikov SM, Zubkov IN, Vysochinskaya VV, Gavrilova NV, Dobrovolskaya OA, Elpaeva EA, Maslov MA, Vasin A. Stable Polymer-Lipid Hybrid Nanoparticles Based on mcl-Polyhydroxyalkanoate and Cationic Liposomes for mRNA Delivery. Pharmaceutics 2024; 16:1305. [PMID: 39458633 PMCID: PMC11511049 DOI: 10.3390/pharmaceutics16101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The development of polymer-lipid hybrid nanoparticles (PLNs) is a promising area of research, as it can help increase the stability of cationic lipid carriers. Hybrid PLNs are core-shell nanoparticle structures that combine the advantages of both polymer nanoparticles and liposomes, especially in terms of their physical stability and biocompatibility. Natural polymers such as polyhydroxyalkanoate (PHA) can be used as a matrix for the PLNs' preparation. Methods: In this study, we first obtained stable cationic hybrid PLNs using a cationic liposome (CL) composed of a polycationic lipid 2X3 (1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride), helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), and the hydrophobic polymer mcl-PHA, which was produced by the soil bacterium Pseudomonas helmantisensis P1. Results: The new polymer-lipid carriers effectively encapsulated and delivered model mRNA-eGFP (enhanced green fluorescent protein mRNA) to BHK-21 cells. We then evaluated the role of mcl-PHA in increasing the stability of cationic PLNs in ionic solutions using dynamic light scattering data, electrophoretic mobility, and transmission electron microscopy techniques. Conclusions: The results showed that increasing the concentration of PBS (phosphate buffered saline) led to a decrease in the stability of the CLs. At high concentrations of PBS, the CLs aggregate. In contrast, the presence of isotonic PBS did not result in the aggregation of PLNs, and the particles remained stable for 120 h when stored at +4 °C. The obtained results show that PLNs hold promise for further in vivo studies on nucleic acid delivery.
Collapse
Affiliation(s)
- Sergey M. Shishlyannikov
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Politechnicheskaya St., 195251 Saint Petersburg, Russia; (I.N.Z.); (V.V.V.); (N.V.G.); (A.V.)
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Street, 197022 Saint Petersburg, Russia; (O.A.D.); (E.A.E.)
| | - Ilya N. Zubkov
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Politechnicheskaya St., 195251 Saint Petersburg, Russia; (I.N.Z.); (V.V.V.); (N.V.G.); (A.V.)
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Street, 197022 Saint Petersburg, Russia; (O.A.D.); (E.A.E.)
| | - Vera V. Vysochinskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Politechnicheskaya St., 195251 Saint Petersburg, Russia; (I.N.Z.); (V.V.V.); (N.V.G.); (A.V.)
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Street, 197022 Saint Petersburg, Russia; (O.A.D.); (E.A.E.)
| | - Nina V. Gavrilova
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Politechnicheskaya St., 195251 Saint Petersburg, Russia; (I.N.Z.); (V.V.V.); (N.V.G.); (A.V.)
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Street, 197022 Saint Petersburg, Russia; (O.A.D.); (E.A.E.)
| | - Olga A. Dobrovolskaya
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Street, 197022 Saint Petersburg, Russia; (O.A.D.); (E.A.E.)
| | - Ekaterina A. Elpaeva
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Street, 197022 Saint Petersburg, Russia; (O.A.D.); (E.A.E.)
| | - Mikhail A. Maslov
- M.V. Lomonosov Institute of Fine Chemical Technologies, Rtu Mirea, 86 Vernadsky Ave., 119454 Moscow, Russia;
| | - Andrey Vasin
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Politechnicheskaya St., 195251 Saint Petersburg, Russia; (I.N.Z.); (V.V.V.); (N.V.G.); (A.V.)
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Street, 197022 Saint Petersburg, Russia; (O.A.D.); (E.A.E.)
| |
Collapse
|
7
|
Schneider P, Zhang H, Simic L, Dai Z, Schrörs B, Akilli-Öztürk Ö, Lin J, Durak F, Schunke J, Bolduan V, Bogaert B, Schwiertz D, Schäfer G, Bros M, Grabbe S, Schattenberg JM, Raemdonck K, Koynov K, Diken M, Kaps L, Barz M. Multicompartment Polyion Complex Micelles Based on Triblock Polypept(o)ides Mediate Efficient siRNA Delivery to Cancer-Associated Fibroblasts for Antistromal Therapy of Hepatocellular Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404784. [PMID: 38958110 DOI: 10.1002/adma.202404784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Indexed: 07/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer and the third leading cause for cancer-related death worldwide. The tumor is difficult-to-treat due to its inherent resistance to chemotherapy. Antistromal therapy is a novel therapeutic approach, targeting cancer-associated fibroblasts (CAF) in the tumor microenvironment. CAF-derived microfibrillar-associated protein 5 (MFAP-5) is identified as a novel target for antistromal therapy of HCC with high translational relevance. Biocompatible polypept(o)ide-based polyion complex micelles (PICMs) constructed with a triblock copolymer composed of a cationic poly(l-lysine) complexing anti-MFAP-5 siRNA (siMFAP-5) via electrostatic interaction, a poly(γ-benzyl-l-glutamate) block loading cationic amphiphilic drug desloratatine (DES) via π-π interaction as endosomal escape enhancer and polysarcosine poly(N-methylglycine) for introducing stealth properties, are generated for siRNA delivery. Intravenous injection of siMFAP-5/DES PICMs significantly reduces the hepatic tumor burden in a syngeneic implantation model of HCC, with a superior MFAP-5 knockdown effect over siMFAP-5 PICMs or lipid nanoparticles. Transcriptome and histological analysis reveal that MFAP-5 knockdown inhibited CAF-related tumor vascularization, suggesting the anti-angiogenic effect of RNA interference therapy. In conclusion, multicompartment PICMs combining siMFAP-5 and DES in a single polypept(o)ide micelle induce a specific knockdown of MFAP-5 and demonstrate a potent antitumor efficacy (80% reduced tumor burden vs untreated control) in a clinically relevant HCC model.
Collapse
Affiliation(s)
- Paul Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Heyang Zhang
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Leon Simic
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Zhuqing Dai
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Barbara Schrörs
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Özlem Akilli-Öztürk
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Jian Lin
- Max Planck Institute for Polymer Research, Physics at Interphases, Ackermannweg 10, 55128, Mainz, Germany
| | - Feyza Durak
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Jenny Schunke
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Bram Bogaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - David Schwiertz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Gabriela Schäfer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Jörn Markus Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421, Homburg, Germany
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Physics at Interphases, Ackermannweg 10, 55128, Mainz, Germany
| | - Mustafa Diken
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Leonard Kaps
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421, Homburg, Germany
| | - Matthias Barz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| |
Collapse
|
8
|
Rui X, Okamoto Y, Watanabe NM, Shimizu T, Wakileh W, Kajimura N, Umakoshi H. Preparation and characterization of macrophage membrane camouflaged cubosomes as a stabilized and immune evasive biomimetic nano-DDS. J Mater Chem B 2024; 12:8702-8715. [PMID: 39129447 DOI: 10.1039/d4tb01063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
This study aims to develop a biomimetic nano-drug delivery system (nano-DDS) by employing a macrophage cell membrane camouflaging strategy to modify lyotropic liquid crystal nanoparticles (LLC-NPs). The cubic-structured LLC-NPs (Cubosomes, CBs) were prepared via a top-down approach (ultra-sonification) using monoolein (MO) and doped with the cationic lipid, DOTAP. The cell membrane camouflaging procedure induced changes in the cubic lipid phase from primitive cubic phase (QIIP) to a coexistence of QIIP and diamond cubic phase (QIID). The macrophage membrane camouflaging strategy protected CB cores from the destabilization by blood plasma and enhanced the stability of CBs. The in vitro experiment results revealed that the macrophage cell membrane coating significantly reduced macrophage uptake efficacy within 8 h of incubation compared to the non-camouflaged CBs, while it had minimal impact on cancer cell uptake efficacy. The macrophage membrane coated CBs showed lower accumulation in the heart, kidney and lungs in vivo. This study demonstrated the feasibility of employing cell membrane camouflaging on CBs and confirmed that the bio-functionalities of the CBs-based biomimetic nano-DDS were retained from the membrane source cells, and opened up promising possibilities for developing an efficient and safe drug delivery system based on the biomimetic approach.
Collapse
Affiliation(s)
- Xuehui Rui
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| | - Nozomi Morishita Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| | - Taro Shimizu
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ward Wakileh
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| | - Naoko Kajimura
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
9
|
Maiti D, Yokoyama M, Shiraishi K. Impact of the Hydrophilicity of Poly(sarcosine) on Poly(ethylene glycol) (PEG) for the Suppression of Anti-PEG Antibody Binding. ACS OMEGA 2024; 9:34577-34588. [PMID: 39157078 PMCID: PMC11325419 DOI: 10.1021/acsomega.4c02655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024]
Abstract
A method of poly(ethylene glycol) (PEG) conjugation is known as PEGylation, which has been employed to deliver therapeutic drugs, proteins, or nanoparticles by considering the intrinsic non- or very low immunogenic property of PEG. However, PEG has its weaknesses, and one major concern is the potential immunogenicity of PEGylated proteins. Because of its hydrophilicity, poly(sarcosine) (P(Sar)) may be an attractive-and superior-substitute for PEG. In the present study, we designed a double hydrophilic diblock copolymer, methoxy-PEG-b-P(Sar) m (m = 5-55) (mPEG-P(Sar) m ), and synthesized a triblock copolymer with hydrophobic poly(l-isoleucine) (P(Ile)). We validated that double hydrophilic mPEG-P(Sar) block copolymers suppressed the specific binding of three monoclonal anti-PEG antibodies (anti-PEG mAbs) to PEG. The results of our indirect ELISAs indicate that P(Sar) significantly helps to reduce the binding of anti-PEG mAbs to PEG. Importantly, the steady suppression of this binding was made possible, in part, thanks to the maximum number of sarcosine units in the triblock copolymer, as evidenced by sandwich ELISA and biolayer interferometry assay (BLI): the intrinsic hydrophilicity of P(Sar) had a clear supportive effect on PEG. Finally, because we used P(Ile) as a hydrophobic block, PEG-P(Sar) might be an attractive alternative to PEG in the search for protein shields that minimize the immunogenicity of PEGylated proteins.
Collapse
Affiliation(s)
- Debabrata Maiti
- Research Center for Medical
Sciences, The Jikei University School of
Medicine, 163-1, Kashiwa-shita, Kashiwa, Chiba 277-0004, Japan
| | - Masayuki Yokoyama
- Research Center for Medical
Sciences, The Jikei University School of
Medicine, 163-1, Kashiwa-shita, Kashiwa, Chiba 277-0004, Japan
| | - Kouichi Shiraishi
- Research Center for Medical
Sciences, The Jikei University School of
Medicine, 163-1, Kashiwa-shita, Kashiwa, Chiba 277-0004, Japan
| |
Collapse
|
10
|
Xie S, Erfani A, Manouchehri S, Ramsey J, Aichele C. Aerosolization of poly(sulfobetaine) microparticles that encapsulate therapeutic antibodies. BIOMATERIALS ADVANCES 2024; 160:213839. [PMID: 38579521 DOI: 10.1016/j.bioadv.2024.213839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Pulmonary delivery of protein therapeutics poses significant challenges that have not been well addressed in the research literature or practice. In fact, there is currently only one commercial protein therapeutic that is delivered through aerosolization and inhalation. In this study, we propose a drug delivery strategy that enables a high-concentration dosage for the pulmonary delivery of antibodies as an aerosolizable solid powder with desired stability. We utilized zwitterionic polymers for their promising properties as drug delivery vehicles and synthesized swellable, biodegradable poly(sulfo-betaine) (pSB) microparticles. The microparticles were loaded with Immunoglobulin G (IgG) as a model antibody. We quantified the microparticle size and morphology, and the particles were found to have an average diameter of 1.6 μm, falling within the optimal range (~1-5 μm) for pulmonary drug delivery. In addition, we quantified the impact of the crosslinker to monomer ratio on particle morphology and drug loading capacity. The results showed that there is a trade-off between desired morphology and drug loading capacity as the crosslinker density increases. In addition, the particles were aerosolized, and our data indicated that the particles remained intact and retained their initial morphology and size after aerosolization. The combination of morphology, particle size, antibody loading capacity, low cytotoxicity, and ease of aerosolization support the potential use of these particles for pulmonary delivery of protein therapeutics.
Collapse
Affiliation(s)
- Songpei Xie
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Amir Erfani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Saeed Manouchehri
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Joshua Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Clint Aichele
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America.
| |
Collapse
|
11
|
Xiang Y, Zhao Y, Cheng T, Sun S, Wang J, Pei R. Implantable Neural Microelectrodes: How to Reduce Immune Response. ACS Biomater Sci Eng 2024; 10:2762-2783. [PMID: 38591141 DOI: 10.1021/acsbiomaterials.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Implantable neural microelectrodes exhibit the great ability to accurately capture the electrophysiological signals from individual neurons with exceptional submillisecond precision, holding tremendous potential for advancing brain science research, as well as offering promising avenues for neurological disease therapy. Although significant advancements have been made in the channel and density of implantable neural microelectrodes, challenges persist in extending the stable recording duration of these microelectrodes. The enduring stability of implanted electrode signals is primarily influenced by the chronic immune response triggered by the slight movement of the electrode within the neural tissue. The intensity of this immune response increases with a higher bending stiffness of the electrode. This Review thoroughly analyzes the sequential reactions evoked by implanted electrodes in the brain and highlights strategies aimed at mitigating chronic immune responses. Minimizing immune response mainly includes designing the microelectrode structure, selecting flexible materials, surface modification, and controlling drug release. The purpose of this paper is to provide valuable references and ideas for reducing the immune response of implantable neural microelectrodes and stimulate their further exploration in the field of brain science.
Collapse
Affiliation(s)
- Ying Xiang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tingting Cheng
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shengkai Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jine Wang
- Jiangxi Institute of Nanotechnology, Nanchang 330200, China
- College of Medicine and Nursing, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou 253023, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
12
|
Yuan S, Hu Q. Convergence of nanomedicine and neutrophils for drug delivery. Bioact Mater 2024; 35:150-166. [PMID: 38318228 PMCID: PMC10839777 DOI: 10.1016/j.bioactmat.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
Neutrophils have recently emerged as promising carriers for drug delivery due to their unique properties including rapid response toward inflammation, chemotaxis, and transmigration. When integrated with nanotechnology that has enormous advantages in improving treatment efficacy and reducing side effects, neutrophil-based nano-drug delivery systems have expanded the repertoire of nanoparticles employed in precise therapeutic interventions by either coating nanoparticles with their membranes, loading nanoparticles inside living cells, or engineering chimeric antigen receptor (CAR)-neutrophils. These neutrophil-inspired therapies have shown superior biocompatibility, targeting ability, and therapeutic robustness. In this review, we summarized the benefits of combining neutrophils and nanotechnologies, the design principles and underlying mechanisms, and various applications in disease treatments. The challenges and prospects for neutrophil-based drug delivery systems were also discussed.
Collapse
Affiliation(s)
- Sichen Yuan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| |
Collapse
|
13
|
Go EB, Lee JH, Cho JH, Kwon NH, Choi JI, Kwon I. Enhanced therapeutic potential of antibody fragment via IEDDA-mediated site-specific albumin conjugation. J Biol Eng 2024; 18:23. [PMID: 38576037 PMCID: PMC10996255 DOI: 10.1186/s13036-024-00418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The use of single-chain variable fragments (scFvs) for treating human diseases, such as cancer and immune system disorders, has attracted significant attention. However, a critical drawback of scFv is its extremely short serum half-life, which limits its therapeutic potential. Thus, there is a critical need to prolong the serum half-life of the scFv for clinical applications. One promising serum half-life extender for therapeutic proteins is human serum albumin (HSA), which is the most abundant protein in human serum, known to have an exceptionally long serum half-life. However, conjugating a macromolecular half-life extender to a small protein, such as scFv, often results in a significant loss of its critical properties. RESULTS In this study, we conjugated the HSA to a permissive site of scFv to improve pharmacokinetic profiles. To ensure minimal damage to the antigen-binding capacity of scFv upon HSA conjugation, we employed a site-specific conjugation approach using a heterobifunctional crosslinker that facilitates thiol-maleimide reaction and inverse electron-demand Diels-Alder reaction (IEDDA). As a model protein, we selected 4D5scFv, derived from trastuzumab, a therapeutic antibody used in human epithermal growth factor 2 (HER2)-positive breast cancer treatment. We introduced a phenylalanine analog containing a very reactive tetrazine group (frTet) at conjugation site candidates predicted by computational methods. Using the linker TCO-PEG4-MAL, a single HSA molecule was site-specifically conjugated to the 4D5scFv (4D5scFv-HSA). The 4D5scFv-HSA conjugate exhibited HER2 binding affinity comparable to that of unmodified 4D5scFv. Furthermore, in pharmacokinetic profile in mice, the serum half-life of 4D5scFv-HSA was approximately 12 h, which is 85 times longer than that of 4D5scFv. CONCLUSIONS The antigen binding results and pharmacokinetic profile of 4D5scFv-HSA demonstrate that the site-specifically albumin-conjugated scFv retained its binding affinity with a prolonged serum half-life. In conclusion, we developed an effective strategy to prepare site-specifically albumin-conjugated 4D5scFv, which can have versatile clinical applications with improved efficacy.
Collapse
Affiliation(s)
- Eun Byeol Go
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jae Hun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jeong Haeng Cho
- ProAbTech, Gwangju, 61005, Republic of Korea
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Na Hyun Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
14
|
Acharya B, Behera A, Behera S, Moharana S. Recent Advances in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Reproductive Disorders. ACS APPLIED BIO MATERIALS 2024; 7:1336-1361. [PMID: 38412066 DOI: 10.1021/acsabm.3c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Over the past decade, nanotechnology has seen extensive integration into biomedical applications, playing a crucial role in biodetection, drug delivery, and diagnostic imaging. This is especially important in reproductive health care, which has become an emerging and significant area of research. Global concerns have intensified around disorders such as infertility, endometriosis, ectopic pregnancy, erectile dysfunction, benign prostate hyperplasia, sexually transmitted infections, and reproductive cancers. Nanotechnology presents promising solutions to address these concerns by introducing innovative tools and techniques, facilitating early detection, targeted drug delivery, and improved imaging capabilities. Through the utilization of nanoscale materials and devices, researchers can craft treatments that are not only more precise but also more effective, significantly enhancing outcomes in reproductive healthcare. Looking forward, the future of nanotechnology in reproductive medicine holds immense potential for reshaping diagnostics, personalized therapies, and fertility preservation. The utilization of nanotechnology-driven drug delivery systems is anticipated to elevate treatment effectiveness, minimize side effects, and offer patients therapies that are not only more precise but also more efficient. This review aims to delve into the various types, properties, and preparation techniques of nanocarriers specifically designed for drug delivery in the context of reproductive disorders, shedding light on the current landscape and potential future directions in this dynamic field.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | | | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
15
|
Som A, Rosenboom J, Wehrenberg‐Klee E, Chandler A, Ndakwah G, Chen E, Suggs J, Morimoto J, Kim J, Mustafa AR, Marcos‐Vidal A, Fintelmann FJ, Basu A, Langer R, Traverso G, Mahmood U. Percutaneous Intratumoral Immunoadjuvant Gel Increases the Abscopal Effect of Cryoablation for Checkpoint Inhibitor Resistant Cancer. Adv Healthc Mater 2024; 13:e2301848. [PMID: 37870153 PMCID: PMC10922912 DOI: 10.1002/adhm.202301848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/30/2023] [Indexed: 10/24/2023]
Abstract
Percutaneous cryoablation is a common clinical therapy for metastatic and primary cancer. There are rare clinical reports of cryoablation inducing regression of distant metastases, known as the "abscopal" effect. Intratumoral immunoadjuvants may be able to augment the abscopal rate of cryoablation, but existing intratumoral therapies suffer from the need for frequent injections and inability to confirm target delivery, leading to poor clinical trial outcomes. To address these shortcomings, an injectable thermoresponsive gel-based controlled release formulation is developed for the FDA-approved Toll-like-receptor 7 (TLR7) agonist imiquimod ("Imigel") that forms a tumor-resident depot upon injection and contains a contrast agent for visualization under computed tomography (CT). The poly-lactic-co-glycolic acid-polyethylene glycol-poly-lactic-co-glycolic acid (PLGA-PEG-PLGA)-based amphiphilic copolymer gel's underlying micellar nature enables high drug concentration and a logarithmic release profile that is additive with the neo-antigen release from cryoablation, requiring only a single injection. Rheological testing demonstrated the thermoresponsive increase in viscosity at body temperature and radio-opacity via microCT. Its ability to significantly augment the abscopal rate of cryoablation is demonstrated in otherwise immunotherapy resistant metastatic tumors in two aggressive colorectal and breast cancer dual tumor models with an all or nothing response, responders generally demonstrating complete regression of bilateral tumors in 90-day survival studies.
Collapse
Affiliation(s)
- Avik Som
- Department of RadiologyDivision of Interventional RadiologyMassachusetts General HospitalBostonMA02114USA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Jan‐Georg Rosenboom
- Department of RadiologyDivision of Interventional RadiologyMassachusetts General HospitalBostonMA02114USA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Division of GastroenterologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
| | - Eric Wehrenberg‐Klee
- Department of RadiologyDivision of Interventional RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Alana Chandler
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Gabrielle Ndakwah
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Eric Chen
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Jack Suggs
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Joshua Morimoto
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Jonathan Kim
- Department of RadiologyDivision of Interventional RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Abdul Rehman Mustafa
- Department of RadiologyDivision of Interventional RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Asier Marcos‐Vidal
- Department of RadiologyDivision of Interventional RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Florian J. Fintelmann
- Department of RadiologyDivision of Interventional RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Arijit Basu
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Robert Langer
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyBostonMA02139USA
| | - Giovanni Traverso
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Division of GastroenterologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyBostonMA02139USA
| | - Umar Mahmood
- Department of RadiologyDivision of Interventional RadiologyMassachusetts General HospitalBostonMA02114USA
| |
Collapse
|
16
|
Sinsinbar G, Bindra AK, Liu S, Chia TW, Yoong Eng EC, Loo SY, Lam JH, Schultheis K, Nallani M. Amphiphilic Block Copolymer Nanostructures as a Tunable Delivery Platform: Perspective and Framework for the Future Drug Product Development. Biomacromolecules 2024; 25:541-563. [PMID: 38240244 DOI: 10.1021/acs.biomac.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Nanoformulation of active payloads or pharmaceutical ingredients (APIs) has always been an area of interest to achieve targeted, sustained, and efficacious delivery. Various delivery platforms have been explored, but loading and delivery of APIs have been challenging because of the chemical and structural properties of these molecules. Polymersomes made from amphiphilic block copolymers (ABCPs) have shown enormous promise as a tunable API delivery platform and confer multifold advantages over lipid-based systems. For example, a COVID booster vaccine comprising polymersomes encapsulating spike protein (ACM-001) has recently completed a Phase I clinical trial and provides a case for developing safe drug products based on ABCP delivery platforms. However, several limitations need to be resolved before they can reach their full potential. In this Perspective, we would like to highlight such aspects requiring further development for translating an ABCP-based delivery platform from a proof of concept to a viable commercial product.
Collapse
Affiliation(s)
- Gaurav Sinsinbar
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Anivind Kaur Bindra
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Shaoqiong Liu
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Teck Wan Chia
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Eunice Chia Yoong Eng
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Ser Yue Loo
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Jian Hang Lam
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Katherine Schultheis
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Madhavan Nallani
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| |
Collapse
|
17
|
Wei J, Zhou Y, He Y, Zhao W, Luo Z, Yang J, Mao H, Gu Z. Customizing biomimetic surface attributes of dendritic lipopeptide nanoplatforms for extended circulation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 56:102726. [PMID: 38052371 DOI: 10.1016/j.nano.2023.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
The pressing demand for innovative approaches to create delivery systems with heightened drug loading and prolonged circulation has spurred numerous efforts, yielding some successes but accompanied by constraints. Our study proposes employing dendritic lipopeptide with precisely balanced opposing charges to extend blood residency for biomimetic nanoplatforms. Neutrally mixed-charged zwitterionic nanoparticles (NNPs) achieved a notable 19 % simvastatin loading content and kept stable even after one-month storage at 4 °C. These nanoplatforms demonstrated low cytotoxicity in NIH-3T3 and L02 cells and negligible hemolysis (<5 %). NNPs inhibited protein adhesion (>95 %) from positively and negatively charged sources through surface hydration. In comparison to positively charged CNPs, NNPs demonstrated an 86 % decrease in phagocytic rate by BMDMs, highlighting their efficacy. Importantly, NNPs showed prolonged circulation compared to CNPs and free simvastatin. These findings highlight the potential of this biomimetic nanoplatform for future therapeutic applications with enhanced drug loading and circulation traits.
Collapse
Affiliation(s)
- Jingjing Wei
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China
| | - Yin Zhou
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China
| | - Yiyan He
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China.
| | - Wentao Zhao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhiqiang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Hongli Mao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China.
| | - Zhongwei Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China; Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
18
|
Subasic CN, Simpson F, Minchin RF, Kaminskas LM. A PEGylated liposomal formulation of prochlorperazine that limits brain exposure but retains dynamin II activity: A potential adjuvant therapy for cancer patients receiving chemotherapeutic mAbs. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 56:102733. [PMID: 38199450 DOI: 10.1016/j.nano.2024.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Anti-cancer monoclonal antibodies often fail to provide therapeutic benefit in receptor-positive patients due to rapid endocytosis of antibody-bound cell surface receptors. High dose co-administration of prochlorperazine (PCZ) inhibits endocytosis and sensitises tumours to mAbs by inhibiting dynamin II but can also introduce neurological side effects. We examined the potential to use PEGylated liposomal formulations of PCZ (LPCZ) to retain the anti-cancer effects of PCZ, but limit brain uptake. Uncharged liposomes showed complete drug encapsulation and pH-dependent drug release, but cationic liposomes showed limited drug encapsulation and lacked pH-dependent drug release. Uncharged LPCZ showed comparable inhibition of EGFR internalisation to free PCZ in KJD cells. After IV administration to rats, LPCZ reduced the plasma clearance and brain uptake of PCZ compared to IV PCZ. The results suggest that LPCZ may offer some benefit over PCZ as an adjunct therapy in cancer patients receiving mAb treatment.
Collapse
Affiliation(s)
- Christopher N Subasic
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Fiona Simpson
- Frazer Institute, University of Queensland, St Lucia, QLD 4072, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
19
|
Sharma P, Hoorn D, Aitha A, Breier D, Peer D. The immunostimulatory nature of mRNA lipid nanoparticles. Adv Drug Deliv Rev 2024; 205:115175. [PMID: 38218350 DOI: 10.1016/j.addr.2023.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
mRNA-Lipid nanoparticles (LNPs) are at the forefront of global medical research. With the development of mRNA-LNP vaccines to combat the COVID-19 pandemic, the clinical potential of this platform was unleashed. Upon administering 16 billion doses that protected billions of people, it became clear that a fraction of them witnessed mild and in some cases even severe adverse effects. Therefore, it is paramount to define the safety along with the therapeutic efficacy of the mRNA-LNP platform for the successful translation of new genetic medicines based on this technology. While mRNA was the effector molecule of this platform, the ionizable lipid component of the LNPs played an indispensable role in its success. However, both of these components possess the ability to induce undesired immunostimulation, which is an area that needs to be addressed systematically. The immune cell agitation caused by this platform is a two-edged sword as it may prove beneficial for vaccination but detrimental to other applications. Therefore, a key challenge in advancing the mRNA-LNP drug delivery platform from bench to bedside is understanding the immunostimulatory behavior of these components. Herein, we provide a detailed overview of the structural modifications and immunogenicity of synthetic mRNA. We discuss the effect of ionizable lipid structure on LNP functionality and offer a mechanistic overview of the ability of LNPs to elicit an immune response. Finally, we shed some light on the current status of this technology in clinical trials and discuss a few challenges to be addressed to advance the field.
Collapse
Affiliation(s)
- Preeti Sharma
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Daniek Hoorn
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Anjaiah Aitha
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dor Breier
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
20
|
Sugiura K, Sawada T, Hata Y, Tanaka H, Serizawa T. Distinguishing anti-PEG antibodies by specificity for the PEG terminus using nanoarchitectonics-based antibiofouling cello-oligosaccharide platforms. J Mater Chem B 2024; 12:650-657. [PMID: 38088066 DOI: 10.1039/d3tb01723k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The conjugation of poly(ethylene glycol) (PEG) to therapeutic proteins or nanoparticles is a widely used pharmaceutical strategy to improve their therapeutic efficacy. However, conjugation can make PEG immunogenic and induce the production of anti-PEG antibodies, which decreases both the therapeutic efficacy after repeated dosing and clinical safety. To address these concerns, it is essential to analyze the binding characteristics of anti-PEG antibodies to PEG. However, distinguishing anti-PEG antibodies is still a difficult task. Herein, we demonstrate the use of antibiofouling cello-oligosaccharide assemblies tethering one-terminal methoxy oligo(ethylene glycol) (OEG) ligands for distinguishing anti-PEG antibodies in a simple manner. The OEG ligand-tethering two-dimensional crystalline cello-oligosaccharide assemblies were stably dispersed in a buffer solution and had antibiofouling properties against nonspecific protein adsorption. These characteristics allowed enzyme-linked immunosorbent assays (ELISAs) to be simply performed by cycles of centrifugation/redispersion of aqueous dispersions of the assemblies. The simple assays revealed that the specific OEG ligand-tethering assemblies could distinguish anti-PEG antibodies to detect a specific antibody that preferentially binds to the methoxy terminus of the PEG chain with 3 repeating ethylene glycol units. Furthermore, quantitative detection of the antibodies was successfully performed with high sensitivity even in the presence of serum. The detectable and quantifiable range of antibody concentrations covered those required clinically. Our findings open a new avenue for analyzing the binding characteristics of anti-PEG antibodies in biological samples.
Collapse
Affiliation(s)
- Kai Sugiura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
21
|
Sakai H, Kure T, Kobayashi N, Ito T, Yamada Y, Yamada T, Miyamoto R, Imaizumi T, Ando J, Soga T, Osanai Y, Ogawa M, Shimizu T, Ishida T, Azuma H. Absence of Anaphylactic Reactions to Injection of Hemoglobin Vesicles (Artificial Red Cells) to Rodents. ACS OMEGA 2024; 9:1904-1915. [PMID: 38222647 PMCID: PMC10785325 DOI: 10.1021/acsomega.3c08641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
The safety and efficacy of hemoglobin vesicles (HbVs) as artificial oxygen carriers encapsulating a purified and concentrated Hb solution in liposomes have been studied extensively. The HbV surface, modified with PEG by incorporating a PEG-conjugated phospholipid, is beneficial for storage and biocompatibility. However, it might be possible that interaction of PEG and the pre-existing anti-PEG antibody in the bloodstream causes acute adverse reaction. This study used two sets of experiments with rats and guinea pigs to ascertain whether the anti-PEG antibody generated by the PEG-modified HbV injection can induce anaphylactic reactions. SD rats received repeated intravenous injection of HbV at a dose rate of 16 or 32 mL/kg three times. Not anti-PEG IgG but anti-PEG IgM was detected. Nevertheless, no anaphylactic reaction occurred. Guinea pigs were used to study the presence of active systemic anaphylaxis further after injections of the PEG-modified liposomes used for HbV. The animals were sensitized by three repeated subcutaneous injections of PEG-modified liposomes (PEG-liposome) along with adjuvant at 1 week intervals. For comparison, unmodified liposomes (liposome) and 10 times excessively PEG-modified liposomes with ionizable lipid (10PEG-DODAP-liposome) were used. Inclusion of PEG modification induced not only anti-PEG IgM but also anti-PEG IgG. Three weeks after the final injection, intravenous injection of both PEG-liposome and liposome (1 mL/kg) induced no anaphylactic reaction. However, the injection of 10PEG-DODAP-liposome showed one lethal anaphylaxis case and one mild anaphylaxis case. Antisera obtained from the animal sensitized as described above were inoculated (0.05 mL) intradermally into fresh guinea pigs. The presence of passive cutaneous anaphylaxis was evaluated after intravenous injections (1 mL/kg) of three liposomes with Evans blue. No dye leakage was detected at any inoculated skin point for PEG-liposome or liposome, but a slight leakage was detected in one inoculated skin point for 10PEG-DODAP-liposome. These results indicate the absence of acute allergic reactions at repeated injections of HbVs despite the anti-PEG antibody induction. Not all the PEG-modified liposomes show anaphylaxis, and it may depend on the amount of PEGylated phospholipid and lipid composition of PEG-modified liposomes.
Collapse
Affiliation(s)
- Hiromi Sakai
- Department
of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Tomoko Kure
- Department
of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Naoko Kobayashi
- Department
of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Tadashi Ito
- Nihon
Bioresearch Inc., Hashima 501-6251, Japan
| | | | | | | | | | - Jiro Ando
- Nihon
Bioresearch Inc., Hashima 501-6251, Japan
| | | | | | | | - Taro Shimizu
- Research
Institute for Microbial Diseases, Osaka
University, Suita 565-0871, Japan
- Department
of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical
Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department
of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical
Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Hiroshi Azuma
- Department
of Pediatrics, Asahikawa Medical University, Asahikawa 078-8510, Japan
| |
Collapse
|
22
|
Porello I, Bono N, Candiani G, Cellesi F. Advancing nucleic acid delivery through cationic polymer design: non-cationic building blocks from the toolbox. Polym Chem 2024; 15:2800-2826. [DOI: 10.1039/d4py00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The rational integration of non-cationic building blocks into cationic polymers can be devised to enhance the performance of the resulting gene delivery vectors, improving cell targeting behavior, uptake, endosomal escape, toxicity, and transfection efficiency.
Collapse
Affiliation(s)
- Ilaria Porello
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Nina Bono
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|
23
|
Li C, Jin K. Chemical Strategies towards the Development of Effective Anticancer Peptides. Curr Med Chem 2024; 31:1839-1873. [PMID: 37170992 DOI: 10.2174/0929867330666230426111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/28/2023] [Accepted: 02/24/2023] [Indexed: 05/13/2023]
Abstract
Cancer is increasingly recognized as one of the primary causes of death and has become a multifaceted global health issue. Modern medical science has made significant advancements in the diagnosis and therapy of cancer over the past decade. The detrimental side effects, lack of efficacy, and multidrug resistance of conventional cancer therapies have created an urgent need for novel anticancer therapeutics or treatments with low cytotoxicity and drug resistance. The pharmaceutical groups have recognized the crucial role that peptide therapeutic agents can play in addressing unsatisfied healthcare demands and how these become great supplements or even preferable alternatives to biological therapies and small molecules. Anticancer peptides, as a vibrant therapeutic strategy against various cancer cells, have demonstrated incredible anticancer potential due to high specificity and selectivity, low toxicity, and the ability to target the surface of traditional "undruggable" proteins. This review will provide the research progression of anticancer peptides, mainly focusing on the discovery and modifications along with the optimization and application of these peptides in clinical practice.
Collapse
Affiliation(s)
- Cuicui Li
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Kang Jin
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
24
|
Niloy KK, Lowe TL. Injectable systems for long-lasting insulin therapy. Adv Drug Deliv Rev 2023; 203:115121. [PMID: 37898336 DOI: 10.1016/j.addr.2023.115121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Insulin therapy is the mainstay to treat diabetes characterizedd by hyperglycemia. However, its short half-life of only 4-6 min limits its effectiveness in treating chronic diabetes. Advances in recombinant DNA technology and protein engineering have led to several insulin analogue products that have up to 42 h of glycemic control. However, these insulin analogues still require once- or twice-daily injections for optimal glycemic control and have poor patient compliance and adherence issues. To achieve insulin release for more than one day, different injectable delivery systems including microspheres, in situ forming depots, nanoparticles and composite systems have been developed. Several of these delivery systems have advanced to clinical trials for once-weekly insulin injection. This review comprehensively summarizes the developments of injectable insulin analogs and delivery systems covering the whole field of injectable long-lasting insulin technologies from prototype design, preclinical studies, clinical trials to marketed products for the treatment of diabetes.
Collapse
Affiliation(s)
- Kumar Kulldeep Niloy
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
25
|
Özliseli E, Şanlıdağ S, Süren B, Mahran A, Parikainen M, Sahlgren C, Rosenholm JM. Directing cellular responses in a nanocomposite 3D matrix for tissue regeneration with nanoparticle-mediated drug delivery. Mater Today Bio 2023; 23:100865. [PMID: 38054034 PMCID: PMC10694759 DOI: 10.1016/j.mtbio.2023.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/28/2023] [Accepted: 11/11/2023] [Indexed: 12/07/2023] Open
Abstract
Hydrogels play an important role in tissue engineering due to their native extracellular matrix-like characteristics, but they are insufficient in providing the necessary stimuli to support tissue formation. Efforts to integrate bioactive cues directly into hydrogels are hindered by incompatibility with hydrophobic drugs, issues of burst/uncontrolled release, and rapid degradation of the bioactive molecules. Skeletal muscle tissue repair requires internal stimuli and communication between cells for regeneration, and nanocomposite systems offer to improve the therapeutic effects in tissue regeneration. Here, the versatility of mesoporous silica nanoparticles (MSN) was leveraged to formulate a nanoparticle-hydrogel composite and to combine the benefits of controlled delivery of bioactive cues and cellular support. The tunable surface characteristics of MSNs were exploited to optimize homogeneity and intracellular drug delivery in a 3D matrix. Nanocomposite hydrogels formulated with acetylated or succinylated MSNs achieved high homogeneity in 3D distribution, with succinylated MSNs being rapidly internalized and acetylated MSNs exhibiting slower cellular uptake. MSN-hydrogel nanocomposites simultaneously allowed efficient local intracellular delivery of a hydrophobic model drug. To further study the efficiency of directing cell response, a Notch signaling inhibitor (DAPT) was incorporated into succinylated MSNs and incorporated into the hydrogel. MSN-hydrogel nanocomposites effectively downregulated the Notch signaling target genes, and accelerated and maintained the expression of myogenic markers. The current findings demonstrate a proof-of-concept in effective surface engineering strategies for MSN-based nanocomposites, suited for hydrophobic drug delivery in tissue regeneration with guided cues.
Collapse
Affiliation(s)
- Ezgi Özliseli
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Sami Şanlıdağ
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
| | - Behice Süren
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Alaa Mahran
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Marjaana Parikainen
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
26
|
Cardoso RV, Pereira PR, Freitas CS, Mattos ÉBDA, Silva AVDF, Midlej VDV, Vericimo MA, Conte-Júnior CA, Paschoalin VMF. Tarin-Loaded Nanoliposomes Activate Apoptosis and Autophagy and Inhibit the Migration of Human Mammary Adenocarcinoma Cells. Int J Nanomedicine 2023; 18:6393-6408. [PMID: 37954458 PMCID: PMC10638905 DOI: 10.2147/ijn.s434626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023] Open
Abstract
Background Tarin, a lectin purified from Colocasia esculenta, promotes in vitro and in vivo immunomodulatory effects allied to promising anticancer and antimetastatic effects against human adenocarcinoma mammary cells. This makes this 47 kDa-protein a natural candidate against human breast cancer, a leading cause of death among women. Tarin encapsulated in pegylated nanoliposomes displays increased effectiveness in controlling the proliferation of a mammary adenocarcinoma lineage comprising MDA-MB-231 cells. Methods The mechanisms enrolled in anticancer and antimetastatic responses were investigated by treating MDA-MB-231 cells with nano-encapsulated tarin at 72 μg/mL for up to 48h through flow cytometry and transmission electron microscopy (TEM). The safety of nano-encapsulated tarin towards healthy tissue was also assessed by the resazurin viability assay, and the effect of nanoencapsulated tarin on cell migration was evaluated by scratch assays. Results Ultrastructural analyses of MDA-MB-231 cells exposed to nanoencapsulated tarin revealed the accumulation of autophagosomes and damaged organelles, compatible with autophagy-dependent cell death. On the other hand, the flow cytometry investigation detected the increased occurrence of acidic vacuolar organelles, a late autophagosome trait, along with the enhanced presence of apoptotic cells, activated caspase-3/7, and cell cycle arrest at G0/G1. No deleterious effects were observed in healthy fibroblast cells following tarin nanoencapsulated exposition, in contrast to reduced viability in cells exposed to free tarin. The migration of MDA-MB-231 cells was inhibited by nano-encapsulated tarin, with delayed movement by 24 h compared to free tarin. Conclusion The nanoliposome formulation delivers tarin in a delayed and sustained manner, as evidenced by the belated and potent antitumoral and anti-migration effects on adenocarcinoma cells, with no toxicity to healthy cells. Although further investigations are required to fully understand antitumorigenic tarin mechanisms, the activation of both apoptotic and autophagic machineries along with the caspase-3/7 pathway, and cell cycle arrest may comprise a part of these mechanisms.
Collapse
Affiliation(s)
- Raiane Vieira Cardoso
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Cyntia Silva Freitas
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Wang W, Xu Z, Liu M, Cai M, Liu X. Prospective applications of extracellular vesicle-based therapies in regenerative medicine: implications for the use of dental stem cell-derived extracellular vesicles. Front Bioeng Biotechnol 2023; 11:1278124. [PMID: 37936823 PMCID: PMC10627172 DOI: 10.3389/fbioe.2023.1278124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
In the 21st century, research on extracellular vesicles (EVs) has made remarkable advancements. Recently, researchers have uncovered the exceptional biological features of EVs, highlighting their prospective use as therapeutic targets, biomarkers, innovative drug delivery systems, and standalone therapeutic agents. Currently, mesenchymal stem cells stand out as the most potent source of EVs for clinical applications in tissue engineering and regenerative medicine. Owing to their accessibility and capability of undergoing numerous differentiation inductions, dental stem cell-derived EVs (DSC-EVs) offer distinct advantages in the field of tissue regeneration. Nonetheless, it is essential to note that unmodified EVs are currently unsuitable for use in the majority of clinical therapeutic scenarios. Considering the high feasibility of engineering EVs, it is imperative to modify these EVs to facilitate the swift translation of theoretical knowledge into clinical practice. The review succinctly presents the known biotherapeutic effects of odontogenic EVs and the underlying mechanisms. Subsequently, the current state of functional cargo loading for engineered EVs is critically discussed. For enhancing EV targeting and in vivo circulation time, the review highlights cutting-edge engineering solutions that may help overcome key obstacles in the clinical application of EV therapeutics. By presenting innovative concepts and strategies, this review aims to pave the way for the adaptation of DSC-EVs in regenerative medicine within clinical settings.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zinan Xu
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minyi Liu
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline, Jinan University, Guangzhou, China
| | - Mingxiang Cai
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline, Jinan University, Guangzhou, China
| |
Collapse
|
28
|
Liang A, Zhou W, Zhang H, Zhang J, Zhang XE, Fang T, Li F. Effects of Individual Amino Acids on the Blood Circulation of Biosynthetic Protein Nanocages: Toward Guidance on Surface Engineering. Adv Healthc Mater 2023; 12:e2300502. [PMID: 37067183 DOI: 10.1002/adhm.202300502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Indexed: 04/18/2023]
Abstract
Protein nanocages (PNCs) hold great promise for developing multifunctional nanomedicines. Long blood circulation is a key requirement of PNCs for most in vivo application scenarios. In addition to the classical PEGylation strategy, short peptides with a specific sequence screened via phage display are also very effective in prolonging the blood half-life (t1/2 ) of PNCs. However, there is a lack of knowledge on how individual amino acids affect the circulation of PNCs. Here the effects of the 20 proteinogenic amino acids in the form of an X3 or X5 tag (X represents an amino acid) are explored on the pharmacokinetics of PNCs, which lead to the formation of a heatmap illustrating the extent of t1/2 prolongation by each proteinogenic amino acid. Significantly, oligo-lysine and oligo-arginine can effectively prolong the t1/2 of strongly negatively charged PNCs through charge neutralization, while oligo-cysteine can also do so, but via a different mechanism, mediating the covalent binding of PNCs with plasma albumin as a stealth material. These findings are extendible and offer guidance for surface-engineering biosynthetic PNCs and other nanoparticles.
Collapse
Affiliation(s)
- Ao Liang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Juan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ti Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Zhou Q, Xiang J, Qiu N, Wang Y, Piao Y, Shao S, Tang J, Zhou Z, Shen Y. Tumor Abnormality-Oriented Nanomedicine Design. Chem Rev 2023; 123:10920-10989. [PMID: 37713432 DOI: 10.1021/acs.chemrev.3c00062] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Anticancer nanomedicines have been proven effective in mitigating the side effects of chemotherapeutic drugs. However, challenges remain in augmenting their therapeutic efficacy. Nanomedicines responsive to the pathological abnormalities in the tumor microenvironment (TME) are expected to overcome the biological limitations of conventional nanomedicines, enhance the therapeutic efficacies, and further reduce the side effects. This Review aims to quantitate the various pathological abnormalities in the TME, which may serve as unique endogenous stimuli for the design of stimuli-responsive nanomedicines, and to provide a broad and objective perspective on the current understanding of stimuli-responsive nanomedicines for cancer treatment. We dissect the typical transport process and barriers of cancer drug delivery, highlight the key design principles of stimuli-responsive nanomedicines designed to tackle the series of barriers in the typical drug delivery process, and discuss the "all-into-one" and "one-for-all" strategies for integrating the needed properties for nanomedicines. Ultimately, we provide insight into the challenges and future perspectives toward the clinical translation of stimuli-responsive nanomedicines.
Collapse
Affiliation(s)
- Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yechun Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
30
|
Guo C, Yuan H, Wang Y, Feng Y, Zhang Y, Yin T, He H, Gou J, Tang X. The interplay between PEGylated nanoparticles and blood immune system. Adv Drug Deliv Rev 2023; 200:115044. [PMID: 37541623 DOI: 10.1016/j.addr.2023.115044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
During the last two decades, an increasing number of reports have pointed out that the immunogenicity of polyethylene glycol (PEG) may trigger accelerated blood clearance (ABC) and hypersensitivity reaction (HSR) to PEGylated nanoparticles, which could make PEG modification counterproductive. These phenomena would be detrimental to the efficacy of the load and even life-threatening to patients. Consequently, further elucidation of the interplay between PEGylated nanoparticles and the blood immune system will be beneficial to developing and applying related formulations. Many groups have worked to unveil the relevance of structural factors, dosing schedule, and other factors to the ABC phenomenon and hypersensitivity reaction. Interestingly, the results of some reports seem to be difficult to interpret or contradict with other reports. In this review, we summarize the physiological mechanisms of PEG-specific immune response. Moreover, we speculate on the potential relationship between the induction phase and the effectuation phase to explain the divergent results in published reports. In addition, the role of nanoparticle-associated factors is discussed based on the classification of the action phase. This review may help researchers to develop PEGylated nanoparticles to avoid unfavorable immune responses based on the underlying mechanism.
Collapse
Affiliation(s)
- Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yuxiu Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yupeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
31
|
Álvarez K, Rojas M. Nanoparticles targeting monocytes and macrophages as diagnostic and therapeutic tools for autoimmune diseases. Heliyon 2023; 9:e19861. [PMID: 37810138 PMCID: PMC10559248 DOI: 10.1016/j.heliyon.2023.e19861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Autoimmune diseases are chronic conditions that result from an inadequate immune response to self-antigens and affect many people worldwide. Their signs, symptoms, and clinical severity change throughout the course of the disease, therefore the diagnosis and treatment of autoimmune diseases are major challenges. Current diagnostic tools are often invasive and tend to identify the issue at advanced stages. Moreover, the available treatments for autoimmune diseases do not typically lead to complete remission and are associated with numerous side effects upon long-term usage. A promising strategy is the use of nanoparticles that can be used as contrast agents in diagnostic imaging techniques to detect specific cells present at the inflammatory infiltrates in tissues that are not easily accessible by biopsy. In addition, NPs can be designed to deliver drugs to a cell population or tissue. Considering the significant role played by monocytes in the development of chronic inflammatory conditions and their emergence as a target for extracorporeal monitoring and precise interventions, this review focuses on recent advancements in nanoparticle-based strategies for diagnosing and treating autoimmune diseases, with a particular emphasis on targeting monocyte populations.
Collapse
Affiliation(s)
- Karen Álvarez
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Colombia
- Unidad de Citometría de Flujo, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Colombia
| |
Collapse
|
32
|
Shin J, Kim B, Lager TW, Mejia F, Guldner I, Conner C, Zhang S, Panopoulos AD, Bilgicer B. A nanotherapeutic approach to selectively eliminate metastatic breast cancer cells by targeting cell surface GRP78. NANOSCALE 2023; 15:13322-13334. [PMID: 37526009 DOI: 10.1039/d3nr00800b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Here, rational engineering of doxorubicin prodrug loaded peptide-targeted liposomal nanoparticles to selectively target metastatic breast cancer cells in vivo is described. Glucose-regulated protein 78 (GRP78), a heat shock protein typically localized in the endoplasmic reticulum in healthy cells, has been identified to home to the cell surface in certain cancers, and thus has emerged as a promising therapeutic target. Recent reports indicated GRP78 to be expressed on the cell surface of an aggressive subpopulation of stem-like breast cancer cells that exhibit metastatic potential. In this study, a targeted nanoparticle formulation with a GRP78-binding peptide (Kd of 7.4 ± 1.0 μM) was optimized to selectively target this subpopulation. In vitro studies with breast cancer cell lines showed the targeted nanoparticle formulation (TNPGRP78pep) achieved enhanced cellular uptake, while maintaining selectivity over the control groups. In vivo, TNPGRP78pep loaded with doxorubicin prodrug was evaluated using a lung metastatic mouse model and demonstrated inhibition of breast cancer cell seeding to lungs down at the level of negative control groups. Combined, this study established that specific-targeting of surface GRP78 expressing a subpopulation of aggressive breast cancer cells was able to inhibit breast cancer metastasis to lungs, and underpinned the significance of GRP78 in breast cancer metastasis.
Collapse
Affiliation(s)
- Jaeho Shin
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 465567, USA.
| | - Baksun Kim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 465567, USA.
| | - Tyson W Lager
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Franklin Mejia
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 465567, USA.
| | - Ian Guldner
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Clay Conner
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Siyuan Zhang
- Department of Pathology, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Athanasia D Panopoulos
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Basar Bilgicer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 465567, USA.
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
33
|
Łopuszyńska N, Węglarz WP. Contrasting Properties of Polymeric Nanocarriers for MRI-Guided Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2163. [PMID: 37570481 PMCID: PMC10420849 DOI: 10.3390/nano13152163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Poor pharmacokinetics and low aqueous solubility combined with rapid clearance from the circulation of drugs result in their limited effectiveness and generally high therapeutic doses. The use of nanocarriers for drug delivery can prevent the rapid degradation of the drug, leading to its increased half-life. It can also improve the solubility and stability of drugs, advance their distribution and targeting, ensure a sustained release, and reduce drug resistance by delivering multiple therapeutic agents simultaneously. Furthermore, nanotechnology enables the combination of therapeutics with biomedical imaging agents and other treatment modalities to overcome the challenges of disease diagnosis and therapy. Such an approach is referred to as "theranostics" and aims to offer a more patient-specific approach through the observation of the distribution of contrast agents that are linked to therapeutics. The purpose of this paper is to present the recent scientific reports on polymeric nanocarriers for MRI-guided drug delivery. Polymeric nanocarriers are a very broad and versatile group of materials for drug delivery, providing high loading capacities, improved pharmacokinetics, and biocompatibility. The main focus was on the contrasting properties of proposed polymeric nanocarriers, which can be categorized into three main groups: polymeric nanocarriers (1) with relaxation-type contrast agents, (2) with chemical exchange saturation transfer (CEST) properties, and (3) with direct detection contrast agents based on fluorinated compounds. The importance of this aspect tends to be downplayed, despite its being essential for the successful design of applicable theranostic nanocarriers for image-guided drug delivery. If available, cytotoxicity and therapeutic effects were also summarized.
Collapse
Affiliation(s)
- Natalia Łopuszyńska
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
| | - Władysław P. Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
| |
Collapse
|
34
|
Wickline SA, Hou KK, Pan H. Peptide-Based Nanoparticles for Systemic Extrahepatic Delivery of Therapeutic Nucleotides. Int J Mol Sci 2023; 24:ijms24119455. [PMID: 37298407 DOI: 10.3390/ijms24119455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Peptide-based nanoparticles (PBN) for nucleotide complexation and targeting of extrahepatic diseases are gaining recognition as potent pharmaceutical vehicles for fine-tuned control of protein production (up- and/or down-regulation) and for gene delivery. Herein, we review the principles and mechanisms underpinning self-assembled formation of PBN, cellular uptake, endosomal release, and delivery to extrahepatic disease sites after systemic administration. Selected examples of PBN that have demonstrated recent proof of concept in disease models in vivo are summarized to offer the reader a comparative view of the field and the possibilities for clinical application.
Collapse
Affiliation(s)
- Samuel A Wickline
- Division of Cardiology, Department of Medical Engineering, University of South Florida, Tampa, FL 33602, USA
| | - Kirk K Hou
- Department of Ophthalmology, Stein and Doheny Eye Institutes, University of California, Los Angeles, CA 90095, USA
| | - Hua Pan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
35
|
Mallory DP, Freedman A, Kaliszewski MJ, Montenegro-Galindo GR, Pugh C, Smith AW. Direct Quantification of Serum Protein Interactions with PEGylated Micelle Nanocarriers. Biomacromolecules 2023. [PMID: 37224421 DOI: 10.1021/acs.biomac.2c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A large repertoire of nanocarrier (NC) technologies exists, each with highly specified advantages in terms of targetability, stability, and immunological inertness. The characterization of such NC properties within physiological conditions is essential for the development of optimized drug delivery systems. One method that is well established for reducing premature elimination by avoiding protein adsorption on NCs is surface functionalization with poly(ethylene glycol) (PEG), aptly called PEGylation. However, recent studies revealed that some PEGylated NCs have a delayed immune response, indicating the occurrence of protein-NC interactions. Obvious protein-NC interactions, especially in micellar systems, may have been overlooked as many early studies relied on techniques less sensitive to molecular level interactions. More sensitive techniques have been developed, but a major challenge is the direct measurement of interactions, which must be done in situ, as micelle assemblies are dynamic. Here, we report the use of pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS) to interrogate the interactions between two PEG-based micelle models and serum albumin protein to compare protein adsorption differences based on linear or cyclic PEG architectures. First, by measuring micelle diffusion in isolated and mixed solutions, we confirmed the thermal stability of diblock and triblock copolymer micelle assemblies. Further, we measured the co-diffusion of micelles and serum proteins, the magnitudes of which increased with concentration and continued incubation. The results demonstrate that PIE-FCCS is capable of measuring direct interactions between fluorescently labeled NC and serum proteins, even at concentrations 500 times lower than those observed physiologically. This capability showcases the potential utility of PIE-FCCS in the characterization of drug delivery systems in biomimetic conditions.
Collapse
Affiliation(s)
- D Paul Mallory
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | - Abegel Freedman
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Megan J Kaliszewski
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | | | - Coleen Pugh
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Adam W Smith
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79410, United States
| |
Collapse
|
36
|
Kim SJ, Puranik N, Yadav D, Jin JO, Lee PCW. Lipid Nanocarrier-Based Drug Delivery Systems: Therapeutic Advances in the Treatment of Lung Cancer. Int J Nanomedicine 2023; 18:2659-2676. [PMID: 37223276 PMCID: PMC10202211 DOI: 10.2147/ijn.s406415] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
Although various treatments are currently being developed, lung cancer still has a very high mortality rate. Moreover, while various strategies for the diagnosis and treatment of lung cancer are being used in clinical settings, in many cases, lung cancer does not respond to treatment and presents reducing survival rates. Cancer nanotechnology, also known as nanotechnology in cancer, is a relatively new topic of study that brings together scientists from a variety of fields, including chemistry, biology, engineering, and medicine. The use of lipid-based nanocarriers to aid drug distribution has already had a significant impact in several scientific fields. Lipid-based nanocarriers have been demonstrated to help stabilize therapeutic compounds, overcome barriers to cellular and tissue absorption, and improve in vivo drug delivery to specific target areas. For this reason, lipid-based nanocarriers are being actively researched and used for lung cancer treatment and vaccine development. This review discusses the improvements in drug delivery achieved with lipid-based nanocarriers, the obstacles that still exist with in vivo applications, and the current clinical and experimental applications of lipid-based nanocarriers in lung cancer treatment and management.
Collapse
Affiliation(s)
- So-Jung Kim
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Nidhi Puranik
- Department of Biochemistry & Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan, 38541, Korea
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| |
Collapse
|
37
|
Hu B, Wang R, Wu D, Long R, Ruan J, Jin L, Ma D, Sun C, Liao S. Prospects for fertility preservation: the ovarian organ function reconstruction techniques for oogenesis, growth and maturation in vitro. Front Physiol 2023; 14:1177443. [PMID: 37250136 PMCID: PMC10213246 DOI: 10.3389/fphys.2023.1177443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Today, fertility preservation is receiving more attention than ever. Cryopreservation, which preserves ovarian tissue to preserve fertility in young women and reduce the risk of infertility, is currently the most widely practiced. Transplantation, however, is less feasible for women with blood-borne leukemia or cancers with a high risk of ovarian metastasis because of the risk of cancer recurrence. In addition to cryopreservation and re-implantation of embryos, in vitro ovarian organ reconstruction techniques have been considered as an alternative strategy for fertility preservation. In vitro culture of oocytes in vitro Culture, female germ cells induction from pluripotent stem cells (PSC) in vitro, artificial ovary construction, and ovaria-related organoids construction have provided new solutions for fertility preservation, which will therefore maximize the potential for all patients undergoing fertility preservation. In this review, we discussed and thought about the latest ovarian organ function reconstruction techniques in vitro to provide new ideas for future ovarian disease research and fertility preservation of patients with cancer and premature ovarian failure.
Collapse
Affiliation(s)
- Bai Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Long
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinghan Ruan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujie Liao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Tenchov R, Sasso JM, Zhou QA. PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective. Bioconjug Chem 2023. [PMID: 37162501 DOI: 10.1021/acs.bioconjchem.3c00174] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lipid nanoparticles (LNPs) have been recognized as efficient vehicles to transport a large variety of therapeutics. Currently in the spotlight as important constituents of the COVID-19 mRNA vaccines, LNPs play a significant role in protecting and transporting mRNA to cells. As one of their key constituents, polyethylene glycol (PEG)-lipid conjugates are important in defining LNP physicochemical characteristics and biological activity. PEGylation has proven particularly efficient in conferring longer systemic circulation of LNPs, thus greatly improving their pharmacokinetics and efficiency. Along with revealing the benefits of PEG conjugates, studies have revealed unexpected immune reactions against PEGylated nanocarriers such as accelerated blood clearance (ABC), involving the production of anti-PEG antibodies at initial injection, which initiates accelerated blood clearance upon subsequent injections, as well as a hypersensitivity reaction referred to as complement activation-related pseudoallergy (CARPA). Further, data have been accumulated indicating consistent yet sometimes controversial correlations between various structural parameters of the PEG-lipids, the properties of the PEGylated LNPs, and the magnitude of the observed adverse effects. Detailed knowledge and comprehension of such correlations are of foremost importance in the efforts to diminish and eliminate the undesirable immune reactions and improve the safety and efficiency of the PEGylated medicines. Here, we present an overview based on analysis of data from the CAS Content Collection regarding the PEGylated LNP immunogenicity and overall safety concerns. A comprehensive summary has been compiled outlining how various structural parameters of the PEG-lipids affect the immune responses and activities of the LNPs, with regards to their efficiency in drug delivery. This Review is thus intended to serve as a helpful resource in understanding the current knowledge in the field, in an effort to further solve the remaining challenges and to achieve full potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Janet M Sasso
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
39
|
Myers NM, Comolli NK. Optimization and modeling of PEGylated, hydrocortisone‐17‐butryate‐loaded poly(lactic‐co‐glycolic acid) microspheres. NANO SELECT 2023. [DOI: 10.1002/nano.202200187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Affiliation(s)
- Nathaniel M. Myers
- Department of Biochemical Engineering Villanova University Villanova Pennsylvania USA
| | - Noelle K. Comolli
- Department of Biochemical Engineering Villanova University Villanova Pennsylvania USA
| |
Collapse
|
40
|
Pourmadadi M, Mahdi Eshaghi M, Ostovar S, Mohammadi Z, K. Sharma R, Paiva-Santos AC, Rahmani E, Rahdar A, Pandey S. Innovative nanomaterials for cancer diagnosis, imaging, and therapy: Drug deliveryapplications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
41
|
Xia S, Liu Z, Cai J, Ren H, Li Q, Zhang H, Yue J, Zhou Q, Zhou T, Wang L, Liu X, Zhou X. Liver fibrosis therapy based on biomimetic nanoparticles which deplete activated hepatic stellate cells. J Control Release 2023; 355:54-67. [PMID: 36693527 DOI: 10.1016/j.jconrel.2023.01.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Liver fibrosis is one of the most common liver diseases with substantial morbidity and mortality. However, effective therapy for liver fibrosis is still lacking. Considering the key fibrogenic role of activated hepatic stellate cells (aHSCs), here we reported a strategy to deplete aHSCs by inducing apoptosis as well as quiescence. Therefore, we engineered biomimetic all-trans retinoic acid (ATRA) loaded PLGA nanoparticles (NPs). HSC (LX2 cells) membranes, presenting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), were coated on the surface of the nanoparticles, while the clinically approved agent ATRA with anti-fibrosis ability was encapsulated in the inner core. The biomimetic coating of TRAIL-expressing HSC membranes does not only provide homologous targeting to HSCs, but also effectively triggers apoptosis of aHSCs. ATRA could induce quiescence of activated fibroblasts. While TM-NPs (i.e. membrane coated NPs without ATRA) and ATRA/NPs (i.e. non-coated NPs loaded with ATRA) only showed the ability to induce apoptosis and decrease the α-SMA expression in aHSCs, respectively, TM-ATRA/NPs induced both apoptosis and quiescence in aHSCs, ultimately leading to improved fibrosis amelioration in both carbon tetrachloride-induced and methionine and choline deficient L-amino acid diet induced liver fibrosis mouse models. We conclude that biomimetic TM-ATRA/NPs may provide a novel strategy for effective antifibrosis therapy.
Collapse
Affiliation(s)
- Shenglong Xia
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China; Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Zimo Liu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jieru Cai
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Huiming Ren
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qi Li
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hongfang Zhang
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Jing Yue
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Quan Zhou
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China; Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tianhua Zhou
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Liangjing Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Xiangrui Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Xuefei Zhou
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China.
| |
Collapse
|
42
|
Yang J, Luly KM, Green JJ. Nonviral nanoparticle gene delivery into the CNS for neurological disorders and brain cancer applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1853. [PMID: 36193561 PMCID: PMC10023321 DOI: 10.1002/wnan.1853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/24/2022] [Accepted: 08/11/2022] [Indexed: 03/15/2023]
Abstract
Nonviral nanoparticles have emerged as an attractive alternative to viral vectors for gene therapy applications, utilizing a range of lipid-based, polymeric, and inorganic materials. These materials can either encapsulate or be functionalized to bind nucleic acids and protect them from degradation. To effectively elicit changes to gene expression, the nanoparticle carrier needs to undergo a series of steps intracellularly, from interacting with the cellular membrane to facilitate cellular uptake to endosomal escape and nucleic acid release. Adjusting physiochemical properties of the nanoparticles, such as size, charge, and targeting ligands, can improve cellular uptake and ultimately gene delivery. Applications in the central nervous system (CNS; i.e., neurological diseases, brain cancers) face further extracellular barriers for a gene-carrying nanoparticle to surpass, with the most significant being the blood-brain barrier (BBB). Approaches to overcome these extracellular challenges to deliver nanoparticles into the CNS include systemic, intracerebroventricular, intrathecal, and intranasal administration. This review describes and compares different biomaterials for nonviral nanoparticle-mediated gene therapy to the CNS and explores challenges and recent preclinical and clinical developments in overcoming barriers to nanoparticle-mediated delivery to the brain. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Joanna Yang
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathryn M Luly
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jordan J Green
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Bi D, Unthan DM, Hu L, Bussmann J, Remaut K, Barz M, Zhang H. Polysarcosine-based lipid formulations for intracranial delivery of mRNA. J Control Release 2023; 356:1-13. [PMID: 36803765 DOI: 10.1016/j.jconrel.2023.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023]
Abstract
Messenger RNA (mRNA) is revolutionizing the future of therapeutics in a variety of diseases, including neurological disorders. Lipid formulations have shown to be an effective platform technology for mRNA delivery and are the basis for the approved mRNA vaccines. In many of these lipid formulations, polyethylene glycol (PEG)-functionalized lipid provides steric stabilization and thus plays a key role in improving the stability both ex vivo and in vivo. However, immune responses towards PEGylated lipids may compromise the use of those lipids in some applications (e.g., induction of antigen specific tolerance), or within sensitive tissues (e.g., central nervous system (CNS)). With respect to this issue, polysarcosine (pSar)-based lipopolymers were investigated as an alternative to PEG-lipid in mRNA lipoplexes for controlled intracerebral protein expression in this study. Four polysarcosine-lipids with defined sarcosine average molecular weight (Mn = 2 k, 5 k) and anchor diacyl chain length (m = 14, 18) were synthesized, and incorporated into cationic liposomes. We found that the content, pSar chain length and carbon tail lengths of pSar-lipids govern the transfection efficiency and biodistribution. Increasing carbon diacyl chain length of pSar-lipid led up to 4- and 6-fold lower protein expression in vitro. When the length of either pSar chain or lipid carbon tail increased, the transfection efficiency decreased while the circulation time was prolonged. mRNA lipoplexes containing 2.5% C14-pSar2k resulted in the highest mRNA translation in the brain of zebrafish embryos through intraventricular injection, while C18-pSar2k-liposomes showed a comparable circulation with DSPE-PEG2k-liposomes after systemic administration. To conclude, pSar-lipid enable efficient mRNA delivery, and can substitute PEG-lipids in lipid formulations for controlled protein expression within the CNS.
Collapse
Affiliation(s)
- Dongdong Bi
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands
| | - Dennis Mark Unthan
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands
| | - Lili Hu
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands
| | - Jeroen Bussmann
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands; Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Heyang Zhang
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands.
| |
Collapse
|
44
|
Farhana A. Enhancing Skin Cancer Immunotheranostics and Precision Medicine through Functionalized Nanomodulators and Nanosensors: Recent Development and Prospects. Int J Mol Sci 2023; 24:3493. [PMID: 36834917 PMCID: PMC9959821 DOI: 10.3390/ijms24043493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Skin cancers, especially melanomas, present a formidable diagnostic and therapeutic challenge to the scientific community. Currently, the incidence of melanomas shows a high increase worldwide. Traditional therapeutics are limited to stalling or reversing malignant proliferation, increased metastasis, or rapid recurrence. Nonetheless, the advent of immunotherapy has led to a paradigm shift in treating skin cancers. Many state-of-art immunotherapeutic techniques, namely, active vaccination, chimeric antigen receptors, adoptive T-cell transfer, and immune checkpoint blockers, have achieved a considerable increase in survival rates. Despite its promising outcomes, current immunotherapy is still limited in its efficacy. Newer modalities are now being explored, and significant progress is made by integrating cancer immunotherapy with modular nanotechnology platforms to enhance its therapeutic efficacy and diagnostics. Research on targeting skin cancers with nanomaterial-based techniques has been much more recent than other cancers. Current investigations using nanomaterial-mediated targeting of nonmelanoma and melanoma cancers are directed at augmenting drug delivery and immunomodulation of skin cancers to induce a robust anticancer response and minimize toxic effects. Many novel nanomaterial formulations are being discovered, and clinical trials are underway to explore their efficacy in targeting skin cancers through functionalization or drug encapsulation. The focus of this review rivets on theranostic nanomaterials that can modulate immune mechanisms toward protective, therapeutic, or diagnostic approaches for skin cancers. The recent breakthroughs in nanomaterial-based immunotherapeutic modulation of skin cancer types and diagnostic potentials in personalized immunotherapies are discussed.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Aljouf 72388, Saudi Arabia
| |
Collapse
|
45
|
Mohammad SN, Choi YS, Chung JY, Cedrone E, Neun BW, Dobrovolskaia MA, Yang X, Guo W, Chew YC, Kim J, Baek S, Kim IS, Fruman DA, Kwon YJ. Nanocomplexes of doxorubicin and DNA fragments for efficient and safe cancer chemotherapy. J Control Release 2023; 354:91-108. [PMID: 36572154 DOI: 10.1016/j.jconrel.2022.12.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
Cancer-targeted therapy by a chemotherapeutic agent formulated in a nanoscale platform has been challenged by complex and inefficient manufacturing, low drug loading, difficult characterization, and marginally improved therapeutic efficacy. This study investigated facile-to-produce nanocomplexes of doxorubicin (DOX), a widely used cancer drug, and clinically approved DNA fragments that are extracted from a natural source. DOX was found to self-assemble DNA fragments into relatively monodispersed nanocomplexes with a diameter of ∼70 nm at 14.3% (w/w) drug loading by simple and scalable mixing. The resulting DOX/DNA nanocomplexes showed sustained DOX release, unlike overly stable Doxil®, cellular uptake via multiple endocytosis pathways, and high hematological and immunological compatibility. DOX/DNA nanocomplexes eradicated EL4 T lymphoma cells in a time-dependent manner, eventually surpassing free DOX. Extended circulation of DOX/DNA nanocomplexes, while avoiding off-target accumulation in the lung and being cleared from the liver, resulted in rapid accumulation in tumor and lowered cardio toxicity. Finally, tumor growth of EL4-challenged C57BL/6 mice (syngeneic model) and OPM2-challenged NSG mice (human xenograft model) were efficiently inhibited by DOX/DNA nanocomplexes with enhanced overall survival, in comparison with free DOX and Doxil®, especially upon repeated administrations. DOX/DNA nanocomplexes are a promising chemotherapeutics delivery platform for their ease of manufacturing, high biocompatibility, desired drug release and accumulation, efficient tumor eradication with improved safety, and further engineering versatility for extended therapeutic applications.
Collapse
Affiliation(s)
- Saad N Mohammad
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
| | - Yeon Su Choi
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
| | - Jee Young Chung
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
| | - Edward Cedrone
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - Barry W Neun
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - Xiaojing Yang
- Zymo Research Corporation, Irvine, CA 92604, United States
| | - Wei Guo
- Zymo Research Corporation, Irvine, CA 92604, United States
| | - Yap Ching Chew
- Zymo Research Corporation, Irvine, CA 92604, United States
| | - Juwan Kim
- Pharma Research, Co, Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seunggul Baek
- Pharma Research, Co, Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ik Soo Kim
- Pharma Research, Co, Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States; Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States; Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
46
|
Gouveia MG, Wesseler JP, Ramaekers J, Weder C, Scholten PBV, Bruns N. Polymersome-based protein drug delivery - quo vadis? Chem Soc Rev 2023; 52:728-778. [PMID: 36537575 PMCID: PMC9890519 DOI: 10.1039/d2cs00106c] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/24/2022]
Abstract
Protein-based therapeutics are an attractive alternative to established therapeutic approaches and represent one of the fastest growing families of drugs. While many of these proteins can be delivered using established formulations, the intrinsic sensitivity of proteins to denaturation sometimes calls for a protective carrier to allow administration. Historically, lipid-based self-assembled structures, notably liposomes, have performed this function. After the discovery of polymersome-based targeted drug-delivery systems, which offer manifold advantages over lipid-based structures, the scientific community expected that such systems would take the therapeutic world by storm. However, no polymersome formulations have been commercialised. In this review article, we discuss key obstacles for the sluggish translation of polymersome-based protein nanocarriers into approved pharmaceuticals, which include limitations imparted by the use of non-degradable polymers, the intricacies of polymersome production methods, and the complexity of the in vivo journey of polymersomes across various biological barriers. Considering this complex subject from a polymer chemist's point of view, we highlight key areas that are worthy to explore in order to advance polymersomes to a level at which clinical trials become worthwhile and translation into pharmaceutical and nanomedical applications is realistic.
Collapse
Affiliation(s)
- Micael G Gouveia
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Justus P Wesseler
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Jobbe Ramaekers
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Christoph Weder
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Philip B V Scholten
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
47
|
Kamil Mohammad Al-Mosawi A, Bahrami AR, Nekooei S, Saljooghi AS, Matin MM. Using magnetic mesoporous silica nanoparticles armed with EpCAM aptamer as an efficient platform for specific delivery of 5-fluorouracil to colorectal cancer cells. Front Bioeng Biotechnol 2023; 10:1095837. [PMID: 36686226 PMCID: PMC9853966 DOI: 10.3389/fbioe.2022.1095837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Theranostic nanoparticles with both imaging and therapeutic capacities are highly promising in successful diagnosis and treatment of advanced cancers. Methods: Here, we developed magnetic mesoporous silica nanoparticles (MSNs) loaded with 5-fluorouracil (5-FU) and surface-decorated with polyethylene glycol (PEG), and epithelial cell adhesion molecule (EpCAM) aptamer (Apt) for controlled release of 5-FU and targeted treatment of colorectal cancer (CRC) both in vitro and in vivo. In this system, Au NPs are conjugated onto the exterior surface of MSNs as a gatekeeper for intelligent release of the anti-cancer drug at acidic conditions. Results: Nanocarriers were prepared with a final size diameter of 78 nm, the surface area and pore size of SPION-MSNs were calculated as 636 m2g-1, and 3 nm based on the BET analysis. The release of 5-FU from nanocarriers was pH-dependent, with an initial rapid release (within 6 h) followed by a sustained release for 96 h at pH 5.4. Tracking the cellular uptake by flow cytometry technique illustrated more efficient and higher uptake of targeted nanocarriers in HT-29 cells compared with non-targeted formula. In vitro results demonstrated that nanocarriers inhibited the growth of cancer cells via apoptosis induction. Furthermore, the targeted NPs could significantly reduce tumor growth in immunocompromised C57BL/6 mice bearing HT-29 tumors, similar to those injected with free 5-FU, while inducing less side effects. Conclusion: These findings suggest that application of Apt-PEG-Au-NPs@5-FU represents a promising theranostic platform for EpCAM-positive CRC cells, although further experiments are required before it can be practiced in the clinic.
Collapse
Affiliation(s)
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Qaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sh. Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran,*Correspondence: Maryam M. Matin, ; Amir Sh. Saljooghi,
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran,Stem Cells and Regenerative Medicine Research Group, Academic Center for Education Culture and Research (ACECR), Mashhad, Iran,*Correspondence: Maryam M. Matin, ; Amir Sh. Saljooghi,
| |
Collapse
|
48
|
Yoshie K, Ishihara K. [Solubilization of Poorly Water-soluble Drugs with Amphiphilic Phospholipid Polymers]. YAKUGAKU ZASSHI 2023; 143:745-756. [PMID: 37661440 DOI: 10.1248/yakushi.23-00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Most drug candidates developed in recent years are poorly water-soluble, which is a key challenge in pharmaceutical science. Various solubilization methods have been investigated thus far, most of which require solubilizers that provide a local hydrophobic environment wherein a drug can dissolve or induce interactions with drug molecules. We have focused on amphiphilic 2-methacryloyloxyethyl phosphoryl choline (MPC) polymers. In addition to the ease of molecular design of amphiphilic MPC polymers owing to their chemical structures, they have been reported to possess high biocompatibility in various biomaterial applications. Additionally, amphiphilic MPC polymers have been applied in the pharmaceutical field, especially in solubilization. We have qualitatively and quantitatively evaluated the effects of the chemical structure and physical properties of the solubilizer on the MPC polymers. In particular, MPC polymers with different chemical structures were designed and synthesized. The inner polarity and molecular mobility in the polymer aggregates were evaluated, indicating that the intrinsic properties reflect the chemical structure of the polymer. Additionally, amphiphilic MPC polymers were used to improve the solubility of poorly water-soluble drugs and as solid dispersion carriers, and they exhibited superior solubilizing abilities compared to a commonly used polymer. Furthermore, the solubility of biopharmaceuticals, such as peptides, was improved. It is possible to design and synthesize optimal structures based on the polarity of the hydrophobic environment and the intermolecular interaction with a drug. This research provides a unified interpretation of drugs and efficiently summarizes knowledge about drug development, which will facilitate the efficient and rapid development of drug formulations.
Collapse
Affiliation(s)
- Kensuke Yoshie
- Formulation Technology Research Laboratories, Daiichi Sankyo., Ltd
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo
- Division of Materials and Manufacturing Science, School of Engineering, Osaka University
| |
Collapse
|
49
|
Chatterjee S, Harini K, Girigoswami A, Nag M, Lahiri D, Girigoswami K. Nanodecoys: A Quintessential Candidate to Augment Theranostic Applications for a Plethora of Diseases. Pharmaceutics 2022; 15:pharmaceutics15010073. [PMID: 36678701 PMCID: PMC9865542 DOI: 10.3390/pharmaceutics15010073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Nanoparticles (NPs) designed for various theranostic purposes have hugely impacted scientific research in the field of biomedicine, bringing forth hopes of a future revolutionized area called nanomedicine. A budding advancement in this area is the conjugation of various cell membranes onto nanoparticles to develop biomimetic cells called 'Nanodecoys' (NDs), which can imitate the functioning of natural cells. This technology of coating cell membranes on NPs has enhanced the working capabilities of nano-based techniques by initiating effective navigation within the bodily system. Due to the presence of multiple functional moieties, nanoparticles coated with cell membranes hold the ability to interact with complex biological microenvironments inside the body with ease. Although developed with the initial motive to increase the time of circulation in the bloodstream and stability by coating membranes of red blood cells, it has further outstretched a wide range of cell lines, such as mesenchymal stem cells, beta cells, thrombocytes, white blood cells, and cancer cells. Thus, these cells and the versatile properties they bring along with them open up a brand-new domain in the biomedical industry where different formulations of nanoparticles can be used in appropriate dosages to treat a plethora of diseases. This review comprises recent investigations of nanodecoys in biomedical applications.
Collapse
Affiliation(s)
- Sampreeti Chatterjee
- Department of Biotechnology, University of Engineering & Management, Kolkata 700160, West Bengal, India
| | - Karthick Harini
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata 700160, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata 700160, West Bengal, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
- Correspondence: ; Tel.:+91-9600060358
| |
Collapse
|
50
|
Kunte N, Westerfield M, McGraw E, Choi J, Akinsipe T, Whitaker SK, Brannen A, Panizzi P, Tomich JM, Avila LA. Evaluation of transfection efficacy, biodistribution, and toxicity of branched amphiphilic peptide capsules (BAPCs) associated with mRNA. Biomater Sci 2022; 10:6980-6991. [PMID: 36254388 DOI: 10.1039/d2bm01314b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanoparticles (NPs) have been shown to be a suitable mRNA delivery platform by conferring protection against ribonucleases and facilitating cellular uptake. Several NPs have succeeded in delivering mRNA intranasally, intratracheally, and intramuscularly in preclinical settings. However, intravenous mRNA delivery has been less explored. Only a few NPs have been tested for systemic delivery of mRNA, many of which are formulated with polyethylene glycol (PEG). The incorporation of PEG presents some tradeoffs that must be carefully considered when designing a systemic delivery model. For example, while the addition of PEG may prolong circulation time by preventing early clearance by the mononuclear phagocytic system (MPS), it has also been reported that treating patients with PEGylated drugs can result in hypersensitivity reactions due to anti-PEG antibodies. Thus, it is desirable to have alternative PEG-free delivery methods for mRNA to avoid these adverse effects while preserving the beneficial effects. Our research group developed BAPCs (branched amphiphilic peptide capsules), a peptide-based nanoparticle that resists disruption by chaotropes, proteases, and elevated temperature, thus displaying significant stability and shelf-life. In this study, we demonstrated that similarly to PEG, mRNA shields the BAPC cationic surface to avoid early clearance by the MPS. Multispectral optoacoustic tomography (MSOT) and fluorescence reflectance imaging were imaging techniques used to analyze biodistribution within major MPS organs. Analysis of pro-inflammatory cytokine expression showed that BAPC-mRNA complexes do not cause chronic inflammation. Additionally, BAPCs enhance intracellular delivery of mRNA with negligible cytotoxicity or oxidative stress. These results might pave the way for future therapeutic applications of BAPCs as a delivery platform for systemic mRNA delivery.
Collapse
Affiliation(s)
- Nitish Kunte
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| | - Matthew Westerfield
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| | - Erin McGraw
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| | - Jiyeong Choi
- School of Integrative Plant Science, Cornell University, NY- 14853, USA
| | - Tosin Akinsipe
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| | - Susan K Whitaker
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, Kansas- 66506, USA
| | | | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - John M Tomich
- School of Integrative Plant Science, Cornell University, NY- 14853, USA
| | - L Adriana Avila
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| |
Collapse
|