1
|
Potter RA, Moeller IH, Khan S, Haegel H, Hollenstein A, Steiner G, Wandel C, Murphy AP, Asher DR, Palatinsky E, Griffin DA, Mason S, Iannaccone ST, Zaidman CM, Rodino-Klapac LR. Immunologic investigations into transgene directed immune-mediated myositis following delandistrogene moxeparvovec gene therapy. Sci Rep 2025; 15:4. [PMID: 39747998 PMCID: PMC11696689 DOI: 10.1038/s41598-024-84077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Delandistrogene moxeparvovec is an rAAVrh74 vector-based gene transfer therapy that delivers a transgene encoding delandistrogene moxeparvovec micro-dystrophin, an engineered, functional form of dystrophin shown to stabilize or slow disease progression in DMD. It is approved in the US and in other select countries. Two serious adverse event cases of immune-mediated myositis (IMM) were reported in the phase Ib ENDEAVOR trial (NCT04626674). We hypothesized that immune responses to the micro-dystrophin transgene product may have mediated these IMM events. An interferon-gamma ELISpot assay was used to detect T cell responses to delandistrogene moxeparvovec micro-dystrophin peptide pools. ELISpot analysis suggested that IMM resulted from T cell-mediated responses directed against specific micro-dystrophin peptides corresponding to exons 8 and 9 (Case 1) and exon 8 (Case 2) of the DMD gene. In silico epitope mapping based on the patients' HLA-I alleles indicated greater probability for peptides derived from exons 8 and/or 9 to bind HLA-I, providing further evidence that peptides derived from corresponding micro-dystrophin regions may have higher immunogenic potential. Collectively, these data suggest that patients with DMD gene deletions involving exons 8 and/or 9 may be at increased risk of IMM following delandistrogene moxeparvovec micro-dystrophin gene therapy infusion.
Collapse
Affiliation(s)
| | | | - Sohrab Khan
- Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | - Susan T Iannaccone
- Departments of Pediatrics and Neurology, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, USA
| | - Craig M Zaidman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
2
|
Baine S, Wier C, Lemmerman L, Cooper-Olson G, Kempton A, Haile A, Endres J, Fedoce A, Nesbit E, Rodino-Klapac LR, Potter RA. Long-Term Survival and Myocardial Function Following Systemic Delivery of Delandistrogene Moxeparvovec in DMD MDX Rats. Hum Gene Ther 2024; 35:978-988. [PMID: 39607794 DOI: 10.1089/hum.2024.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Delandistrogene moxeparvovec is a gene transfer therapy for Duchenne muscular dystrophy (DMD) that uses an adeno-associated viral vector to deliver a micro-dystrophin transgene to skeletal and cardiac muscle. This study evaluated the long-term survival and cardiac efficacy of delandistrogene moxeparvovec in a DMD-mutated (DMDMDX) rat model of DMD-related cardiomyopathy. DMDMDX male rats, aged 21-42 days, were injected with 1.33 × 1014 viral genomes/kilogram (vg/kg) delandistrogene moxeparvovec and followed for 12, 24, and 52 weeks. Ambulation was recorded via the Photobeam Activity System, whereas echocardiograms, cardiomyocyte contractility, calcium handling, and histological analysis of fibrosis were used to evaluate cardiac disease at 12-, 24-, and 52-weeks post-treatment. A separate cohort of rats was used to assess the impact of delandistrogene moxeparvovec on survival. Treatment with delandistrogene moxeparvovec extended median survival in DMDMDX rats to >25 months versus the 13-month median survival in saline-control-treated DMDMDX rats. Compared with saline control, delandistrogene moxeparvovec therapy elicited statistically significant improvements across cardiac parameters approaching wild-type values with additional benefits in mobility, histopathology, and fibrosis observed. Transgene expression was maintained up to >25 months and micro-dystrophin expression was broadly distributed across skeletal and cardiac muscle. Taken together, these findings demonstrate long-term cardiac efficacy and improved survival following delandistrogene moxeparvovec treatment in DMDMDX rats.
Collapse
Affiliation(s)
- Stephen Baine
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Chris Wier
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Luke Lemmerman
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | | | - Amber Kempton
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Alex Haile
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Julian Endres
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | | | - Ellyn Nesbit
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
3
|
McDonald CM, Elkins JS, Dharmarajan S, Gooch K, Ciobanu T, Lansdall CJ, Murphy AP, McDougall F, Mercuri EM, Audhya I. Caregiver Global Impression Observations from EMBARK: A Phase 3 Study Evaluating Delandistrogene Moxeparvovec in Ambulatory Patients with Duchenne Muscular Dystrophy. Neurol Ther 2024:10.1007/s40120-024-00685-8. [PMID: 39589719 DOI: 10.1007/s40120-024-00685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a rare, progressive, debilitating neuromuscular disease. The early childhood onset and debilitating nature of the disease necessitate decades of caretaking for most patients. Caregivers have a critical role in evaluating patients' physical functioning and/or response to treatment. Using DMD-specific caregiver-reported scales, the impact of delandistrogene moxeparvovec gene therapy on caregivers' perceived change in patient disease status or severity was evaluated using the Caregiver Global Impression of Change and Severity (CaGI-C and CaGI-S, respectively). METHODS In the Phase 3 randomized, double-blind, placebo-controlled trial (EMBARK; NCT05096221), the CaGI-C at week 52 and change from baseline to week 52 in CaGI-S were evaluated in a post hoc analysis. The CaGI-C assesses caregivers' impressions of change in DMD symptoms, physical ability, ability to perform daily activities, and overall health. The CaGI-S evaluates current severity of DMD symptoms, physical ability, ability to perform activities of daily living, and overall health. Data were evaluated using multi-domain responder index (MDRI) and ordinal regression analyses. RESULTS MDRI analyses across all four CaGI-C items yielded a treatment difference of 1.7 (95% confidence interval [CI]: 0.90-2.5) favoring delandistrogene moxeparvovec; a treatment difference of 1.1 (95% CI 0.30-1.9) was observed for the CaGI-S favoring delandistrogene moxeparvovec. After adjusting for age, ordinal regression analysis showed a nominally significant increase in the odds of achieving a better rating for delandistrogene moxeparvovec-treated patients on all four CaGI-C items (≥ 3.8-fold increase). After adjusting for baseline severity and age, ordinal regression analysis showed a nominally significant increase in the odds of improvement on all four CaGI-S items (≥ 2.2-fold increase). CONCLUSION These exploratory findings captured by caregiver-reported outcomes add to the totality of evidence that supports the clinical benefits of delandistrogene moxeparvovec for patients with DMD. TRIAL REGISTRATION NUMBER ClinicalTrials.gov identifier, NCT05096221.
Collapse
Affiliation(s)
- Craig M McDonald
- University of California, 4860 Y St #1700, Sacramento, CA, 95819, USA.
| | - Jacob S Elkins
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA, 02142, USA
| | - Sai Dharmarajan
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA, 02142, USA
| | - Katherine Gooch
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA, 02142, USA
| | | | | | | | | | - Eugenio M Mercuri
- Pediatric Neurology Institute, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Ivana Audhya
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
4
|
Grisorio L, Bongianino R, Gianeselli M, Priori SG. Gene therapy for cardiac diseases: methods, challenges, and future directions. Cardiovasc Res 2024; 120:1664-1682. [PMID: 39302117 DOI: 10.1093/cvr/cvae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 09/22/2024] Open
Abstract
Gene therapy is advancing at an unprecedented pace, and the recent success of clinical trials reinforces optimism and trust among the scientific community. Recently, the cardiac gene therapy pipeline, which had progressed more slowly than in other fields, has begun to advance, overcoming biological and technical challenges, particularly in treating genetic heart pathologies. The primary rationale behind the focus on monogenic cardiac diseases is the well-defined molecular mechanisms driving their phenotypes, directly linked to the pathogenicity of single genetic mutations. This aspect makes these conditions a remarkable example of 'genetically druggable' diseases. Unfortunately, current treatments for these life-threatening disorders are few and often poorly effective, underscoring the need to develop therapies to modulate or correct their molecular substrates. In this review we examine the latest advancements in cardiac gene therapy, discussing the pros and cons of different molecular approaches and delivery vectors, with a focus on their therapeutic application in cardiac inherited diseases. Additionally, we highlight the key factors that may enhance clinical translation, drawing insights from previous trials and the current prospects of cardiac gene therapy.
Collapse
Affiliation(s)
- Luca Grisorio
- Department of Internal Medicine, University of Pavia, Via Golgi 19, Pavia, 27100, Italy
| | - Rossana Bongianino
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Via Maugeri 10, Pavia, 27100, Italy
| | - Matteo Gianeselli
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Silvia Giuliana Priori
- Department of Internal Medicine, University of Pavia, Via Golgi 19, Pavia, 27100, Italy
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Via Maugeri 10, Pavia, 27100, Italy
- Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), C/ Melchor Fernandez Almagro 3, Madrid, 28029, Spain
| |
Collapse
|
5
|
Mendell JR, Muntoni F, McDonald CM, Mercuri EM, Ciafaloni E, Komaki H, Leon-Astudillo C, Nascimento A, Proud C, Schara-Schmidt U, Veerapandiyan A, Zaidman CM, Guridi M, Murphy AP, Reid C, Wandel C, Asher DR, Darton E, Mason S, Potter RA, Singh T, Zhang W, Fontoura P, Elkins JS, Rodino-Klapac LR. AAV gene therapy for Duchenne muscular dystrophy: the EMBARK phase 3 randomized trial. Nat Med 2024:10.1038/s41591-024-03304-z. [PMID: 39385046 DOI: 10.1038/s41591-024-03304-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a rare, X-linked neuromuscular disease caused by pathogenic variants in the DMD gene that result in the absence of functional dystrophin, beginning at birth and leading to progressive impaired motor function, loss of ambulation and life-threatening cardiorespiratory complications. Delandistrogene moxeparvovec, an adeno-associated rh74-viral vector-based gene therapy, addresses absent functional dystrophin in DMD. Here the phase 3 EMBARK study aimed to assess the efficacy and safety of delandistrogene moxeparvovec in patients with DMD. Ambulatory males with DMD, ≥4 years to <8 years of age, were randomized and stratified by age group and North Star Ambulatory Assessment (NSAA) score to single-administration intravenous delandistrogene moxeparvovec (1.33 × 1014 vector genomes per kilogram; n = 63) or placebo (n = 62). At week 52, the primary endpoint, change from baseline in NSAA score, was not met (least squares mean 2.57 (delandistrogene moxeparvovec) versus 1.92 (placebo) points; between-group difference, 0.65; 95% confidence interval (CI), -0.45, 1.74; P = 0.2441). Secondary efficacy endpoints included mean micro-dystrophin expression at week 12: 34.29% (treated) versus 0.00% (placebo). Other secondary efficacy endpoints at week 52 (between-group differences (95% CI)) included: Time to Rise (-0.64 (-1.06, -0.23)), 10-meter Walk/Run (-0.42 (-0.71, -0.13)), stride velocity 95th centile (0.10 (0.00, 0.19)), 100-meter Walk/Run (-3.29 (-8.28, 1.70)), time to ascend 4 steps (-0.36 (-0.71, -0.01)), PROMIS Mobility and Upper Extremity (0.05 (-0.08, 0.19); -0.04 (-0.24, 0.17)) and number of NSAA skills gained/improved (0.19 (-0.67, 1.06)). In total, 674 adverse events were recorded with delandistrogene moxeparvovec and 514 with placebo. There were no deaths, discontinuations or clinically significant complement-mediated adverse events; 7 patients (11.1%) experienced 10 treatment-related serious adverse events. Delandistrogene moxeparvovec did not lead to a significant improvement in NSAA score at week 52. Some of the secondary endpoints numerically favored treatment, although no statistical significance can be claimed. Safety was manageable and consistent with previous delandistrogene moxeparvovec trials. ClinicalTrials.gov: NCT05096221.
Collapse
Affiliation(s)
- Jerry R Mendell
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA.
- The Ohio State University, Columbus, OH, USA.
- Sarepta Therapeutics, Inc., Cambridge, MA, USA.
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health and Institute of Neurology, University College London and Great Ormond Street Hospital Trust, London, UK
| | | | - Eugenio M Mercuri
- Pediatric Neurology Institute, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Emma Ciafaloni
- University of Rochester Medical Center, Rochester, NY, USA
| | - Hirofumi Komaki
- Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | - Andrés Nascimento
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Fundacion Sant Joan de Déu, CIBERER - ISC III, Barcelona, Spain
| | - Crystal Proud
- Children's Hospital of the King's Daughters, Norfolk, VA, USA
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Center for Neuromuscular Disorders in Children and Adolescents, University Clinic Essen, University of Duisburg-Essen, Essen, Germany
| | - Aravindhan Veerapandiyan
- Department of Pediatrics, Division of Neurology, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | - Craig M Zaidman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Carol Reid
- Roche Products, Ltd., Welwyn Garden City, UK
| | | | | | | | | | | | - Teji Singh
- Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
6
|
Lemoine J, Dubois A, Dorval A, Jaber A, Warthi G, Mamchaoui K, Wang T, Corre G, Bovolenta M, Richard I. Correction of exon 2, exon 2-9 and exons 8-9 duplications in DMD patient myogenic cells by a single CRISPR/Cas9 system. Sci Rep 2024; 14:21238. [PMID: 39261505 PMCID: PMC11390959 DOI: 10.1038/s41598-024-70075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Duchenne Muscular dystrophy (DMD), a yet-incurable X-linked recessive disorder that results in muscle wasting and loss of ambulation is due to mutations in the dystrophin gene. Exonic duplications of dystrophin gene are a common type of mutations found in DMD patients. In this study, we utilized a single guide RNA CRISPR strategy targeting intronic regions to delete the extra duplicated regions in patient myogenic cells carrying duplication of exon 2, exons 2-9, and exons 8-9 in the DMD gene. Immunostaining on CRISPR-corrected derived myotubes demonstrated the rescue of dystrophin protein. Subsequent RNA sequencing of the DMD cells indicated rescue of genes of dystrophin related pathways. Examination of predicted close-match off-targets evidenced no aberrant gene editing at these loci. Here, we further demonstrate the efficiency of a single guide CRISPR strategy capable of deleting multi-exon duplications in the DMD gene without significant off target effect. Our study contributes valuable insights into the safety and efficacy of using single guide CRISPR strategy as a potential therapeutic approach for DMD patients with duplications of variable size.
Collapse
Affiliation(s)
- Juliette Lemoine
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France
| | - Auriane Dubois
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France
| | - Alan Dorval
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France
- ADLIN Science, Pépinière « Genopole Entreprises », 91058, Evry, France
| | - Abbass Jaber
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France
| | - Ganesh Warthi
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Tao Wang
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France
| | - Guillaume Corre
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France
| | - Matteo Bovolenta
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Isabelle Richard
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France.
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France.
| |
Collapse
|
7
|
Matesanz SE, Edelson JB, Iacobellis KA, Mejia E, Brandsema JF, Wittlieb-Weber CA, Okunowo O, Griffis H, Lin KY. Subspecialty Health Care Utilization in Pediatric Patients With Muscular Dystrophy in the United States. Neurol Clin Pract 2024; 14:e200312. [PMID: 38855715 PMCID: PMC11160481 DOI: 10.1212/cpj.0000000000200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/25/2024] [Indexed: 06/11/2024]
Abstract
Background and Objectives Standards of care exist to optimize outcomes in Duchenne and Becker muscular dystrophy (DBMD), caused by alterations in the DMD gene; however, there are limited data regarding health care access in these patients. This study aims to characterize outpatient subspecialty care utilization in pediatric patients with DBMD. Methods This retrospective cohort study used administrative claims data from IBM MarketScan Medicaid and Commercial Claims and Encounters Research Databases (2013-2018). Male patients 1-18 years with an ICD-9/10 diagnosis code for hereditary progressive muscular dystrophy between January 1, 2013, and December 31, 2017, were included. Participants were stratified into 3 age cohorts: 1-6 years, 7-12 years, and 13-18 years. The primary outcome was rate of annual neurology visits. Secondary outcomes included annual follow-up rates in other subspecialties and proportion of days covered (PDC) by corticosteroids. Results A total of 1,386 patients met inclusion-347 (25.0%) age 1-6 years, 502 (36.2%) age 7-12 years, and 537 (38.7%) age 13-18 years. Heart failure, respiratory failure, and technology dependence increased with age (p for all<0.05). The rate of neurology visits per person-year was 0.36 and did not differ by age. Corticosteroid use was low; 30% of person-years (1452/4829) had a PDC ≥20%. Medicaid insurance was independently associated with a lower likelihood of annual neurology follow-up (OR 0.23; 95% CI 0.18-0.28). Discussion The rate of annual neurology follow-up and corticosteroid use in patients with DBMD is low. Medicaid insurance status was independently associated with a decreased likelihood of neurology follow-up, while age was not, suggesting that factors other than disease severity influence neurology care access. Identifying barriers to regular follow-up is critical in improving outcomes for patients with DBMD.
Collapse
Affiliation(s)
- Susan E Matesanz
- Division of Neurology (SEM, JFB); Division of Cardiology (JBE, KAI, EM, CAW-W, KYL), Cardiac Center, the Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine; Leonard Davis Institute Center for Healthcare Economics (JBE); Cardiovascular Outcomes, Quality, and Evaluative Research Center (JBE), University of Pennsylvania, Philadelphia; and Data Science and Biostatistics Unit (OO, HG), Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia
| | - Jonathan B Edelson
- Division of Neurology (SEM, JFB); Division of Cardiology (JBE, KAI, EM, CAW-W, KYL), Cardiac Center, the Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine; Leonard Davis Institute Center for Healthcare Economics (JBE); Cardiovascular Outcomes, Quality, and Evaluative Research Center (JBE), University of Pennsylvania, Philadelphia; and Data Science and Biostatistics Unit (OO, HG), Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia
| | - Katherine A Iacobellis
- Division of Neurology (SEM, JFB); Division of Cardiology (JBE, KAI, EM, CAW-W, KYL), Cardiac Center, the Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine; Leonard Davis Institute Center for Healthcare Economics (JBE); Cardiovascular Outcomes, Quality, and Evaluative Research Center (JBE), University of Pennsylvania, Philadelphia; and Data Science and Biostatistics Unit (OO, HG), Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia
| | - Erika Mejia
- Division of Neurology (SEM, JFB); Division of Cardiology (JBE, KAI, EM, CAW-W, KYL), Cardiac Center, the Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine; Leonard Davis Institute Center for Healthcare Economics (JBE); Cardiovascular Outcomes, Quality, and Evaluative Research Center (JBE), University of Pennsylvania, Philadelphia; and Data Science and Biostatistics Unit (OO, HG), Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia
| | - John F Brandsema
- Division of Neurology (SEM, JFB); Division of Cardiology (JBE, KAI, EM, CAW-W, KYL), Cardiac Center, the Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine; Leonard Davis Institute Center for Healthcare Economics (JBE); Cardiovascular Outcomes, Quality, and Evaluative Research Center (JBE), University of Pennsylvania, Philadelphia; and Data Science and Biostatistics Unit (OO, HG), Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia
| | - Carol A Wittlieb-Weber
- Division of Neurology (SEM, JFB); Division of Cardiology (JBE, KAI, EM, CAW-W, KYL), Cardiac Center, the Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine; Leonard Davis Institute Center for Healthcare Economics (JBE); Cardiovascular Outcomes, Quality, and Evaluative Research Center (JBE), University of Pennsylvania, Philadelphia; and Data Science and Biostatistics Unit (OO, HG), Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia
| | - Oluwatimilehin Okunowo
- Division of Neurology (SEM, JFB); Division of Cardiology (JBE, KAI, EM, CAW-W, KYL), Cardiac Center, the Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine; Leonard Davis Institute Center for Healthcare Economics (JBE); Cardiovascular Outcomes, Quality, and Evaluative Research Center (JBE), University of Pennsylvania, Philadelphia; and Data Science and Biostatistics Unit (OO, HG), Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia
| | - Heather Griffis
- Division of Neurology (SEM, JFB); Division of Cardiology (JBE, KAI, EM, CAW-W, KYL), Cardiac Center, the Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine; Leonard Davis Institute Center for Healthcare Economics (JBE); Cardiovascular Outcomes, Quality, and Evaluative Research Center (JBE), University of Pennsylvania, Philadelphia; and Data Science and Biostatistics Unit (OO, HG), Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia
| | - Kimberly Y Lin
- Division of Neurology (SEM, JFB); Division of Cardiology (JBE, KAI, EM, CAW-W, KYL), Cardiac Center, the Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine; Leonard Davis Institute Center for Healthcare Economics (JBE); Cardiovascular Outcomes, Quality, and Evaluative Research Center (JBE), University of Pennsylvania, Philadelphia; and Data Science and Biostatistics Unit (OO, HG), Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia
| |
Collapse
|
8
|
Krishna L, Prashant A, Kumar YH, Paneyala S, Patil SJ, Ramachandra SC, Vishwanath P. Molecular and Biochemical Therapeutic Strategies for Duchenne Muscular Dystrophy. Neurol Int 2024; 16:731-760. [PMID: 39051216 PMCID: PMC11270304 DOI: 10.3390/neurolint16040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Significant progress has been achieved in understanding Duchenne muscular dystrophy (DMD) mechanisms and developing treatments to slow disease progression. This review article thoroughly assesses primary and secondary DMD therapies, focusing on innovative modalities. The primary therapy addresses the genetic abnormality causing DMD, specifically the absence or reduced expression of dystrophin. Gene replacement therapies, such as exon skipping, readthrough, and gene editing technologies, show promise in restoring dystrophin expression. Adeno-associated viruses (AAVs), a recent advancement in viral vector-based gene therapies, have shown encouraging results in preclinical and clinical studies. Secondary therapies aim to maintain muscle function and improve quality of life by mitigating DMD symptoms and complications. Glucocorticoid drugs like prednisone and deflazacort have proven effective in slowing disease progression and delaying loss of ambulation. Supportive treatments targeting calcium dysregulation, histone deacetylase, and redox imbalance are also crucial for preserving overall health and function. Additionally, the review includes a detailed table of ongoing and approved clinical trials for DMD, exploring various therapeutic approaches such as gene therapies, exon skipping drugs, utrophin modulators, anti-inflammatory agents, and novel compounds. This highlights the dynamic research field and ongoing efforts to develop effective DMD treatments.
Collapse
Affiliation(s)
- Lakshmi Krishna
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (L.K.); (A.P.); (S.C.R.)
| | - Akila Prashant
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (L.K.); (A.P.); (S.C.R.)
- Department of Medical Genetics, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Yogish H. Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Shasthara Paneyala
- Department of Neurology, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Siddaramappa J. Patil
- Department of Medical Genetics, Narayana Hrudalaya Health Hospital/Mazumdar Shah, Bengaluru 560099, Karnataka, India;
| | - Shobha Chikkavaddaragudi Ramachandra
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (L.K.); (A.P.); (S.C.R.)
| | - Prashant Vishwanath
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (L.K.); (A.P.); (S.C.R.)
| |
Collapse
|
9
|
Davies KE, Vogt J. Long-term clinical follow-up of a family with Becker muscular dystrophy associated with a large deletion in the DMD gene. Neuromuscul Disord 2024; 39:5-9. [PMID: 38653179 DOI: 10.1016/j.nmd.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Duchenne muscular dystrophy is a neuromuscular disease caused by DMD gene mutations that result in an absence of functional dystrophin protein. Patients with Duchenne experience progressive muscle weakness, are typically wheelchair dependent by their early teens, and develop respiratory and cardiac complications that lead to death in their twenties or thirties. Becker muscular dystrophy is also caused by DMD gene mutations, but symptoms are less severe and progression is slower compared with Duchenne. We describe a case study of a patient with Becker muscular dystrophy who was still ambulant at age 61 years and had a milder phenotype than Duchenne, despite 46% of his DMD gene being missing. His affected relatives had similarly mild phenotypes and clinical courses. These data guided the understanding of the criticality of various regions of dystrophin and informed the development of micro-dystrophin constructs to compensate for the absence of functional dystrophin in Duchenne.
Collapse
Affiliation(s)
- Kay E Davies
- MDUK Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford 0X1 3PT, United Kingdom.
| | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's and Children's Hospital, Birmingham B15 2TG, United Kingdom.
| |
Collapse
|
10
|
Mendell JR, Proud C, Zaidman CM, Mason S, Darton E, Wang S, Wandel C, Murphy AP, Mercuri E, Muntoni F, McDonald CM. Practical Considerations for Delandistrogene Moxeparvovec Gene Therapy in Patients With Duchenne Muscular Dystrophy. Pediatr Neurol 2024; 153:11-18. [PMID: 38306745 DOI: 10.1016/j.pediatrneurol.2024.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Delandistrogene moxeparvovec is a gene transfer therapy approved in the United States, United Arab Emirates, and Qatar for the treatment of ambulatory patients aged four through five years with a confirmed Duchenne muscular dystrophy (DMD)-causing mutation in the DMD gene. This therapy was developed to address the underlying cause of DMD through targeted skeletal, respiratory, and cardiac muscle expression of delandistrogene moxeparvovec micro-dystrophin, an engineered, functional dystrophin protein. METHODS Drawing on clinical trial experience from Study 101 (NCT03375164), Study 102 (NCT03769116), and ENDEAVOR (Study 103; NCT04626674), we outline practical considerations for delandistrogene moxeparvovec treatment. RESULTS Before infusion, the following are recommended: (1) screen for anti-adeno-associated virus rhesus isolate serotype 74 total binding antibody titers <1:400; (2) assess liver function, platelet count, and troponin-I; (3) ensure patients are up to date with vaccinations and avoid vaccine coadministration with infusion; (4) administer additional corticosteroids starting one day preinfusion (for patients already on corticosteroids); and (5) postpone dosing patients with any infection or acute liver disease until event resolution. Postinfusion, the following are recommended: (1) monitor liver function weekly (three months postinfusion) and, if indicated, continue until results are unremarkable; (2) monitor troponin-I levels weekly (first month postinfusion, continuing if indicated); (3) obtain platelet counts weekly (two weeks postinfusion), continuing if indicated; and (4) maintain the corticosteroid regimen for at least 60 days postinfusion, unless earlier tapering is indicated. CONCLUSIONS Although the clinical safety profile of delandistrogene moxeparvovec has been consistent, monitorable, and manageable, these practical considerations may mitigate potential risks in a real-world clinical practice setting.
Collapse
Affiliation(s)
- Jerry R Mendell
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio; The Ohio State University, Columbus, Ohio.
| | - Crystal Proud
- Children's Hospital of the King's Daughters, Norfolk, Virginia
| | - Craig M Zaidman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Eddie Darton
- Sarepta Therapeutics, Inc, Cambridge, Massachusetts
| | - Shufang Wang
- Sarepta Therapeutics, Inc, Cambridge, Massachusetts
| | | | | | - Eugenio Mercuri
- Pediatric Neurology Institute, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, University College London, Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, United Kingdom; National Institute of Health Research, Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Craig M McDonald
- Department of Physical Medicine & Rehabilitation, UC Davis Health, Sacramento, California
| |
Collapse
|
11
|
Potter RA, Peterson EL, Griffin D, Cooper Olson G, Lewis S, Cochran K, Mendell JR, Rodino-Klapac LR. Use of plasmapheresis to lower anti-AAV antibodies in nonhuman primates with pre-existing immunity to AAVrh74. Mol Ther Methods Clin Dev 2024; 32:101195. [PMID: 38327805 PMCID: PMC10847772 DOI: 10.1016/j.omtm.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Patients with pre-existing immunity to adeno-associated virus (AAV) are currently unable to receive systemic gene transfer therapies. In this nonhuman primate study, we investigated the impact of immunosuppression strategies on gene transfer therapy safety and efficacy and analyzed plasmapheresis as a potential pretreatment for circumvention of pre-existing immunity or redosing. In part 1, animals received delandistrogene moxeparvovec (SRP-9001), an AAVrh74-based gene transfer therapy for Duchenne muscular dystrophy. Cohort 1 (control, n = 2) received no immunosuppression; cohorts 2-4 (n = 3 per cohort) received prednisone at different time points; and cohort 5 (n = 3) received rituximab, sirolimus, and prednisone before and after dosing. In part 2, cohorts 2-4 underwent plasmapheresis before redosing; cohort 5 was redosed without plasmapheresis. We analyzed safety, immune response (humoral and cell-mediated responses and complement activation), and vector genome distribution. After 2 or 3 plasmapheresis exchanges, circulating anti-AAVrh74 antibodies were reduced, and animals were redosed. Plasmapheresis was well tolerated, with no abnormal clinical or immunological observations. Cohort 5 (redosed with high anti-AAVrh74 antibody titers) had hypersensitivity reactions, which were controlled with treatment. These findings suggest that plasmapheresis is a safe and effective method to reduce anti-AAV antibody levels in nonhuman primates prior to gene transfer therapy. The results may inform human studies involving redosing or circumvention of pre-existing immunity.
Collapse
Affiliation(s)
| | | | | | | | - Sarah Lewis
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
| | - Kyle Cochran
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
| | - Jerry R. Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Louise R. Rodino-Klapac
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Eweje F, Walsh ML, Ahmad K, Ibrahim V, Alrefai A, Chen J, Chaikof EL. Protein-based nanoparticles for therapeutic nucleic acid delivery. Biomaterials 2024; 305:122464. [PMID: 38181574 PMCID: PMC10872380 DOI: 10.1016/j.biomaterials.2023.122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/25/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
To realize the full potential of emerging nucleic acid therapies, there is a need for effective delivery agents to transport cargo to cells of interest. Protein materials exhibit several unique properties, including biodegradability, biocompatibility, ease of functionalization via recombinant and chemical modifications, among other features, which establish a promising basis for therapeutic nucleic acid delivery systems. In this review, we highlight progress made in the use of non-viral protein-based nanoparticles for nucleic acid delivery in vitro and in vivo, while elaborating on key physicochemical properties that have enabled the use of these materials for nanoparticle formulation and drug delivery. To conclude, we comment on the prospects and unresolved challenges associated with the translation of protein-based nucleic acid delivery systems for therapeutic applications.
Collapse
Affiliation(s)
- Feyisayo Eweje
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Michelle L Walsh
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115
| | - Kiran Ahmad
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Vanessa Ibrahim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Assma Alrefai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Amdani S, Auerbach SR, Bansal N, Chen S, Conway J, Silva JPDA, Deshpande SR, Hoover J, Lin KY, Miyamoto SD, Puri K, Price J, Spinner J, White R, Rossano JW, Bearl DW, Cousino MK, Catlin P, Hidalgo NC, Godown J, Kantor P, Masarone D, Peng DM, Rea KE, Schumacher K, Shaddy R, Shea E, Tapia HV, Valikodath N, Zafar F, Hsu D. Research Gaps in Pediatric Heart Failure: Defining the Gaps and Then Closing Them Over the Next Decade. J Card Fail 2024; 30:64-77. [PMID: 38065308 DOI: 10.1016/j.cardfail.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 01/13/2024]
Abstract
Given the numerous opportunities and the wide knowledge gaps in pediatric heart failure, an international group of pediatric heart failure experts with diverse backgrounds were invited and tasked with identifying research gaps in each pediatric heart failure domain that scientists and funding agencies need to focus on over the next decade.
Collapse
Affiliation(s)
- Shahnawaz Amdani
- Department of Pediatric Cardiology, Cleveland Clinic Children's, Cleveland, Ohio.
| | - Scott R Auerbach
- Division of Pediatric Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Neha Bansal
- Division of Pediatric Cardiology, Mount Sinai Kravis Children's Hospital, Icahn School of Medicine, New York, New York
| | - Sharon Chen
- Division of Pediatric Cardiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, California
| | - Jennifer Conway
- Division of Pediatric Cardiology, Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Julie Pires DA Silva
- Division of Pediatric Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Jessica Hoover
- Department of Pediatric Cardiology, Cleveland Clinic Children's, Cleveland, Ohio
| | - Kimberly Y Lin
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Shelley D Miyamoto
- Division of Pediatric Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kriti Puri
- Department of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Jack Price
- Department of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Joseph Spinner
- Department of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Rachel White
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joseph W Rossano
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David W Bearl
- Department of Pediatric Cardiology, Monroe Carell Jr. Children's Hospital, Nashville, Tennessee
| | - Melissa K Cousino
- Department of Pediatrics, University of Michigan, C. S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Perry Catlin
- Department of Psychology, Marquette University, Milwaukee, Wisconsin
| | - Nicolas Corral Hidalgo
- Division of Pediatric Cardiology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Justin Godown
- Department of Pediatric Cardiology, Monroe Carell Jr. Children's Hospital, Nashville, Tennessee
| | - Paul Kantor
- Children's Hospital Los Angeles and the Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Daniele Masarone
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital Naples, Naples, Italy
| | - David M Peng
- Department of Pediatrics, University of Michigan, C. S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Kelly E Rea
- Department of Pediatrics, University of Michigan, C. S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Kurt Schumacher
- Department of Pediatrics, University of Michigan, C. S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Robert Shaddy
- Children's Hospital Los Angeles and the Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Erin Shea
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital Naples, Naples, Italy
| | - Henry Valora Tapia
- Division of Pediatric Cardiology, University of Utah. Salt Lake City, Utah
| | - Nishma Valikodath
- Department of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Farhan Zafar
- The Heart Institute, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Daphne Hsu
- Division of Pediatric Cardiology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
14
|
Mendell JR, Pozsgai ER, Lewis S, Griffin DA, Lowes LP, Alfano LN, Lehman KJ, Church K, Reash NF, Iammarino MA, Sabo B, Potter R, Neuhaus S, Li X, Stevenson H, Rodino-Klapac LR. Gene therapy with bidridistrogene xeboparvovec for limb-girdle muscular dystrophy type 2E/R4: phase 1/2 trial results. Nat Med 2024; 30:199-206. [PMID: 38177855 PMCID: PMC10803256 DOI: 10.1038/s41591-023-02730-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/20/2023] [Indexed: 01/06/2024]
Abstract
Limb-girdle muscular dystrophy 2E/R4 is caused by mutations in the β-sarcoglycan (SGCB) gene, leading to SGCB deficiency and consequent muscle loss. We developed a gene therapy approach based on functional replacement of the deficient SCB protein. Here we report interim results from a first-in-human, open-label, nonrandomized, phase 1/2 trial evaluating the safety and efficacy of bidridistrogene xeboparvovec, an adeno-associated virus-based gene therapy containing a codon-optimized, full-length human SGCB transgene. Patients aged 4-15 years with confirmed SGCB mutations at both alleles received one intravenous infusion of either 1.85 × 1013 vector genome copies kg-1 (Cohort 1, n = 3) or 7.41 × 1013 vector gene copies kg-1 (Cohort 2, n = 3). Primary endpoint was safety, and secondary endpoint was change in SGCB expression in skeletal muscle from baseline to Day 60. We report interim Year 2 results (trial ongoing). The most frequent treatment-related adverse events were vomiting (four of six patients) and gamma-glutamyl transferase increase (three of six patients). Serious adverse events resolved with standard therapies. Robust SGCB expression was observed: Day 60 mean (s.d.) percentage of normal expression 36.2% (2.7%) in Cohort 1 and 62.1% (8.7%) in Cohort 2. Post hoc exploratory analysis showed preliminary motor improvements using the North Star Assessment for Limb-girdle Type Muscular Dystrophies maintained through Year 2. The 2-year safety and efficacy of bidridistrogene xeboparvovec support clinical development advancement. Further studies are necessary to confirm the long-term safety and efficacy of this gene therapy. ClinicalTrials.gov registration: NCT03652259 .
Collapse
Affiliation(s)
- Jerry R Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | | | - Sarah Lewis
- Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | | | - Linda P Lowes
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Lindsay N Alfano
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Kelly J Lehman
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kathleen Church
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Natalie F Reash
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Megan A Iammarino
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Brenna Sabo
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | - Xiaoxi Li
- Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
15
|
Chan C, Harris KK, Zolotukhin S, Keeler GD. Rational Design of AAV-rh74, AAV3B, and AAV8 with Limited Liver Targeting. Viruses 2023; 15:2168. [PMID: 38005848 PMCID: PMC10675213 DOI: 10.3390/v15112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) have become one of the leading gene therapies for treating a variety of diseases. One factor contributing to rAAVs' success is the fact that a wide variety of tissue types can be transduced by different serotypes. However, one commonality amongst most serotypes is the high propensity for liver transduction when rAAVs are administered peripherally. One of the few exceptions is the naturally occurring clade F AAV hematopoietic stem cell 16 (AAVHSC16). AAVHSC16 represents an interesting capsid in that it shows minimal liver transduction when injected peripherally. For capsids other than AAVHSC16, targeting non-liver tissues via peripheral AAV injection represents a challenge due to the high liver transduction. Thus, there is a demand for liver-de-targeted rAAV vectors. The rational design of rAAV capsids relies on current knowledge to design improved capsids and represents one means of developing capsids with reduced liver transduction. Here, we utilized data from the AAVHSC16 capsid to rationally design four non-clade F rAAV capsids that result in reduced liver transduction following peripheral injection.
Collapse
Affiliation(s)
| | | | - Sergei Zolotukhin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Geoffrey D. Keeler
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
16
|
Asher D, Dai D, Klimchak AC, Sedita LE, Gooch KL, Rodino-Klapac L. Paving the way for future gene therapies: A case study of scientific spillover from delandistrogene moxeparvovec. Mol Ther Methods Clin Dev 2023; 30:474-483. [PMID: 37674905 PMCID: PMC10477757 DOI: 10.1016/j.omtm.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Gene therapies have potential to improve outcomes of severe diseases after only a single administration. Novel therapies are continually being developed using knowledge gained from prior successes, a concept known as scientific spillover. Gene therapy advancement requires extensive development at each stage: preclinical work to create and evaluate vehicles for delivery of the therapy, design of clinical development programs, and establishment of a large-scale manufacturing process. Pioneering gene therapies are generating spillover as investigators confront myriad issues specific to this treatment modality. These include frameworks for construct engineering, dose evaluation, patient selection, outcome assessment, and safety monitoring. Consequently, the benefits of these therapies extend beyond offering knowledge for treating any one disease to establishing new platforms and paradigms that will accelerate advancement of future gene therapies. This impact is even more profound in rare diseases, where developing therapies in isolation may not be possible. This review describes some instances of scientific spillover in healthcare, and specifically gene therapy, using delandistrogene moxeparvovec (SRP-9001), a gene therapy recently approved by the US Food and Drug Administration for the treatment of ambulatory pediatric patients aged 4-5 years with Duchenne muscular dystrophy with a confirmed mutation in the DMD gene, as a case study.
Collapse
Affiliation(s)
- Damon Asher
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA 02142, USA
| | - Daisy Dai
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA 02142, USA
| | - Alexa C. Klimchak
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA 02142, USA
| | - Lauren E. Sedita
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
17
|
Abstract
Delandistrogene moxeparvovec (delandistrogene moxeparvovec-rokl; ELEVIDYS®) is an adeno-associated virus (AAV) vector-based gene therapy designed to deliver a gene encoding a micro-dystrophin protein [i.e. a shortened (138 kDa) version of the dystrophin protein expressed in normal muscle cells (427 kDa)] to all muscles involved in the pathology of Duchenne muscular dystrophy (DMD). Developed by Sarepta Therapeutics, it is the first gene therapy to be approved (in June 2023 under the Accelerated Approval pathway) for the treatment of DMD in the USA, where it is indicated for ambulatory paediatric patients aged 4 through 5 years with DMD and a confirmed mutation in the dystrophin (DMD) gene. The recommended dose of delandistrogene moxeparvovec is 1.33 × 1014 vector genomes per kg of body weight or 10 mL/kg body weight, administered as a single intravenous infusion. Delandistrogene moxeparvovec is undergoing clinical development in several countries/regions, including the EU and Japan. This article summarizes the milestones in the development of delandistrogene moxeparvovec leading to this first approval in the USA for the treatment of ambulatory paediatric patients aged 4 through 5 years with DMD and a confirmed mutation in the DMD gene.
Collapse
Affiliation(s)
- Sheridan M Hoy
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
18
|
Li JQ, Wang HJ. [Research advances in pharmacotherapy for rare diseases in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:759-766. [PMID: 37529960 PMCID: PMC10414178 DOI: 10.7499/j.issn.1008-8830.2302048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/15/2023] [Indexed: 08/03/2023]
Abstract
There are more than 7 000 rare diseases and approximately 475 million individuals with rare diseases globally, with children accounting for two-thirds of this population. Due to a relatively small patient population and limited financial resources allocated for drug research and development in pharmaceutical enterprises, there are still no drugs approved for the treatment of several thousands of these rare diseases. At present, there are no drugs for 95% of the patients with rare diseases, and consequently, the therapeutic drugs for rare diseases have been designated as orphan drugs. In order to guide pharmaceutical enterprises to strengthen the research and development of orphan drugs, various nations have enacted the acts for rare disease drugs, promoted and simplified the patent application process for orphan drugs, and provided scientific recommendations and guidance for the research and development of orphan drugs. Since there is a relatively high incidence rate of rare diseases in children, this article reviews the latest research on pharmacotherapy for children with rare diseases.
Collapse
Affiliation(s)
- Jia-Qi Li
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Hui-Jun Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
19
|
Zengel J, Wang YX, Seo JW, Ning K, Hamilton JN, Wu B, Raie M, Holbrook C, Su S, Clements DR, Pillay S, Puschnik AS, Winslow MM, Idoyaga J, Nagamine CM, Sun Y, Mahajan VB, Ferrara KW, Blau HM, Carette JE. Hardwiring tissue-specific AAV transduction in mice through engineered receptor expression. Nat Methods 2023; 20:1070-1081. [PMID: 37291262 PMCID: PMC10333121 DOI: 10.1038/s41592-023-01896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
The development of transgenic mouse models that express genes of interest in specific cell types has transformed our understanding of basic biology and disease. However, generating these models is time- and resource-intensive. Here we describe a model system, SELective Expression and Controlled Transduction In Vivo (SELECTIV), that enables efficient and specific expression of transgenes by coupling adeno-associated virus (AAV) vectors with Cre-inducible overexpression of the multi-serotype AAV receptor, AAVR. We demonstrate that transgenic AAVR overexpression greatly increases the efficiency of transduction of many diverse cell types, including muscle stem cells, which are normally refractory to AAV transduction. Superior specificity is achieved by combining Cre-mediated AAVR overexpression with whole-body knockout of endogenous Aavr, which is demonstrated in heart cardiomyocytes, liver hepatocytes and cholinergic neurons. The enhanced efficacy and exquisite specificity of SELECTIV has broad utility in development of new mouse model systems and expands the use of AAV for gene delivery in vivo.
Collapse
Affiliation(s)
- James Zengel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu Xin Wang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Center for Genetic Disorders and Aging, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jai Woong Seo
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - James N Hamilton
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bo Wu
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marina Raie
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Colin Holbrook
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shiqi Su
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Derek R Clements
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Sirika Pillay
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andreas S Puschnik
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Claude M Nagamine
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| | - Vinit B Mahajan
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| | - Katherine W Ferrara
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
20
|
Klimchak AC, Sedita LE, Rodino-Klapac LR, Mendell JR, McDonald CM, Gooch KL, Malone DC. Assessing the value of delandistrogene moxeparvovec (SRP-9001) gene therapy in patients with Duchenne muscular dystrophy in the United States. JOURNAL OF MARKET ACCESS & HEALTH POLICY 2023; 11:2216518. [PMID: 37261034 PMCID: PMC10228300 DOI: 10.1080/20016689.2023.2216518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Background: Delandistrogene moxeparvovec (SRP-9001) is an investigational gene therapy that may delay progression of Duchenne muscular dystrophy (DMD), a severe, rare neuromuscular disease caused by DMD gene mutations. Early cost-effectiveness analyses are important to help contextualize the value of gene therapies for reimbursement decision making. Objective: To determine the potential value of delandistrogene moxeparvovec using a cost-effectiveness analysis. Study design: A simulation calculated lifetime costs and equal value of life years gained (evLYG). Inputs included extrapolated clinical trial results and published utilities/costs. As a market price for delandistrogene moxeparvovec has not been established, threshold analyses established maximum treatment costs as they align with value, including varying willingness-to-pay up to $500,000, accounting for severity/rarity. Setting: USA, healthcare system perspective Patients: Boys with DMD Intervention: Delandistrogene moxeparvovec plus standard of care (SoC; corticosteroids) versus SoC alone Main outcome measure: Maximum treatment costs at a given willingness-to-pay threshold Results: Delandistrogene moxeparvovec added 10.30 discounted (26.40 undiscounted) evLYs. The maximum treatment cost was approximately $5 M, assuming $500,000/evLYG. Varying the benefit discount rate to account for the single administration increased the estimated value to #$5M, assuming $500,000/evLYG. Conclusion: In this early economic model, delandistrogene moxeparvovec increases evLYs versus SoC and begins to inform its potential value from a healthcare perspective.
Collapse
Affiliation(s)
- Alexa C. Klimchak
- Global HEOR, RWE & Analytics, Sarepta Therapeutics, Inc, Cambridge, MA, USA
| | - Lauren E. Sedita
- Global HEOR, RWE & Analytics, Sarepta Therapeutics, Inc, Cambridge, MA, USA
| | | | - Jerry R. Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH, USA
| | - Craig M. McDonald
- Department of Pediatrics, University of California Davis School of Medicine, Davis, CA, USA
| | | | - Daniel C. Malone
- College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
21
|
Chemello F, Olson EN, Bassel-Duby R. CRISPR-Editing Therapy for Duchenne Muscular Dystrophy. Hum Gene Ther 2023; 34:379-387. [PMID: 37060194 PMCID: PMC10210224 DOI: 10.1089/hum.2023.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/13/2023] [Indexed: 04/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a debilitating genetic disorder that results in progressive muscle degeneration and premature death. DMD is caused by mutations in the gene encoding dystrophin protein, a membrane-associated protein required for maintenance of muscle structure and function. Although the genetic mutations causing the disease are well known, no curative therapies have been developed to date. The advent of genome-editing technologies provides new opportunities to correct the underlying mutations responsible for DMD. These mutations have been successfully corrected in human cells, mice, and large animal models through different strategies based on CRISPR-Cas9 gene editing. Ideally, CRISPR-editing could offer a one-time treatment for DMD by correcting the genetic mutations and enabling normal expression of the repaired gene. However, numerous challenges remain to be addressed, including optimization of gene editing, delivery of gene-editing components to all the muscles of the body, and the suppression of possible immune responses to the CRISPR-editing therapy. This review provides an overview of the recent advances toward CRISPR-editing therapy for DMD and discusses the opportunities and the remaining challenges in the path to clinical translation.
Collapse
Affiliation(s)
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
22
|
Anthony K, Ala P, Catapano F, Meng J, Domingos J, Perry M, Ricotti V, Maresh K, Phillips LC, Servais L, Seferian AM, De Lucia S, de Groot I, Krom YD, Verschuuren JGM, Niks EH, Straub V, Guglieri M, Voit T, Morgan J, Muntoni F. T Cell Responses to Dystrophin in a Natural History Study of Duchenne Muscular Dystrophy. Hum Gene Ther 2023; 34:439-448. [PMID: 36453228 DOI: 10.1089/hum.2022.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin, but many patients have rare revertant fibers that express dystrophin. The skeletal muscle pathology of DMD patients includes immune cell infiltration and inflammatory cascades. There are several strategies to restore dystrophin in skeletal muscles of patients, including exon skipping and gene therapy. There is some evidence that dystrophin restoration leads to a reduction in immune cells, but dystrophin epitopes expressed in revertant fibers or following genome editing, cell therapy, or microdystrophin delivery after adeno-associated viral gene therapy may elicit T cell production in patients. This may affect the efficacy of the therapeutic intervention, and potentially lead to serious adverse events. To confirm and extend previous studies, we performed annual enzyme- linked immunospot interferon-gamma assays on peripheral blood mononuclear cells from 77 pediatric boys with DMD recruited into a natural history study, 69 of whom (89.6%) were treated with corticosteroids. T cell responses to dystrophin were quantified using a total of 368 peptides spanning the entire dystrophin protein, organized into nine peptide pools. Peptide mapping pools were used to further localize the immune response in one positive patient. Six (7.8%) patients had a T cell-mediated immune response to dystrophin at at least one time point. All patients who had a positive result had been treated with corticosteroids, either prednisolone or prednisone. Our results show that ∼8% of DMD individuals in our cohort have a pre-existing T cell-mediated immune response to dystrophin, despite steroid treatment. Although these responses are relatively low level, this information should be considered a useful immunological baseline before undertaking clinical trials and future DMD studies. We further highlight the importance for a robust, reproducible standard operating procedure for collecting, storing, and shipping samples from multiple centers to minimize the number of inconclusive data.
Collapse
Affiliation(s)
- Karen Anthony
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
| | - Pierpaolo Ala
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Francesco Catapano
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Jinhong Meng
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Joana Domingos
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Mark Perry
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Valeria Ricotti
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Kate Maresh
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Lauren C Phillips
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Laurent Servais
- Institut de Myologie, Groupe hospitalier La Pitié Salpétrière, Paris, France
- MDUK Oxford Neuromuscular Center, University of Oxford, Oxford, United Kingdom
- Division of Paediatrics, Neuromuscular Center, University Hospital and University of Liège, Liège, Belgium
| | | | | | | | - Yvonne D Krom
- Leiden University Medical Centre, Leiden, Netherlands
| | | | - Erik H Niks
- Leiden University Medical Centre, Leiden, Netherlands
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Thomas Voit
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Jennifer Morgan
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| |
Collapse
|
23
|
Welling DB. Targeted Therapies in the Treatment of Vestibular Schwannomas: Current State and New Horizons. Otolaryngol Clin North Am 2023; 56:543-556. [PMID: 37024334 DOI: 10.1016/j.otc.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Vestibular schwannomas continue to cause hearing loss, facial nerve paralysis, imbalance, and tinnitus. These symptoms are compounded by germline neurofibromatosis type 2 (NF2) gene loss and multiple intracranial and spinal cord tumors associated with NF2-related schwannomatosis. The current treatments of observation, microsurgical resection, or stereotactic radiation may prevent catastrophic brainstem compression but are all associated with the loss of cranial nerve function, particularly hearing loss. Novel targeted treatment options to stop tumor progression include small molecule inhibitors, immunotherapy, anti-inflammatory drugs, radio-sensitizing and sclerosing agents, and gene therapy.
Collapse
Affiliation(s)
- D Bradley Welling
- Harvard Department of Otolaryngology Head & Neck Surgery, 243 Charles Street, Boston, MA, USA; Massachusetts Eye and Ear Infirmary and Massachusetts General Hospital.
| |
Collapse
|
24
|
Aartsma-Rus A, De Waele L, Houwen-Opstal S, Kirschner J, Krom YD, Mercuri E, Niks EH, Straub V, van Duyvenvoorde HA, Vroom E. The Dilemma of Choice for Duchenne Patients Eligible for Exon 51 Skipping The European Experience. J Neuromuscul Dis 2023; 10:315-325. [PMID: 36911945 DOI: 10.3233/jnd-221648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Antisense oligonucleotide (ASO) mediated exon skipping aims to reframe dystrophin transcripts for patients with Duchenne muscular dystrophy (DMD). Currently 4 ASOs have been approved by the Food and Drug Administration targeting exon 45, 51 and 53 based on low level dystrophin restoration. Additional studies to confirm functional effects are ongoing. Furthermore, efforts are ongoing to increase muscle specific delivery of ASOs. Consequently, there are 5 clinical trials ongoing or planned for exon 51 skipping ASOs in Europe. While exon 51 skipping applies to the largest group of patients, DMD expert centers do not have sufficient numbers of patients or capacity to run all these trials in parallel. Even at a national level numbers may be too scarce. At the same time, some families now face the choice between participation in different clinical trials of exon 51 skipping, sometimes in addition to the choice of participating in a micro-dystrophin gene therapy trial. In this opinion paper, we outline the challenges, compare the different exon 51 skipping trials, and outline how different European centers and countries try to cope with running multiple trials in parallel for a small group of eligible patients.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Leiden University Medical Center, Leiden, the Netherlands.,Duchenne Center Netherlands, the Netherlands
| | - Liesbeth De Waele
- Department of Paediatrics, University Hospitals Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Saskia Houwen-Opstal
- Duchenne Center Netherlands, the Netherlands.,Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Yvonne D Krom
- Leiden University Medical Center, Leiden, the Netherlands.,Duchenne Center Netherlands, the Netherlands
| | - Eugenio Mercuri
- Department of Pediatric Neurology, Catholic University, Rome, Italy.,Centro Clinico Nemo, Fondazione Policlinico Agostino Gemelli IRCCS, Rome Italy
| | - Erik H Niks
- Leiden University Medical Center, Leiden, the Netherlands.,Duchenne Center Netherlands, the Netherlands
| | - Volker Straub
- John Walton Muscular Dystrophy Research Center, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Elizabeth Vroom
- Duchenne Center Netherlands, the Netherlands.,Duchenne Parent Project
| |
Collapse
|
25
|
Ertl HCJ. Mitigating Serious Adverse Events in Gene Therapy with AAV Vectors: Vector Dose and Immunosuppression. Drugs 2023; 83:287-298. [PMID: 36715794 DOI: 10.1007/s40265-023-01836-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/31/2023]
Abstract
Gene transfer with high doses of adeno-associated viral (AAV) vectors has resulted in serious adverse events and even death of the recipients. Toxicity could most likely be circumvented by repeated injections of lower and less toxic doses of vectors. This has not been pursued as AAV vectors induce potent neutralizing antibodies, which prevent cell transduction upon reinjection of the same vector. This review discusses different types of immune responses against AAV vectors and how they offer targets for the elimination or inhibition of vector-specific neutralizing antibodies. Such antibodies can be circumvented by using different virus serotypes for sequential injections, they can be removed by plasmapheresis, or they can be destroyed by enzymatic degradation. Antibody producing cells can be eliminated by proteasome inhibitors. Drugs that inhibit T-cell responses, B-cell signaling, or presentation of the vector's antigens to B cells can prevent or reduce induction of AAV-specific antibodies. Combinations of different approaches and drugs are likely needed to suppress or eliminate neutralizing antibodies, which would then allow for repeated dosing. Alternatively, novel AAV vectors with higher transduction efficacy are being developed and may allow for a dose reduction, although it remains unknown if this will completely address the problem of high-dose adverse events.
Collapse
|
26
|
Goedeker NL, Dharia SD, Griffin DA, Coy J, Truesdale T, Parikh R, Whitehouse K, Santra S, Asher DR, Zaidman CM. Evaluation of rAAVrh74 gene therapy vector seroprevalence by measurement of total binding antibodies in patients with Duchenne muscular dystrophy. Ther Adv Neurol Disord 2023; 16:17562864221149781. [PMID: 36710722 PMCID: PMC9880577 DOI: 10.1177/17562864221149781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/20/2022] [Indexed: 01/25/2023] Open
Abstract
Background Adeno-associated virus (AAV) vectors are a promising platform for in vivo transfer of transgenes designed to treat diseases. Pre-existing humoral immunity to these vectors can potentially impact the safety and efficacy of gene therapies. Consequently, individuals with pre-existing antibodies to the specific AAV serotypes used may be excluded from clinical trials and treatments. Recombinant AAV serotype rh74 (rAAVrh74), a vector originally isolated from rhesus monkeys and potentially less immunogenic than other serotypes isolated from humans (e.g. AAV2, AAV5, and AAV9), efficiently transduces muscle and is being investigated for use in gene therapy for Duchenne muscular dystrophy (DMD). Objective To evaluate prevalence of total binding antibodies (neutralizing and non-neutralizing) against rAAVrh74 in patients with DMD. Methods Eligible individuals (N = 107) were ⩾ 4 to < 18 years old with genetically confirmed DMD and were excluded from the study if they lived with a person who had known exposure to rAAVrh74 or other gene transfer therapy, or if they received prior treatment with gene transfer therapy. A single blood sample was obtained from each participant, and anti-rAAVrh74 total binding antibodies were measured by enzyme-linked immunosorbent assay. Total binding antibody level < 1:400 was defined as not elevated or seronegative. Primary endpoint was the percentage of subjects with elevated total antibody titers to rAAVrh74. Results A large preponderance (86.1%) of patients with DMD in this data set was seronegative for anti-rAAVrh74 total binding antibodies. These patients would potentially meet the antibody status eligibility criterion for entry into rAAVrh74-based gene therapy clinical trials. Conclusion Measuring total binding antibodies is a more comprehensive approach to assess pre-existing immune response versus measuring neutralizing antibodies alone. The low seroprevalence of total binding antibodies against rAAVrh74 shown here supports the broad applicability of rAAVrh74-based gene transfer therapy for patients with DMD and potentially other neuromuscular diseases.
Collapse
|
27
|
Kiriaev L, Baumann CW, Lindsay A. Eccentric contraction-induced strength loss in dystrophin-deficient muscle: Preparations, protocols, and mechanisms. J Gen Physiol 2023; 155:213810. [PMID: 36651896 PMCID: PMC9856740 DOI: 10.1085/jgp.202213208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
The absence of dystrophin hypersensitizes skeletal muscle of lower and higher vertebrates to eccentric contraction (ECC)-induced strength loss. Loss of strength can be accompanied by transient and reversible alterations to sarcolemmal excitability and disruption, triad dysfunction, and aberrations in calcium kinetics and reactive oxygen species production. The degree of ECC-induced strength loss, however, appears dependent on several extrinsic and intrinsic factors such as vertebrate model, skeletal muscle preparation (in vivo, in situ, or ex vivo), skeletal muscle hierarchy (single fiber versus whole muscle and permeabilized versus intact), strength production, fiber branching, age, and genetic background, among others. Consistent findings across research groups show that dystrophin-deficient fast(er)-twitch muscle is hypersensitive to ECCs relative to wildtype muscle, but because preparations are highly variable and sensitivity to ECCs are used repeatedly to determine efficacy of many preclinical treatments, it is critical to evaluate the impact of skeletal muscle preparations on sensitivity to ECC-induced strength loss in dystrophin-deficient skeletal muscle. Here, we review and discuss variations in skeletal muscle preparations to evaluate the factors responsible for variations and discrepancies between research groups. We further highlight that dystrophin-deficiency, or loss of the dystrophin-glycoprotein complex in skeletal muscle, is not a prerequisite for accelerated strength loss-induced by ECCs.
Collapse
Affiliation(s)
- Leonit Kiriaev
- Muscle Research Group, Murdoch Children’s Research Institute, Parkville, Victoria, Australia,School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Cory W. Baumann
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, USA,Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia,Correspondence to Angus Lindsay:
| |
Collapse
|
28
|
Guhathakurta P, Carter AL, Thompson AR, Kurila D, LaFrence J, Zhang L, Trask JR, Vanderheyden B, Muretta JM, Ervasti JM, Thomas DD. Enhancing interaction of actin and actin-binding domain 1 of dystrophin with modulators: Toward improved gene therapy for Duchenne muscular dystrophy. J Biol Chem 2022; 298:102675. [PMID: 36372234 PMCID: PMC9731851 DOI: 10.1016/j.jbc.2022.102675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy is a lethal muscle disease, caused by mutations in the gene encoding dystrophin, an actin-binding cytoskeletal protein. Absence of functional dystrophin results in muscle weakness and degeneration, eventually leading to cardiac and respiratory failure. Strategies to replace the missing dystrophin via gene therapy have been intensively pursued. However, the dystrophin gene is too large for current gene therapy approaches. Currently available micro-dystrophin constructs lack the actin-binding domain 2 and show decreased actin-binding affinity in vitro compared to full-length dystrophin. Thus, increasing the actin-binding affinity of micro-dystrophin, using small molecules, could be a beneficial therapeutic approach. Here, we have developed and validated a novel high-throughput screening (HTS) assay to discover small molecules that increase the binding affinity of dystrophin's actin-binding domain 1 (ABD1). We engineered a novel FRET biosensor, consisting of the mClover3, fluorescent protein (donor) attached to the C-terminus of dystrophin ABD1, and Alexa Fluor 568 (acceptor) attached to the C-terminal cysteine of actin. We used this biosensor in small-molecule screening, using a unique high-precision, HTS fluorescence lifetime assay, identifying several compounds from an FDA-approved library that significantly increase the binding between actin and ABD1. This HTS assay establishes feasibility for the discovery of small-molecule modulators of the actin-dystrophin interaction, with the ultimate goal of developing therapies for muscular dystrophy.
Collapse
|
29
|
Kracht KD, Eichorn NL, Berlau DJ. Perspectives on the advances in the pharmacotherapeutic management of Duchenne muscular dystrophy. Expert Opin Pharmacother 2022; 23:1701-1710. [PMID: 36168943 DOI: 10.1080/14656566.2022.2130246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Duchenne muscular dystrophy (DMD) is a progressive genetic disease characterized by muscular weakness with a global prevalence of 7.1 cases per 100,000 males. DMD is caused by mutations of the dystrophin gene on the X chromosome which is responsible for dystrophin protein production. Dystrophin is a cytoskeletal protein that contributes to structural support in muscle cells. DMD mutations result in dystrophin protein deficiency which leads to muscle damage and the associated clinical presentation. AREAS COVERED : Corticosteroids such as prednisone and deflazacort are routinely given to patients to treat inflammation, but their use is limited by the occurrence of side effects and a lack of standardized prescribing. Exon-skipping medications are emerging as treatment options for a small portion of DMD patients even though efficacy is uncertain. Many new therapeutics are under development that target inflammation, fibrosis, and dystrophin replacement. EXPERT OPINION : Because of side effects associated with corticosteroid use, there is need for better alternatives to the standard of care. Excessive cost is a barrier to patients receiving medications that have yet to have established efficacy. Additional therapies have the potential to help patients with DMD, although most are several years away from approval for patient use.
Collapse
|
30
|
Belova L, Lavrov A, Smirnikhina S. Organoid transduction using recombinant adeno-associated viral vectors: Challenges and opportunities. Bioessays 2022; 44:e2200055. [PMID: 35832008 DOI: 10.1002/bies.202200055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/16/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022]
Abstract
Cellular 3D structures, for example, organoids, are an excellent model for studying and developing treatments for various diseases, including hereditary ones. Therefore, they are increasingly being used in biomedical research. From the point of view of safety and efficacy, recombinant adeno-associated viral (rAAV) vectors are currently most in demand for the delivery of various transgenes for gene replacement therapy or other applications. The delivery of transgenes using rAAV vectors to various types of organoids is an urgent task, however, it is associated with a number of problems that are discussed in this review. Cellular heterogeneity and specifics of cultivation of 3D structures determine the complexity of rAAV delivery and are sometimes associated with low transduction efficiency. This review surveys the main ways to solve emerging problems and increase the efficiency of transgene delivery using rAAVs to organoids. A clear understanding of the stage of development of the organoid, its cellular composition and the presence of surface receptors will allow obtaining high levels of organoid transduction with existing rAAV vectors.
Collapse
|
31
|
Shojaei Baghini S, Gardanova ZR, Abadi SAH, Zaman BA, İlhan A, Shomali N, Adili A, Moghaddar R, Yaseri AF. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool. Cell Mol Biol Lett 2022; 27:35. [PMID: 35508982 PMCID: PMC9066929 DOI: 10.1186/s11658-022-00336-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
The progress of genetic engineering in the 1970s brought about a paradigm shift in genome editing technology. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a flexible means to target and modify particular DNA sequences in the genome. Several applications of CRISPR/Cas9 are presently being studied in cancer biology and oncology to provide vigorous site-specific gene editing to enhance its biological and clinical uses. CRISPR's flexibility and ease of use have enabled the prompt achievement of almost any preferred alteration with greater efficiency and lower cost than preceding modalities. Also, CRISPR/Cas9 technology has recently been applied to improve the safety and efficacy of chimeric antigen receptor (CAR)-T cell therapies and defeat tumor cell resistance to conventional treatments such as chemotherapy and radiotherapy. The current review summarizes the application of CRISPR/Cas9 in cancer therapy. We also discuss the present obstacles and contemplate future possibilities in this context.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zhanna R. Gardanova
- Department of Psychotherapy, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., 117997 Moscow, Russia
| | - Saeme Azizi Hassan Abadi
- Department of Nursery and Midwifery, Faculty of Laboratory Science, Islamic Azad University of Chalous, Mazandaran, Iran
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Kurdistan Region, Iraq
| | - Ahmet İlhan
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, USA
| | - Roozbeh Moghaddar
- Department of Pediatric Hematology and Oncology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
32
|
Ziegler A. [Precision medicine in pediatric neurology exemplified by the new treatment forms]. DER NERVENARZT 2022; 93:122-134. [PMID: 35037966 PMCID: PMC8825642 DOI: 10.1007/s00115-021-01251-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/26/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND In recent years the possibilities for molecular diagnostics and treatment of rare childhood diseases have greatly improved. The first gene-modifying drugs have now been approved, leading to a new era of precision treatment in pediatric neurology. OBJECTIVE This article describes the dynamic developments of precision medicine in pediatric neurology in the areas of prevention, diagnostics and targeted treatment. DISCUSSION The paradigm shift as a result of precision medicine is based on a treatment approach focused more strongly on the individual and the corresponding unique characteristics. Modern methods of genetic and molecular diagnostics are used to accurately describe and characterize affected children, complemented by a precise description of the clinical phenotype. Nevertheless, the success of the best individual treatment strategy derived from this information is often dependent on the time of diagnosis. Therefore, methods for disease prevention, particularly newborn screening programs, become increasingly more important to achieve the best possible success of novel therapies even before the onset of disease symptoms. In addition to a precise stratification of therapies, special attention should be paid in the future to the consideration of the individual perspective of patients and parents/guardians. Furthermore, a normative framework for a quality-ensured application of gene-modifying therapies in the German healthcare system must be created.
Collapse
Affiliation(s)
- Andreas Ziegler
- Zentrum für Kinder- und Jugendmedizin, Sektion für Neuropädiatrie und Stoffwechselmedizin, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Deutschland.
| |
Collapse
|
33
|
Matsuzaka Y, Hirai Y, Hashido K, Okada T. Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1551. [PMID: 35163475 PMCID: PMC8836108 DOI: 10.3390/ijms23031551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| |
Collapse
|
34
|
Hirunagi T, Sahashi K, Meilleur KG, Katsuno M. Nucleic Acid-Based Therapeutic Approach for Spinal and Bulbar Muscular Atrophy and Related Neurological Disorders. Genes (Basel) 2022; 13:genes13010109. [PMID: 35052449 PMCID: PMC8775157 DOI: 10.3390/genes13010109] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
The recent advances in nucleic acid therapeutics demonstrate the potential to treat hereditary neurological disorders by targeting their causative genes. Spinal and bulbar muscular atrophy (SBMA) is an X-linked and adult-onset neurodegenerative disorder caused by the expansion of trinucleotide cytosine-adenine-guanine repeats, which encodes a polyglutamine tract in the androgen receptor gene. SBMA belongs to the family of polyglutamine diseases, in which the use of nucleic acids for silencing a disease-causing gene, such as antisense oligonucleotides and small interfering RNAs, has been intensively studied in animal models and clinical trials. A unique feature of SBMA is that both motor neuron and skeletal muscle pathology contribute to disease manifestations, including progressive muscle weakness and atrophy. As both motor neurons and skeletal muscles can be therapeutic targets in SBMA, nucleic acid-based approaches for other motor neuron diseases and myopathies may further lead to the development of a treatment for SBMA. Here, we review studies of nucleic acid-based therapeutic approaches in SBMA and related neurological disorders and discuss current limitations and perspectives to apply these approaches to patients with SBMA.
Collapse
Affiliation(s)
- Tomoki Hirunagi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Syowa-ku, Nagoya 466-8550, Japan; (T.H.); (K.S.)
| | - Kentaro Sahashi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Syowa-ku, Nagoya 466-8550, Japan; (T.H.); (K.S.)
| | - Katherine G. Meilleur
- Research and Clinical Development, Neuromuscular Development Unit, Biogen, 300, Binney Street, Cambridge, MA 02142, USA;
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Syowa-ku, Nagoya 466-8550, Japan; (T.H.); (K.S.)
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Syowa-ku, Nagoya 466-8550, Japan
- Correspondence:
| |
Collapse
|
35
|
Braga LAM, Conte Filho CG, Mota FB. Future of genetic therapies for rare genetic diseases: what to expect for the next 15 years? THERAPEUTIC ADVANCES IN RARE DISEASE 2022; 3:26330040221100840. [PMID: 37180410 PMCID: PMC10032453 DOI: 10.1177/26330040221100840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/22/2022] [Indexed: 05/16/2023]
Abstract
Introduction Rare genetic diseases affect millions of people worldwide. Most of them are caused by defective genes that impair quality of life and can lead to premature death. As genetic therapies aim to fix or replace defective genes, they are considered the most promising treatment for rare genetic diseases. Yet, as these therapies are still under development, it is still unclear whether they will be successful in treating these diseases. This study aims to address this gap by assessing researchers' opinions on the future of genetic therapies for the treatment of rare genetic diseases. Methods We conducted a global cross-sectional web-based survey of researchers who recently authored peer-reviewed articles related to rare genetic diseases. Results We assessed the opinions of 1430 researchers with high and good knowledge about genetic therapies for the treatment of rare genetic diseases. Overall, the respondents believed that genetic therapies would be the standard of care for rare genetic diseases before 2036, leading to cures after this period. CRISPR-Cas9 was considered the most likely approach to fixing or replacing defective genes in the next 15 years. The respondents with good knowledge believed that genetic therapies would only have long-lasting effects after 2036, while those with high knowledge were divided on this issue. The respondents with good knowledge on the subject believed that non-viral vectors are more likely to be successful in fixing or replacing defective genes in the next 15 years, while most of the respondents with high knowledge believed viral vectors would be more successful. Conclusion Overall, the researchers who participated in this study expect that in the future genetic therapies will greatly benefit the treatment of patients with rare genetic diseases.
Collapse
Affiliation(s)
| | | | - Fabio Batista Mota
- Laboratory of Cellular Communication, Oswaldo
Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4.365, Pavilhão 108,
Manguinhos, Rio de Janeiro RJ 21040-360, Brazil
| |
Collapse
|
36
|
Shojaei Baghini S, Gardanova ZR, Zekiy AO, Shomali N, Tosan F, Jarahian M. Optimizing sgRNA to Improve CRISPR/Cas9 Knockout Efficiency: Special Focus on Human and Animal Cell. Front Bioeng Biotechnol 2021; 9:775309. [PMID: 34869290 PMCID: PMC8640246 DOI: 10.3389/fbioe.2021.775309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
During recent years, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technologies have been noticed as a rapidly evolving tool to deliver a possibility for modifying target sequence expression and function. The CRISPR/Cas9 tool is currently being used to treat a myriad of human disorders, ranging from genetic diseases and infections to cancers. Preliminary reports have shown that CRISPR technology could result in valued consequences for the treatment of Duchenne muscular dystrophy (DMD), cystic fibrosis (CF), β-thalassemia, Huntington's diseases (HD), etc. Nonetheless, high rates of off-target effects may hinder its application in clinics. Thereby, recent studies have focused on the finding of the novel strategies to ameliorate these off-target effects and thereby lead to a high rate of fidelity and accuracy in human, animals, prokaryotes, and also plants. Meanwhile, there is clear evidence indicating that the design of the specific sgRNA with high efficiency is of paramount importance. Correspondingly, elucidation of the principal parameters that contributed to determining the sgRNA efficiencies is a prerequisite. Herein, we will deliver an overview regarding the therapeutic application of CRISPR technology to treat human disorders. More importantly, we will discuss the potent influential parameters (e.g., sgRNA structure and feature) implicated in affecting the sgRNA efficacy in CRISPR/Cas9 technology, with special concentration on human and animal studies.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zhanna R. Gardanova
- Department of Psychotherapy, Pirogov Russian National Research Medical University, Moscow, Russia
- Medical Faculty, Russian State Social University, Moscow, Russia
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Foad Tosan
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
37
|
Kichula EA, Proud CM, Farrar MA, Kwon JM, Saito K, Desguerre I, McMillan HJ. Expert recommendations and clinical considerations in the use of onasemnogene abeparvovec gene therapy for spinal muscular atrophy. Muscle Nerve 2021; 64:413-427. [PMID: 34196026 PMCID: PMC8518380 DOI: 10.1002/mus.27363] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive, neurodegenerative disease caused by biallelic mutations in the survival motor neuron 1 (SMN1) gene. SMA is characterized by motor neuron degeneration, resulting in progressive muscle atrophy and weakness. Before the emergence of disease-modifying therapies, children with the most severe form of SMA would never achieve the ability to sit independently. Only 8% survived beyond 20 months of age without permanent ventilator support. One such therapy, onasemnogene abeparvovec, an adeno-associated virus-based gene replacement therapy, delivers functional human SMN through a one-time intravenous infusion. In addition to substantially improving survival, onasemnogene abeparvovec was found to increase motor milestone attainment and reduce the need for respiratory or nutritional support in many patients. This expert opinion provides recommendations and practical considerations on the patient-centered decisions to use onasemnogene abeparvovec. Recommendations include the need for patient-centered multidisciplinary care and patient selection to identify those with underlying medical conditions or active infections to reduce risks. We also describe the importance of retesting patients with elevated anti-adeno-associated virus serotype 9 antibodies. Recommendations for prednisolone tapering and monitoring for potential adverse events, including hepatotoxicity and thrombotic microangiopathy, are described. The need for caregiver education on managing day-to-day care at time of treatment and patient- and family-centered discussions on realistic expectations are also recommended. We detail the importance of following standard-of-care guidance and long-term monitoring of all children with SMA who have received one or more disease-modifying therapy using registries. We also highlight the need for presymptomatic or early symptomatic treatment of this disorder.
Collapse
Affiliation(s)
| | | | - Michelle A. Farrar
- School of Women's and Children's Health, UNSW MedicineUniversity of New South Wales Sydney and Sydney Children's Hospital NetworkSydneyNew South WalesAustralia
| | - Jennifer M. Kwon
- School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical UniversityTokyoJapan
| | | | - Hugh J. McMillan
- Children's Hospital of Eastern OntarioUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
38
|
Perspectives on hiPSC-Derived Muscle Cells as Drug Discovery Models for Muscular Dystrophies. Int J Mol Sci 2021; 22:ijms22179630. [PMID: 34502539 PMCID: PMC8431796 DOI: 10.3390/ijms22179630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies are a heterogeneous group of inherited diseases characterized by the progressive degeneration and weakness of skeletal muscles, leading to disability and, often, premature death. To date, no effective therapies are available to halt or reverse the pathogenic process, and meaningful treatments are urgently needed. From this perspective, it is particularly important to establish reliable in vitro models of human muscle that allow the recapitulation of disease features as well as the screening of genetic and pharmacological therapies. We herein review and discuss advances in the development of in vitro muscle models obtained from human induced pluripotent stem cells, which appear to be capable of reproducing the lack of myofiber proteins as well as other specific pathological hallmarks, such as inflammation, fibrosis, and reduced muscle regenerative potential. In addition, these platforms have been used to assess genetic correction strategies such as gene silencing, gene transfer and genome editing with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), as well as to evaluate novel small molecules aimed at ameliorating muscle degeneration. Furthermore, we discuss the challenges related to in vitro drug testing and provide a critical view of potential therapeutic developments to foster the future clinical translation of preclinical muscular dystrophy studies.
Collapse
|
39
|
Bell RD. Considerations When Developing Blood-Brain Barrier Crossing Drug Delivery Technology. Handb Exp Pharmacol 2021; 273:83-95. [PMID: 34463850 DOI: 10.1007/164_2021_453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Efficient therapeutic transport across the neurovasculature remains a challenge for developing medicine to treat central nervous system (CNS) disorders (Bell and Ehlers, Neuron 81:1-3, 2014). This chapter is meant to provide some insight and key considerations for developing and evaluating various technologies and approaches to CNS drug delivery. First, a brief review of various biological barriers, including the immune system, cellular and protein components of the blood-brain barrier (BBB), and clearance mechanisms in peripheral organs is provided. Next, a few examples and learnings from existing BBB-crossing modalities will be reviewed. Insight from "BBBomic" databases and thoughts on basic requirements for successful in vivo validation studies are discussed. Finally, an additional engineering barrier, namely manufacturing and product scalability, is highlighted as it relates to clinical translation and feasibility for developing BBB-crossing delivery technologies. A goal of this chapter is to provide an overview of the many barriers to the successful delivery of medicines into the brain. An emphasis will be placed on biotherapeutic and gene therapy applications for the treatment of neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Robert D Bell
- Rare Disease Research Unit, Pfizer Worldwide Research, Development and Medicine, Cambridge, MA, USA.
| |
Collapse
|
40
|
Yao S, Chen Z, Yu Y, Zhang N, Jiang H, Zhang G, Zhang Z, Zhang B. Current Pharmacological Strategies for Duchenne Muscular Dystrophy. Front Cell Dev Biol 2021; 9:689533. [PMID: 34490244 PMCID: PMC8417245 DOI: 10.3389/fcell.2021.689533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked neuromuscular disorder caused by the absence of dystrophin protein, which is essential for muscle fiber integrity. Loss of dystrophin protein leads to recurrent myofiber damage, chronic inflammation, progressive fibrosis, and dysfunction of muscle stem cells. There is still no cure for DMD so far and the standard of care is principally limited to symptom relief through glucocorticoids treatments. Current therapeutic strategies could be divided into two lines. Dystrophin-targeted therapeutic strategies that aim at restoring the expression and/or function of dystrophin, including gene-based, cell-based and protein replacement therapies. The other line of therapeutic strategies aims to improve muscle function and quality by targeting the downstream pathological changes, including inflammation, fibrosis, and muscle atrophy. This review introduces the important developments in these two lines of strategies, especially those that have entered the clinical phase and/or have great potential for clinical translation. The rationale and efficacy of each agent in pre-clinical or clinical studies are presented. Furthermore, a meta-analysis of gene profiling in DMD patients has been performed to understand the molecular mechanisms of DMD.
Collapse
Affiliation(s)
- Shanshan Yao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zihao Chen
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
41
|
Morgan J, Muntoni F. Changes in Myonuclear Number During Postnatal Growth -Implications for AAV Gene Therapy for Muscular Dystrophy. J Neuromuscul Dis 2021; 8:S317-S324. [PMID: 34334413 PMCID: PMC8673494 DOI: 10.3233/jnd-210683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adult skeletal muscle is a relatively stable tissue, as the multinucleated muscle fibres contain post-mitotic myonuclei. During early postnatal life, muscle growth occurs by the addition of skeletal muscle stem cells (satellite cells) or their progeny to growing muscle fibres. In Duchenne muscular dystrophy, which we shall use as an example of muscular dystrophies, the muscle fibres lack dystrophin and undergo necrosis. Satellite-cell mediated regeneration occurs, to repair and replace the necrotic muscle fibres, but as the regenerated muscle fibres still lack dystrophin, they undergo further cycles of degeneration and regeneration.AAV gene therapy is a promising approach for treating Duchenne muscular dystrophy. But for a single dose of, for example, AAV coding for dystrophin, to be effective, the treated myonuclei must persist, produce sufficient dystrophin and a sufficient number of nuclei must be targeted. This latter point is crucial as AAV vector remains episomal and does not replicate in dividing cells. Here, we describe and compare the growth of skeletal muscle in rodents and in humans and discuss the evidence that myofibre necrosis and regeneration leads to the loss of viral genomes within skeletal muscle. In addition, muscle growth is expected to lead to the dilution of the transduced nuclei especially in case of very early intervention, but it is not clear if growth could result in insufficient dystrophin to prevent muscle fibre breakdown. This should be the focus of future studies.
Collapse
Affiliation(s)
- Jennifer Morgan
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| |
Collapse
|
42
|
Canonico F, Chirivi M, Maiullari F, Milan M, Rizzi R, Arcudi A, Galli M, Pane M, Gowran A, Pompilio G, Mercuri E, Crea F, Bearzi C, D'Amario D. Focus on the road to modelling cardiomyopathy in muscular dystrophy. Cardiovasc Res 2021; 118:1872-1884. [PMID: 34254111 DOI: 10.1093/cvr/cvab232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
Alterations in the DMD gene, which codes for the protein dystrophin, cause forms of dystrophinopathies such as Duchenne muscular dystrophy, an X-linked disease. Cardiomyopathy linked to DMD mutations is becoming the leading cause of death in patients with dystrophinopathy. Since phenotypic pathophysiological mechanisms are not fully understood, the improvement and development of new disease models, considering their relative advantages and disadvantages, is essential. The application of genetic engineering approaches on induced pluripotent stem cells, such as gene editing technology, enables the development of physiologically relevant human cell models for in vitro dystrophinopathy studies. The combination of induced pluripotent stem cells-derived cardiovascular cell types and 3 D bioprinting technologies hold great promise for the study of dystrophin-linked cardiomyopathy. This combined approach enables the assessment of responses to physical or chemical stimuli, and the influence of pharmaceutical approaches. The critical objective of in vitro microphysiological systems is to more accurately reproduce the microenvironment observed in vivo. Ground-breaking methodology involving the connection of multiple microphysiological systems comprised of different tissues would represent a move toward precision body-on-chip disease modelling could lead to a critical expansion in what is known about inter-organ responses to disease and novel therapies that have the potential to replace animal models. In this review, we will focus on the generation, development, and application of current cellular, animal and potential for bio-printed models, in the study of the pathophysiological mechanisms underlying dystrophin-linked cardiomyopathy in the direction of personalized medicine.
Collapse
Affiliation(s)
- Francesco Canonico
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Department of Cardiovascular Sciences, Rome, Italy
| | - Maila Chirivi
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy.,Istituto Nazionale Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Fabio Maiullari
- Istituto Nazionale Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Marika Milan
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy.,Istituto Nazionale Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Roberto Rizzi
- Istituto Nazionale Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy.,Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Segrate, Milan, Italy
| | - Alessandra Arcudi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Department of Cardiovascular Sciences, Rome, Italy
| | - Mattia Galli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Department of Cardiovascular Sciences, Rome, Italy
| | - Marika Pane
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Department of Women, Children and Public Health Sciences, Rome, Italy
| | - Aoife Gowran
- Centro Cardiologico Monzino IRCCS, Unit of Vascular Biology and Regenerative Medicine, Milan, Italy
| | - Giulio Pompilio
- Centro Cardiologico Monzino IRCCS, Unit of Vascular Biology and Regenerative Medicine, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Eugenio Mercuri
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Department of Women, Children and Public Health Sciences, Rome, Italy
| | - Filippo Crea
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Department of Cardiovascular Sciences, Rome, Italy
| | - Claudia Bearzi
- Istituto Nazionale Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy.,Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), Milan, Italy
| | - Domenico D'Amario
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Department of Cardiovascular Sciences, Rome, Italy
| |
Collapse
|
43
|
Abstract
The limb-girdle muscular dystrophies (LGMD) are a collection of genetic diseases united in their phenotypical expression of pelvic and shoulder area weakness and wasting. More than 30 subtypes have been identified, five dominant and 26 recessive. The increase in the characterization of new genotypes in the family of LGMDs further adds to the heterogeneity of the disease. Meanwhile, better understanding of the phenotype led to the reconsideration of the disease definition, which resulted in eight old subtypes to be no longer recognized officially as LGMD and five new diseases to be added to the LGMD family. The unique variabilities of LGMD stem from genetic mutations, which then lead to protein and ultimately muscle dysfunction. Herein, we review the LGMD pathway, starting with the genetic mutations that encode proteins involved in muscle maintenance and repair, and including the genotype–phenotype relationship of the disease, the epidemiology, disease progression, burden of illness, and emerging treatments.
Collapse
|
44
|
Restoring Protein Expression in Neuromuscular Conditions: A Review Assessing the Current State of Exon Skipping/Inclusion and Gene Therapies for Duchenne Muscular Dystrophy and Spinal Muscular Atrophy. BioDrugs 2021; 35:389-399. [PMID: 34097287 DOI: 10.1007/s40259-021-00486-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
The debilitating neuromuscular disorders Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), which harm 1 in 5000 newborn males and 1 in 11,000 newborns, respectively, are marked by progressive muscle wasting among other complications. While DMD causes generalized muscle weakness due to the absence of the dystrophin protein, SMA patients generally face motor neuron degeneration because of the lack of the survival motor neuron (SMN) protein. Many of the most promising therapies for both conditions restore the absent proteins dystrophin and SMN. Antisense oligonucleotide-mediated exon skipping and inclusion therapies are advancing clinically with the approved DMD therapies casimersen, eteplirsen, golodirsen, and viltolarsen, and the SMA therapy nusinersen. Existing antisense therapies focus on skeletal muscle for DMD and motor neurons for SMA, respectively. Through innovative techniques, such as peptide conjugation and multi-exon skipping, these therapies could be optimized for efficacy and applicability. By contrast, gene replacement therapy is administered only once to patients during treatment. Currently, only onasemnogene abeparvovec for SMA has been approved. Safety shortcomings remain a major challenge for gene therapy. Nevertheless, gene therapy for DMD has strong potential to restore dystrophin expression in patients. In light of promising functional improvements, antisense and gene therapies stand poised to elevate the lives of patients with DMD and SMA.
Collapse
|
45
|
The increasing role of muscle MRI to monitor changes over time in untreated and treated muscle diseases. Curr Opin Neurol 2021; 33:611-620. [PMID: 32796278 DOI: 10.1097/wco.0000000000000851] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This review aims to discuss the recent results of studies published applying quantitative MRI sequences to large cohorts of patients with neuromuscular diseases. RECENT FINDINGS Quantitative MRI sequences are now available to identify and quantify changes in muscle water and fat content. These two components have been associated with acute and chronic injuries, respectively. Studies show that the increase in muscle water is not only reversible if therapies are applied successfully but can also predict fat replacement in neurodegenerative diseases. Muscle fat fraction correlates with muscle function tests and increases gradually over time in parallel with the functional decline of patients with neuromuscular diseases. There are new spectrometry-based sequences to quantify other components, such as glycogen, electrolytes or the pH of the muscle fibre, extending the applicability of MRI to the study of several processes in neuromuscular diseases. SUMMARY The latest results obtained from the study of long cohorts of patients with various neuromuscular diseases open the door to the use of this technology in clinical trials, which would make it possible to obtain a new measure for assessing the effectiveness of new treatments. The challenge is currently the popularization of these studies and their application to the monitoring of patients in the daily clinic.
Collapse
|
46
|
Lee T, Tokunaga S, Taniguchi N, Misaki M, Shimomura H, Nishino I, Itoh K, Takeshima Y. Underlying diseases in sporadic presentation of high creatine kinase levels in girls. Clin Chim Acta 2021; 519:198-203. [PMID: 33965408 DOI: 10.1016/j.cca.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Persistent creatine kinase (CK) elevation can occur due to various conditions. Identifying the causes of hyperCKemia is crucial for enabling appropriate follow-up and care. Girls with elevated CK levels may be carriers of Duchenne/Becker muscular dystrophy (DMD/BMD), making diagnosis more difficult than that in boys. This study aimed to elucidate the underlying causes of high CK levels in girls. METHODS Fourteen girls (seven symptomatic, seven asymptomatic) with persistently elevated CK levels but without a family history of muscle diseases were referred to our hospital between April 2014 and August 2018. Muscle biopsy and/or genetic analysis were conducted for diagnoses. RESULTS Among the symptomatic girls, six (85.7%) had muscular dystrophy (five DMD/BMD carriers, and one sarcoglycanopathy [limb-girdle muscular dystrophy: LGMDR4]), and one had dermatomyositis. Among the asymptomatic girls, four (57.1%) had muscular dystrophy (three DMD/BMD carriers, and one calpainopathy [LGMDR1]), and three were undiagnosed. CONCLUSION Our results indicate that muscular dystrophy, including DMD/BMD carriers, must be considered in girls with highperCKemia regardless of symptoms presentation, and in symptomatic girls with dermatomyositis. Investigations in girls with hyperCKemia should be performed under proper ethical considerations. Further research is necessary to develop a diagnostic strategy for girls with hyperCKemia.
Collapse
Affiliation(s)
- Tomoko Lee
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan.
| | - Sachi Tokunaga
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Naoko Taniguchi
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Maiko Misaki
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hideki Shimomura
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | | |
Collapse
|
47
|
Abstract
Recent advances in gene editing technologies are enabling the potential correction of devastating monogenic disorders through elimination of underlying genetic mutations. Duchenne muscular dystrophy (DMD) is an especially severe genetic disorder caused by mutations in the gene encoding dystrophin, a membrane-associated protein required for maintenance of muscle structure and function. Patients with DMD succumb to loss of mobility early in life, culminating in premature death from cardiac and respiratory failure. The disease has thus far defied all curative strategies. CRISPR gene editing has provided new opportunities to ameliorate the disease by eliminating DMD mutations and thereby restore dystrophin expression throughout skeletal and cardiac muscle. Proof-of-concept studies in rodents, large mammals, and human cells have validated the potential of this approach, but numerous challenges remain to be addressed, including optimization of gene editing, delivery of gene editing components throughout the musculature, and mitigation of possible immune responses. This paper provides an overview of recent work from our laboratory and others toward the genetic correction of DMD and considers the opportunities and challenges in the path to clinical translation. Lessons learned from these studies will undoubtedly enable further applications of gene editing to numerous other diseases of muscle and other tissues.
Collapse
|
48
|
Sheikh O, Yokota T. Developing DMD therapeutics: a review of the effectiveness of small molecules, stop-codon readthrough, dystrophin gene replacement, and exon-skipping therapies. Expert Opin Investig Drugs 2021; 30:167-176. [PMID: 33393390 DOI: 10.1080/13543784.2021.1868434] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the dystrophin (DMD) gene. Most patients die from respiratory failure or cardiomyopathy. There are significant unmet needs for treatments for DMD as the standard of care is principally limited to symptom relief through treatments including steroids. AREAS COVERED This review summarizes safety and efficacy in promising areas of DMD therapeutics - small molecules, stop codon readthrough, gene replacement, and exon skipping - under clinical examination from 2015-2020 as demonstrated in the NIH Clinical Trials and PubMed search engines. EXPERT OPINION Currently, steroids persist as the most accessible medicine for DMD. Stop-codon readthrough, gene replacement, and exon-skipping therapies all aim to restore dystrophin expression. Of these strategies, gene replacement therapy has recently gained momentum while exon-skipping retains great traction. The FDA approval of three exon-skipping antisense oligonucleotides illustrate this regulatory momentum, though the effectiveness and sequence design of eteplirsen remain controversial. Cell-penetrating peptides promise to more efficaciously treat DMD-related cardiomyopathy.The recent success of antisense therapies, however, poses major regulatory challenges. To fully realize the benefits of exon-skipping, including cocktail oligonucleotide-mediated multiple exon-skipping and oligonucleotide drugs for very rare mutations, regulatory challenges need to be addressed in coordination with scientific advances.
Collapse
Affiliation(s)
- Omar Sheikh
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Canada
| |
Collapse
|
49
|
Wong PK, Cheah FC, Syafruddin SE, Mohtar MA, Azmi N, Ng PY, Chua EW. CRISPR Gene-Editing Models Geared Toward Therapy for Hereditary and Developmental Neurological Disorders. Front Pediatr 2021; 9:592571. [PMID: 33791256 PMCID: PMC8006930 DOI: 10.3389/fped.2021.592571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/19/2021] [Indexed: 12/26/2022] Open
Abstract
Hereditary or developmental neurological disorders (HNDs or DNDs) affect the quality of life and contribute to the high mortality rates among neonates. Most HNDs are incurable, and the search for new and effective treatments is hampered by challenges peculiar to the human brain, which is guarded by the near-impervious blood-brain barrier. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR), a gene-editing tool repurposed from bacterial defense systems against viruses, has been touted by some as a panacea for genetic diseases. CRISPR has expedited the research into HNDs, enabling the generation of in vitro and in vivo models to simulate the changes in human physiology caused by genetic variation. In this review, we describe the basic principles and workings of CRISPR and the modifications that have been made to broaden its applications. Then, we review important CRISPR-based studies that have opened new doors to the treatment of HNDs such as fragile X syndrome and Down syndrome. We also discuss how CRISPR can be used to generate research models to examine the effects of genetic variation and caffeine therapy on the developing brain. Several drawbacks of CRISPR may preclude its use at the clinics, particularly the vulnerability of neuronal cells to the adverse effect of gene editing, and the inefficiency of CRISPR delivery into the brain. In concluding the review, we offer some suggestions for enhancing the gene-editing efficacy of CRISPR and how it may be morphed into safe and effective therapy for HNDs and other brain disorders.
Collapse
Affiliation(s)
- Poh Kuan Wong
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fook Choe Cheah
- Department of Paediatrics, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norazrina Azmi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, Goodspeed K, Gray SJ, Kay CN, Boye SL, Boye SE, George LA, Salabarria S, Corti M, Byrne BJ, Tremblay JP. Current Clinical Applications of In Vivo Gene Therapy with AAVs. Mol Ther 2020; 29:464-488. [PMID: 33309881 PMCID: PMC7854298 DOI: 10.1016/j.ymthe.2020.12.007] [Citation(s) in RCA: 411] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Hereditary diseases are caused by mutations in genes, and more than 7,000 rare diseases affect over 30 million Americans. For more than 30 years, hundreds of researchers have maintained that genetic modifications would provide effective treatments for many inherited human diseases, offering durable and possibly curative clinical benefit with a single treatment. This review is limited to gene therapy using adeno-associated virus (AAV) because the gene delivered by this vector does not integrate into the patient genome and has a low immunogenicity. There are now five treatments approved for commercialization and currently available, i.e., Luxturna, Zolgensma, the two chimeric antigen receptor T cell (CAR-T) therapies (Yescarta and Kymriah), and Strimvelis (the gammaretrovirus approved for adenosine deaminase-severe combined immunodeficiency [ADA-SCID] in Europe). Dozens of other treatments are under clinical trials. The review article presents a broad overview of the field of therapy by in vivo gene transfer. We review gene therapy for neuromuscular disorders (spinal muscular atrophy [SMA]; Duchenne muscular dystrophy [DMD]; X-linked myotubular myopathy [XLMTM]; and diseases of the central nervous system, including Alzheimer’s disease, Parkinson’s disease, Canavan disease, aromatic l-amino acid decarboxylase [AADC] deficiency, and giant axonal neuropathy), ocular disorders (Leber congenital amaurosis, age-related macular degeneration [AMD], choroideremia, achromatopsia, retinitis pigmentosa, and X-linked retinoschisis), the bleeding disorder hemophilia, and lysosomal storage disorders.
Collapse
Affiliation(s)
- Jerry R Mendell
- Center of Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH, USA
| | | | | | - Kimberly Goodspeed
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven J Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Sanford L Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapeutics, University of Florida, Gainesville, FL, USA
| | - Lindsey A George
- Division of Hematology and the Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA, USA; Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephanie Salabarria
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Manuela Corti
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|