1
|
Shen Y, Yang P, Lu Y. Expression and prognosis of NR3C1 in uterine corpus endometrial carcinoma based on multiple datasets. Discov Oncol 2025; 16:370. [PMID: 40113641 PMCID: PMC11926321 DOI: 10.1007/s12672-025-02086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC), a prevalent malignancy in the female reproductive system, has witnessed a 30% increase in recent year. Recognizing the significance of early treatment in reducing patient mortality, the identification of potential biomarkers for UCEC plays a crucial role in early diagnosis. This study was to identify key genes associated with UCEC utilizing the Gene Expression Omnibus database, followed by validating their prognostic value across multiple databases. Analysis of four UCEC databases (GSE17025, GSE36389, GSE63678, GSE115810) yielded 72 co-expressed genes. KEGG and GO enrichment analyses revealed their involvement in physiological processes such as transcriptional misregulation in cancer. Constructing a protein-protein interaction network for these 72 genes, the top 10 genes with significant interactions were identified. Survival regression analysis highlighted NR3C1 as the gene with a substantial impact on UCEC prognostic outcomes. Differential expression analysis indicated lower expression of NR3C1 in UCEC compared to normal endometrial tissue. Cox regression analysis, performed on clinical datasets of UCEC patients, identified clinical stage III, clinical stage IV, age, and NR3C1 as independent prognostic factors influencing UCEC outcomes. The LinkedOmics online database revealed the top 50 positively and negatively correlated genes with NR3C1 in UCEC. Subsequent investigations into the relationship between NR3C1 and tumor-infiltrating immune cells were conducted using R software. Gene set enrichment analysis provided insights into NR3C1-related genes, showing enrichment in processes such as Ribosome, Oxidative phosphorylation in UCEC. Collectively, these comprehensive analyses suggest that NR3C1 may serve as a potential biomarker indicating the prognosis of UCEC.
Collapse
Affiliation(s)
- Yahui Shen
- Department of Obstetrics and Gynecology, The First Medical Center of PLA General Hospital, 28 Fuxing Road, Haidian District, 100191, Beijing, China.
| | - Peihan Yang
- Westa College, Southwest University, Chongqing, 400712, China
| | - Yanping Lu
- Department of Obstetrics and Gynecology, The First Medical Center of PLA General Hospital, 28 Fuxing Road, Haidian District, 100191, Beijing, China.
| |
Collapse
|
2
|
Rahbech A, Kurzay A, Fresnillo Saló S, Seremet T, Debets R, Met Ö, Peeters MJW, Thor Straten P. MerTK signaling in human primary T cells modulates memory potential and improves recall response. J Leukoc Biol 2025; 117:qiae226. [PMID: 39422252 DOI: 10.1093/jleuko/qiae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
Immune therapy using checkpoint inhibitors or adoptive cell transfer has revolutionized the treatment of several types of cancers. However, response to treatment is currently limited to a fraction of patients. Elucidation of immune modulatory mechanisms might optimize patient selection and present ways to modify anti-cancer immune responses. We recently discovered the expression and an important costimulatory role of TAM receptor MerTK signaling on activated human primary CD8+ T cells. Here we extend our study of the costimulatory role of MerTK expression in human CD8+ T cells. We uncover a clear link between MerTK expression and less differentiated Central Memory T cells based on an increased expression of CCR7, CD45RO, CD28, CD62L, and an altered metabolic profile. In addition, we observe an improved proliferative capacity and elevated expression of effector molecule IFNγ upon recall responses of MerTK-expressing cells in vitro. Finally, using gp100TCR-transduced T cells, we demonstrate how PROS1 treatment results in improved cytotoxicity and killing of tumors. Our findings describe a role of MerTK expression in T cells, which could be exploited in the search for improving immunotherapeutic approaches.
Collapse
Affiliation(s)
- Anne Rahbech
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Borgmester Ib Juuls Vej 13, 2730 Herlev, Denmark
| | - Annina Kurzay
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Borgmester Ib Juuls Vej 13, 2730 Herlev, Denmark
| | - Sara Fresnillo Saló
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Borgmester Ib Juuls Vej 13, 2730 Herlev, Denmark
| | - Tina Seremet
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Borgmester Ib Juuls Vej 13, 2730 Herlev, Denmark
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC-Cancer Institute, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Özcan Met
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Borgmester Ib Juuls Vej 13, 2730 Herlev, Denmark
| | - Marlies J W Peeters
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Borgmester Ib Juuls Vej 13, 2730 Herlev, Denmark
| | - Per Thor Straten
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Borgmester Ib Juuls Vej 13, 2730 Herlev, Denmark
| |
Collapse
|
3
|
Kirane A, Lee D, Ariyan C. Surgical Considerations in Tumor-Infiltrating Lymphocyte Therapy: Challenges and Opportunities. Transplant Cell Ther 2025; 31:S591-S598. [PMID: 40089328 DOI: 10.1016/j.jtct.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/24/2024] [Indexed: 03/17/2025]
Abstract
Adoptive T cell therapy (ACT) using tumor-infiltrating lymphocytes (TILs) is a promising personalized immunotherapy approach, spearheaded by Dr. Steven Rosenberg, targeting various cancer types. Despite initial challenges in TIL production, recent advancements have showcased its superiority to immune checkpoint blockade in metastatic melanoma, even after anti-PD-1 therapy failure. The expedited manufacturing process, now around 3 weeks, coupled with the US Food and Drug Administration approval of lifileucel in 2024, is poised to propel TIL therapy into mainstream oncology. This commentary delves into the critical surgical aspects of TIL harvesting, emphasizing the integral role of surgeons in ensuring optimal TIL quality, safety, and therapeutic effectiveness. By shedding light on these considerations, this article aims to guide and enhance collaborative efforts in advancing TIL therapy for patients facing limited treatment options.
Collapse
Affiliation(s)
- Amanda Kirane
- Stanford University, Department of Surgery, 1201 Welch Road, Stanford, CA 94304.
| | - David Lee
- Stanford University, Department of Surgery, 1201 Welch Road, Stanford, CA 94304
| | - Charlotte Ariyan
- Memorial Sloan Kettering Cancer Center, Department of Surgery, 1275 York Ave, New York, NY 10065
| |
Collapse
|
4
|
Palomero J, Galvao V, Creus I, Lostes J, Aylagas M, Marín-Bayo A, Rotxés M, Sanz M, Lozano-Rabella M, Garcia-Garijo A, Yuste-Estevanez A, Grases D, Díaz-Gómez J, González J, Navarro J, Gartner J, Braña I, Villalobos X, Bayó-Puxan N, Jiménez J, Palazón A, Muñoz S, Villacampa G, Piris-Giménez A, Barba P, Codinach M, Rodríguez L, Querol S, Muñoz-Couselo E, Tabernero J, Martín-Lluesma S, Gros A, Garralda E. Preclinical data and design of a phase I clinical trial of neoantigen-reactive TILs for advanced epithelial or ICB-resistant solid cancers. IMMUNO-ONCOLOGY TECHNOLOGY 2025; 25:101030. [PMID: 39911162 PMCID: PMC11791158 DOI: 10.1016/j.iotech.2024.101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Background Adoptive cell therapy (ACT) of ex vivo expanded tumor-infiltrating lymphocytes (TILs) can mediate objective tumor regression in 28%-49% of metastatic melanoma patients. However, the efficacy of TIL therapy in most epithelial cancers remains limited. We present the design of a phase I clinical study that aims to assess the safety and efficacy of NEXTGEN-TIL, a TIL product selected based on ex vivo neoantigen recognition, in patients with advanced epithelial tumors and immune checkpoint blockade (ICB)-resistant solid tumors. Materials and methods Pre-rapid expansion protocol (REP) TIL cultures expanded in high-dose interleukin 2 (HD-IL-2) from patients with metastatic solid tumors were screened for recognition of autologous tumor cell lines (TCLs) and/or neoantigens. Six good manufacturing practice (GMP)-grade validations of pre-REP TIL expansion were carried out and TIL cultures from these six intermediate products were selected to carry out the clinical-scale GMP validation of the REP. Results TILs expanded in 82% of patient-derived tumor biopsies across different cancer types and these frequently contained tumor- and neoantigen-reactive T cells. During GMP validations, a variable number of TIL cultures expanded, constituting the intermediate products (pre-REP). Three finished products were manufactured using a REP which reached cell doses ranging from 4.3e9 to 1.1e11 and met the established specifications. The NEXTGEN-TIL clinical trial entails a first expansion of TILs from tumor fragments in HD-IL-2 followed by TIL screening for neoantigen recognition and REP of selected neoantigen-reactive TIL cultures. Treatment involves a classical non-myeloablative lymphodepleting chemotherapy followed by NEXTGEN-TIL product administration together with HD-IL-2. Conclusions NEXTGEN-TIL exploits ex vivo expanded neoantigen-reactive TIL to potentially improve efficacy in patients with epithelial and ICB-resistant tumors, with a safety profile like traditional TILs.
Collapse
Affiliation(s)
- J. Palomero
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - V. Galvao
- Medical Oncology Department, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Institute of Oncology (VHIO), Barcelona
| | - I. Creus
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - J. Lostes
- Medical Oncology Department, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Institute of Oncology (VHIO), Barcelona
| | - M. Aylagas
- Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - A. Marín-Bayo
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - M. Rotxés
- Medical Oncology Department, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Institute of Oncology (VHIO), Barcelona
| | - M. Sanz
- Medical Oncology Department, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Institute of Oncology (VHIO), Barcelona
| | - M. Lozano-Rabella
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - A. Garcia-Garijo
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - A. Yuste-Estevanez
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - D. Grases
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - J. Díaz-Gómez
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - J. González
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - J.F. Navarro
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - J.J. Gartner
- Surgery Branch, National Cancer Institute, Bethesda, USA
| | - I. Braña
- Medical Oncology Department, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Institute of Oncology (VHIO), Barcelona
| | - X. Villalobos
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - N. Bayó-Puxan
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - J. Jiménez
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - A.N. Palazón
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - S. Muñoz
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - G. Villacampa
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - A. Piris-Giménez
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - P. Barba
- Hematology Department, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Institute of Oncology (VHIO), Barcelona
| | - M. Codinach
- Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
- Vall d’Hebron Research Institute—Autonomous University of Barcelona (VHIR-UAB), Barcelona
| | - L. Rodríguez
- Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - S. Querol
- Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - E. Muñoz-Couselo
- Medical Oncology Department, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Institute of Oncology (VHIO), Barcelona
| | - J. Tabernero
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
- Medical Oncology Department, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Institute of Oncology (VHIO), Barcelona
- Institute of Oncology (IOB)-Quirón, Barcelona-Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic-CIBER en oncología (CIBERONC) ISCIII, Madrid
| | - S. Martín-Lluesma
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
- Department of Basic Medical Sciences, Faculty of Medicine, University of Sant Pablo-CEU, CEU Universities, Madrid, Spain
| | - A. Gros
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona
| | - E. Garralda
- Medical Oncology Department, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Institute of Oncology (VHIO), Barcelona
| |
Collapse
|
5
|
Sherpally D, Manne A. Advancing Immunotherapy in Pancreatic Cancer: A Brief Review of Emerging Adoptive Cell Therapies. Cancers (Basel) 2025; 17:589. [PMID: 40002184 PMCID: PMC11853216 DOI: 10.3390/cancers17040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Pancreatic cancer has the lowest 5-year survival rate (13%) among major cancers and is the third leading cause of cancer-related deaths in the United States. The high lethality of this cancer is attributed to its insidious onset, late-stage diagnosis, rapid progression, and limited treatment options. Addressing these challenges requires a deeper understanding of the complex tumor microenvironment to identify novel therapeutic targets. Newer approaches like adoptive cell therapy have shown remarkable success in treating hematological malignancies, but their application in solid tumors, particularly pancreatic cancer, is still in the early stages of development. ACT broadly involves isolating immune cells (T lymphocytes, Natural Killer cells, and macrophages) from the patient, followed by genetic engineering to enhance and mount a specific anti-tumor response. Various ACT modalities are under investigation for pancreatic cancer, including chimeric antigen receptor T cells (CAR-T), chimeric antigen receptor NK cells (CAR-NK), tumor-infiltrating lymphocytes (TIL), T-cell receptor (TCR)-engineered T cells, and cytokine-induced killer cells (CIK). Major hurdles have been identifying actionable tumor antigens and delivering focused cellular therapies to overcome the immunosuppressive and dense fibrotic stroma surrounding the pancreatic cancer. Further studies are needed to explore the limitations faced by cellular therapy in pancreatic cancer and identify novel combination treatment approaches in order to improve clinical outcomes.
Collapse
Affiliation(s)
- Deepak Sherpally
- Department of Internal Medicine, New York Medical College, Metropolitan, New York, NY 10029, USA
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| |
Collapse
|
6
|
Dou L, Fang Y, Yang H, Ai G, Shen N. Immunogenic cell death: A new strategy to enhancing cancer immunotherapy. Hum Vaccin Immunother 2024; 20:2437918. [PMID: 39655738 PMCID: PMC11639453 DOI: 10.1080/21645515.2024.2437918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024] Open
Abstract
Immunogenic cell death (ICD) is a distinct type of stress-induced regulated cell death that can lead to adaptive immune responses and the establishment of immunological memory. ICD exhibits both similarities and differences when compared to apoptosis and other non-apoptotic forms of regulated cell death (RCD). The interplay between ICD-mediated immunosurveillance against cancer and the ability of cancer cells to evade ICD influences the host-tumor immunological interaction. Consequently, the restoration of ICD and the development of effective strategies to induce ICD have emerged as crucial considerations in the treatment of cancer within the context of immunotherapy. To enhance comprehension of ICD in the setting of cancer, this paper examines the interconnected responsive pathways associated with ICD, the corresponding biomarkers indicative of ICD, and the mechanisms through which tumors subvert ICD. Additionally, this review explores strategies for reinstating ICD and the therapeutic potential of harnessing ICD in cancer immunotherapy.
Collapse
Affiliation(s)
- Lei Dou
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fang
- Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiyuan Yang
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Ai
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Guo X, Li X, Wang S, Shi Y, Huang J, Liu X, Lu Y, Zhang J, Luo L, You J. Optimizing Adoptive Cell Therapy for Solid Tumors via Epigenetic Regulation of T-cell Destiny. Adv Healthc Mater 2024; 13:e2402209. [PMID: 39301920 DOI: 10.1002/adhm.202402209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Indexed: 09/22/2024]
Abstract
Adoptive cell therapy (ACT) emerged as a promising approach for cancer treatment, yet its application in solid tumors faced challenges such as inadequate tumor infiltration and cellular dysfunction. Histone acetylation is reported to play a crucial role in restoring T-cell function within tumor tissues. Building upon previous research, a novel strategy involving the co-loading of two drugs, G3C12 and vorinostat (SAHA), into PLGA microspheres to form G3C12+SAHA@PLGA is developed for intratumoral injection. The G3C12 peptide enhances adoptive T-cell recruitment to the tumor site by modulating the binding state of IFN-γ. While SAHA, a histone deacetylase inhibitor, promotes memory phenotypes of infiltrating T-cells and prevents their transition to an exhausted state. This synergistic approach effectively augmentes the efficacy of ACT in the "cold" tumor model (4T1) or the "hot" tumor model (CT26). These findings highlight the potential of combining epigenetic regulation with recruitment signaling as a means to enhance the therapeutic impact of ACT in treating solid tumors.
Collapse
Affiliation(s)
- Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, P. R. China
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, P. R. China
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, P. R. China
| |
Collapse
|
8
|
Zeng YY, Gu Q, Li D, Li AX, Liu RM, Liang JY, Liu JY. Immunocyte membrane-derived biomimetic nano-drug delivery system: a pioneering platform for tumour immunotherapy. Acta Pharmacol Sin 2024; 45:2455-2473. [PMID: 39085407 PMCID: PMC11579519 DOI: 10.1038/s41401-024-01355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Tumor immunotherapy characterized by its high specificity and minimal side effects has achieved revolutionary progress in the field of cancer treatment. However, the complex mechanisms of tumor immune microenvironment (TIME) and the individual variability of patients' immune system still present significant challenges to its clinical application. Immunocyte membrane-coated nanocarrier systems, as an innovative biomimetic drug delivery platform, exhibit remarkable advantages in tumor immunotherapy due to their high targeting capability, good biocompatibility and low immunogenicity. In this review we summarize the latest research advances in biomimetic delivery systems based on immune cells for tumor immunotherapy. We outline the existing methods of tumor immunotherapy including immune checkpoint therapy, adoptive cell transfer therapy and cancer vaccines etc. with a focus on the application of various immunocyte membranes in tumor immunotherapy and their prospects and challenges in drug delivery and immune modulation. We look forward to further exploring the application of biomimetic delivery systems based on immunocyte membrane-coated nanoparticles, aiming to provide a new framework for the clinical treatment of tumor immunity.
Collapse
Affiliation(s)
- Yuan-Ye Zeng
- School of Pharmacy, Fudan University, Shanghai, 201203, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qing Gu
- Department of Pharmacy, Jingan District Zhabei Central Hospital, Shanghai, 200070, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ai-Xue Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rong-Mei Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jian-Ying Liang
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Ji-Yong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Gharatape A, Amanzadi B, Mohamadi F, Rafieian M, Faridi-Majidi R. Recent advances in polymeric and lipid stimuli-responsive nanocarriers for cell-based cancer immunotherapy. Nanomedicine (Lond) 2024; 19:2655-2678. [PMID: 39540464 DOI: 10.1080/17435889.2024.2416377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer therapy has major limitations, including non-specificity, unavoidable side effects, low specific tumor accumulation and systemic toxicity. In recent years, more effective and precise treatment methods have been developed, including cell-based immunotherapy. Carriers that can accurately and specifically target cells and equip them to combat cancer cells are particularly important for developing this therapy. As a result, attention has been drawn to smart nanocarriers that can react to specific stimuli. Thus, stimuli-responsive nanocarriers have attracted increasing attention because they can change their physicochemical properties in response to stimulus conditions, such as pH, enzymes, redox agents, hypoxia, light and temperature. This review highlights recent advances in various stimuli-responsive nanocarriers, discussing loading, targeted delivery, cellular uptake, biocompatibility and immunomodulation in cell-based immunotherapy. Finally, future challenges and perspectives regarding the possible clinical translation of nanocarriers are discussed.
Collapse
Affiliation(s)
- Alireza Gharatape
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Bentolhoda Amanzadi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Faranak Mohamadi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Mahdieh Rafieian
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Reza Faridi-Majidi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Pharmaceutical Nanotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Ye L, Wang W, Li H, Ji Y, Le X, Xu X. Targeting the MET gene: unveiling therapeutic opportunities in immunotherapy within the tumor immune microenvironment of non-small cell lung cancer. Ther Adv Med Oncol 2024; 16:17588359241290733. [PMID: 39483139 PMCID: PMC11526239 DOI: 10.1177/17588359241290733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) represents the most prevalent histological subtype of lung cancer. Within this disease, the MET gene emerges as a critical therapeutic target, exhibiting various forms of dysregulation. Although MET tyrosine kinase inhibitors, HGF/c-MET targeting antibodies, and antibody-drug conjugates constitute the primary treatment modalities for patients with MET-altered NSCLC, numerous questions remain regarding their optimal application. The advent of immunotherapy holds promise for enhancing therapeutic outcomes in patients with MET-altered NSCLC. MET mutations can reshape the tumor immune microenvironment of NSCLC by reducing tumor immunogenicity, inducing exhaustion in immune-activated cells, and promoting immune evasion, which are crucial for modulating treatment responses. Furthermore, we emphasize the promising synergy of immunotherapy with emerging treatments and the challenges and opportunities in refining these approaches to improve patient outcomes.
Collapse
Affiliation(s)
- Lisha Ye
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Wenjing Wang
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Huihui Li
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yongling Ji
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No.1 Banshan East Road, Hangzhou, Zhejiang 310022, China
| | - Xiuning Le
- Division of Internal Medicine, Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4000, USA
| | - Xiaoling Xu
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Zhenmin Road, Shanghai 200433, China
| |
Collapse
|
11
|
Yang S, Sheffer M, Kaplan IE, Wang Z, Tarannum M, Dinh K, Abdulhamid Y, Bobilev E, Shapiro R, Porter R, Soiffer R, Ritz J, Koreth J, Wei Y, Chen P, Zhang K, Márquez-Pellegrin V, Bonanno S, Joshi N, Guan M, Yang M, Li D, Bellini C, Liu F, Chen J, Wu CJ, Barbie D, Li J, Romee R. Non-pathogenic E. coli displaying decoy-resistant IL18 mutein boosts anti-tumor and CAR NK cell responses. Nat Biotechnol 2024:10.1038/s41587-024-02418-6. [PMID: 39367093 DOI: 10.1038/s41587-024-02418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/29/2024] [Indexed: 10/06/2024]
Abstract
The tumor microenvironment can inhibit the efficacy of cancer therapies through mechanisms such as poor trafficking and exhaustion of immune cells. Here, to address this challenge, we exploited the safety, tumor tropism and ease of genetic manipulation of non-pathogenic Escherichia coli (E. coli) to deliver key immune-activating cytokines to tumors via surface display on the outer membrane of E. coli K-12 DH5α. Non-pathogenic E. coli expressing murine decoy-resistant IL18 mutein (DR18) induced robust CD8+ T and natural killer (NK) cell-dependent immune responses and suppressed tumor progression in immune-competent colorectal carcinoma and melanoma mouse models. E. coli K-12 DH5α engineered to display human DR18 potently activated mesothelin-targeting chimeric antigen receptor (CAR) NK cells and enhance their trafficking into tumors, which extended survival in an NK cell treatment-resistant mesothelioma xenograft model by enhancing TNF signaling and upregulating NK activation markers. Our live bacteria-based immunotherapeutic system safely and effectively induces potent anti-tumor responses in treatment-resistant solid tumors, motivating further evaluation of this approach in the clinic.
Collapse
Affiliation(s)
- Shaobo Yang
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Isabel E Kaplan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zongqi Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mubin Tarannum
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Khanhlinh Dinh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yasmin Abdulhamid
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eden Bobilev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Roman Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rebecca Porter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Robert Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John Koreth
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yun Wei
- Department of Chemistry and Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Peiru Chen
- Department of Chemistry and Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ke Zhang
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Shanna Bonanno
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Neel Joshi
- Department of Chemistry and Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ming Guan
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Mengdi Yang
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Deng Li
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Fuguo Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jiahe Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
12
|
Aizaz M, Khan AS, Khan M, Musazade E, Yang G. Advancements in tumor-infiltrating lymphocytes: Historical insights, contemporary milestones, and future directions in oncology therapy. Crit Rev Oncol Hematol 2024; 202:104471. [PMID: 39117163 DOI: 10.1016/j.critrevonc.2024.104471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are a subtype of immune cells that infiltrate and accumulate within tumors. Studies proved that TILs can be used as prognostic and predictive markers for cancer patients' responses to immunotherapy. This review explores the modern knowledge of TILs, the challenges and opportunities for utilizing TILs in cancer treatment, such as the rise of therapies under TIL circumstances, the identification of biomarkers for TIL activity, and methods used to isolate and expand TILs for therapeutic use. Ongoing clinical trials and promising results in different cancer types are highlighted, including melanoma, ovarian, and colorectal cancer. This also focuses on ongoing efforts to improve TIL-based therapies by identifying the specific subsets of TILs that are most effective in treating cancer and developing methods to increase the functionality and persistence of TILs in the tumor microenvironment. The article recapitulates the present state TILs therapy, ongoing research, and improvements to its potency.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China.
| | | | - Maria Khan
- Center of Biotechnology and Microbiology, University of Peshawar, Pakistan.
| | - Elshan Musazade
- College of Life Science, Jilin Agricultural University, Changchun, China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China.
| |
Collapse
|
13
|
Lv Y, Zhao H, Liu S, Meng Y, Yu W, Liu T, Sun Q, Shen M, Ren X, Liu L. Anlotinib and anti-PD-1 mAbs perfected CIK cell therapy for lung adenocarcinoma in preclinical trials. J Leukoc Biol 2024; 116:544-554. [PMID: 38373017 DOI: 10.1093/jleuko/qiae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/30/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
Murine cytokine-induced killer (CIK) cells are heterologous cells that kill various allogeneic and isogenic tumors and have functional and phenotypic characteristics of natural killer cells and T lymphocytes. However, the effect of CIK cells alone on solid tumor therapy is only limited. To enhance the therapeutic effect, it is vital to discover a mix of several therapy approaches. Immune cell function is inhibited by abnormal tumor vessels and the tumor microenvironment, which block lymphocyte entry into tumor tissue. To increase the effectiveness of CIK cells' antitumor activity, antivascular therapy and CIK cell therapy can be combined. Furthermore, anlotinib is a tiny drug with multitarget tyrosine kinase inhibitors that can block cell migration, delay angiogenesis, and decrease blood vessel density. Compared with other antiangiogenesis drugs, anlotinib stands out due to the wider target of action and lower effective dose. In this work, anlotinib and murine CIK cells were coupled to boost CD3+ T cell infiltration, CD3+CD4+ T cell infiltration, and expression of granzyme B and interferon γ from CD3+CD8+ T cells, which increased the antitumor activity. Through the generation of cytotoxic cytokines by T lymphocytes, the therapeutic group using anti-PD-1 monoclonal antibodies in conjunction with anlotinib and CIK cells was more successful than the group receiving dual therapy. The preclinical study contributes to exploring the therapeutic alternatives for patients with lung adenocarcinoma, thus prolonging their lives.
Collapse
Affiliation(s)
- Yingge Lv
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
| | - Hua Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Haihe Laboratory of Cell Ecosystem, Yuexin Road, Binhai New District, Tianjin, 300060, China
| | - Shaochuan Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
| | - Yuan Meng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
| | - Wenwen Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
| | - Ting Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
| | - Qian Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Haihe Laboratory of Cell Ecosystem, Yuexin Road, Binhai New District, Tianjin, 300060, China
| | - Meng Shen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Haihe Laboratory of Cell Ecosystem, Yuexin Road, Binhai New District, Tianjin, 300060, China
| | - Liang Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
| |
Collapse
|
14
|
Yu B, Kang J, Lei H, Li Z, Yang H, Zhang M. Immunotherapy for colorectal cancer. Front Immunol 2024; 15:1433315. [PMID: 39238638 PMCID: PMC11375682 DOI: 10.3389/fimmu.2024.1433315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Colorectal cancer is the third most common cancer and the second most lethal cancer in the world. The main cause of the disease is due to dietary and behavioral factors. The treatment of this complex disease is mainly based on traditional treatments, including surgery, radiotherapy, and chemotherapy. Due to its high prevalence and high morbidity, more effective treatments with fewer side effects are urgently needed. In recent years, immunotherapy has become a potential therapeutic alternative and one of the fastest-developing treatments. Immunotherapy inhibits tumor growth by activating or enhancing the immune system to recognize and attack cancer cells. This review presents the latest immunotherapies for immune checkpoint inhibitors, cell therapy, tumor-infiltrating lymphocytes, and oncolytic viruses. Some of these have shown promising results in clinical trials and are used in clinical treatment.
Collapse
Affiliation(s)
- Bing Yu
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Jian Kang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hong Lei
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Zhe Li
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hao Yang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Meng Zhang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| |
Collapse
|
15
|
Robert C, Gastman B, Gogas H, Rutkowski P, Long GV, Chaney MF, Joshi H, Lin YL, Snyder W, Chesney JA. Open-label, phase II study of talimogene laherparepvec plus pembrolizumab for the treatment of advanced melanoma that progressed on prior anti-PD-1 therapy: MASTERKEY-115. Eur J Cancer 2024; 207:114120. [PMID: 38870745 DOI: 10.1016/j.ejca.2024.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Treatment options for immunotherapy-refractory melanoma are an unmet need. The MASTERKEY-115 phase II, open-label, multicenter trial evaluated talimogene laherparepvec (T-VEC) plus pembrolizumab in advanced melanoma that progressed on prior programmed cell death protein-1 (PD-1) inhibitors. METHODS Cohorts 1 and 2 comprised patients (unresectable/metastatic melanoma) who had primary or acquired resistance, respectively, and disease progression within 12 weeks of their last anti-PD-1 dose. Cohorts 3 and 4 comprised patients (resectable disease) who underwent complete surgery, received adjuvant anti-PD-1, and experienced recurrence. Cohort 3 were disease-free for < 6 months and cohort 4 for ≥ 6 months after starting the adjuvant anti-PD-1 therapy and before confirmed recurrence. The primary endpoint was objective response rate (ORR) per RECIST v1.1. Secondary endpoints included complete response rate (CRR), disease control rate (DCR) and progression-free survival (PFS) per RECIST v1.1 and irRC-RECIST, and safety. RESULTS Of the 72 enrolled patients, 71 were treated. The ORR (95% CI) was 0%, 6.7% (0.2-32.0), 40.0% (16.3-67.7), and 46.7% (21.3-73.4) in cohorts 1-4, respectively; iORR was 3.8% (0.1-19.6), 6.7% (0.2-32.0), 53.3% (26.6-78.7), and 46.7% (21.3-73.4). iCRR was 0%, 0%, 13.3%, and 13.3%. Median iPFS (months) was 5.5, 8.2, not estimable [NE], and NE for cohorts 1-4, respectively; iDCR was 50.0%, 40.0%, 73.3%, and 86.7%. Treatment-related adverse events (TRAEs), grade ≥ 3 TRAEs, serious AEs, and fatal AEs occurred in 54 (76.1%), 9 (12.7%), 24 (33.8%), and 10 (14.1%) patients, respectively. CONCLUSION T-VEC-pembrolizumab demonstrated antitumor activity and tolerability in PD-1-refractory melanoma, specifically in patients with disease recurrence on or after adjuvant anti-PD-1. TRIAL REGISTRATION ClinicalTrials.gov identifier - NCT04068181.
Collapse
Affiliation(s)
- Caroline Robert
- Gustave Roussy and Paris-Saclay University, Villejuif, France
| | - Brian Gastman
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Helen Gogas
- National and Kapodistrian University of Athens, Athens, Greece
| | - Piotr Rutkowski
- Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, and Royal North Shore and Mater Hospitals, New South Wales, Australia
| | | | | | | | | | - Jason A Chesney
- UofL Health - Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
16
|
Xu DM, Chen LX, Zhuang XY, Han H, Mo M. Advances in molecular basis of response to immunotherapy for penile cancer: better screening of responders. Front Oncol 2024; 14:1394260. [PMID: 39087027 PMCID: PMC11288821 DOI: 10.3389/fonc.2024.1394260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Penile cancer is a rare malignant tumor of the male urinary system. The treatment benefit of standard first-line chemotherapy is not ideal for patients with locally advanced or metastatic lymph nodes. Immunotherapy has brought new treatment strategies and opportunities for patients with penile cancer. At present, clinical studies on immunotherapy for penile cancer have been reported, and the results show that it is effective but not conclusive. With the development of immunotherapy and the progress of molecular research technology, we can better screen the immunotherapy response population and explore new combination treatment regimens to evaluate the best combination regimen and obtain the optimal treatment options, which is also an important research direction for the immunotherapy of penile cancer in the future.
Collapse
Affiliation(s)
- Da-Ming Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling-Xiao Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Yu Zhuang
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hui Han
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Wu Y, Yu G, Jin K, Qian J. Advancing non-small cell lung cancer treatment: the power of combination immunotherapies. Front Immunol 2024; 15:1349502. [PMID: 39015563 PMCID: PMC11250065 DOI: 10.3389/fimmu.2024.1349502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains an unsolved challenge in oncology, signifying a substantial global health burden. While considerable progress has been made in recent years through the emergence of immunotherapy modalities, such as immune checkpoint inhibitors (ICIs), monotherapies often yield limited clinical outcomes. The rationale behind combining various immunotherapeutic or other anticancer agents, the mechanistic underpinnings, and the clinical evidence supporting their utilization is crucial in NSCLC therapy. Regarding the synergistic potential of combination immunotherapies, this study aims to provide insights to help the landscape of NSCLC treatment and improve clinical outcomes. In addition, this review article discusses the challenges and considerations of combination regimens, including toxicity management and patient selection.
Collapse
Affiliation(s)
- Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
18
|
Kabelitz D, Yin Z. Immunotherapy with γδ T-cells: the future is there. Immunotherapy 2024; 16:705-708. [PMID: 38940301 PMCID: PMC11421294 DOI: 10.1080/1750743x.2024.2365622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University & University Hospital Schleswig-Holstein Campus Kiel, Kiel, 24105, Germany
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis & Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules & Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention & Control, Jinan University, Ministry of Education, Guangzhou, 510632, China
| |
Collapse
|
19
|
Ho M, Bonavida B. Cross-Talks between Raf Kinase Inhibitor Protein and Programmed Cell Death Ligand 1 Expressions in Cancer: Role in Immune Evasion and Therapeutic Implications. Cells 2024; 13:864. [PMID: 38786085 PMCID: PMC11119125 DOI: 10.3390/cells13100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Innovations in cancer immunotherapy have resulted in the development of several novel immunotherapeutic strategies that can disrupt immunosuppression. One key advancement lies in immune checkpoint inhibitors (ICIs), which have shown significant clinical efficacy and increased survival rates in patients with various therapy-resistant cancers. This immune intervention consists of monoclonal antibodies directed against inhibitory receptors (e.g., PD-1) on cytotoxic CD8 T cells or against corresponding ligands (e.g., PD-L1/PD-L2) overexpressed on cancer cells and other cells in the tumor microenvironment (TME). However, not all cancer cells respond-there are still poor clinical responses, immune-related adverse effects, adaptive resistance, and vulnerability to ICIs in a subset of patients with cancer. This challenge showcases the heterogeneity of cancer, emphasizing the existence of additional immunoregulatory mechanisms in many patients. Therefore, it is essential to investigate PD-L1's interaction with other oncogenic genes and pathways to further advance targeted therapies and address resistance mechanisms. Accordingly, our aim was to investigate the mechanisms governing PD-L1 expression in tumor cells, given its correlation with immune evasion, to uncover novel mechanisms for decreasing PD-L1 expression and restoring anti-tumor immune responses. Numerous studies have demonstrated that the upregulation of Raf Kinase Inhibitor Protein (RKIP) in many cancers contributes to the suppression of key hyperactive pathways observed in malignant cells, alongside its broadening involvement in immune responses and the modulation of the TME. We, therefore, hypothesized that the role of PD-L1 in cancer immune surveillance may be inversely correlated with the low expression level of the tumor suppressor Raf Kinase Inhibitor Protein (RKIP) expression in cancer cells. This hypothesis was investigated and we found several signaling cross-talk pathways between the regulations of both RKIP and PD-L1 expressions. These pathways and regulatory factors include the MAPK and JAK/STAT pathways, GSK3β, cytokines IFN-γ and IL-1β, Sox2, and transcription factors YY1 and NFκB. The pathways that upregulated PD-L1 were inhibitory for RKIP expression and vice versa. Bioinformatic analyses in various human cancers demonstrated the inverse relationship between PD-L1 and RKIP expressions and their prognostic roles. Therefore, we suspect that the direct upregulation of RKIP and/or the use of targeted RKIP inducers in combination with ICIs could result in a more targeted anti-tumor immune response-addressing the therapeutic challenges related to PD-1/PD-L1 monotherapy alone.
Collapse
Affiliation(s)
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
20
|
Isaak AJ, Clements GR, Buenaventura RGM, Merlino G, Yu Y. Development of Personalized Strategies for Precisely Battling Malignant Melanoma. Int J Mol Sci 2024; 25:5023. [PMID: 38732242 PMCID: PMC11084485 DOI: 10.3390/ijms25095023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Melanoma is the most severe and fatal form of skin cancer, resulting from multiple gene mutations with high intra-tumor and inter-tumor molecular heterogeneity. Treatment options for patients whose disease has progressed beyond the ability for surgical resection rely on currently accepted standard therapies, notably immune checkpoint inhibitors and targeted therapies. Acquired resistance to these therapies and treatment-associated toxicity necessitate exploring novel strategies, especially those that can be personalized for specific patients and/or populations. Here, we review the current landscape and progress of standard therapies and explore what personalized oncology techniques may entail in the scope of melanoma. Our purpose is to provide an up-to-date summary of the tools at our disposal that work to circumvent the common barriers faced when battling melanoma.
Collapse
Affiliation(s)
| | | | | | | | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Li X, Zhu Y, Yi J, Deng Y, Lei B, Ren H. Adoptive cell immunotherapy for breast cancer: harnessing the power of immune cells. J Leukoc Biol 2024; 115:866-881. [PMID: 37949484 DOI: 10.1093/jleuko/qiad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Breast cancer is the most prevalent malignant neoplasm worldwide, necessitating the development of novel therapeutic strategies owing to the limitations posed by conventional treatment modalities. Immunotherapy is an innovative approach that has demonstrated significant efficacy in modulating a patient's innate immune system to combat tumor cells. In the era of precision medicine, adoptive immunotherapy for breast cancer has garnered widespread attention as an emerging treatment strategy, primarily encompassing cellular therapies such as tumor-infiltrating lymphocyte therapy, chimeric antigen receptor T/natural killer/M cell therapy, T cell receptor gene-engineered T cell therapy, lymphokine-activated killer cell therapy, cytokine-induced killer cell therapy, natural killer cell therapy, and γδ T cell therapy, among others. This treatment paradigm is based on the principles of immune memory and antigen specificity, involving the collection, processing, and expansion of the patient's immune cells, followed by their reintroduction into the patient's body to activate the immune system and prevent tumor recurrence and metastasis. Currently, multiple clinical trials are assessing the feasibility, effectiveness, and safety of adoptive immunotherapy in breast cancer. However, this therapeutic approach faces challenges associated with tumor heterogeneity, immune evasion, and treatment safety. This review comprehensively summarizes the latest advancements in adoptive immunotherapy for breast cancer and discusses future research directions and prospects, offering valuable guidance and insights into breast cancer immunotherapy.
Collapse
Affiliation(s)
- Xue Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Yunan Zhu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Jinfeng Yi
- Department of Pathology, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China
| | - Yuhan Deng
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Bo Lei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - He Ren
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| |
Collapse
|
22
|
Chen L, Chen Y, Ge L, Zhang Q, Meng J. Recent advances in patient-derived tumor organoids for reconstructing TME of head and neck cancer. J Oral Pathol Med 2024; 53:238-245. [PMID: 38561906 DOI: 10.1111/jop.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND The differences between existing preclinical models and the tumor microenvironment in vivo are one of the significant challenges hindering cancer therapy development. Patient-derived tumor organoids (PDTO) can highly retain tumor heterogeneity. Thus, it provides a more reliable platform for research in tumor biology, new drug screening, and precision medicine. METHODS We conducted a systematic review to summarise the characteristics of the existing preclinical models, the advantages of patient-derived tumor organoids in reconstructing the tumor microenvironment, and the latest research progress. Moreover, this study deciphers organoid culture technology in the clinical precision treatment of head and neck cancer to achieve better transformation. Studies were identified through a comprehensive search of Ovid MEDLINE (Wolters Kluwer), PubMed (National Library of Medicine), web of Science (Thomson Reuters) and, Scopus (Elsevier) databases, without publication date or language restrictions. RESULTS In tumor development, the interaction between cellular and non-cellular components in the tumor microenvironment (TME) has a crucial role. Co-culture, Air-liquid interface culture, microfluidics, and decellularized matrix have depicted great potential in reconstructing the tumor microenvironment and simulating tumor genesis, development, and metastasis. CONCLUSION An accurate determination of stromal cells, immune cells, and extracellular matrix can be achieved by reconstructing the head and neck cancer tumor microenvironment using the PDTO model. Moreover, the interaction between head and neck cancer cells can also play an essential role in implementing the individualized precision treatment of head and neck cancer.
Collapse
Affiliation(s)
- Lin Chen
- Department of Stomatology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yinyu Chen
- Department of Stomatology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liangyu Ge
- Department of Stomatology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Qian Zhang
- Department of Stomatology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jian Meng
- Department of Stomatology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
23
|
Albarrán Fernández V, Ballestín Martínez P, Stoltenborg Granhøj J, Borch TH, Donia M, Marie Svane I. Biomarkers for response to TIL therapy: a comprehensive review. J Immunother Cancer 2024; 12:e008640. [PMID: 38485186 PMCID: PMC10941183 DOI: 10.1136/jitc-2023-008640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) has demonstrated durable clinical responses in patients with metastatic melanoma, substantiated by recent positive results of the first phase III trial on TIL therapy. Being a demanding and logistically complex treatment, extensive preclinical and clinical effort is required to optimize patient selection by identifying predictive biomarkers of response. This review aims to comprehensively summarize the current evidence regarding the potential impact of tumor-related factors (such as mutational burden, neoantigen load, immune infiltration, status of oncogenic driver genes, and epigenetic modifications), patient characteristics (including disease burden and location, baseline cytokines and lactate dehydrogenase serum levels, human leucocyte antigen haplotype, or prior exposure to immune checkpoint inhibitors and other anticancer therapies), phenotypic features of the transferred T cells (mainly the total cell count, CD8:CD4 ratio, ex vivo culture time, expression of exhaustion markers, costimulatory signals, antitumor reactivity, and scope of target tumor-associated antigens), and other treatment-related factors (such as lymphodepleting chemotherapy and postinfusion administration of interleukin-2).
Collapse
Affiliation(s)
- Víctor Albarrán Fernández
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Ramón y Cajal University Hospital, Department of Medical Oncology, Madrid, Spain
| | - Pablo Ballestín Martínez
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Clínico San Carlos University Hospital, Department of Medical Oncology, Madrid, Spain
| | - Joachim Stoltenborg Granhøj
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Troels Holz Borch
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
24
|
Fortuna A, Amaral T. Multidisciplinary approach and treatment of acral and mucosal melanoma. Front Oncol 2024; 14:1340408. [PMID: 38469235 PMCID: PMC10926023 DOI: 10.3389/fonc.2024.1340408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
Acral and mucosal melanoma are uncommon variants of melanoma. Acral melanoma has an age-adjusted incidence of approximately 1.8 cases per million individuals per year, accounting for about 2% to 3% of all melanoma cases. On the other hand, mucosal melanoma, with an incidence of 2.2 cases per million per year, makes up around 1.3% of all melanoma cases. These melanomas, in addition to being biologically and clinically distinct from cutaneous melanoma, share certain clinical and pathologic characteristics. These include a more aggressive nature and a less favorable prognosis. Furthermore, they exhibit a different mutational pattern, with KIT mutations being more prevalent in acral and mucosal melanomas. This divergence in mutational patterns may partially account for the relatively poorer prognosis, particularly to immune checkpoint inhibitors. This review explores various aspects of acral and mucosal melanoma, including their clinical presentation, pathologic features, mutational profiles, current therapeutic approaches, outcomes associated with systemic therapy, and potential strategies to address resistance to existing treatments.
Collapse
Affiliation(s)
- Ana Fortuna
- Oncology Department, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | - Teresa Amaral
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence Image-Guided and Functionally Instructed Tumor Therapies (iFIT) (EXC 2180), Tübingen, Germany
| |
Collapse
|
25
|
Zhang S, Zhang X, Yang H, Liang T, Bai X. Hurdle or thruster: Glucose metabolism of T cells in anti-tumour immunity. Biochim Biophys Acta Rev Cancer 2024; 1879:189022. [PMID: 37993001 DOI: 10.1016/j.bbcan.2023.189022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 11/24/2023]
Abstract
Glucose metabolism is essential for the activation, differentiation and function of T cells and proper glucose metabolism is required to maintain effective T cell immunity. Dysregulation of glucose metabolism is a hallmark of cancer, and the tumour microenvironment (TME2) can create metabolic barriers in T cells that inhibit their anti-tumour immune function. Targeting glucose metabolism is a promising approach to improve the capacity of T cells in the TME. The efficacy of common immunotherapies, such as immune checkpoint inhibitors (ICIs3) and adoptive cell transfer (ACT4), can be limited by T-cell function, and the treatment itself can affect T-cell metabolism. Therefore, understanding the relationship between immunotherapy and T cell glucose metabolism helps to achieve more effective anti-tumour therapy. In this review, we provide an overview of T cell glucose metabolism and how T cell metabolic reprogramming in the TME regulates anti-tumour responses, briefly describe the metabolic patterns of T cells during ICI and ACT therapies, which suggest possible synergistic strategies.
Collapse
Affiliation(s)
- Sirui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
26
|
Nielsen M, Monberg T, Sundvold V, Albieri B, Hovgaard D, Petersen MM, Krarup-Hansen A, Met Ö, Camilio K, Clancy T, Stratford R, Sveinbjornsson B, Rekdal Ø, Junker N, Svane IM. LTX-315 and adoptive cell therapy using tumor-infiltrating lymphocytes generate tumor specific T cells in patients with metastatic soft tissue sarcoma. Oncoimmunology 2023; 13:2290900. [PMID: 38125722 PMCID: PMC10732595 DOI: 10.1080/2162402x.2023.2290900] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
LTX-315 is an oncolytic peptide that elicits both local and systemic immune responses upon intratumoral injection. In the present pilot trial, we treated patients with metastatic soft tissue sarcoma with the combination of LTX-315 and adoptive T-cell therapy using in vitro expanded tumor-infiltrating lymphocytes. Six heavily pretreated patients were included in the trial and treated with LTX-315 of which four patients proceeded to adoptive T-cell therapy. Overall, the treatment was considered safe with only expected and manageable toxicity. The best overall clinical response was stable disease for 208 days, and in this patient, we detected tumor-reactive T cells in the blood that lasted until disease progression. In three patients T-cell reactivity against in silico predicted neoantigens was demonstrated. Additionally, de novo T-cell clones were generated and expanded in the blood following LTX-315 injections. In conclusion, this pilot study provides proof that it is feasible to combine LTX-315 and adoptive T-cell therapy, and that this treatment can induce systemic immune responses that resulted in stabilization of the disease in sarcoma patients with otherwise progressive disease. Further optimization of the treatment protocol is warranted to increase clinical activity. ClinicalTrials.gov Identifier: NCT03725605.
Collapse
Affiliation(s)
- Morten Nielsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Tine Monberg
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Benedetta Albieri
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Dorrit Hovgaard
- Department of Orthopedic Surgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Michael Mørk Petersen
- Department of Orthopedic Surgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | | - Niels Junker
- Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
27
|
Zemanek T, Nova Z, Nicodemou A. Tumor-Infiltrating Lymphocytes and Adoptive Cell Therapy: State of the Art in Colorectal, Breast and Lung Cancer. Physiol Res 2023; 72:S209-S224. [PMID: 37888965 PMCID: PMC10669950 DOI: 10.33549/physiolres.935155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 12/01/2023] Open
Abstract
Our knowledge of tumor-infiltrating lymphocytes (TILs) is dramatically expanding. These cells have proven prognostic and therapeutic value for many cancer outcomes and potential to treat also disseminated breast, colorectal, or lung cancer. However, the therapeutical outcome of TILs is negatively affected by tumor mutational burden and neoantigens. On the other hand, it can be improved in combination with checkpoint blockade therapy. This knowledge and rapid detection techniques alongside gene editing allow us to classify and modify T cells in many ways. Hence, to tailor them precisely to the patient´s needs as to program T cell receptors to recognize specific tumor-associated neoantigens and to insert them into lymphocytes or to select tumor neoantigen-specific T cells, for the development of vaccines that recognize tumor-specific antigens in tumors or metastases. Further studies and clinical trials in the field are needed for an even better-detailed understanding of TILs interactions and aiming in the fight against multiple cancers.
Collapse
Affiliation(s)
- T Zemanek
- Lambda Life, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
28
|
Monberg TJ, Borch TH, Svane IM, Donia M. TIL Therapy: Facts and Hopes. Clin Cancer Res 2023; 29:3275-3283. [PMID: 37058256 DOI: 10.1158/1078-0432.ccr-22-2428] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
After a positive phase III trial, it is evident that treatment with tumor-infiltrating lymphocytes (TIL) is a safe, feasible, and effective treatment modality for patients with metastatic melanoma. Further, the treatment is safe and feasible in diverse solid tumors, regardless of the histologic type. Still, TIL treatment has not obtained the regulatory approvals to be implemented on a larger scale. Therefore, its availability is currently restricted to a few centers worldwide. In this review, we present the current knowledge of TIL therapy and discuss the practical, logistic, and economic challenges associated with implementing TIL therapy on a larger scale. Finally, we suggest strategies to facilitate the widespread implementation of TIL therapy and approaches to develop the next generation of TILs.
Collapse
Affiliation(s)
- Tine J Monberg
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
| | - Troels H Borch
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
| | - Inge M Svane
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
| | - Marco Donia
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
| |
Collapse
|
29
|
Huang H, Li Z, Xia Y, Zhao Z, Wang D, Jin H, Liu F, Yang Y, Shen L, Lu Z. Association between radiomics features of DCE-MRI and CD8 + and CD4 + TILs in advanced gastric cancer. Pathol Oncol Res 2023; 29:1611001. [PMID: 37342362 PMCID: PMC10277864 DOI: 10.3389/pore.2023.1611001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Objective: The aim of this investigation was to explore the correlation between the levels of tumor-infiltrating CD8+ and CD4+ T cells and the quantitative pharmacokinetic parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in patients with advanced gastric cancer. Methods: We retrospectively analyzed the data of 103 patients with histopathologically confirmed advanced gastric cancer (AGC). Three pharmacokinetic parameters, Kep, Ktrans, and Ve, and their radiomics characteristics were obtained by Omni Kinetics software. Immunohistochemical staining was used to determine CD4+ and CD8+ TILs. Statistical analysis was subsequently performed to assess the correlation between radiomics characteristics and CD4+ and CD8+ TIL density. Results: All patients included in this study were finally divided into either a CD8+ TILs low-density group (n = 51) (CD8+ TILs < 138) or a high-density group (n = 52) (CD8+ TILs ≥ 138), and a CD4+ TILs low-density group (n = 51) (CD4+ TILs < 87) or a high-density group (n = 52) (CD4+ TILs ≥ 87). ClusterShade and Skewness based on Kep and Skewness based on Ktrans both showed moderate negative correlation with CD8+ TIL levels (r = 0.630-0.349, p < 0.001), with ClusterShade based on Kep having the highest negative correlation (r = -0.630, p < 0.001). Inertia-based Kep showed a moderate positive correlation with the CD4+ TIL level (r = 0.549, p < 0.001), and the Correlation based on Kep showed a moderate negative correlation with the CD4+ TIL level, which also had the highest correlation coefficient (r = -0.616, p < 0.001). The diagnostic efficacy of the above features was assessed by ROC curves. For CD8+ TILs, ClusterShade of Kep had the highest mean area under the curve (AUC) (0.863). For CD4+ TILs, the Correlation of Kep had the highest mean AUC (0.856). Conclusion: The radiomics features of DCE-MRI are associated with the expression of tumor-infiltrating CD8+ and CD4+ T cells in AGC, which have the potential to noninvasively evaluate the expression of CD8+ and CD4+ TILs in AGC patients.
Collapse
Affiliation(s)
- Huizhen Huang
- Shaoxing of Medicine, Shaoxing University, Shaoxing, China
| | - Zhiheng Li
- Department of Radiology, Anhui Provincial Hospital, Hefei, China
| | - Yue Xia
- Shaoxing of Medicine, Shaoxing University, Shaoxing, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, China
| | - Dandan Wang
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, China
| | - Hongyan Jin
- Country Department of Pathology, Shaoxing People’s Hospital, Shaoxing, China
| | - Fang Liu
- Country Department of Pathology, Shaoxing People’s Hospital, Shaoxing, China
| | - Ye Yang
- Country Department of Pathology, Shaoxing People’s Hospital, Shaoxing, China
| | - Liyijing Shen
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, China
| | - Zengxin Lu
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, China
- The First Affiliated Hospital of Shaoxing University, Shaoxing, China
| |
Collapse
|
30
|
Javid H, Attarian F, Saadatmand T, Rezagholinejad N, Mehri A, Amiri H, Karimi-Shahri M. The therapeutic potential of immunotherapy in the treatment of breast cancer: Rational strategies and recent progress. J Cell Biochem 2023; 124:477-494. [PMID: 36966454 DOI: 10.1002/jcb.30402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/25/2023] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
The second leading cause of cancer death in women worldwide is breast cancer (BC), and despite significant advances in BC therapies, a significant proportion of patients develop metastasis and disease recurrence. Currently used treatments, like radiotherapy, chemotherapy, and hormone replacement therapy, result in poor responses and high recurrence rates. Alternative therapies are therefore needed for this type of cancer. Cancer patients may benefit from immunotherapy, a novel treatment strategy in cancer treatment. Even though immunotherapy has been successful in many cases, some patients do not respond to the treatment or those who do respond relapse or progress. The purpose of this review is to discuss several different immunotherapy approaches approved for the treatment of BC, as well as different strategies for immunotherapy for the treatment of BC.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Attarian
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Toktam Saadatmand
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | | | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Amiri
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
31
|
Tas L, Jedema I, Haanen JB. Novel strategies to improve efficacy of treatment with tumor-infiltrating lymphocytes (TILs) for patients with solid cancers. Curr Opin Oncol 2023; 35:107-113. [PMID: 36607824 PMCID: PMC9894146 DOI: 10.1097/cco.0000000000000925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Treatment with tumor-infiltrating lymphocytes (TILs) has shown remarkable clinical responses in patients with advanced solid tumors. Although the TIL production process is very robust, the original protocol stems from the early nineties and lacks effective selection for tumor-reactivity and functional activity. In this review we highlight the limitations of the current production process and give an overview of improvements that can be made to increase TIL efficacy. RECENT FINDINGS With the recent advances in single cell sequencing technologies, our understanding of the composition and phenotype of TILs in the tumor micro environment has majorly increased, which forms the basis for the development of new strategies to improve the TIL production process. Strategies involve selection for neoantigen-reactive TILs by cell sorting or selective expansion strategies. Furthermore, gene editing strategies like Clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas9) can be used to increase TIL functionality. SUMMARY Although combining all the possible improvements into a next generation TIL product might be challenging, it is highly likely that those techniques will increase the clinical value of TIL therapy in the coming years.
Collapse
Affiliation(s)
- Liselotte Tas
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Inge Jedema
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - John B.A.G. Haanen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Clinical Oncology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
32
|
Abstract
This article describes three emerging, novel cancer immunotherapies: BITE, TIL and cancer vaccines are therapies that recognize specific targets on cancer cells and trigger a specific immune response. So far, not all tumor types can benefit from these approaches the best results have been observed in hematological malignancies, melanoma, and lung cancer. These novel biological products are currently being tested in several cancer centers in Switzerland, and physicians must be familiar with these procedures, as some of their patients might be treated with such therapies in the near future.
Collapse
Affiliation(s)
- Nicolas Mach
- Clinical Research Unit, Oncology Dpt, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| |
Collapse
|
33
|
Kazemi MH, Sadri M, Najafi A, Rahimi A, Baghernejadan Z, Khorramdelazad H, Falak R. Tumor-infiltrating lymphocytes for treatment of solid tumors: It takes two to tango? Front Immunol 2022; 13:1018962. [PMID: 36389779 PMCID: PMC9651159 DOI: 10.3389/fimmu.2022.1018962] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/14/2022] [Indexed: 07/30/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs), frontline soldiers of the adaptive immune system, are recruited into the tumor site to fight against tumors. However, their small number and reduced activity limit their ability to overcome the tumor. Enhancement of TILs number and activity against tumors has been of interest for a long time. A lack of knowledge about the tumor microenvironment (TME) has limited success in primary TIL therapies. Although the advent of engineered T cells has revolutionized the immunotherapy methods of hematologic cancers, the heterogeneity of solid tumors warrants the application of TILs with a wide range of specificity. Recent advances in understanding TME, immune exhaustion, and immune checkpoints have paved the way for TIL therapy regimens. Nowadays, TIL therapy has regained attention as a safe personalized immunotherapy, and currently, several clinical trials are evaluating the efficacy of TIL therapy in patients who have failed conventional immunotherapies. Gaining favorable outcomes following TIL therapy of patients with metastatic melanoma, cervical cancer, ovarian cancer, and breast cancer has raised hope in patients with refractory solid tumors, too. Nevertheless, TIL therapy procedures face several challenges, such as high cost, timely expansion, and technical challenges in selecting and activating the cells. Herein, we reviewed the recent advances in the TIL therapy of solid tumors and discussed the challenges and perspectives.
Collapse
Affiliation(s)
- Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Opportunities and obstacles for the melanoma immunotherapy using T cell and chimeric antigen receptor T (CAR-T) applications: a literature review. Mol Biol Rep 2022; 49:10627-10633. [PMID: 35715610 DOI: 10.1007/s11033-022-07633-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy procedure includes taking personal T cells and processing or genetic engineering using specific antigens and in vitro expanding and eventually infusing into the patient's body to unleash immune responses. Adoptive cell therapy (ACT) includes lymphocytes taking, in vitro selection and expansion and processing for stimulation or activation and infusion into the patient's body. Immune checkpoint inhibitors (ICIs), ACT and CAR-T cell therapies have demonstrated acceptable results. However, rare CAR-T cells tissue infiltration, off-target toxicity and resistance development include main disadvantages of CAR-T cell based therapy. Selection of suitable target antigens and novel engineered immune cells are warranted in future studies using "surfaceome" analysis. Employment of cytokines (IL-2, IL-7) for T cells activation has been also associated with specific anti-melanoma function which overcome telomeres shortening and further T cells differentiation. In resistant cases, rapidly accelerated fibrosarcoma B-type and mitogen-activated extracellular signal-regulated kinase inhibitors have been mostly applied. The aim of this study was evaluation of CAR-T cell and adoptive cell therapies efficiency for the treatment of melanoma.
Collapse
|