1
|
Wang H, Chen G, Gong Q, Wu J, Chen P. Systemic inflammatory regulators are associated with two common types of neuropathic pain: A bidirectional Mendelian randomization study. Int Immunopharmacol 2024; 143:113466. [PMID: 39471697 DOI: 10.1016/j.intimp.2024.113466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/03/2024] [Accepted: 10/19/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Currently, there is limited and inconsistent evidence regarding the causal relationship between systemic inflammatory regulators and two common types of neuropathic pain, namely, postherpetic neuralgia (PHN) and trigeminal neuralgia (TN). This study employed a Mendelian randomization (MR) approach to investigate the causal relationship between systemic inflammatory regulators and these two common neuropathic pain conditions. METHODS In this study, 41 single-nucleotide polymorphisms (SNPs) associated with PHN and TN were selected as instrumental variables (IVs) representing systemic inflammatory regulators. Genetic associations of systemic inflammatory regulators were derived from recent genome-wide association studies (GWAS) on the human proteome and cytokines. Genetic data related to PHN and TN were obtained from the FinnGen. The primary analytical method utilized inverse variance weighting (IVW) and various sensitivity analyses. RESULTS Prior to applying the false discovery rate (FDR) correction, our bidirectional MR analysis revealed that increased levels of IFNγ (OR: 0.46, 95% CI: 0.24-0.87, PIVW: 0.016) and MCP3 (OR: 0.52, 95% CI: 0.35-0.77, PIVW: 0.001) were associated with a reduced risk of PHN, and increased levels of IL-16 (OR: 0.81, 95% CI: 0.67-0.98, PIVW: 0.026) were causally associated with a reduced risk of TN. In discussing the impact of PHN and TN on systemic inflammatory regulator levels, we observed the following findings: The BETA for CTACK was -0.07 (95% CI: -0.13 to -0.01, PIVW: 0.015), the BETA for FGFBasic was -0.04 (95% CI: -0.08 to -0.01, PIVW: 0.020), and the BETA for IL-17 was -0.04 (95% CI: -0.08 to -0.01, PIVW: 0.019). These results indicate that patients with PHN tend to have lower levels of CTACK, FGFBasic, and IL-17. Conversely, the BETA for IFNγ was -0.09 (95% CI: -0.18 to 0.00, PIVW: 0.046), suggesting that patients with TN tend to have lower levels of IFN γ. However, after FDR correction, only the association between MCP3 and PHN remained statistically significant (PFDR: 0.044). CONCLUSION This study found that certain systemic inflammatory regulators are associated with PHN and TN to some extent. However, further research is needed to explore the specific mechanisms underlying these connections.
Collapse
Affiliation(s)
- Hao Wang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Guanglei Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Qian Gong
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jing Wu
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China.
| |
Collapse
|
2
|
He B, Wang W, Wen J, Zhang R, Lin W, Guo Y, Xu Y, Huser T, Wei X, Yang Z. Behavioral dynamics of neuroprotective macrophage polarization in neuropathic pain observed by GHz femtosecond laser two-photon excitation microscopy. JOURNAL OF BIOPHOTONICS 2024; 17:e202400026. [PMID: 38453163 DOI: 10.1002/jbio.202400026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
Macrophage polarization in neurotoxic (M1) or neuroprotective (M2) phenotypes is known to play a significant role in neuropathic pain, but its behavioral dynamics and underlying mechanism remain largely unknown. Two-photon excitation microscopy (2PEM) is a promising functional imaging tool for investigating the mechanism of cellular behavior, as using near-infrared excitation wavelengths is less subjected to light scattering. However, the higher-order photobleaching effect in 2PEM can seriously hamper its applications to long-term live-cell studies. Here, we demonstrate a GHz femtosecond (fs) 2PEM that enables hours-long live-cell imaging of macrophage behavior with reduced higher-order photobleaching effect-by leveraging the repetition rate of fs pulses according to the fluorescence lifetime of fluorophores. Using this new functional 2PEM platform, we measure the polarization characteristics of macrophages, especially the long-term cellular behavior in efferocytosis, unveiling the dynamic mechanism of neuroprotective macrophage polarization in neuropathic pain. These efforts can create new opportunities for understanding long-term cellular dynamic behavior in neuropathic pain, as well as other neurobiological problems, and thus dissecting the underlying complex pathogenesis.
Collapse
Affiliation(s)
- Bin He
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
- Department of Orthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenlong Wang
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
| | - Junpeng Wen
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
| | - Runsen Zhang
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
| | - Wei Lin
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
| | - Yuankai Guo
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
| | - Yue Xu
- Department of Orthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Thomas Huser
- Biomolecular Photonics, Department of Physics, Bielefeld University, Bielefeld, Germany
| | - Xiaoming Wei
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
| | - Zhongmin Yang
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
- Research Institute of Future Technology, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Liu Y, Wang L, Zhou C, Yuan Y, Fang B, Lu K, Xu F, Chen L, Huang L. MiR-31-5p regulates the neuroinflammatory response via TRAF6 in neuropathic pain. Biol Direct 2024; 19:10. [PMID: 38267979 PMCID: PMC10807213 DOI: 10.1186/s13062-023-00434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Neuropathic pain is chronic pain and has few effective control strategies. Studies have demonstrated that microRNAs have functions in neuropathic pain. However, no study has been conducted to demonstrate the role and mechanism of microRNA (miR)-31-5p in neuropathic pain. Accordingly, this study sought to determine the pathological role of miR-31-5p in chronic constriction injury (CCI) -induced neuropathic pain mouse models. METHODS We used CCI surgery to establish mouse neuropathic pain model. Behavioral tests were performed to evaluate pain sensitivity of mice. Expressions of miR-31-5p and inflammatory cytokines in dorsal root ganglion (DRG) were examined by polymerase chain reaction. Animals or cells were received with/without miR-31-5p mimic or inhibitor to investigate its role in neuropathic pain. The mechanism of miR-31-5p was assayed using western blotting, immunofluorescence staining and dual-luciferase reporter assay. RESULTS We found that CCI led to a significant decrease in miR-31-5p levels. Knockout of miR-31-5p and administration of miPEP31 exacerbated pain in C57BL/6 mice. Meanwhile, miR-31-5p overexpression increased the paw withdrawal threshold and latency. TRAF6 is one of the target gene of miR-31-5p, which can trigger a complex inflammatory response. TRAF6 was associated with pain and that reducing the DRG expression of TRAF6 could alleviate pain. In addition, miR-31-5p overexpression inhibited the TRAF6 expression and reduced the neuroinflammatory response. CONCLUSIONS All the results reveal that miR-31-5p could potentially alleviate pain in CCI mouse models by inhibiting the TRAF6 mediated neuroinflammatory response. MiR-31-5p upregulation is highlighted here as new target for CCI treatment.
Collapse
Affiliation(s)
- Yuqi Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Lijuan Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Chengcheng Zhou
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Yuan Yuan
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Bin Fang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Kaimei Lu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Fangxia Xu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China.
| | - Lianhua Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China.
| | - Lina Huang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China.
| |
Collapse
|
4
|
Akhilesh, Chouhan D, Ummadisetty O, Verma N, Tiwari V. Bergenin ameliorates chemotherapy-induced neuropathic pain in rats by modulating TRPA1/TRPV1/NR2B signalling. Int Immunopharmacol 2023; 125:111100. [PMID: 38149571 DOI: 10.1016/j.intimp.2023.111100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 12/28/2023]
Abstract
Chemotherapy-induced neuropathic pain (CINP) is one of the most prominent and incapacitating complication associated with chemotherapeutic regimens. The exact mechanisms underlying CINP are not fully understood yet, which hampers the development of effective therapeutics. The current study has been designed to investigate the effect of bergenin on CINP and dissect the underlying cellular and molecular mechanisms. Behavioural responsiveness assays were conducted in rats before and after CINP induction and at different time points post-bergenin treatment. We also measured alterations in tight junction proteins, pro-inflammatory cytokines, microglia activity, transient receptor potential (TRP) channels (TRPV1, TRPA1 and TRPM8) and N-methyl-D-aspartate receptor subtype 2 (NR2B) in dorsal root ganglion (DRG) and spinal tissues of neuropathic rats. Bergenin treatment leads to a significant and dose-dependent reduction in evoked and spontaneous ongoing pain without causing central side effects in neuropathic rats. Furthermore, treatment with bergenin and gabapentin did not affect the baseline pain threshold in healthy, non-chemotherapy-treated rats, as evaluated through tail-flick and tail-clip assays. Chemotherapy administration leads to a significant activation of TRP channels, concurrent with microglial activation, disruption of spinal cord tight junction proteins, and subsequent infiltration of pro-inflammatory cytokines, as well as NR2B activation. Notably, bergenin treatment effectively reversed all of these alterations, with the exception of TRPM8, in both the DRG and spinal cord of neuropathic rats. Findings from the present study suggests that bergenin mitigates neuropathic pain by modulating the TRPA1/TRPV1/NR2B signalling and presents a promising therapeutic avenue for the treatment of chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Nivedita Verma
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
5
|
Xu X, Sun B, Zhao C. Poly (ADP-Ribose) polymerase 1 and parthanatos in neurological diseases: From pathogenesis to therapeutic opportunities. Neurobiol Dis 2023; 187:106314. [PMID: 37783233 DOI: 10.1016/j.nbd.2023.106314] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023] Open
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is the most extensively studied member of the PARP superfamily, with its primary function being the facilitation of DNA damage repair processes. Parthanatos is a type of regulated cell death cascade initiated by PARP-1 hyperactivation, which involves multiple subroutines, including the accumulation of ADP-ribose polymers (PAR), binding of PAR and apoptosis-inducing factor (AIF), release of AIF from the mitochondria, the translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and massive MIF-mediated DNA fragmentation. Over the past few decades, the role of PARP-1 in central nervous system health and disease has received increasing attention. In this review, we discuss the biological functions of PARP-1 in neural cell proliferation and differentiation, memory formation, brain ageing, and epigenetic regulation. We then elaborate on the involvement of PARP-1 and PARP-1-dependant parthanatos in various neuropathological processes, such as oxidative stress, neuroinflammation, mitochondrial dysfunction, excitotoxicity, autophagy damage, and endoplasmic reticulum (ER) stress. Additional highlight contains PARP-1's implications in the initiation, progression, and therapeutic opportunities for different neurological illnesses, including neurodegenerative diseases, stroke, autism spectrum disorder (ASD), multiple sclerosis (MS), epilepsy, and neuropathic pain (NP). Finally, emerging insights into the repurposing of PARP inhibitors for the management of neurological diseases are provided. This review aims to summarize the exciting advancements in the critical role of PARP-1 in neurological disorders, which may open new avenues for therapeutic options targeting PARP-1 or parthanatos.
Collapse
Affiliation(s)
- Xiaoxue Xu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| | - Bowen Sun
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| |
Collapse
|
6
|
Zhao Q, Zhang X, Long S, Wang S, Yu H, Zhou Y, Li Y, Xue L, Hu Y, Yin S. Licochalcone Mediates the Pain Relief by Targeting the Voltage-Gated Sodium Channel. Mol Pharmacol 2023; 104:133-143. [PMID: 37419692 DOI: 10.1124/molpharm.122.000658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023] Open
Abstract
Licorice is a traditional Chinese medicine and recorded to have pain relief effects in national pharmacopoeia, but the mechanisms behind these effects have not been fully explored. Among the hundreds of compounds in licorice, licochalcone A (LCA) and licochalcone B (LCB) are two important components belonging to the chalcone family. In this study, we compared the analgesic effects of these two licochalcones and the molecular mechanisms. LCA and LCB were applied in cultured dorsal root ganglion (DRG) neurons, and the voltage-gated sodium (NaV) currents and action potentials were recorded. The electrophysiological experiments showed that LCA can inhibit NaV currents and dampen excitabilities of DRG neurons, whereas LCB did not show inhibition effect on NaV currents. Because the NaV1.7 channel can modulate Subthreshold membrane potential oscillations in DRG neuron, which can palliate neuropathic pain, HEK293T cells were transfected with NaV1.7 channel and recorded with whole-cell patch clamp. LCA can also inhibit NaV1.7 channels exogenously expressed in HEK293T cells. We further explored the analgesic effects of LCA and LCB on formalin-induced pain animal models. The animal behavior tests revealed that LCA can inhibit the pain responses during phase 1 and phase 2 of formalin test, and LCB can inhibit the pain responses during phase 2. The differences of the effects on NaV currents between LCA and LCB provide us with the basis for developing NaV channel inhibitors, and the novel findings of analgesic effects indicate that licochalcones can be developed into effective analgesic medicines. SIGNIFICANCE STATEMENT: This study found that licochalcone A (LCA) can inhibit voltage-gated sodium (NaV) currents, dampen excitabilities of dorsal root ganglion neurons, and inhibit the NaV1.7 channels exogenously expressed in HEK293T cells. Animal behavior tests showed that LCA can inhibit the pain responses during phase 1 and phase 2 of formalin test, whereas licochalcone B can inhibit the pain responses during phase 2. These findings indicate that licochalcones could be the leading compounds for developing NaV channel inhibitors and effective analgesic medicines.
Collapse
Affiliation(s)
- Qianru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Y.L., L.X.)
| | - Xu Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Y.L., L.X.)
| | - Siru Long
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Y.L., L.X.)
| | - Shaobing Wang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Y.L., L.X.)
| | - Hui Yu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Y.L., L.X.)
| | - Yongsheng Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Y.L., L.X.)
| | - Yi Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Y.L., L.X.)
| | - Lu Xue
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Y.L., L.X.)
| | - Yan Hu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Y.L., L.X.)
| | - Shijin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People's Republic of China (Y.L., L.X.)
| |
Collapse
|
7
|
Toloui A, Ramawad HA, Gharin P, Vaccaro AR, Zarei H, Hosseini M, Yousefifard M, Rahimi-Movaghar V. The Role of Exercise in the Alleviation of Neuropathic Pain Following Traumatic Spinal Cord Injuries: A Systematic Review and Meta-analysis. Neurospine 2023; 20:1073-1087. [PMID: 37798999 PMCID: PMC10562228 DOI: 10.14245/ns.2346588.294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVE The objective of this systematic review and meta-analysis was to assess the efficacy of exercise in neuropathic pain following traumatic spinal cord injuries. METHODS The search was conducted in MEDLINE, Embase, Scopus, and Web of Science by the end of 2022. Two independent researchers included the articles based on the inclusion and exclusion criteria. A standardized mean difference was calculated for each data and they were pooled to calculate an overall effect size. To assess the heterogeneity between studies, I2 and chi-square tests were utilized. In the case of heterogeneity, meta-regression was performed to identify the potential source. RESULTS Fifteen preclinical studies were included. Meta-analysis demonstrated that exercise significantly improves mechanical allodynia (standardized mean difference [SMD], -1.59; 95% confidence interval [CI], -2.16 to -1.02; p < 0.001; I2 = 90.37%), thermal hyperalgesia (SMD, 1.95; 95% CI, 0.96-2.94; p < 0.001), and cold allodynia (SMD, -2.92; 95% CI, -4.4 to -1.43; p < 0.001). The improvement in mechanical allodynia is significantly more in animals with a compression model of SCI (meta-regression coefficient, -1.33; 95% CI, -1.84 to -0.57; p < 0.001) and in mild SCI (p < 0.001). Additionally, the improvement was more prominent if the training was started 7 to 8 days postinjury (coefficient, -2.54; 95% CI, -3.85 to -1.23; p < 0.001) and was continued every day (coefficient, -1.99; 95% CI, -3.07 to -0.9; p < 0.001). Likewise, voluntary exercise demonstrated a significantly more effect size (coefficient, -1.45; 95% CI, -2.67 to -0.23; p = 0.02). CONCLUSION Exercise is effective in the amelioration of neuropathic pain. This effect in mechanical allodynia is more prominent if voluntary, continuous training is initiated in the subacute phase of mild SCI.
Collapse
Affiliation(s)
- Amirmohammad Toloui
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamzah Adel Ramawad
- Department of Emergency Medicine, NYC Health + Hospitals, Coney Island, New York, NY, USA
| | - Pantea Gharin
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alexander R. Vaccaro
- Department of Orthopedics and Neurosurgery, Rothman Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hamed Zarei
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Injuries Research Center (BASIR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Xu ML, Wu XB, Liang Y, Li N, Hu X, Lin XD, Sun MQ, Dai CQ, Niu D, Zhang YR, Cao H, Zhao CG, Sun XL, Yuan H. A Silver Lining of Neuropathic Pain: Predicting Favorable Functional Outcome in Spinal Cord Injury. J Pain Res 2023; 16:2619-2632. [PMID: 37533560 PMCID: PMC10390716 DOI: 10.2147/jpr.s414638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Background Neuropathic pain (NP) is a common and severe problem following spinal cord injury (SCI). However, its relationship with functional outcome remains unclear. Methods A retrospective explorative analysis was performed on SCI patients admitted to a tertiary academic medical center between January 2018 and June 2022. The candidate predictor variables, including demographics, clinical characteristics and complications, were analyzed with logistic and linear regression. Spinal Cord Independence Measure (SCIM) scores at discharge and mean relative functional gain (mRFG) of SCIM were as outcome parameters. Results A total of 140 SCI patients included for the final analysis. Among them, 44 (31.43%) patients were tetraplegics, and 96 (68.57%) patients were paraplegics; 68 (48.57%) patients developed NP, and 72 (51.43%) patients did not. Logistic and linear regression analyses of SCIM at discharge both showed that NP [OR=3.10, 95% CI (1.29,7.45), P=0.01; unstandardized β=11.47, 95% CI (4.95,17.99), P<0.01; respectively] was significantly independent predictors for a favorable outcome (SCIM at discharge ≥ 50, logistic regression results) and higher SCIM total score at discharge (linear regression results). Besides, NP [unstandardized β=15.67, 95% CI (8.94,22.41), P<0.01] was also independently associated with higher mRFG of SCIM scores. Furthermore, the NP group had significantly higher mRFG, SCIM total scores and subscales (self-care, respiration and sphincter management, and mobility) at discharge compared to the non-NP group. However, there were no significant differences in mRFG, SCIM total score or subscales at discharge among the NP subgroups in terms of locations (at level pain, below level pain, and both) or timing of occurrence (within and after one month after SCI). This study also showed that incomplete injury, lumbar-sacral injury level and non-anemia were significantly independent predictors for a favorable outcome, and higher mRFG of SCIM scores (except for non-anemia). Conclusion NP appears independently associated with better functional recovery in SCI patients, suggesting the bright side of this undesirable complication. These findings may help to alleviate the psychological burden of NP patients and ultimately restore their confidence in rehabilitation.
Collapse
Affiliation(s)
- Mu-Lan Xu
- Department of Rehabilitation Medicine, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, People’s Republic of China
- Department of Rehabilitation Medicine, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, People’s Republic of China
| | - Xiang-Bo Wu
- Department of Rehabilitation Medicine, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, People’s Republic of China
| | - Ying Liang
- Department of Health Statistics, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, People’s Republic of China
| | - Ning Li
- Department of Rehabilitation Medicine, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, People’s Republic of China
| | - Xu Hu
- Department of Rehabilitation Medicine, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, People’s Republic of China
| | - Xiao-Dong Lin
- Department of Rehabilitation Medicine, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, People’s Republic of China
| | - Miao-Qiao Sun
- Department of Rehabilitation Medicine, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, People’s Republic of China
| | - Chun-Qiu Dai
- Department of Rehabilitation Medicine, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, People’s Republic of China
| | - Dan Niu
- Department of Rehabilitation Medicine, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, People’s Republic of China
| | - Yan-Rong Zhang
- Department of Rehabilitation Medicine, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, People’s Republic of China
| | - Hui Cao
- Department of Rehabilitation Medicine, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, People’s Republic of China
| | - Chen-Guang Zhao
- Department of Rehabilitation Medicine, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, People’s Republic of China
| | - Xiao-Long Sun
- Department of Rehabilitation Medicine, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, People’s Republic of China
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
9
|
Zhang WJ, Li MY, Wang CY, Feng X, Hu DX, Wu LD, Hu JL. P2Y12 receptor involved in the development of chronic nociceptive pain as a sensory information mediator. Biomed Pharmacother 2023; 164:114975. [PMID: 37267639 DOI: 10.1016/j.biopha.2023.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Direct or indirect damage to the nervous system (such as inflammation or tumor invasion) can lead to dysfunction and pain. The generation of pain is mainly reflected in the activation of glial cells and the abnormal discharge of sensory neurons, which transmit stronger sensory information to the center. P2Y12 receptor plays important roles in physiological and pathophysiological processes including inflammation and pain. P2Y12 receptor involved in the occurrence of pain as a sensory information mediator, which enhances the activation of microglia and the synaptic plasticity of primary sensory neurons, and reaches the higher center through the ascending conduction pathway (mainly spinothalamic tract) to produce pain. While the application of P2Y12 receptor antagonists (PBS-0739, AR-C69931MX and MRS2359) have better antagonistic activity and produce analgesic pharmacological properties. Therefore, in this article, we discussed the role of the P2Y12 receptor in different chronic pains and its use as a pharmacological target for pain relief.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Mei-Yong Li
- Department of Laboratory medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Cheng-Yi Wang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Xiao Feng
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Li-Dong Wu
- Department of Emergency Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Jia-Ling Hu
- Department of Emergency Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
10
|
Chen K, Wang T, Li Y, Wu J, Zhao CX, Liu S, Sun F, Fang Y, Hu J, Hu J, Zhang CJ, Yu H, Ma C, Yu SS. Rhodojaponin VI indirectly targets Cav2.2 channels via N-ethylmaleimide-sensitive fusion protein to alleviate neuropathic pain. Acta Pharm Sin B 2023; 13:1326-1336. [PMID: 36970201 PMCID: PMC10031280 DOI: 10.1016/j.apsb.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Neuropathic pain is a chronic disease that severely afflicts the life and emotional status of patients, but currently available treatments are often ineffective. Novel therapeutic targets for the alleviation of neuropathic pain are urgently needed. Rhodojaponin VI, a grayanotoxin from Rhododendron molle, showed remarkable antinociceptive efficacy in models of neuropathic pain, but its biotargets and mechanisms are unknown. Given the reversible action of rhodojaponin VI and the narrow range over which its structure can be modified, we perforwmed thermal proteome profiling of the rat dorsal root ganglion to determine the protein target of rhodojaponin VI. N-Ethylmaleimide-sensitive fusion (NSF) was confirmed as the key target of rhodojaponin VI through biological and biophysical experiments. Functional validation showed for the first time that NSF facilitated trafficking of the Cav2.2 channel to induce an increase in Ca2+ current intensity, whereas rhodojaponin VI reversed the effects of NSF. In conclusion, rhodojaponin VI represents a unique class of analgesic natural products targeting Cav2.2 channels via NSF.
Collapse
|
11
|
Yin Q, Zou T, Sun S, Yang D. Cell therapy for neuropathic pain. Front Mol Neurosci 2023; 16:1119223. [PMID: 36923653 PMCID: PMC10008860 DOI: 10.3389/fnmol.2023.1119223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Neuropathic pain (NP) is caused by a lesion or a condition that affects the somatosensory system. Pathophysiologically, NP can be ascribed to peripheral and central sensitization, implicating a wide range of molecular pathways. Current pharmacological and non-pharmacological approaches are not very efficacious, with over half of NP patients failing to attain adequate pain relief. So far, pharmacological and surgical treatments have focused primarily on symptomatic relief by modulating pain transduction and transmission, without treating the underlying pathophysiology. Currently, researchers are trying to use cell therapy as a therapeutic alternative for the treatment of NP. In fact, mounting pre-clinical and clinical studies showed that the cell transplantation-based therapy for NP yielded some encouraging results. In this review, we summarized the use of cell grafts for the treatment of NP caused by nerve injury, synthesized the latest advances and adverse effects, discussed the possible mechanisms to inform pain physicians and neurologists who are endeavoring to develop cell transplant-based therapies for NP and put them into clinical practice.
Collapse
Affiliation(s)
- QingHua Yin
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - TianHao Zou
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ShuJun Sun
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Yang
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Natural Herbal Non-Opioid Topical Pain Relievers-Comparison with Traditional Therapy. Pharmaceutics 2022; 14:pharmaceutics14122648. [PMID: 36559142 PMCID: PMC9785912 DOI: 10.3390/pharmaceutics14122648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Pain is the predominant symptom of many clinical diseases and is frequently associated with neurological and musculoskeletal problems. Chronic pain is frequent in the elderly, causing suffering, disability, social isolation, and increased healthcare expenses. Chronic pain medication is often ineffective and has many side effects. Nonsteroidal over-the-counter and prescription drugs are frequently recommended as first-line therapies for pain control; however, long-term safety issues must not be neglected. Herbs and nutritional supplements may be a safer and more effective alternative to nonsteroidal pharmaceuticals for pain management, especially when used long-term. Recently, topical analgesic therapies have gained attention as an innovative approach due to their sufficient efficacy and comparatively fewer systemic side effects and drug-drug interactions. In this paper, we overview the main natural herbal pain relievers, their efficacy and safety, and their potential use as topical agents for pain control. Although herbal-derived medications are not appropriate for providing quick relief for acute pain problems, they could be used as potent alternative remedies in managing chronic persistent pain with minimal side effects.
Collapse
|
13
|
Mei Y, Mu Y, Wang W, Tan BT, Chen YH, Li YP, Zhu D, Li W, Cui J, Yu LH. Effect of AMPK Subunit Alpha 2 Polymorphisms on Postherpetic Pain Susceptibility in Southwestern Han Chinese. J Pain Res 2022; 15:3319-3326. [PMID: 36304487 PMCID: PMC9595063 DOI: 10.2147/jpr.s385913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 11/04/2022] Open
Abstract
Introduction Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) can influence energy metabolism. Energy metabolism imbalance is closely associated with the occurrence of neuropathic pain (NeP). Rs10789038 and rs2796498 are genetic polymorphisms of PRKAA2, the gene encoding AMPK, which is closely related to energy metabolism imbalance. This study aimed to explore the relationship between PRKAA2 and postherpetic neuralgia (PHN) in the southwestern Chinese Han population. Methods This study enrolled 132 PHN patients and 118 healthy subjects. The rs10789038 and rs2796498 PRKAA2 genotypes were identified in all participants. The association between these single nucleotide polymorphisms and PHN susceptibility was evaluated in the dominant and recessive models. Haplotype analysis of patients with PHN and healthy controls was performed. Results The PHN patients were older than the healthy subjects (P < 0.05); however, the other clinical characteristics between two groups were not significantly different (all P >0.05). Genotypes and allele frequencies differed significantly between PHN patients and healthy subjects in the rs10789038 polymorphism (P < 0.05), but not in rs2796498 (P > 0.05). In addition, the GG haplotype of rs10789038-rs2796498 correlated negatively with PHN occurrence in haplotype analysis (P < 0.05). Conclusion PHN occurrence may be related to the PRKAA2 rs10789038 A>G genetic polymorphism in the southwestern Chinese Han population.
Collapse
Affiliation(s)
- Yang Mei
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China,Department of Pain Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Yang Mu
- Department of Rehabilitation Medicine, Chongqing University Fuling Hospital, Chongqing, People’s Republic of China
| | - Win Wang
- Department of Pain Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Bo-Tao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yao-Hua Chen
- Department of Pain Medicine, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Yu-Ping Li
- Department of Pain Medicine, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Dan Zhu
- Department of Pain Medicine, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Wei Li
- Department of Pain Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Jian Cui
- Department of Pain Medicine, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China,Correspondence: Jian Cui; Le-Hua Yu, Email ;
| | - Le-Hua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
14
|
Tang Y, Chen Y, Liu R, Li W, Hua B, Bao Y. Wnt Signaling Pathways: A Role in Pain Processing. Neuromolecular Med 2022; 24:233-249. [PMID: 35067780 PMCID: PMC9402773 DOI: 10.1007/s12017-021-08700-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/30/2021] [Indexed: 10/25/2022]
Abstract
The wingless-related integration site (Wnt) signaling pathway plays an essential role in embryonic development and nervous system regulation. It is critically involved in multiple types of neuropathic pain (NP), such as HIV-related NP, cancer pain, diabetic neuralgia, multiple sclerosis-related NP, endometriosis pain, and other painful diseases. Wnt signaling is also implicated in the pain induced by sciatic nerve compression injury and selective spinal nerve ligation. Thus, the Wnt signaling pathway may be a potential therapeutic target for NP.
Collapse
Affiliation(s)
- Yiting Tang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing North Third Ring Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Yupeng Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing North Third Ring Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
| | - Weidong Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China.
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
15
|
Yao C, Ren J, Huang R, Tang C, Cheng Y, Lv Z, Kong L, Fang S, Tao J, Fu Y, Zhu Q, Fang M. Transcriptome profiling of microRNAs reveals potential mechanisms of manual therapy alleviating neuropathic pain through microRNA-547-3p-mediated Map4k4/NF-κb signaling pathway. J Neuroinflammation 2022; 19:211. [PMID: 36045396 PMCID: PMC9434879 DOI: 10.1186/s12974-022-02568-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Local neuroinflammation secondary to spinal nerve compression in lumbar disk herniation (LDH) is a key driver contributing to neuropathic pain. Manual therapy (MT), a widely used nonsurgical therapy, can relieve LDH-mediated pain by reducing inflammation. MT has attracted extensive attention; however, its mechanism remains poorly understood. MicroRNAs (miRNAs) are important regulators of pain signaling transduction, but are rarely reported in the chronic compression of dorsal root ganglia (CCD) model, and further investigation is needed to decipher whether they mediate anti-inflammatory and analgesic effects of MT. METHODS We used a combination of in vivo behavioral and molecular techniques to study MT intervention mechanisms. Neuropathic pain was induced in a CCD rat model and MT intervention was performed according to standard procedures. Enzyme-linked immunosorbent assay (ELISA) was used to detect inflammatory cytokine levels in dorsal root ganglia (DRG). Small RNA sequencing, immunofluorescence, Western blot, and qRT-PCR were performed to screen miRNAs and their target genes and determine core factors in the pathway possibly regulated by miRNA-mediated target gene in DRG of MT-treated CCD rats. RESULTS Compared with naive rats, small RNA sequencing detected 22 differentially expressed miRNAs in DRG of CCD rats, and compared with CCD rats, MT-treated rats presented 19 differentially expressed miRNAs, which were functionally associated with nerve injury and inflammation. Among these, miR-547-3p was screened as a key miRNA mediating neuroinflammation and participating in neuropathic pain. We confirmed in vitro that its function is achieved by directly regulating its target gene Map4k4. Intrathecal injection of miR-547-3p agomir or MT intervention significantly reduced Map4k4 expression and the expression and phosphorylation of IκBα and p65 in the NF-κB pathway, thus reducing the inflammatory cytokine levels and exerting an analgesic effect, whereas intrathecal injection of miR-547-3p antagomir led to opposite effects. CONCLUSIONS In rats, CCD-induced neuropathic pain leads to variation in miRNA expression in DRG, and MT can intervene the transcription and translation of inflammation-related genes through miRNAs to improve neuroinflammation and alleviate neuropathic pain. MiR-547-3p may be a key target of MT for anti-inflammatory and analgesia effects, which is achieved by mediating the Map4k4/NF-κB pathway to regulate downstream inflammatory cytokines.
Collapse
Affiliation(s)
- Chongjie Yao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People’s Republic of China
| | - Jun Ren
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Ruixin Huang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Cheng Tang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Yanbin Cheng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Zhizhen Lv
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053 People’s Republic of China
| | - Lingjun Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Sitong Fang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Jiming Tao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Yangyang Fu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Qingguang Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Min Fang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People’s Republic of China
| |
Collapse
|
16
|
Jesus CHA, Ferreira MV, Gasparin AT, Rosa ES, Genaro K, Crippa JADS, Chichorro JG, Cunha JMD. Cannabidiol enhances the antinociceptive effects of morphine and attenuates opioid-induced tolerance in the chronic constriction injury model. Behav Brain Res 2022; 435:114076. [PMID: 36028000 DOI: 10.1016/j.bbr.2022.114076] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022]
Abstract
Neuropathic pain (NP) is a complex health problem that includes sensorial manifestations such as evoked and ongoing pain. Cannabidiol (CBD) has shown potential in the treatment of NP and the combination between opioids and cannabinoids has provided promising results on pain relief. Thus, our study aimed to investigate the effect of treatment combination between CBD and morphine on evoked and ongoing pain, and the effect of CBD on morphine-induced tolerance in the model of chronic constriction injury (CCI) of the sciatic nerve in rats. Mechanical thresholds (i.e., evoked pain) were evaluated before and 7 days after surgery. We also employed a 4-day conditioned place preference (CPP) protocol, to evaluate relief of ongoing pain (6-9 days after surgery). Treatment with morphine (2 and 4 mg/kg) or CBD (30 mg/kg) induced a significant antinociceptive effect on evoked pain. The combination of CBD (30 mg/kg) and morphine (1 mg/kg) produced an enhanced antinociceptive effect, when compared to morphine alone (1 mg/Kg). Treatment with morphine (1 and 2 mg/kg) or CBD (30 mg/kg) alone failed to induce significant scores in the CPP test. However, combined treatment of CBD (30 mg/kg) and morphine (1 mg/kg) provided significant positive scores, increased the number of entrances in the drug-paired chamber in the CPP test and did not alter locomotor activity in rats. Lastly, treatment with CBD partially attenuated morphine-induced tolerance. In summary, our results support the indication of CBD as an adjuvant to opioid therapy for the attenuation of NP and opioid-induced analgesic tolerance.
Collapse
Affiliation(s)
- Carlos Henrique Alves Jesus
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - Matheus Vinicius Ferreira
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Aléxia Thamara Gasparin
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Evelize Stacoviaki Rosa
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Karina Genaro
- Department of Anesthesiology, University of California, Irvine, CA, USA; Institute of Neurosciences and Behavior (INeC), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José Alexandre de Souza Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, São Paulo, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Joice Maria da Cunha
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil; Institute of Neurosciences and Behavior (INeC), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
17
|
Ameenudeen S, Kashif M, Banerjee S, Srinivasan H, Pandurangan AK, Waseem M. Cellular and Molecular Machinery of Neuropathic Pain: an Emerging Insight. CURRENT PHARMACOLOGY REPORTS 2022; 8:227-235. [PMID: 35646513 PMCID: PMC9125010 DOI: 10.1007/s40495-022-00294-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 12/04/2022]
Abstract
Purpose of Review Neuropathic pain (NP) has been ubiquitously characterized by lesion and its linked somatosensory system either the central nervous system (CNS) or peripheral nervous system (PNS) This PNS episode is the most prevalent site of NP origin and is found to be associated with afferent nerve fibers carrying pain signals from injured/trauma site to the CNS including the brain. Several kinds of pharmacotherapeutic drugs shuch as analgesics, anti-convulsants, and anti-depressants are being employed for the its possible interventions. The NP has been a great interest to follow different pathophysiological mechanisms which are often considered to correlate with the metabolic pathways and its mediated disease. There is paucity of knowledge to make such mechanism via NP. Recent Finding Most notably, recent pandemic outbreak of COVID-19 has also been reported in chronic pain mediated diabetes, inflammatory disorders, and cancers. There is an increasing incidence of NP and its complex mechanism has now led to identify the possible investigations of responsible genes and proteins via bioinformatics tools. The analysis might be more instrumental as collecting the genes from pain genetic database, analyzing the variants through differential gene expression (DEG) and constructing the protein–protein interaction (PPI) networks and thereby determining their upregulating and downregulating pathways. Summary This review sheds a bright light towards several mechanisms at both cellular and molecular level, correlation of NP-mediated disease mechanism and possible cell surface biomarkers (receptors), and identified genes could be more promising for their pharmacological targets.
Collapse
Affiliation(s)
- Shabnam Ameenudeen
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, 600048 Tamil Nadu India
| | - Mohd. Kashif
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, 600048 Tamil Nadu India
| | - Subhamoy Banerjee
- Department of Basic Science and Humanities, Institute of Engineering and Management, Sector V, Salt Lake, Kolkata, 700091 India
| | - Hemalatha Srinivasan
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, 600048 Tamil Nadu India
| | - Ashok Kumar Pandurangan
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, 600048 Tamil Nadu India
| | - Mohammad Waseem
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, 600048 Tamil Nadu India
| |
Collapse
|
18
|
Roy TK, Uniyal A, Tiwari V. Multifactorial pathways in burn injury-induced chronic pain: novel targets and their pharmacological modulation. Mol Biol Rep 2022; 49:12121-12132. [PMID: 35842856 DOI: 10.1007/s11033-022-07748-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
Abstract
Burn injuries are among the highly prevalent medical conditions worldwide that occur mainly in children, military veterans and victims of fire accidents. It is one of the leading causes of temporary as well as permanent disabilities in patients. Burn injuries are accompanied by pain that persists even after recovery from tissue damage which puts immense pressure on the healthcare system. The pathophysiology of burn pain is poorly understood due to its complex nature and lack of considerable preclinical and clinical shreds of evidence, that creates a substantial barrier to the development of new analgesics. Burns damage the skin layers supplied with nociceptors such as NAV1.7, TRPV1, and TRPA1. Burn injury-mediated co-localization and simultaneous activation of TRPA1 and TRPV1 in nociceptive primary afferent C-fibers which contributes to the development and maintenance of chronic pain. Burn injuries are accompanied by central sensitization, a key feature of pain pathophysiology mainly driven by a series of cascades involving aberrations in the glutamatergic system, microglial activation, release of neuropeptides, cytokines, and chemokines. Activation of p38 mitogen-activated protein kinase, altered endogenous opioid signaling, and distorted genomic expression are other pathophysiological factors responsible for the development and maintenance of burn pain. Here we discuss comprehensive literature on molecular mechanisms of burn pain and potential targets that could be translated into near future therapeutics.
Collapse
Affiliation(s)
- Tapas Kumar Roy
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, 221005, Varanasi, U.P, India
| | - Ankit Uniyal
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, 221005, Varanasi, U.P, India
| | - Vinod Tiwari
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, 221005, Varanasi, U.P, India.
| |
Collapse
|
19
|
Diaz MM, Caylor J, Strigo I, Lerman I, Henry B, Lopez E, Wallace MS, Ellis RJ, Simmons AN, Keltner JR. Toward Composite Pain Biomarkers of Neuropathic Pain-Focus on Peripheral Neuropathic Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:869215. [PMID: 35634449 PMCID: PMC9130475 DOI: 10.3389/fpain.2022.869215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic pain affects ~10-20% of the U.S. population with an estimated annual cost of $600 billion, the most significant economic cost of any disease to-date. Neuropathic pain is a type of chronic pain that is particularly difficult to manage and leads to significant disability and poor quality of life. Pain biomarkers offer the possibility to develop objective pain-related indicators that may help diagnose, treat, and improve the understanding of neuropathic pain pathophysiology. We review neuropathic pain mechanisms related to opiates, inflammation, and endocannabinoids with the objective of identifying composite biomarkers of neuropathic pain. In the literature, pain biomarkers typically are divided into physiological non-imaging pain biomarkers and brain imaging pain biomarkers. We review both types of biomarker types with the goal of identifying composite pain biomarkers that may improve recognition and treatment of neuropathic pain.
Collapse
Affiliation(s)
- Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Jacob Caylor
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Irina Strigo
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Imanuel Lerman
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Brook Henry
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Eduardo Lopez
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Mark S. Wallace
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Ronald J. Ellis
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Alan N. Simmons
- Department of Psychiatry, San Diego & Center of Excellence in Stress and Mental Health, Veteran Affairs Health Care System, University of California, San Diego, San Diego, CA, United States
| | - John R. Keltner
- Department of Psychiatry, San Diego & San Diego VA Medical Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
20
|
Hao LY, Zhang M, Tao Y, Xu H, Liu Q, Yang K, Wei R, Zhou H, Jin T, Liu XD, Xue Z, Shen W, Cao JL, Pan Z. miRNA-22 Upregulates Mtf1 in Dorsal Horn Neurons and Is Essential for Inflammatory Pain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8622388. [PMID: 35242280 PMCID: PMC8886789 DOI: 10.1155/2022/8622388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 11/27/2022]
Abstract
Chronic inflammatory pain seriously affects patients' quality of life because of a paucity of effective clinical treatments caused, at least in part, by lack of full understanding of the underlying mechanisms. miRNAs are known to be involved in inflammatory pain via silencing or degrading of target mRNA in the cytoplasm. The present study provides a novel mechanism by which miRNA-22 positively regulates metal-regulatory transcription factor 1 (Mtf1) in the nuclei of neurons in the dorsal horn of the spinal cord. We found that miRNA-22 was significantly increased in the dorsal horn of mice with either inflammatory pain induced by plantar injection of complete Freund's adjuvant (CFA) or neuropathic pain induced by unilateral sciatic nerve chronic constrictive injury (CCI). Knocking down or blocking miRNA-22 alleviated CFA-induced mechanical allodynia and heat hyperalgesia, whereas overexpressing miRNA-22 produced pain-like behaviors. Mechanistically, the increased miRNA-22 binds directly to the Mtf1 promoter to recruit RNA polymerase II and elevate Mtf1 expression. The increased Mtf1 subsequently enhances spinal central sensitization, as evidenced by increased expression of p-ERK1/2, GFAP, and c-Fos in the dorsal horn. Our findings suggest that the miRNA-22-Mtf1 signaling axis in the dorsal horn plays a critical role in the induction and maintenance of inflammatory pain. This signaling pathway may be a promising therapeutic target in inflammatory pain.
Collapse
Affiliation(s)
- Ling-Yun Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Yang Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Hengjun Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Qiaoqiao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Kehui Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Runa Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Huimin Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Tong Jin
- Department of Pain, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xiao-Dan Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Zhouya Xue
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Wen Shen
- Department of Pain, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| |
Collapse
|
21
|
Zhang P, Guergues J, Alleyne AR, Cirino TJ, Nadeau O, Figueroa AM, Stacy HM, Suzuki T, McLaughlin JP, Stevens SM, Liu B. Novel Histone Modifications in Microglia Derived from a Mouse Model of Chronic Pain. Proteomics 2022; 22:e2100137. [PMID: 35081661 DOI: 10.1002/pmic.202100137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/06/2022]
Abstract
As the resident immune cells in the central nervous system, microglia play an important role in the maintenance of its homeostasis. Dysregulation of microglia has been associated with the development and maintenance of chronic pain. However, the relevant molecular pathways remain poorly defined. In this study, we used a mass spectrometry-based proteomic approach to screen potential changes of histone protein modifications in microglia isolated from the brain of control and cisplatin-induced neuropathic pain adult C57BL/6J male mice. We identified several novel microglial histone modifications associated with pain including statistically significantly decreased histone H3.1 lysine 27 mono-methylation (H3.1K27me1, 54.8% of control) and lysine 56 tri-methylation (7.5% of control), as well as a trend suggesting increased histone 3 tyrosine 41 nitration. We further investigated the functional role of H3.1K27me1 and found that treatment of cultured microglial cells for 4 consecutive days with 1-10 μM of NCDM-64, a potent and selective inhibitor of lysine demethylase 7A, an enzyme responsible for the demethylation of H3K27me1, dose-dependently elevated its levels with a greater than a 2-fold increase observed at 10 μM compared to vehicle-treated control cells. Moreover, pre-treatment of mice with NCDM-64 (10 or 25 mg/kg/day, i.p.) prior to cisplatin treatment prevented the development of neuropathic pain in mice. The identification of specific chromatin marks in microglia associated with chronic pain may yield critical insight into the contribution of microglia to the development and maintenance of pain, and opens new avenues for the development of novel non-opioid therapeutics for the effective management of chronic pain. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Amy R Alleyne
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Thomas J Cirino
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Owen Nadeau
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT, USA
| | - Ariana M Figueroa
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Heather M Stacy
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Bin Liu
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
22
|
Li L, Bai L, Yang K, Zhang J, Gao Y, Jiang M, Yang Y, Zhang X, Wang L, Wang X, Qiao Y, Xu JT. KDM6B epigenetically regulated-interleukin-6 expression in the dorsal root ganglia and spinal dorsal horn contributes to the development and maintenance of neuropathic pain following peripheral nerve injury in male rats. Brain Behav Immun 2021; 98:265-282. [PMID: 34464689 DOI: 10.1016/j.bbi.2021.08.231] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
The lysine specific demethylase 6B (KDM6B) has been implicated as a coregulator in the expression of proinflammatory mediators, and in the pathogenesis of inflammatory and arthritic pain. However, the role of KDM6B in neuropathic pain has yet to be studied. In the current study, the neuropathic pain was determined by assessing the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) following lumbar 5 spinal nerve ligation (SNL) in male rats. Immunohistochemistry, Western blotting, qRT-PCR, and chromatin immunoprecipitation (ChIP)-PCR assays were performed to investigate the underlying mechanisms. Our results showed that SNL led to a significant increase in KDM6B mRNA and protein in the ipsilateral L4/5 dorsal root ganglia (DRG) and spinal dorsal horn; and this increase correlated a markedly reduction in the level of H3K27me3 methylation in the same tissue. Double immunofluorescence staining revealed that the KDM6B expressed in myelinated A- and unmyelinated C-fibers in the DRG; and located in neuronal cells, astrocytes, and microglia in the dorsal horn. Behavioral data showed that SNL-induced mechanical allodynia and thermal hyperalgesia were impaired by the treatment of prior to i.t. injection of GSK-J4, a specific inhibitor of KDM6B, or KDM6B siRNA. Both microinjection of AAV2-EGFP-KDM6B shRNA in the lumbar 5 dorsal horn and sciatic nerve, separately, alleviated the neuropathic pain following SNL. The established neuropathic pain was also partially attenuated by repeat i.t. injections of GSK-J4 or KDM6B siRNA, started on day 7 after SNL. SNL also resulted in a remarkable increased expression of interleukin-6 (IL-6) in the DRG and dorsal horn. But this increase was dramatically inhibited by i.t. injection of GSK-J4 and KDM6B siRNA; and suppressed by prior to microinjection of AAV2-EGFP-KDM6B shRNA in the dorsal horn and sciatic nerve. Results of ChIP-PCR assay showed that SNL-induced enhanced binding of STAT3 with IL-6 promoter was inhibited by prior to i.t. injection of GSK-J4. Meanwhile, the level of H3K27me3 methylation was also decreased by the treatment. Together, our results indicate that SNL-induced upregulation of KDM6B via demethylating H3K27me3 facilitates the binding of STAT3 with IL-6 promoter, and subsequently mediated-increase in the expression of IL-6 in the DRG and dorsal horn contributes to the development and maintenance of neuropathic pain. Targeting KDM6B might a promising therapeutic strategy to treatment of chronic pain.
Collapse
Affiliation(s)
- Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liying Bai
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Kangli Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Jian Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Mingjun Jiang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xuan Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Li Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xueli Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yiming Qiao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
23
|
Luo J, Ke J, Hou X, Li S, Luo Q, Wu H, Shen G, Zhang Z. Composition, structure and flavor mechanism of numbing substances in Chinese prickly ash in the genus Zanthoxylum: A review. Food Chem 2021; 373:131454. [PMID: 34731789 DOI: 10.1016/j.foodchem.2021.131454] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/17/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Chinese prickly ash is known for producing a typical pungent sensation in Sichuan Cuisine. Accumulating evidence suggest a series of health benefits and pharmacological effects associated with prickly ash. Therefore, a systematic analysis of the composition, structural properties, detection, and flavor mechanism of numbing substances is highly necessitated to address their future application. Sanshool-based unsaturated amides are the primary cause of tingling. The numbing substances have poor stability and are prone to oxidation and decomposition reactions due to their highly unsaturated conjugated diene structures. Pungent sensations evoked by different sanshools are distinct, which is attributed to different mechanisms of interaction with membrane ion channels (TRPV1, TRPA1, and KCNK). In this paper, the composition, structural properties (such as isomerization, oxidation), detection, and flavor mechanism of numbing substances of prickly ash were summarized. The prospective application and future research direction of numbing substances in the prickly ash industry were also proposed.
Collapse
Affiliation(s)
- Jingjing Luo
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jingxuan Ke
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Qingying Luo
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Hejun Wu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
24
|
The Kynurenine Pathway as a Potential Target for Neuropathic Pain Therapy Design: From Basic Research to Clinical Perspectives. Int J Mol Sci 2021; 22:ijms222011055. [PMID: 34681715 PMCID: PMC8537209 DOI: 10.3390/ijms222011055] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests the key role of the kynurenine pathway (KP) of the tryptophan metabolism in the pathogenesis of several diseases. Despite extensive research aimed at clarifying the mechanisms underlying the development and maintenance of neuropathic pain, the roles of KP metabolites in this process are still not fully known. Although the function of the peripheral KP has been known for several years, it has only recently been acknowledged that its metabolites within the central nervous system have remarkable consequences related to physiology and behavior. Both the products and metabolites of the KP are involved in the pathogenesis of pain conditions. Apart from the neuroactive properties of kynurenines, the KP regulates several neurotransmitter systems in direct or indirect ways. Some neuroactive metabolites are known to have neuroprotective properties (kynurenic acid, nicotinamide adenine dinucleotide cofactor), while others are toxic (3-hydroxykynurenine, quinolinic acid). Numerous animal models show that modulation of the KP may turn out to be a viable target for the treatment of diseases. Importantly, some compounds that affect KP enzymes are currently described to possess analgesic properties. Additionally, kynurenine metabolites may be useful for assessing response to therapy or as biomarkers in therapeutic monitoring. The following review describes the molecular site of action and changes in the levels of metabolites of the kynurenine pathway in the pathogenesis of various conditions, with a particular emphasis on their involvement in neuropathy. Moreover, the potential clinical implications of KP modulation in chronic pain therapy as well as the directions of new research initiatives are discussed.
Collapse
|
25
|
Yuan J, Fei Y. Lidocaine activates autophagy of astrocytes and ameliorates chronic constriction injury-induced neuropathic pain. J Biochem 2021; 170:25-31. [PMID: 33245112 DOI: 10.1093/jb/mvaa136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 11/13/2022] Open
Abstract
Lidocaine is a commonly used drug to alleviate neuropathic pain (NP). This work aims to investigate the mechanism of lidocaine in alleviating NP. Chronic constriction injury (CCI) rats were established by surgery to induce NP. We observed the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of rats. Immunofluorescence staining was performed to determine the LC3/glial fibrillary acidic protein (GFAP)-positive cells. Rat astrocytes were treated with lipopolysaccharide (LPS) to induce CCI, and then treated with lidocaine or 3-MA (autophagy inhibitor). CCK-8 was performed to detect cell proliferation. Western blot and enzyme-linked immunosorbent assay were performed to detect the level of protein and inflammatory factor. CCI rats exhibited a decrease of MWT and TWL, which was effectively abolished by lidocaine. Lidocaine enhanced the number of LC3/GFAP-positive cells in CCI rats. Moreover, lidocaine inhibited the expression of GFAP and p62, and enhanced LC3-II/LC3-I expression in the LPS-treated astrocytes. Lidocaine inhibited the level of TNF-α and IL-1β in the LPS-treated astrocytes. The influence conferred by lidocaine was effectively abolished by 3-MA. In conclusion, our work demonstrates that lidocaine activates autophagy of astrocytes and ameliorates CCI-induced NP. Thus, our study provides a further experimental basis for the mechanism of lidocaine to alleviate NP.
Collapse
Affiliation(s)
- Jiaqi Yuan
- Department of Anesthesiology, Sir Run Run Shaw Hospital, No. 3 East Qingchun Road, Jianggan District, Hangzhou, 310020 Zhejiang, China
| | - Yue Fei
- Department of Anesthesiology, Sir Run Run Shaw Hospital, No. 3 East Qingchun Road, Jianggan District, Hangzhou, 310020 Zhejiang, China
| |
Collapse
|
26
|
Uniyal A, Shantanu PA, Vaidya S, Belinskaia DA, Shestakova NN, Kumar R, Singh S, Tiwari V. Tozasertib Attenuates Neuropathic Pain by Interfering with Aurora Kinase and KIF11 Mediated Nociception. ACS Chem Neurosci 2021; 12:1948-1960. [PMID: 34027667 DOI: 10.1021/acschemneuro.1c00043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Kinesins are the motor proteins that transport excitatory receptors to the synaptic membrane by forming a complex with receptor cargo leading to central sensitization causing neuropathic pain. Many regulatory proteins govern the transit of receptors by activating kinesin, and Aurora kinases are one of them. In this study, we have performed in silico molecular dynamics simulation to delineate the dynamic interaction of Aurora kinase A with its pharmacological inhibitor, tozasertib. The results from the molecular dynamics study shows that tozasertib-Aurora kinase A complex is stabilized through hydrogen bonding, polar interactions, and water bridges. Findings from the in vitro studies suggest that tozasertib treatment significantly attenuates lipopolysaccharide (LPS)-induced increase in oxidonitrosative stress and kif11 overexpression in C6 glial cell lines. Further, we investigated the regulation of kif11 and its modulation by tozasertib in an animal model of neuropathic pain. Two weeks post-CCI surgery we observed a significant increase in pain hypersensitivity and kif11 overexpression in DRG and spinal cord of nerve-injured rats. Tozasertib treatment significantly attenuates enhanced pain hypersensitivity along with the restoration of kif11 expression in DRG and spinal cord and oxidonitrosative stress in the sciatic nerve of injured rats. Our findings demonstrate the potential role of tozasertib for the management of neuropathic pain.
Collapse
Affiliation(s)
- Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005 Uttar Pradesh, India
| | - P. A. Shantanu
- National Institute of Pharmaceutical Education & Research (NIPER)—Ahmedabad, 382355 Gandhinagar, India
| | - Shivani Vaidya
- National Institute of Pharmaceutical Education & Research (NIPER)—Ahmedabad, 382355 Gandhinagar, India
| | - Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Natalia N. Shestakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005 Uttar Pradesh, India
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005 Uttar Pradesh, India
- Baba Saheb Bhim Rao Ambedkar Central University (BBAU), Lucknow, 226025 Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005 Uttar Pradesh, India
- National Institute of Pharmaceutical Education & Research (NIPER)—Ahmedabad, 382355 Gandhinagar, India
| |
Collapse
|
27
|
da Silva FBO, Santos MDCQ, Borella da Silva TC, Facchini D, Kolberg A, Barros RR, Silveira EMS, Kroth A, Duarte FCK, Vassoler JM, Kolberg C, Partata WA. Spine adjusting instrument (Impulse®) attenuates nociception and modulates oxidative stress markers in the spinal cord and sciatic nerve of a rat model of neuropathic pain. PAIN MEDICINE 2021; 23:761-773. [PMID: 33993301 DOI: 10.1093/pm/pnab167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Oxidative stress plays an important role in neuropathic pain. Spinal manipulative therapy (SMT) can exert beneficial effects in pain outcomes in humans and animal models. SMT can also modulate oxidative stress markers in both humans and animals. We aimed to determine the effect of Impulse®-assisted SMT (ISMT) on nociception and oxidative stress biomarkers in the spinal cord and sciatic nerve of rats with neuropathic pain (NP). METHODS NP was induced by chronic constriction injury (CCI) of the sciatic nerve. Animals were randomly assigned to naive, sham (rats with sciatic nerve exposure but without ligatures) and CCI, with and without ISMT. ISMT was applied onto the skin area corresponding to the spinous process of L4-L5, 3 times/week, for 2 weeks. Mechanical threshold, latency to paw withdrawal to thermal stimulus and oxidative stress biomarkers in spinal cord and sciatic nerve were the main outcomes evaluated. RESULTS ISMT significantly increased mechanical threshold and withdrawal latency after CCI. In the spinal cord, ISMT prevented the increase of pro-oxidative superoxide anion generation and hydrogen peroxide levels. Lipid hydroperoxide levels both in the spinal cord and in the sciatic nerve were attenuated by ISMT. Total antioxidant capacity increased in the spinal cord and sciatic nerve of CCI rats with and without ISMT. CCI and ISMT did not significantly change the total thiol content of the spinal cord. CONCLUSIONS Our findings suggest reduced oxidative stress in the spinal cord and/or nerve may be an important mechanism underlying a therapeutic effect of SMT to manage NP non-pharmacologically.
Collapse
Affiliation(s)
- Francielle B O da Silva
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Maria do Carmo Q Santos
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Thaisla Cristiane Borella da Silva
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | | | - Angela Kolberg
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Rodrigo R Barros
- Departamento de Engenharia Mecânica, Faculdade de Engenharia Mecânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Elza M S Silveira
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Adarly Kroth
- Área Ciências da Vida, Universidade do Oeste de Santa Catarina, Joaçaba, Santa Catarina
| | - Felipe C K Duarte
- Division of Research and Innovation, Canadian Memorial Chiropractic College, Toronto, Ontario, Canada
| | - Jakson M Vassoler
- Departamento de Engenharia Mecânica, Faculdade de Engenharia Mecânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Carolina Kolberg
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Wania A Partata
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| |
Collapse
|
28
|
Zhao M, Zhang X, Tao X, Zhang B, Sun C, Wang P, Song T. Sirt2 in the Spinal Cord Regulates Chronic Neuropathic Pain Through Nrf2-Mediated Oxidative Stress Pathway in Rats. Front Pharmacol 2021; 12:646477. [PMID: 33897435 PMCID: PMC8063033 DOI: 10.3389/fphar.2021.646477] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/24/2021] [Indexed: 01/06/2023] Open
Abstract
Reduction in Nrf2-mediated antioxidant response in the central nervous system plays an important role in the development and maintenance of neuropathic pain (NP). However, the mechanisms regulating Nrf2 activity in NP remain unclear. A recent in vitro study revealed that Sirt2, a member of the sirtuin family of proteins, affects antioxidant capacity by modulating Nrf2 activity. Here we examined whether central Sirt2 regulates NP through Nrf2-mediated oxidative stress pathway. In a rat model of spared nerve injury (SNI)-induced NP, mechanical allodynia and thermal hyperalgesia were observed on day 1 and up to day 14 post-SNI. The expression of Sirt2, Nrf2 and its target gene NQO1 in the spinal cord in SNI rats, compared with sham rats, was significantly decreased from day 7 and remained lower until the end of the experiment (day 14). The mechanical allodynia and thermal hyperalgesia in SNI rats were ameliorated by intrathecal injection of Nrf2 agonist tBHQ, which normalized expression of Nrf2 and NQO1 and reversed SNI-induced decrease in antioxidant enzyme superoxide dismutase (SOD) and increase in oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the spinal cord. Moreover, intrathecal injection of a recombinant adenovirus expressing Sirt2 (Ad-Sirt2) that upregulated expression of Sirt2, restored expression of Nrf2 and NQO1 and attenuated oxidative stress in the spinal cord, leading to improvement of thermal hyperalgesia and mechanical allodynia in SNI rats. These findings suggest that peripheral nerve injury downregulates Sirt2 expression in the spinal cord, which inhibits Nrf2 activity, leading to increased oxidative stress and the development of chronic NP.
Collapse
Affiliation(s)
- Mengnan Zhao
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xiaojiao Zhang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xueshu Tao
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Bohan Zhang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Cong Sun
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Pinying Wang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Tao Song
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Chen P, Lin D, Wang C, Song C, Wang W, Qu J, Wu Z. Proteomic Analysis of Emodin Treatment in Neuropathic Pain Reveals Dysfunction of the Calcium Signaling Pathway. J Pain Res 2021; 14:613-622. [PMID: 33707969 PMCID: PMC7943569 DOI: 10.2147/jpr.s290681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
Background Neuropathic pain (NP) is a syndrome of pain mediated by distinct pathophysiological processes, and current treatments are not fully satisfactory. Emodin is an effective component of Chinese traditional medicine and has an alleviating effect on NP, but the pharmacological mechanism is not clear. Methods We used isobaric tags for relative and absolute quantitation (iTRAQ) technique integrated with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify potential targets of emodin in a rat peripheral nerve chronic constriction injury (CCI) model. Results A total of 177 differentially expressed proteins were identified among the sham group, CCI group, and emodin group, with a threshold of 1.2-fold change and a P value ≤ 0.05. Among them, 100 differentially expressed proteins (51 up-regulated and 49 down-regulated) were identified in the CCI group compared with sham group. Moreover, 108 differentially expressed proteins (65 up-regulated and 43 down-regulated) were identified in the emodin group with the CCI group as reference. The enrichment analysis of Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed an important role of calcium signaling pathway, neurotransmitter regulation, and long-term potentiation (LTP) in emodin-treated CCI model. Real-time quantitative fluorescence PCR (qRT-PCR) and Western blot analysis revealed that emodin decreased expression of calcium signaling related proteins, including calmodulin (CaM) dependent protein kinase II (CaMK II), phospholipase Cβ1 (PLCβ1), protein kinase C (PKC), protein kinase C (PKA), and tropomyosin-related kinase B (TrkB), compared with the CCI group. Conclusion Overall, these findings indicated that emodin might alleviate NP by regulating the calcium signaling pathway.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Dongsheng Lin
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Chen Wang
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Cuiwen Song
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Wenjing Wang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Jinglian Qu
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Zhibing Wu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
30
|
Vaidya S, Shantanu PA, Tiwari V. Attenuation of ongoing neuropathic pain by peripheral acting opioid involves activation of central dopaminergic neurocircuitry. Neurosci Lett 2021; 754:135751. [PMID: 33610665 DOI: 10.1016/j.neulet.2021.135751] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/11/2021] [Accepted: 02/15/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND PURPOSE Ongoing neuropathic pain is one of the most challenging clinical problems which have detrimental effects on a patient's life quality. Conventional therapies for chronic neuropathic pain majorly includes centrally acting analgesics. Unfortunately, the unceasing use of these drugs results in adverse effects, such as CNS in-coordination, respiratory depression and substance use disorder. DALDA ([D-Arg2, Lys4]-Dermorphin-(1-4)-amide), a peripherally acting opioid have been shown to possess potent analgesic activity without causing CNS toxicities in nerve-injured rats. However, the mechanism(s) underpinning DALDA induced-attenuation of ongoing neuropathic pain is yet to identify [1]. EXPERIMENTAL DESIGN In this study, we have measured the in-silico ligand-receptor binding affinity of DALDA against potential inflammatory targets by utilizing glide module of schrödinger software. Effect of DALDA on oxido-inflammatory stress was evaluated in LPS-induced C6 glial cells. In-vitro studies were followed by the behavioral assessments, where effect of DALDA was measured in chronic constriction injured rats. To examine the effect of DALDA on dopaminergic neurotransmission, cerebrospinal fluid of nerve-injured rats was assessed using LC-MS/QToF (Liquid Chromatography-Mass spectrometry/ Quadrapole time of flight Analyzer). RESULTS DALDA has shown a good binding affinity with chemokine receptor type-2 (CCR2), chemokine CX3C receptor 1 (CX3CR1) and purinergic receptor (P2×4), major receptor subtypes involved in pain and inflammation. Findings from the in-vitro studies suggest that DALDA possesses potent anti-oxidant activity leading to inhibition of p38-MAPK pathway [1]. Moreover, the subcutaneous administration of DALDA leads to dose-dependent attenuation of thermal and mechanical hypersensitivity along with inhibition of neuroinflammatory mediators in serum and spinal cord of nerve-injured rats. Most importantly, DALDA treated neuropathic rats showed a preference for the DALDA-treated chamber, which was attenuated on pre-treatment with dopaminergic receptor antagonist, flupenthixol. LC-MS analysis further confirms the enhanced dopaminergic transmission in the brain of DALDA-treated neuropathic rats. CONCLUSION Our findings suggest that DALDA mediated attenuation of ongoing neuropathic pain may be associated with a decrease in spinal neuroinflammatory signalling and subsequent increase in the brain dopamine level; may serve a potential therapeutic for the treatment of ongoing neuropathic pain.
Collapse
Affiliation(s)
- Shivani Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - P A Shantanu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Vinod Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India; Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, BHU, Varanasi 221005, India.
| |
Collapse
|
31
|
Chen P, Wang C, Lin D, Li B, Ye S, Qu J, Wang W. Identification of Slc6a19os and SOX11 as Two Novel Essential Genes in Neuropathic Pain Using Integrated Bioinformatic Analysis and Experimental Verification. Front Neurosci 2021; 15:627945. [PMID: 33584192 PMCID: PMC7876402 DOI: 10.3389/fnins.2021.627945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/04/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to identify critical genes associated with neuropathic pain. We also used the competing endogenous RNA (ceRNA) hypothesis to identify related long non-coding RNAs (lncRNAs) and messenger RNAs (miRNAs) with potential regulatory roles. We downloaded GSE107180 from the Gene Expression Omnibus database, screened differentially expressed genes (DEGs) using R software, performed comprehensive bioinformatic analyses, and validated the expression of lncRNA Slc6a19os, miR-125a-5p, miR-125b-5p, miR-351-5p, and Sox11 by qRT-PCR and Western blots. We identified 620 DEGs in spared nerve injury (SNI) mice compared with sham (control) mice, including 309 mRNAs and 311 non-coding RNAs. The up-regulated mRNAs were enriched primarily in several inflammation-related GO biological processes and KEGG signaling pathways. A ceRNA network was constructed that included 82 mRNAs, 4 miRNAs, and 2 lnRNAs. An ingenuity pathway analysis (IPA)-based interaction network for mRNAs differentially expressed in the ceRNA identified several biological processes, including "cellular development, connective tissue development and function, tissue development." Compared with sham mice, lncRNA Slc6a19os and Sox11 expression were significantly up-regulated in dorsal root ganglion (DRG) samples from SNI mice detected using qRT-PCR and Western blots (P < 0.05). MiR-125a-5p, miR-125b-5p, and miR-351-5p expression were down-regulated in DRG samples from SNI mice detected using qRT-PCR (P < 0.05). We concluded that Sox11 and lncRNA Slc6a19os were novel essential genes in the pathogenesis and progression of neuropathic pain and speculated that these two genes were regulated by miR-125a-5p, miR-125b-5p, and miR-351-5p.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chen Wang
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongsheng Lin
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Li
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuai Ye
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Jinglian Qu
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenjing Wang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
32
|
LncRNA NEAT1/miR-128-3p/AQP4 axis regulating spinal cord injury-induced neuropathic pain progression. J Neuroimmunol 2020; 351:577457. [PMID: 33373887 DOI: 10.1016/j.jneuroim.2020.577457] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/29/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neuropathic pain (NP) is the comorbidity in spinal cord injury(SCI), which is the hardest to cure. Non-coding RNA dysregulations are related to the development of NP. NEAT1(nuclear paraspeckle assembly transcript 1) is a new type of lncRNA. This study explores the role and specific mechanism of NEAT1 in SCI-mediated NP. METHODS Firstly, the NEAT1 expression in SCI rats and the control group was detected with RT-PCR to analyze the relationship between NEAT13 and NP symptoms. Then, SCI rats were intrathecally injected with NEAT13 overexpressing and knocking down lentiviruses. Afterward, ELISA was utilized to assess the expression of IL-6, IL-1β and TNFα in rats. Subsequently, immunohistochemistry was adopted to verify the activation of microglial cells. After that, bioinformatics analysis was employed to further predict the downstream target genes of NEAT1, while RT-PCR and Western blot were conducted to determine the relative expression of miR-128-3p and aquaporin-4(AQP4). Meanwhile, a dual-luciferase reporter assay was performed to further study the targeting relationship between NEAT1 and miR-128-3p, and miR-128-3p and AQP4. RESULTS SCI rats showed distinctly higher NEAT1 expression compared with that of the control group. ELISA experiment confirmed that the over-expression of NEAT1 enhanced the expression of IL-6, IL-1β, and TNFα in SCI rats. Other related mechanism studies revealed that NEAT13 targeted and inhibited miR-128-3p as its competing endogenous RNA (ceRNA), and enhanced AQP4 expression, while miR-128-3p targeted AQP4 to regulate its expression. SUMMARY NEAT1 affects AQP4 signaling pathway to alleviate the spinal cord injury-induced NP via promoting miR-128-3p expression.
Collapse
|
33
|
Jiang P, Jiang Q, Yan Y, Hou Z, Luo D. Propofol ameliorates neuropathic pain and neuroinflammation through PPAR γ up-regulation to block Wnt/β-catenin pathway. Neurol Res 2020; 43:71-77. [PMID: 32985377 DOI: 10.1080/01616412.2020.1823107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE As an intravenous anesthetic, propofol has been exhibited to provide excellent clinical analgesia. Whether propofol has amelioration property for NP and neuroinflammation remains unexplored. The present study was arranged to probe the role of propofol in the mitigation of NP and neuroinflammation in rats and underlying mechanisms. METHODS Rats were randomly classified into the following groups: Model, Sham, Control, Propofol, GW9662, and Saline groups. The radiant heat stimulation was used to measure paw withdrawal latency (PWL), and mechanical stimulation was employed to detect paw withdrawal threshold (PWT). Subsequently, the expression of GFAP was assessed by immunofluorescence to reflect the activation of astrocyte. qRT-PCR and Western blot were utilized for the performance of mRNA and protein expression levels of PPAR γ as well as inflammation factors (TNF-α, IL-1β, and IL-6). RESULTS Pentobarbital sodium anesthesia significantly shortened the PWL and PWT, suppressed PPAR γ expression in rats in addition to elevating astrocyte activation and inflammation response. Propofol treatment attenuated the NP of rats as evidenced by restrained astrocyte activation level and inflammation factor levels. Rats treated with propofol had markedly heightened PPAR γ expression. PPAR γ exposure ameliorated NP and inflammation degree, which demonstrated by elevated astrocyte activation and inflammation levels as well as suppressed PWL and PWT in rats injected with PPAR γ inhibitor. Besides, PPAR γ decreased the expression level of β-catenin. CONCLUSION Propofol ameliorates NP and neuroinflammation of rats by up-regulating PPAR γ expression to block the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Anesthesiology, Huizhou Municipal Central Hospital , Huizhou, Guangdong, P.R. China
| | - Qun Jiang
- Department of Anesthesiology, Traditional Chinese Medicine Hospital of Guangdong Province , Guangzhou, Guangdong, P.R. China
| | - Yan Yan
- Department of Anesthesiology, Huizhou Municipal Central Hospital , Huizhou, Guangdong, P.R. China
| | - Zhiqi Hou
- Department of Anesthesiology, Huizhou Municipal Central Hospital , Huizhou, Guangdong, P.R. China
| | - Dexing Luo
- Department of Anesthesiology, Huizhou Municipal Central Hospital , Huizhou, Guangdong, P.R. China
| |
Collapse
|
34
|
Hu X, Liu Y, Wu J, Liu Y, Liu W, Chen J, Yang F. Inhibition of P2X7R in the amygdala ameliorates symptoms of neuropathic pain after spared nerve injury in rats. Brain Behav Immun 2020; 88:507-514. [PMID: 32311494 DOI: 10.1016/j.bbi.2020.04.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/23/2020] [Accepted: 04/11/2020] [Indexed: 12/26/2022] Open
Abstract
The amygdala circuitry and P2X7 receptor (P2X7R) have both been shown to play important roles in the modulation of neuropathic pain (NP). However, little is known about the functional role of P2X7R in the amygdala for the regulation of NP. This study aims to evaluate the alleviative effect of intra-amygdala microinfusion of a pharmacological antagonist of P2X7R (A-438079) on NP and explore its possible mechanism of action. Male Sprague-Dawley rats were used to construct the animal model of NP through spared nerve injury (SNI). The SNI rats randomly received chronic bilateral microinjection of A-438079 (100 pmol/side) or saline into the amygdalae via cannulas. Mechanical paw withdrawal threshold (MWT) and thermal withdrawal duration (TWD) were measured by von Frey monofilaments. Besides, tail suspension test (TST), forced swimming test (FST), open field test (OFT) and sucrose preference test (SPT) were performed to assess depression- and anxiety-like behaviors. Immunofluorescence assay was employed to determine the levels of glial fibrillary acidic protein (GFAP), ionized calcium binding adaptor molecule 1 (IBA-1) and connexin 43 (Cx43) in the spinal cord. In addition, the change of growth associated protein 43 (GAP43) level in the spinal cord was assessed by Western blot. Our data showed that chronic treatment with A-438079 increased MWT and decreased TWD on days 11-21 post-SNI while decreased depression-like and anxiety-like behaviors. A-438079 administration significantly attenuated the elevated immunoreactivities of IBA-1 and GFAP in microglia and astrocytes after SNI. Furthermore, the decreased expression of GAP-43 in the spinal cord due to SNI was significantly attenuated by A-438079. However, when A-438079 and a pharmacological agonist (BzATP) of P2X7R were given simultaneously, all the effects caused by A-438079 alone were reversed. In brief, our study revealed the protective role of inhibiting P2X7R in the amygdala against symptoms associated with NP, possibly attributing to its inhibitory effects on spinal microglia and astrocytes.
Collapse
Affiliation(s)
- Xiaoling Hu
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hunan Province 421001, China
| | - Yiming Liu
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hunan Province 421001, China
| | - Junting Wu
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hunan Province 421001, China
| | - Yu Liu
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hunan Province 421001, China
| | - Wenjie Liu
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hunan Province 421001, China
| | - Ji Chen
- Department of Endocrinology, The First Affiliated Hospital of University of South China, Hunan Province 421001, China
| | - Fengrui Yang
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hunan Province 421001, China; Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
35
|
Gao Y, Bai L, Zhou W, Yang Y, Zhang J, Li L, Jiang M, Mi Y, Li TT, Zhang X, Zhang W, Xu JT. PARP-1-regulated TNF-α expression in the dorsal root ganglia and spinal dorsal horn contributes to the pathogenesis of neuropathic pain in rats. Brain Behav Immun 2020; 88:482-496. [PMID: 32283287 DOI: 10.1016/j.bbi.2020.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
Emerging evidence has implicated poly-(ADP-ribose) polymerase 1 (PARP-1), a transcriptional coregulator, in a variety of inflammatory diseases. In the current study, the role of PARP-1 in neuropathic pain and the underlying mechanisms were investigated. Neuropathic pain was determined by assessing the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) following lumbar 5 spinal nerve ligation (SNL) in male rates. Western blotting, qRT-PCR, immunohistochemistry, chromatin immunoprecipitation (ChIP), and Co-IP assays were performed to elucidate the mechanisms. The results showed that SNL resulted in a significant increase in the expression and activation of PARP-1 in the ipsilateral L4/5 dorsal root ganglia (DRG) and spinal dorsal horn, which occurred on day one, reached peak on day 7, and persisted more than 2 weeks after surgery. Double immunofluorescence staining revealed that PARP-1 was expressed exclusively in DRG A-type and C-type neurons. In the spinal cord, PARP-1 mainly colocalized with the neuronal marker NeuN and the astrocytic marker GFAP specifically in the superficial lamina. Prior intrathecal (i.t.) injection of PJ-34, a PARPs inhibitor, or Tiq-A, a specific PARP-1 inhibitor, dose-dependently prevented the reductions in PWT and PWL following SNL. Established neuropathic pain-like hypersensitivity was also attenuated with i.t. injection of PJ-34 and Tiq-A starting on day 7 following SNL, a timepoint at which neuropathic pain was fully established. SNL-induced mechanical allodynia and thermal hyperalgesia were also alleviated by i.t. injection of PARP-1 siRNA following a reduction in PARP-1 expression in the dorsal horn. Moreover, the SNL-induced increases in TNF-α protein and mRNA in the dorsal horn and DRG were dramatically suppressed by i.t. injection of Tiq-A or PARP-1 siRNA. The i.t. lipopolysaccharide (LPS)-induced increase in the production of TNF-α in the dorsal horn was also inhibited by prior to i.t. injection of PARP-1 siRNA. Results of ChIP assay showed that SNL-induced PARP-1 activation promoted the binding of NF-κB p65 with the TNF-α promoter in the dorsal horn and that PARP-1 inhibition reduced this binding and suppressed TNF-α expression. Co-IP assay revealed that SNL caused a significant increase in the level of histone H1 poly(ADP)-ribosylation. Together, these results indicate that PARP-1-regulated TNF-α expression in the DRG and spinal dorsal horn following SNL contributes to the development and maintenance of neuropathic pain. Targeting PARP-1 might be a promising therapeutic strategy for the treatment of the chronic pain.
Collapse
Affiliation(s)
- Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liying Bai
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Wenjuan Zhou
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Jian Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Mingjun Jiang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yang Mi
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Tong-Tong Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xuan Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Wei Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
36
|
Cabarga L, Batallé G, Pol O. Treatment with slow-releasing hydrogen sulfide donors inhibits the nociceptive and depressive-like behaviours accompanying chronic neuropathic pain: Endogenous antioxidant system activation. J Psychopharmacol 2020; 34:737-749. [PMID: 32312156 DOI: 10.1177/0269881120913154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Therapies to treat chronic neuropathic pain and its associated comorbidities are limited. Recent studies demonstrated that the administration of slow-releasing hydrogen sulfide (H2S) donors inhibited chemotherapy-induced neuropathic pain. However, the antidepressant or anxiolytic effects of these compounds and their mechanisms of action during chronic neuropathic pain have not been evaluated. AIMS To determine whether the administration of two slow-releasing H2S donors, allyl isothiocyanate (A-ITC) and phenyl isothiocyanate (P-ITC), inhibits the nociceptive and emotional disorders associated with chronic neuropathic pain. METHODS In C57BL/6 male mice with neuropathic pain caused by the chronic constriction of the sciatic nerve, we assessed the effects of intraperitoneal administration of A-ITC and P-ITC in (a) the mechanical allodynia, thermal hyperalgesia and thermal allodynia induced by nerve ligation; (b) the anxiety- and depressive-like behaviours linked with neuropathic pain; (c) glial activation and mitogen-activated protein kinases phosphorylation, and (d) expression of the antioxidant enzymes, heme oxygenase 1 (HO-1), NADPH quinone oxidoreductase1, and glutathione S-transferase mu-1 (GSTM1), and alpha-1 (GSTA1), in hippocampus and prefrontal cortex (PFC). RESULTS Both treatments inhibited the allodynia and hyperalgesia, depressive-like behaviours, astroglial activation, and the extracellular signal-regulated kinase 1/2 phosphorylation but were unable to abolish the anxiety-like behaviours accompanying neuropathic pain. A-ITC and P-ITC also augmented the expression of HO-1, GSTM1, and GSTA1 in the hippocampus and/or PFC. CONCLUSIONS The administration of slow-releasing H2S donors might be a promising treatment for the management of chronic neuropathic pain and some associated comorbidities via inhibiting the inflammatory and plasticity changes, and activating the endogenous antioxidant responses.
Collapse
Affiliation(s)
- Laura Cabarga
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Catalunya, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Catalunya, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Catalunya, Spain
| |
Collapse
|
37
|
Zhang X, Zhang Y, Cai W, Liu Y, Liu H, Zhang Z, Su Z. MicroRNA-128-3p Alleviates Neuropathic Pain Through Targeting ZEB1. Neurosci Lett 2020; 729:134946. [DOI: 10.1016/j.neulet.2020.134946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/02/2020] [Accepted: 03/29/2020] [Indexed: 12/29/2022]
|
38
|
Lidocaine Alleviates Neuropathic Pain and Neuroinflammation by Inhibiting HMGB1 Expression to Mediate MIP-1α/CCR1 Pathway. J Neuroimmune Pharmacol 2020; 16:318-333. [DOI: 10.1007/s11481-020-09913-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
|
39
|
Romeo-Guitart D, Casas C. NeuroHeal Treatment Alleviates Neuropathic Pain and Enhances Sensory Axon Regeneration. Cells 2020; 9:E808. [PMID: 32230770 PMCID: PMC7226810 DOI: 10.3390/cells9040808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 01/06/2023] Open
Abstract
Peripheral nerve injury (PNI) leads to the loss of motor, sensory, and autonomic functions, and often triggers neuropathic pain. During the last years, many efforts have focused on finding new therapies to increase axonal regeneration or to alleviate painful conditions. Still only a few of them have targeted both phenomena. Incipient or aberrant sensory axon regeneration is related to abnormal unpleasant sensations, such as hyperalgesia or allodynia. We recently have discovered NeuroHeal, a combination of two repurposed drugs; Acamprosate and Ribavirin. NeuroHeal is a neuroprotective agent that also enhances motor axon regeneration after PNI. In this work, we investigated its effect on sensory fiber regeneration and PNI-induced painful sensations in a rat model of spare nerve injury and nerve crush. The follow up of the animals showed that NeuroHeal treatment reduced the signs of neuropathic pain in both models. Besides, the treatment favored sensory axon regeneration, as observed in dorsal root ganglion explants. Mechanistically, the effects observed in vivo may improve the resolution of cell-protective autophagy. Additionally, NeuroHeal treatment modulated the P2X4-BDNF-KCC2 axis, which is an essential driver of neuropathic pain. These data open a new therapeutic avenue based on autophagic modulation to foster endogenous regenerative mechanisms and reduce the appearance of neuropathic pain in PNI.
Collapse
Affiliation(s)
- David Romeo-Guitart
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain;
- Institut Necker Enfants-Malades (INEM), INSERM U1151, Laboratory “Hormonal regulation of brain development and functions”—Team 8, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Caty Casas
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain;
| |
Collapse
|
40
|
Cao S, Zhang D, Yuan J, Liu C, Zhou W, Zhang L, Yu S, Qin B, Li Y, Deng W. MicroRNA And Circular RNA Expression In Affected Skin Of Patients With Postherpetic Neuralgia. J Pain Res 2019; 12:2905-2913. [PMID: 31695480 PMCID: PMC6802488 DOI: 10.2147/jpr.s221615] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Mechanisms of postherpetic neuralgia (PHN) are still not clear. Transcripts such as microRNA (miRNA) and circular RNA (circRNA) in the affected skin may take part in the initiation and development of this neuropathic pain; however, their expression profiles in skins of PHN patients have not been reported. The PHN affected skin and the mirror skin were collected and subjected to miRNA and circRNA microarray, and expression profiles were comparatively analyzed. There were 317 differently expressed miRNAs in PHN affected skin compared with mirror skin (fold change ≥2.0), and 13 of them showed fold change >10 in the PHN skin. Only one circRNA, hsa_circRNA_405463 showed fold change >2 in PHN skin, however, 31 circRNAs with fold change ≥1.5. To evaluate functions of differential miRNAs, their target mRNAs were predicted and bioinformatics analyses including gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway were conducted. Target mRNAs significantly (P<0.05) enriched in 85 pathways, such as FoxO, AMPK, MAPK and pathway. These data reported for the first time that miRNA and circRNA differentially expressed in the PHN skin and these transcripts with abnormal expression could be potential targets to treat PHN.
Collapse
Affiliation(s)
- Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, People's Republic of China
| | - Dexin Zhang
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Jie Yuan
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, People's Republic of China
| | - Chengxi Liu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, People's Republic of China
| | - Wenjing Zhou
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, People's Republic of China
| | - Lin Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, People's Republic of China
| | - Shouyang Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, People's Republic of China
| | - Bangyong Qin
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Ying Li
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Wenwen Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| |
Collapse
|
41
|
Peng Z, Zha L, Yang M, Li Y, Guo X, Feng Z. Effects of ghrelin on pGSK-3β and β-catenin expression when protects against neuropathic pain behavior in rats challenged with chronic constriction injury. Sci Rep 2019; 9:14664. [PMID: 31601982 PMCID: PMC6787073 DOI: 10.1038/s41598-019-51140-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/25/2019] [Indexed: 11/09/2022] Open
Abstract
Ghrelin has been shown to alleviate neuropathic pain by inhibiting the release of proinflammatory cytokines. The purpose of this study was to investigate the role of GSK-3β/β-catenin signaling in mediating the effect of ghrelin on neuropathic pain and to understand the associated mechanisms. Chronic constriction injury (CCI) of the sciatic nerve was used to establish a rat model of neuropathic pain. Hyperalgesia and allodynia were evaluated by observing the mechanical withdrawal threshold and the thermal withdrawal latency. Wnt3a and β-catenin protein expression and GSK-3β phosphorylation were detected by western blotting analysis. The levels of tumor necrosis factor-α and IL-1β were determined using an enzyme-linked immunosorbent assay. In addition, we used immunohistochemical analysis to determine the levels of GSK-3β phosphorylation in the dorsal horn of the spinal cord. Intrathecal delivery of ghrelin effectively ameliorated CCI-induced mechanical allodynia and thermal hyperalgesia at 7 and 14 days and reduced the levels of tumor necrosis factor-α. Ghrelin inhibited CCI-induced GSK-3β activation and β-catenin overexpression in the spinal dorsal horn. Moreover, intrathecal injection of ghrelin suppressed the activation of GSK-3β in the spinal dorsal horn of CCI rats, as assessed by immunohistochemical analysis. Our data indicated that ghrelin could markedly alleviate neuropathic pain by inhibiting the expression of β-catenin, via the suppression of GSK-3β activation, in the spinal cord of CCI rats.
Collapse
Affiliation(s)
- Zhiyou Peng
- Department of Pain Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Leiqiong Zha
- Department of Pain Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meijuan Yang
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunze Li
- Department of Pain Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejiao Guo
- Department of Pain Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Feng
- Department of Pain Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
42
|
Hammond EA, Pitz M, Lambert P, Shay B. Quantitative sensory profiles of upper extremity chemotherapy induced peripheral neuropathy: Are there differences in sensory profiles for neuropathic versus nociceptive pain? Can J Pain 2019; 3:169-177. [PMID: 35005406 PMCID: PMC8730657 DOI: 10.1080/24740527.2019.1665992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aims: The aim of this study was to define the sensory phenotypes of taxane-induced peripheral neuropathy (TIPN) between neuropathic and nonneuropathic symptoms in a breast cancer population to identify future targets for mechanism-based pain management. Methods: Participants (n = 48) with stage I–III breast cancer. Self-report questionnaires and quantitative sensory testing were used to assess sensory symptoms. The self-report version of the Leeds Assessment for Neuropathic Symptoms and Signs (S-LANSS) divided the groups into neuropathic and nonneuropathic sensory phenotypes. In total, five visits over approximately 8 months assessed each participant from pre-chemotherapy to 6 months post-chemotherapy. Results: Out of 191 nerve assessments, 150 had an S-LANSS <12 defined as “nonneuropathic” and 41 scored >12, which was defined as “neuropathic.” Numeric Pain Rating Scale (NPRS) was analyzed based on percentages of those experiencing 1+ pain (graded 1/10 or higher) versus no pain. The neuropathic group had 82.9% of 1+ pain vs. 28.7% in the nonneuropathic group (odds ratio = 7.49; 95% confidence interval, 2.76–20.3; P = 0.001). The neuropathic group reported impaired function on the Disability of the Arm, Shoulder, and Hand (DASH) questionnaire (P = 0.002). Heat pain threshold resulted in statistical differences for the left hand but not the right hand in the neuropathic group (P = 0.05). No other quantitative data on warm/cool or cold or vibration demonstrated sensory differences between the groups. Conclusions: Few differences in sensory profiles measured using quantitative sensory testing (QST) were found. Heat pain thresholds were normalized, possibly suggesting that the neuropathic group retained C-fiber and transient potential vanilloid 1 (TRPV1) function. Participants with neuropathic pain demonstrated significant differences with increased pain and decreased function.
Collapse
Affiliation(s)
- Elizabeth Andersen Hammond
- College of Rehabilitation Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marshall Pitz
- Internal Medicine, Rady Faculty of Health Sciences, Medical Oncologist, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pascal Lambert
- Epidemiology and Cancer Registry, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Barbara Shay
- College of Rehabilitation Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
43
|
Dai D, Wang J, Jiang Y, Yuan L, Lu Y, Zhang A, Zou D, Chen X. Small RNA sequencing reveals microRNAs related to neuropathic pain in rats. ACTA ACUST UNITED AC 2019; 52:e8380. [PMID: 31531524 PMCID: PMC6753853 DOI: 10.1590/1414-431x20198380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/31/2019] [Indexed: 12/24/2022]
Abstract
The present study aimed to identify microRNAs (miRNAs) that are involved in neuropathic pain and predict their corresponding roles in the pathogenesis and development process of neuropathic pain. The rat model of neuropathic pain caused by spared nerve injury (SNI) was established in Sprague-Dawley male rats, followed by small RNA sequencing of the L3–L6 dorsal root ganglion. Real-time PCR was performed to validate the differently expressed miRNAs. Functional verification was performed by intrathecally injecting the animals with miRNA agomir. A total of 72 differentially expressed miRNAs were identified in the SNI rats, including 33 upregulated and 39 downregulated miRNAs. The results of qPCR further verified the expression levels of rno-miR-6215 (P=0.015), rno-miR-1224 (P=0.030), rno-miR-1249 (P=0.038), and rno-miR-488-3p (P=0.048), which were all significantly downregulated in the SNI rats compared to the control ones. The majority of differentially expressed miRNAs were associated with phosphorylation, intracellular signal transduction, and cell death. Target prediction, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses suggested that these differentially expressed miRNAs targeted genes that are related to axon guidance, focal adhesion, and Ras and Wnt signaling pathways. Moreover, miR-1224 agomir significantly alleviated SNI-induced neuropathic pain. The current findings provide new insights into the role of miRNAs in the pathogenesis of neuropathic pain.
Collapse
Affiliation(s)
- Dawei Dai
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Neurosurgical Institute of Shanghai, Neurosurgical Institute of PLA, Shanghai, China
| | - Junyu Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Neurosurgical Institute of Shanghai, Neurosurgical Institute of PLA, Shanghai, China
| | - Ying Jiang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Neurosurgical Institute of Shanghai, Neurosurgical Institute of PLA, Shanghai, China
| | - Lei Yuan
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Youming Lu
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Aijun Zhang
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Dongdong Zou
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xin Chen
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
44
|
Liang YX, Wang NN, Zhang ZY, Juan ZD, Zhang C. Necrostatin-1 Ameliorates Peripheral Nerve Injury-Induced Neuropathic Pain by Inhibiting the RIP1/RIP3 Pathway. Front Cell Neurosci 2019; 13:211. [PMID: 31156396 PMCID: PMC6529821 DOI: 10.3389/fncel.2019.00211] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
Necrostatin-1 is an inhibitor of necroptosis, a form of programmed cell death that has been reported to be involved in various neurological diseases. Presently, the role of necroptosis in neuropathic pain induced by peripheral nerve injury is still unclear. This study was focused on investigating the potential effects of necroptosis in the development and progression of neuropathic pain in a rat model and the possible neuroprotective effects of necrostatin-1 in neuropathic pain. The results indicated that the necroptosis-related proteins RIP1 and RIP3 significantly increased postoperation in the spinal cord in a neuropathic pain model and peaked 7 days postoperation, which was consistent with the time-dependent changes of hyperalgesia. Additionally, we found that peripheral nerve injury-related behavioral and biochemical changes were significantly reduced by necrostatin-1. In particular, hyperalgesia was attenuated, and the levels of RIP1 and RIP3 were decreased. Furthermore, the ultrastructure of necrotic cell death and neuroinflammation were alleviated by necrostatin-1. Collectively, these results suggest that necroptosis is an important mechanism of cell death in neuropathic pain induced by peripheral nerve injury and that necrostatin-1 may be a promising neuroprotective treatment for neuropathic pain.
Collapse
Affiliation(s)
- Ying-Xia Liang
- Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China.,Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Nan-Nan Wang
- Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Zhi-Yu Zhang
- Department of Microsurgery, Shouguang People's Hospital, Weifang, China
| | - Zhao-Dong Juan
- Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Can Zhang
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
45
|
Fernandes V, Sharma D, Kalia K, Tiwari V. Neuroprotective effects of silibinin: an in silico and in vitro study. Int J Neurosci 2018; 128:935-945. [PMID: 29465317 DOI: 10.1080/00207454.2018.1443926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM OF THE STUDY Astrogliosis is a key contributor for many neurological disorders involving apoptosis, neuroinflammation and subsequent neuronal death. Silibinin, a polyphenol isolated from milk thistle (Silybum marianum), has been shown to suppress the astrocyte activation in various neurodegenerative disorders and also exhibit a neuroprotective role in neuroinflammation-driven oxidative damage. The present study was designed with an aim to investigate the neuroprotective effects of Silibinin against LPS induced oxido-inflammatory cascade and astrocyte activation. MATERIALS AND METHODS We have used in-silico molecular modelling techniques to study the interaction and binding affinity of silibinin with chemokine receptors associated with neuroinflammation. We have also tested silibinin against LPS induced oxido-inflammatory cascade and astrocyte activation in C6 glia cell lines. RESULTS In the present study, we found that treatment with silibinin significantly attenuates LPS-oxidative-nitrosative stress in C6 astrocytoma cells. We also observed the significant inhibition of induced astrocyte activity after treatment with silibinin. Moreover, molecular modelling studies have proposed a binding pose of silibinin with binding sites of p38 MAPK, CX3CR1 and P2X4 which is an important downstream cascade involved in glia cell activation and neuroinflammation. CONCLUSIONS Overall, the findings from the current study suggests that silibinin exhibits neuroprotective activity by attenuating oxidative damage and astrocytes activation.
Collapse
Affiliation(s)
- Valencia Fernandes
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , Gujarat , India
| | - Dilip Sharma
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , Gujarat , India
| | - Kiran Kalia
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , Gujarat , India
| | - Vinod Tiwari
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , Gujarat , India.,b Department of Anesthesiology and Critical Care Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|